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Proteins are a diverse category of biomolecules with great therapeutic potential.  

Intracellular delivery of proteins can augment the deficient activities of dysfunctional or 

poorly expressed innate proteins and therefore represents a promising strategy to treat 

the associated diseases.  One major barrier to intracellular protein delivery is the 

translocation of the protein across the cellular membrane.  Endocytosis provides an 

important pathway for protein nanocarriers to enter cells across the plasma membrane.  

However, the cargo protein must then promptly escape from the endosomes to avoid 

degradation in the lysosome and to exert its cellular function. 

Previously, we reported a cationic lipid-coated magnesium phosphate 

nanoparticle (LPP) system for intracellular protein delivery.  The intracellular delivery of 

catalase, an antioxidant enzyme, by LPP protected MCF-7 cells from a lethal level of 

exogenous H2O2 and lowered the reactive oxygen species (ROS) levels in EA.hy926 

cells.  These findings prompted us to further develop LPP to evaluate its protein delivery 

in animals. 

Two categories of LPP formulations, catalase-encapsulated (CE) LPP and 

catalase-complexed (CC) LPP, were successfully prepared by a modular approach.  
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Catalase-encapsulated liposomes (CE LP) were prepared by hydrating a thin-film of 

lipids with catalase solution followed by extrusion.  However, extrusion of CE LP 

resulted in substantial loss of catalase activity.  Catalase-complexed liposomes (CC LP) 

were prepared by first extruding cationic liposomes with a LIPEX extruder and then 

mixing with catalase solution.  The resultant CC LP was much smaller than CE LP and 

preserved all the catalase activity.  Magnesium phosphate nanoparticles (MgP NP) were 

prepared by the microemulsion precipitation technique.  CE LP or CC LP were mixed 

with MgP NP to yield LPP formulations (CE LPP or CC LPP, respectively).  The 

formulations were then rendered isotonic with glucose (5% w/v).  Transmission 

electron microscopy (TEM) confirmed the proposed structure of LPP comprising a shell 

of lipid bilayers with a core of MgP NP.  Furthermore, TEM showed drastic 

morphological changes of LPP formulations at acidic pH, consistent with an osmotic 

explosion. 

The LPP formulations were administered by intravenous or intranasal routes to 

CD-1 mice.  LPP formulations of fluorescently labeled catalase distributed substantially 

into the lung following intranasal administration, whereas intravenous administration of 

the same formulations caused catalase distribution mainly into the liver.  In addition, 

intranasal administration of both the LPP formulations yielded higher pulmonary 

catalase activity and lowered the ROS levels in the healthy lung compared to free 

catalase solution.  Based on these results, LPP’s antioxidant effects were further 

evaluated in mice with lipopolysaccharide-induced acute lung injury (ALI). 
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Lack of LPP distribution into the lung following intranasal administration indicated 

that intranasal dosing did not deliver catalase substantially into inflamed lungs.  In 

corroboration, the inflammatory biomarker tumor necrosis factor-alpha (TNF-α) 

remained unchanged after intranasal dosing of LPP formulations.  Intratracheal dosing 

of LPP formulations delivered the fluorescently labeled catalase deep into the lung and 

significantly reduced TNF-α production in the inflamed lungs compared to free catalase 

solution.  CC LPP, which was smaller and which better preserved catalase activity than 

CE LPP, showed greater intrapulmonary catalase activity compared to CE LPP in both 

healthy and inflamed lungs.  Taken together, LPP represents a promising nanocarrier 

for intracellular protein delivery. 
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Chapter 1: Introduction 

1.1 Protein Therapeutics: Advantages and Challenges 

Proteins represent a large, complex and diverse category of biomolecules that 

have great therapeutic potential.  Since the development of human insulin, recombinant 

protein therapy has been extensively investigated.  Compared to small molecule drugs, 

proteins can achieve higher specificity, more complex functions, higher biocompatibility 

and lower immune responses [1].  Recombinant protein therapeutics may also 

overcome drawbacks associated with gene therapy, such as oncogenic effects of viral 

gene vectors and undesirable immune responses [2].  On average, clinical development 

and FDA approval are faster for protein therapeutics than small molecule drugs [1].  

Currently, most of the commercially available proteins therapeutics are being used for 

extracellular targets [3]. 

Intracellular delivery of proteins can augment the deficient activities of 

dysfunctional or poorly expressed innate proteins and therefore represents a promising 

strategy to treat the associated diseases.  Moreover, proteins can be delivered into cells 

to counter a number of pathological developments such as inflammation, oxidative 

stress, neurodegeneration, and cancer cell growth [4, 5].  One major barrier of 

intracellular protein delivery is the translocation of the protein across cellular 

membranes.  Endocytosis is the main mechanism for cellular uptake and trafficking 

across the plasma membrane (Fig. 1).  Cellular uptake mechanisms such as clathrin-

mediated endocytosis, phagocytosis, micropinocytosis and caveolae-mediated 

endocytosis often lead to varying levels of degradation, exocytosis or endosomal escape 
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[3].  The early endosome serves as a major sorting station, where the endocytosed 

protein is either recycled back to the plasma membrane or sorted into the late 

endosome for degradation in the lysosome [6].  During the maturation process, a stable 

pH gradient is maintained in different endosomal compartments: early endosomes at 

pH 6.5; late endosomes at pH 5.5; and lysosomes at pH 4.5 [7]. 

 
 
 

 
Fig. 1.1. Illustration of selected intracellular trafficking mechanisms and their 
generalized pathways (Adapted from ref. [3]) 

 
 
 

Although endocytosis provides an important pathway for protein delivery systems 

to enter the cells across the plasma membrane, the cargo protein must then promptly 

escape from the endosomes to exert its cellular function, and to avoid degradation in 
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the lysosome [8, 9].  Furthermore, the large size, delicate structure and excess surface 

charge of most proteins subject them to denaturation, enzymatic deactivation, 

clearance by the reticuloendothelial system (RES), or elimination by renal filtration.  

These hurdles have inspired the development of numerous strategies for intracellular 

protein delivery. 

1.2 Current Protein Delivery Systems 

Nanocarriers are colloidal delivery systems whose diameter is in the nanometer 

range.  Over the past decade, various nanocarrier systems based on polymers, 

inorganic compounds, proteins or lipids have been developed to enhance the 

intracellular delivery of their cargo proteins [3, 10].  Nanocarriers can protect the cargo 

proteins from denaturation, enzymatic degradation and renal/hepatic elimination, 

thereby improving their stability in blood circulation.  Nanocarriers can also be rendered 

to have physicochemical properties (e.g. suitable size, shape, charge, surface coating, 

grafting of targeting ligands, etc.) that enhance the distribution of the cargo proteins to 

the target site [11, 12]. 

1.2.1 Inorganic nanoparticles.  Inorganic nanocarriers composed of silica are 

commonly used delivery systems due to their versatility and flexibility [3].  Bale et al. 

[13] functionalized silica nanoparticles with a hydrophobic n-octadecyltrimethoxysilane 

moiety on their surface to immobilize functional proteins by hydrophobic interactions. 

These hydrophobic silica nanoparticles delivered ribonuclease A and an antibody against 

phospho-Akt intracellularly to initiate cell death in MCF-7 breast cancer cells as well as 

rat neural stem cells [13].  
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Silica nanoparticles that contain networks of mesopores (aka, mesoporous silica 

nanoparticles, MSNs) are capable of encapsulating both small and/or large molecules.  

MSNs are potentially advantageous in a) promoting high cargo adsorption/loading by 

their large surface area and high pore volume, b) controlling release kinetics by 

adjusting the pore size, c) enabling targeted delivery by modifying their surface, d) 

allowing simultaneous drug delivery and imaging by loading a combination of 

therapeutic cargo with magnetic and/or luminescent compounds and e) promoting bone 

regeneration due to their excellent surface properties and porosity [14].  In a recent 

study, Lin et al. [15] used MSNs for synergistic co-delivery of superoxide dismutase and 

glutathione peroxidase to help scavenge reactive oxygen species (ROS) in HeLa cells.  

In another study, Yang et al. [16] reported an MSN nanocarrier coated with a fusogenic 

lipid bilayer that promoted MSN’s fusion with cell membranes for intracellular protein 

delivery. The cargo protein cytochrome C, loaded in the MSN core was delivered into 

the cytosol, as indicated by the apoptosis of HeLa cells.  Yuting et al. [17] studied the 

advantage of roughened silica nanoparticles, whose surface was subjected to octadecyl-

decorated hydrophobic modifications, in cellular uptake by MCF-7 and SCC-25 cells 

when compared to smooth silica nanoparticles.  In this study, the authors demonstrated 

that both roughness and surface functionalization contributed to enhanced cellular 

uptake, and only the latter triggered enhanced endosomal release of the cargo protein 

to the cytosol. 

Gold nanoparticles (AuNPs) are another type of inorganic nanocarriers that have 

been widely investigated as delivery platforms for both large and small molecules due 
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to the non-toxic characteristic of gold, and the ease of surface functionalization in these 

nanocarriers [3].  Functionalized AuNPs have been studied for the intracellular delivery 

of β-Galactosidase, a 473 KDa, negatively charged membrane-impermeable enzyme 

[18].  In this study, AuNPs delivered the functional protein into HeLa cells as monitored 

by an X-Gal enzymatic activity assay.  In another study, Mout et al. [19] fabricated a 

two-component protein-AuNP nanoassembly, which was evaluated for intracellular 

delivery of multiple fluorescent proteins.  The fluorescent signal from these proteins 

spread into the cytosol followed by quick nuclear uptake, indicating the presence of a 

transient membrane-fusion based mechanism for direct intracellular protein delivery. 

AuNPs have also been explored to deliver proteins for genome editing, where the 

Cas-9 protein, guide RNA and donor DNA need to be delivered simultaneously as a 

genome editing machinery.  Clustered, regularly interspaced short palindromic repeats 

(CRISPR) associated with protein 9 (Cas9) has the potential to revolutionize the 

treatment of genetic diseases by correcting genetic mutations.  Lee et al. [20] 

developed a ‘CRISPR-Gold’ nanocarrier system to deliver the CRISPR/Cas9 genome 

editing machinery into the cells by endocytosis followed by polymer-mediated 

endosomal release.  The CRISPR-Gold complex was coated with a cationic polymer to 

improve the biological stability and the ability to disrupt the endosome.  CRISPR-Gold 

demonstrated 5.4% efficiency in a Duchenne muscular dystrophy murine model, where 

the animals showed enhanced muscular capability in response to the repair of the 

dystrophin mutation [20]. 
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1.2.2 Polymeric nanocarriers.  Polymeric nanocarriers include micelles, 

nanogels, nanospheres, nanofibers, rods, vesicles, capsules and dendrimers.  They are 

versatile structures that can be engineered to obtain high loading efficiency, tunable 

release kinetics and targeted delivery.  Proteins can directly interact with or be 

encapsulated into polymeric nanocarriers.  Polymeric micelles are often designed to 

facilitate triggered release in response to stimuli such as pH, temperature or chemical 

triggers such as glucose concentration [21].  

Gao et al. [22] developed a negatively charged pH-sensitive micelle using a 

degradable block copolymer methoxy poly(ethylene glycol)-poly(β-amino ester) with 

piperidine and imidazole rings, which remained negatively charged under physiological 

pH to increase its circulation time and turned positively charged under acidic conditions 

to promote its cellular uptake.  After intravenous administration of such polymeric 

micelles that were labeled with Cy5.5 and loaded with albumin, near-infrared 

fluorescence imaging showed selective accumulation of the micelles in the ischemic 

area of the brain in rats. 

Polymeric nanogels were loaded with both β-galactosidase and a lipophilic small 

molecule, which were then delivered concurrently into HeLa cells [23]. Shi et al. [24] 

studied the influence of PEGylation of catalase in a mouse model of H1N1 influenza-

induced pneumonia.  The PEGylation increased the half-life and enhanced the 

therapeutic efficacy of native catalase in the disease model. 
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Fig. 1.2. Schematic of the molecular structure of a dendrimer (Adapted from ref. [25]) 

 
 
 

Dendrimers are polymeric molecules that are repetitively branched in a spherical 

manner (Fig. 1.2).  Dendrimers have been investigated as delivery systems for both 

small and large molecules.  Fluorinated dendrimers have been investigated by Lv et al. 

for their ability to self-assemble and to deliver a variety of proteins (albumin, β-

galactosidase, saporin and a cyclic hendecapeptide) into the cytosol of HeLa cells [26, 

27].  The lead A6-2/saporin fluorodendrimer-protein complex, which was coated with 

anionic hyaluronic acid, suppressed tumor growth in a murine model of breast cancer 

[26].  Dendrimers that are functionalized by guanidinobenzoic acid have also been 

reported to promote the intracellular delivery of R-phycoerythrin and β-galactosidase in 

HeLa cells [28].  
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1.2.3 Lipid-based nanocarriers.  Lipid-based nanocarriers such as liposomes, 

lipoplexes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have 

been investigated as delivery systems for both small and large molecules.  

Liposomes are lipid assemblies of spherical vesicles that contain a shell of lipid 

bilayers, which can entrap hydrophobic cargo molecules, and an aqueous core, where 

hydrophilic drugs can be encapsulated.  Liposomes are versatile nanocarriers, whose 

size, charge, lipid composition and surface can be engineered to assume desirable 

characteristics for drug delivery (Fig. 1.3).  Due to their modularity and ease of 

preparation, liposomes have been widely used for intracellular delivery of antibodies, 

enzymes and cytokines [10].  Sarker et al. [29] studied the intracellular delivery 

efficiency of lysine-based cationic liposomes and confirmed that it delivered albumin 

and antibodies labeled with FITC into the cytosol of HeLa cells by confocal laser 

scanning microscopy.  The complexes were endocytosed by a caveolae-mediated 

mechanism based on inhibition experiments [29].  Kim et al. [30] developed a targeted 

and PEGylated lipid nanocarrier consisting of cationic lipids (DOTAP/DOPE), 

apolipoprotein and DSPE-PEG to deliver cytochrome C into cancer cells.  The authors 

reported massive apoptosis in H460 cells treated with the cytochrome C lipid 

nanocarriers.  Additionally, the nanocarriers selectively accumulated in the tumor tissue 

and provoked tumor regression in a mouse xenograft model after intravenous 

administration. 
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Fig. 1.3. Schematic representation of a conventional liposome (A), PEGylated liposome 
(B), theranostic liposome (D) and a ligand-targeted liposome (D) (Adapted from ref. [31]) 
 
 
 

Cationic lipids are often employed in the nanocarriers designed for protein or 

gene delivery because a) they can enhance loading efficiency by electrostatic 

interaction with negatively charged proteins, DNA or RNA molecules and b) they can 

facilitate cellular uptake by interacting with the negatively charged cell membrane and 

by triggering endocytosis.  Yamaguchi et al. [32] demonstrated that a mixture of 

commercially available cationic lipid reagent (BioPORTER) and Wr-T transporter peptide 

aided cytosolic delivery of a variety of proteins into HeLa and MRC-5 cells.  Another 

study reported a guanidinium-based cationic liposome that delivered functional β-

galactosidase and anti-cytokeratin8 antibodies into HeLa cells [33].  Although liposomal 
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encapsulation of proteins can improve their cellular uptake, there is a risk of protein 

activity loss during the preparation steps including extrusion and freeze-thawing [34]. 

Solid lipid nanoparticles (SLNs) are made of lipids that are solid at body 

temperature, and of emulsifiers for stability.  SLNs can be prepared by high-pressure 

homogenization, solvent emulsification-evaporation, microemulsion, and spray drying 

techniques [35].  SLNs are advantageous in protecting the cargo protein from the 

environment, ease of scale-up, biocompatibility and biodegradability with the use of 

appropriate lipids.  However, their crystalline structure can hinder drug loading, expulse 

the loaded drug during storage, or trigger polymorphic transitioning coupled with 

accelerated drug release [36].  In contrast to SLNs, nanostructured lipid carriers (NLCs) 

consist of lipids in both solid and liquid phases.  As a result, NLCs have an unstructured 

lipophilic matrix that can overcome SLN’s limitation of drug expulsion at high drug-

loading capacity.  Almeida et al. [37] evaluated SLNs as antigen carriers using lysozyme 

as a model protein.  The authors reported that lysozyme loaded into SLNs retained its 

stability even after being subjected to the harsh high-pressure homogenization 

procedure.  Another study reported that lysozyme loaded into SLNs that consisted of 

triglycerides or diglycerides exhibited a lipase-mediated, degradation-based release, 

which would find applications in oral delivery of peptides/proteins [38]. 

The foregoing review shows that extensive progress has been made over the last 

decade, which leads to several promising strategies to deliver proteins.  Most of these 

strategies have shown successful applications at a cellular level.  However, they are still 

far from clinical application.  The biodistribution and toxicity of nanocarriers are 
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influenced by their composition, colloidal properties and administration route, thus 

emphasizing the need to comprehensively evaluate the nanocarriers in disease models 

in vivo in order to make them safe enough for clinical applications [10, 14]. 

1.3 Cationic Lipid-coated Magnesium Phosphate Nanoparticles (LPP) 

Previously, we reported a cationic lipid-coated magnesium phosphate 

nanoparticule (LPP) delivery system for intracellular protein delivery [39]. 

1.3.1 Proposed mechanism of endosomal escape.  LPP is a novel protein 

delivery system comprising a shell of concentric cationic lipid bilayers, a core of 

magnesium phosphate nanoparticle (MgP NP) and the cargo protein, catalase, an 

ubiquitous antioxidant enzyme [40].  

 
 
 

 

Fig. 1.4. Illustration of the proposed intracellular protein delivery mechanism by LPP 
(Adapted from ref. [39]) 
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Fig. 1.4 illustrates the proposed mechanism of intracellular delivery of catalase 

by LPP.  The cationic lipids on the LPP surface would first interact with the negatively 

charged cell membrane to trigger endocytosis.  The MgP NP core of LPP would then 

dissolve in response to the acidic pH inside the endosome to form a high-salt solution, 

which would then elevate the osmotic pressure in the endosome.  This induces water 

influx and consequently the swelling and destabilization of the endosome, thereby 

releasing the cargo catalase into the cytosol [41]. 

1.3.2 In vitro activities of LPP.  The reported LPP formulation of catalase 

carried a diameter of 250 nm and was positively charged with a ζ-potential of 46 mV. 

LPP showed sensitivity to a mildly acidic pH of 5.5, at which a higher amount of 

catalase was released from the nanoparticles, than at a neutral pH of 7.4 (Fig. 1.5a).  

TEM images confirmed its osmotic explosion in response to acidic pH (Fig. 1.5c, d), 

demonstrating that LPP could destabilize endosomes to facilitate intracellular delivery of 

catalase.  

Treatment by the LPP formulation protected MCF-7 cells from H2O2-induced cell 

death (Fig. 1.6a).  Additionally, LPP lowered the ROS levels in EA.hy926 cells by more 

than 40% of the untreated-media control (Fig. 1.6b).  Both the cellular experiments 

indicated that LPP successfully delivered functional catalase into the cell.  Overall, the 

LPP system is a viable protein nanocarrier that could find potential clinical applications. 
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Fig. 1.5. pH-dependent decomposition of H2O2 by LPP (a) and TEM images of LPP at 
pHs 7.4 (b) and 5.5 (c, d) (Adapted from ref. [39]) 
 
 
 
 

 

Fig. 1.6. Protection of MCF-7 cells from lethal exogenous hydrogen peroxide (H2O2) (a) 
and ROS-scavenging in EA.hy926 cells (b) by various formulations of catalase in media 
with serum (Adapted from ref. [39]) 
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1.4 In vivo Evaluation of LPP 

Such promising findings of LPP in cell culture prompted us to further develop LPP 

to evaluate its biodistribution, potential therapeutic benefits and toxicity in animals.  

Lung was chosen as the target tissue for this dissertation because pulmonary diseases 

such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute 

respiratory distress syndrome (ARDS), asthma, pneumonia and bronchitis are all 

associated with inflammation and oxidative stress [42-44] while catalase, the prototype 

cargo protein of LPP, is an endogenous antioxidant enzyme that is important for 

regulating oxidative stress in inflammation [45-47]. 

1.4.1 Factors influencing in vivo protein delivery.  The fate of a 

nanocarrier system in vivo is influenced by several factors including the route of 

administration and the composition and colloidal properties of the LPP, which usually 

determine its in vivo stability. 

1.4.1.1 Route of administration.  Selecting the optimal route of 

administration is crucial for achieving enough nanocarrier/drug distribution at the target 

tissue for a therapeutic response.  Nanocarriers are commonly delivered intravenously 

and then passively accumulate at sites of enhanced vascular permeability, a 

characteristic of nanocarriers under several disease conditions including cancer, 

inflammation and infection [48, 49].  Cationic lipid-based nanocarriers have been 

reported to mainly accumulate in pulmonary capillaries following IV administration [50, 

51].  However, nanocarriers administered systemically are prone to rapid clearance by 

RES or non-specific distribution into other tissues resulting in a weaker therapeutic 
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effect and more side effects.  Alternatively, direct administration into the target tissue, 

whenever feasible, is advantageous because of quicker onset of action and reduced 

systemic side effects [52].  For example, direct intrapulmonary delivery using nasal 

sprays and medicated inhalers is a commonly used approach to relieve congestion and 

constriction of the airways in respiratory diseases.  However, nanocarriers administered 

by this route need to overcome the innate defense mechanism of the lungs, which 

include respiratory mucus, mucociliary clearance, exhalation, expulsion by coughing, 

and uptake by alveolar macrophages [53, 54].  Pulmonary route has also been 

investigated for its potential in non-invasive systemic protein delivery due to the large 

absorptive surface area, extremely thin mucosal membrane, and good blood circulation 

in the lung [55]. 

1.4.1.2 Colloidal properties 

1.4.1.2.1 Size.  The size of nanocarriers plays a major role in its tissue 

distribution, cellular uptake by endocytosis, phagocytic uptake and renal clearance.  

After administration into the systemic circulation, nanocarriers smaller than 200 nm in 

diameter are capable of extravasation through the highly permeable capillary blood 

vessels in inflamed tissues, provided they circulate long enough in the blood circulation.  

Phagocytosis is sensitive to particle size, and nanocarriers smaller than 0.26 µm in 

diameter can evade uptake by macrophages [56].  Conversely, nanocarriers that are 

too small (<6 nm in diameter) are prone to be excreted quickly by the kidneys.  

Following intrapulmonary administration, particles smaller than 0.5 µm in diameter 

deposit deep into the alveolar region by diffusion [54].  However, these particles are 
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subjected to exhalation, phagocytosis by macrophages or endocytosis by epithelial cells, 

which constitute the lungs defense mechanism of maintaining its mucosal surfaces [57]. 

1.4.1.2.2 Surface charge.  The surface charge of nanocarriers also influences 

their vulnerability to phagocytosis, endocytosis, opsonization and renal elimination.  

Generally, nanocarriers with a high positive or negative charge are colloidally stable on 

shelf because the charges prevent aggregation by electrostatic repulsion [58].  Positive 

charges are beneficial in promoting cellular uptake.  However, positively charged 

nanocarriers are vulnerable to opsonization, recognition and clearance by RES following 

intravenous administration [59].  On the contrary, positively charged lipophilic 

aerosolized compounds have been reported to preferentially bind to lung tissue 

following intrapulmonary administration [60]. 

1.4.1.2.3 Surface coating.  Nanocarriers that are administered intravenously 

seldom reach the target tissue partly due to clearance by the RES.  Opsonins interact 

with nanocarriers through electrostatic, ionic, van der waals, hydrophobic/hydrophilic 

forces [61], and highly charged hydrophobic nanocarriers are more susceptible to 

opsonization.  In order to avoid opsonization, the surface of the nanocarriers can be 

modified with a hydrophilic polymer, such as PEG, to prolong the half-life of 

nanocarriers in blood circulation [62]. 

1.5 Hypothesis and Specific Aims 

The purpose of this dissertation is to develop LPP formulations that are suitable for 

in vivo applications and to evaluate their protein delivery efficiency in both healthy and 

diseased animals.  Our hypothesis is that lipid-coated magnesium phosphate 
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nanoparticles can facilitate intrapulmonary delivery of proteins.  To test our hypothesis, 

the following specific aims were devised for this dissertation: 

1. To prepare, optimize and characterize lipid-coated magnesium phosphate 

nanoparticles (LPP) for in vivo application. 

2. To study the morphology of LPP using transmission electron microscopy (TEM). 

3. To evaluate the protein delivery efficiency of LPP in healthy mouse lung. 

4. To evaluate the potential therapeutic efficacy of LPP in a murine inflammatory 

lung disease model. 
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Chapter 2: Preparation and Physicochemical Characterization of Lipid-coated 

Magnesium Phosphate Nanoparticles for in vivo Application 

2.1 Introduction 

2.1.1 The components of lipid-coated magnesium phosphate 

nanoparticles.  Lipid-coated magnesium phosphate nanoparticles (LPP) consists of 

three components: concentric cationic lipid bilayers on the surface, a magnesium 

phosphate nanoparticle (MgP NP) core and the cargo protein, catalase (Fig. 2.1). 

 
 
 

 

Fig. 2.1. Proposed structure of the LPP construct 
 
 
 

2.1.1.1 Cationic lipid DOTAP.  Liposomal nanocarriers are spherical vesicles 

composed of lipid bilayer(s) surrounding an aqueous interior.  Liposomes may carry a 

positive, negative or a neutral surface charge based on the hydrophilic headgroup of 

the lipid amphiphile used.  Cellular uptake of liposomes is mediated by adsorption onto 
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the cell surface and subsequent endocytosis [63].  The positive surface charge imparted 

by the cationic lipids improve the adsorption of the liposomes onto the negatively 

charged cell membrane due to electrostatic interactions.  Notably, during the 

endosomal maturation phase, cationic lipids can fuse with the endogenous anionic lipids 

present in the endosomal membrane to facilitate cytosolic release of the entrapped 

liposomal cargo [64].  The commercially available cationic lipid, 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) (Fig. 2.2) is widely used for nucleic acid and 

protein delivery in in vitro and in vivo systems [65].  In our study, DOTAP was used for 

the construction of the cationic liposome and the LPP formulations.  

 
 
 

 

Fig. 2.2. Chemical structure of DOTAP 
 
 
 

As previously reported, DOTAP is an important component of LPP that influences 

the formation of the LPP construct [39].  The cationic lipid facilitates encapsulation 

and/or adsorption of the negatively charged cargo protein to yield catalase-loaded 

liposomes.  Additionally, the excessive positive charges of catalase-loaded liposomes 

also facilitate the coating of MgP NP with the liposome. 
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2.1.1.2 Magnesium phosphate nanoparticle core.  Calcium phosphate 

nanoparticles have been investigated for the intracellular delivery of nucleic acids, 

proteins and small molecules for decades [66, 67].  The delivery is facilitated by the 

dissolution of calcium phosphate nanoparticles in the acidic compartment of 

endosomes, which causes the swelling and bursting of the endosomes to release the 

entrapped cargo.  An example of one such system is the calcium phosphate 

nanoparticles coated with cationic lipids for systemic delivery of siRNA, reported by Li et 

al. [68].  

Magnesium phosphate and calcium phosphate have similar chemical properties 

as both magnesium and calcium are group IIA metals and the solubility of both 

compounds increases at acidic pH [69, 70].  However, the free cytosolic calcium 

concentration in healthy cells is about 100 nM and the influx of excess calcium ions into 

the cytosol can induce various cytotoxic events such as opening of mitochondrial 

permeability transition pores, disruption of cytoskeletal organization, and activation of 

apoptotic cascades [71].  In contrast, the cytosolic magnesium concentration in healthy 

cells is much higher ranging from 0.1 mM to 3 mM [72] and is less likely to be 

perturbed by the exogenous magnesium from the MgP NP core of LPP [73]. 

Additionally, cattiite (Mg3(PO4)2·22H2O), the main component of the MgP NP core is 

generally considered biocompatible, biodegradable and nontoxic [74].  Therefore, as a 

safer alternative to calcium phosphate, MgP NP was chosen for the LPP core. 

2.1.1.3 Catalase payload.  Catalase is a heme protein that catalyzes the 

conversion of hydrogen peroxide to water and oxygen.  It is a tetramer (Fig. 2.3), with 
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each monomer containing a heme group that binds oxygen.  It is an endogenous 

protein found in most living cells exposed to oxygen and protects the cells from 

oxidative stress.  In this study, bovine liver catalase was used as the model cargo 

protein, which has a molecular weight of 250 KDa. 

 
 
 

 

Fig. 2.3. Tetrameric structure of catalase (Adapted from ref. [75]) 
 
 
 

The net charge of a protein is neutral at its isoelectric point (pI), positive when 

pH<pI and negative when pH>pI [76].  Catalase carries a pI of 5.4.  Therefore, it 

carries negative charges at pH 7.4 and interacts with the positively charged lipids to 

facilitate the protein loading during LPP preparation. 
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2.1.2 Factors influencing formulations for protein delivery in vivo.  The 

aim of this chapter is to prepare LPP formulations for in vivo applications.  In order to 

do so, the following factors were taken into consideration. 

2.1.2.1 Colloidal size, charge and stability.  As discussed in the previous 

chapter, colloidal properties of nanocarriers play an important role in its stability in 

blood circulation, tissue distribution, cellular uptake, and clearance by renal and hepatic 

pathways.  Nanocarriers with diameters ranging from 10 – 200 nm are ideal for 

enhancing tissue distribution and prolonging circulation in the blood because, they are 

small enough to evade phagocytosis by macrophages and large enough to avoid 

excretion by renal filtration [54, 56].  

Aggregation of nanocarriers would significantly alter their pharmacokinetics, 

biodistribution, cellular uptake and toxicity [77].  Therefore, the colloidal stability of 

nanocarriers is not only important for its storage, but also for determining its behavior 

in vivo.  Excess positive charges imparted by the cationic lipid DOTAP would improve 

the colloidal stability of LPP on shelf by preventing aggregation due to electrostatic 

repulsion [58].  Furthermore, the cationic charges of LPP may also influence its tissue 

distribution according to Yeeprae et al. [78], who demonstrated that cationic liposomes 

comprising of DOTAP and cholesterol rapidly accumulated in the lung within a minute 

after intravenous injection.  

2.1.2.2 Catalase loading: encapsulation vs complexation.  In addition to 

colloidal stability, stability of the catalase cargo is also crucial.  In our previous report, 

catalase-encapsulated liposomes (CE LP) were prepared by thin-film hydration followed 
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by a single extrusion through a 200 nm membrane [39].  Because repetitive extrusion 

of CE LP would risk substantial loss of protein activity, it was avoided.  The drawback of 

this approach is the relatively large size of the resultant CE LPP at a diameter around 

240 nm, making it more prone to clearance by mononuclear phagocytes [79]. 

Therefore, an alternative method of loading catalase onto the liposomes was attempted 

in this dissertation research, where the cationic liposomes were first extruded and then 

mixed with the negatively charged catalase to form catalase-complexed liposomes (CC 

LP).  The complexation method allowed the liposomes to be formed separately in 

smaller size by multiple extrusions without compromising the activity of the cargo 

catalase [80].  We speculated that the catalase loaded into CE LP would mostly be 

encapsulated inside the aqueous core and any unloaded catalase would complex to its 

cationic surface (Figure 2.4a).  Conversely, CC LP would be associated with the cargo 

catalase mostly by electrostatic adsorption on the liposome surface (Fig. 2.4b). 
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Fig. 2.4. Schematic representation of CE LP (a) and CC LP (b) 
 
 
 

2.1.2.3 Lipid molar ratio.  The percentage of cholesterol in a liposome 

influences its size, fluidity and encapsulation efficiency.  Lowering the amount of 

cholesterol helps in reducing the size, while improving encapsulation efficiency [81].  In 

order to prepare cationic liposomes of reduced size, the lipids of the cationic liposomes, 

DOTAP/Cholesterol were tested at three molar ratios: 1/1, 6/4 and 7/3, where the 7/3 

molar ratio yielded cationic liposomes of the smallest hydrodynamic diameter (Table 

2.1)[80].  Additionally, the pre-formed liposomes increased in size after being mixed 

with catalase, indicating the formation of a catalase-liposome complex.  Both the 

cationic liposomes and the catalase-complexed liposomes at 7/3 molar ratio of 

DOTAP/Cholesterol maintained the same hydrodynamic diameter for up to 120 hours 

[80]. 
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Table 2.1. Hydrodynamic diameter (D) and polydispersity index (PDI) of cationic 
liposomes and liposome-catalase complexes at different lipid ratios (Adapted from ref. 
[80]) 

DOTAP/ 
Cholesterol 
Molar Ratio 

Before Extrusion After Extrusion 
After Complexing w/ 

Protein 

D (nm) PDI D (nm) PDI D (nm) PDI 

1:1 
1860 ± 
462.3 

0.6 ± 0.2 
298.4 ± 

62.2 
0.5 ± 0.1 

298.4 ± 
62.2 

0.5 ± 0.1 

6:4 
1376.2 ± 

571.8 
0.4 ± 0.0 

129.5 ± 
4.6 

0.1 ± 0.0 
177.2 ± 

42.8 
0.2 ± 0.1 

7:3 
645.6 ± 

69.1 
0.7 ± 0.1 84.0 ± 9.8 0.1 ± 0.0 

108.7 ± 
8.2 

0.2 ± 0.0 

 
 
 

2.1.2.4 Isotonicity.  Formulations prepared for in vivo administration need to 

be isotonic with animal cells.  Tonicity is a relative term that describes how one solution 

compares to the other in terms of osmolarity.  Administering a hypotonic solution can 

lead to swelling of cells, whereas, hypertonic solutions can cause shrinking of cells.  

Both these cases may interfere with normal cellular function and lead to toxicity.  

Therefore, to have the same osmolarity as animal cells, the isotonicity of formulations is 

usually adjusted to be equivalent to 0.9% salt (NaCl) or 5% sugar (glucose, dextrose).  

The objective of the research reported in this chapter was to prepare and 

optimize isotonic LPP formulations of catalase to have physicochemical characteristics 

suitable for in vivo application. 

2.2 Materials and Methods 

2.2.1 Materials.  1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) was 

purchased from Avanti Polar Lipids (Alabaster, AL).  Cholesterol, magnesium chloride, 
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glucose, sodium chloride, sodium phosphate, sodium citrate, HEPES, acetic acid, triton-

X100, 1-hexanol, absolute ethanol and silica gel (60–200 mesh) were purchased from 

Fisher Scientific (Hampton, NH).  Cyclohexane, H2O2 (35% w/w in H2O), bovine liver 

catalase (E3289) was purchased from Sigma-Aldrich (St. Louis, MO).  Cyanine 7.5 

labeled bovine liver catalase was purchased from Nanocs Inc (New York, NY). 

2.2.2 Modularized preparation of LPP.  To enable efficient optimization of the 

properties of LPP formulations, a modular approach was used to construct LPP.  The 

preparation process involved three modules: 

1. Preparation of cationic liposomes loaded with catalase 

2. Preparation of magnesium phosphate nanoparticles (MgP NP) 

3. Preparation of lipid-coated magnesium phosphate nanoparticles loaded with 

catalase 

2.2.2.1 Module 1: Preparation of cationic liposomes loaded with 

catalase 

2.2.2.1.1 Extrusion of catalase-encapsulated liposomes.  Catalase-encapsulated 

liposomes (CE LP) were prepared by thin-film hydration followed by extrusion (Fig. 2.5).  

A solution of 10 μmol total lipids (DOTAP/cholesterol, 1/1 mol/mol) in chloroform was 

rotavaporated followed by evaporation under high vacuum for at least 4 hours to 

remove residual solvent.  The lipid film was then hydrated in 0.875 mL 0.7 μM catalase 

solution in HEPES buffer (5mM, pH 7.4) using mild vortexing.  The resultant lipid 

suspension was extruded thrice through a porous polycarbonate membrane (200 nm 

pore diameter, Nucleopore, Pleasanton, CA) by a Mini-Extruder (Avanti Polar Lipids, 
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Alabaster, AL) to obtain a suspension of liposomes that were loaded with catalase at 

lipid/catalase molar ratio of ~1.6 × 104.  All the steps were carried out at room 

temperature. 

 
 
 

 

Fig. 2.5. Illustration of liposome preparation by film hydration and extrusion 
 
 
 

2.2.2.1.2 Preparation of catalase-complexed liposomes.  As an alternative 

approach to load the cargo protein catalase, cationic liposomes of reduced size were 

first prepared and then mixed with catalase in solution.  Cationic liposomes were 

prepared by two methods: 1) thin-film hydration followed by extrusion and 2) 

microfluidic mixing. 

To prepare cationic liposomes by extrusion, 10 µmol total lipids 

(DOTAP/cholesterol, 7/3 mol/mol) were mixed in chloroform, transferred into a glass 
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tube and evaporated as described above.  The resultant lipid films were hydrated with 

0.875 mL HEPES buffer (5mM, pH 7.4) without catalase, agitated on vortex and then 

extruded sequentially through polycarbonate membranes either using a handheld Mini-

Extruder (Avanti Polar Lipids, Alabaster, AL) or a LIPEXTM extruder (Evonik Industries, 

BC, Canada) at room temperature. 

The NanoAssemblr Benchtop (Precision Nanosystems, Vancouver, BC) was used 

to prepare cationic liposomes by microfluidic mixing (Fig. 2.6).  The microfluidic 

cartridge of the NanoAssemblr contained two inlets and one outlet connected by 

internal channels that promote non-turbulent laminar mixing of the organic (lipids in 

ethanol) and aqueous (HEPES buffer, 5mM, pH 7.4) phases.  Disposable syringes were 

used to pump the two phases into the inlets of the cartridge and the liposome 

suspension was collected into a 15 mL tube at the outlet.  The NanoAssemblr software 

allows the adjustment of the total flow rate (TFR) and the flow rate ratio (FRR), two 

important parameters that influence the size distribution of the liposomes.  The 

resultant liposomal suspension was dialyzed overnight in a Slide-A-Lyzer™ dialysis 

cassette (MWCO 10K) immersed in HEPES buffer (5mM, pH 7.4) to remove ethanol.  

One liter of dialysate was used for 1 mL of sample.  After overnight dialysis, the sample 

was collected and stored at 4 °C. 
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Fig. 2.6. Illustration of liposome preparation by microfluidics. (Adapted from ref. [82]) 
 
 
 

A 500 µL aliquot of the liposome suspension produced by extrusion or 

microfluidics was then mixed with a catalase solution at a lipid/catalase molar ratio of 

~1.6 × 104.  

2.2.2.2 Module 2: Preparation of magnesium phosphate nanoparticles.  

Magnesium phosphate nanoparticles (MgP NP) were prepared by microemulsion 

precipitation (Fig. 2.7) as previously described [39] with modifications.  Briefly, aqueous 

solutions of MgCl2 (500 mM, 300 µL) and Na3PO4 (500 mM, 300 µL) were each 

transferred into a mixture of cyclohexane/Triton-X100/hexanol (75/15/10 v/v/v, 15mL) 

followed by 30 min stirring at 4 °C to form reverse water-in-oil micro-emulsions.  The 

two resultant microemulsions were then mixed quickly with continuous stirring for 

another 30 min to generate MgP NP suspended in the water-in-oil emulsion.  Sodium 

citrate (15 mM, 250 µL) was then added dropwise to coat the MgP NP with negative 

surface charges.  The resultant micro-emulsion containing the MgP NP was poured into 

a suspension of 4 g silica gel in ethanol (100 mL) and was stirred continuously for 10 

min to break the water-in-oil emulsion in order to let the MgP NP adsorb onto the silica 
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gel beads.  The suspension was then packed into a short column and washed with 200 

mL ethanol to remove the organic solvents and the surfactant Triton-X100.  The column 

was then eluted with a decreasing ethanol gradient (15 mL 75% ethanol, 15 mL 50% 

ethanol, and 30 mL 25% ethanol in water) to separate the MgP NP.  Ethanol in the 

eluant fractions was then removed by rotary evaporation to yield the nanoparticle 

suspensions in water.  The amount of MgP NP in the aqueous suspensions were 

quantified by a phosphorus assay as described below [83]. 

 
 
 

 
Fig. 2.7. Diagrammatic representation of magnesium phosphate nanoparticles 
preparation 
 
 
 

2.2.2.2.1 Phosphorous assay.  A solution of 10 N H2SO4 was prepared by slowly 

adding 28.1 mL of stock H2SO4 (35 N) to 100 mL of deionized (DI) water.  H2O2 (10% 

w/v) was freshly prepared before each experiment by diluting 0.43 mL of stock H2O2 

(35% w/w) with 1.5 mL of DI water.  Ascorbic acid solution (10%) was prepared by 
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dissolving 750 mg ascorbic acid in 7.5 mL DI water.  Molybdate reagent was prepared 

by dissolving 154 mg of ammonium molybdate tetrahydrate in 1.75 mL of 10 N H2SO4 

and diluted to 70 mL with DI water. 

Aliquots of a phosphorous standard solution (50 ppm, Ricca Chemical, Fisher 

Scientific, Hampton, NH) were transferred into eight Pyrex tubes with screw caps to 

make phosphorous solutions of the calibration curve as follows: Blank (0 nmol, 0 µL), 

S1 (25 nmol, 15.5 µL), S2 (50 nmol, 31 µL), S3 (75 nmol, 46.5 µL), S4 (100 nmol, 61.9 

µL), S5 (125 nmol, 77.4 µL), S6 (150 nmol, 92.9 µL) and S7 (200 nmol, 123.9 µL).  

Each unknown sample was prepared by adding 20 µL of a MgP NP suspension to the 

bottom of a Pyrex tube.  H2SO4 (10 N, 0.4 mL) was then added to each Pyrex tube and 

heated on an aluminum block under the fume hood at 200-210 °C for 60 minutes.  The 

tubes were then removed from the block and allowed to cool at room temperature for 

10 minutes.  H2O2 (10%, 0.1 mL) was added to each tube and the tubes were heated 

again at 190-210 °C for 10 minutes followed by cooling at room temperature for 10 

minutes.  Thereafter, molybdate reagent (4.7 mL) and ascorbic acid (10%, 0.5 mL) 

were added to each tube, and the tubes were agitated on a vortex for 10 seconds.  The 

tubes were then heated at 100 °C for 10 minutes, when a blue color was developed in 

tubes containing substantial phosphate.  The tubes were then cooled on ice to reach 

room temperature quickly.  An aliquot (200 µL) from each tube was transferred into a 

96-well plate in triplicates and the absorbance (λ = 800 nm) was determined on an 

Epoch Microplate Spectrophotometer (BioTek Instruments Inc, Winooski, VT).  All the 

standards and unknowns were corrected for blank absorbance.  A standard calibration 
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curve was generated and used to estimate the amount of phosphorus in the unknown 

MgP NP samples. 

2.2.2.3 Module 3: Preparation of lipid-coated magnesium phosphate 

nanoparticles loaded with catalase.  To prepare the final LPP formulations, CE LP 

(Fig. 2.8a) or CC LP (Fig. 2.8b) (0.6 mL) were mixed with an appropriately diluted MgP 

NP suspension (0.4 mL) at room temperature followed by mild agitation on a vortex to 

obtain LPP (CE LPP or CC LPP, respectively) at a total lipid/phosphate molar ratio of 7/3. 

The LPP formulations were stored at 4 °C for further use.  The final CC LPP and CE LPP 

formulations carried 5.9 mM total lipid, 2.5 mM phosphate and 0.37 µM catalase. 

 
 
 

 
Fig. 2.8. Schematic representation of the formation of CE LPP (a) and CC LPP (b) 
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2.2.3 Preparation of isotonic LPP formulations 

2.2.3.1 Preparation of LPP in an isotonic buffer.  Both CE LPP and CC LPP 

formulations were prepared as per the three modules described above (2.2.2), with one 

modification.  Isotonic HEPES buffer (5mM HEPES, 149 mM NaCl, pH 7.4) was used 

instead of the low salt HEPES buffer (5mM, pH 7.4) for preparing catalase solutions and 

hydrating lipid films. 

2.2.3.2 Adjustment of isotonicity after preparation.  CE LPP and CC LPP 

were first prepared as described above (2.2.2) using low salt HEPES buffer (5mM, pH 

7.4).  The LPP formulations were then concentrated using an Amicon® Ultra-4 mL 

centrifugal filter (MWCO 10K).  Briefly, 4 mL of LPP suspension was added into the 

Amicon filter tube and centrifuged at 4000g, 4 °C on a Beckman GS-6R centrifuge 

(Beckman Coulter Inc, Brea, CA) for 1-2 hours to concentrate the suspension to 2 mL.  

The concentrated sample was recovered and separated into two parts of 1 mL each.  

To one part, 1 mL of 556 mM glucose solution was added and to the other part, 1 mL 

of 298 mM NaCl dissolved in HEPES buffer (5mM, pH 7.4) was added to obtain final 

isotonic LPP formulations containing either 278 mM (5%) glucose or 154 mM (0.9%) 

salt. 

2.2.4 Physicochemical characterization of LPP 

2.2.4.1 Size measurement.  Dynamic Light Scattering measurements were 

performed on a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) as previously 

reported [39, 84].  A diluted aliquot (50 µL) of LPP formulations or their precursors in 

HEPES buffer (5 mM, pH 7.4) was transferred into a low volume cuvette (ZEN0118, 
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Malvern Instruments) and the hydrodynamic diameter (weighing by the light intensity) 

was measured in triplicates. 

2.2.4.2 ζ-potential measurement.  After measuring the size, the sample in 

the cuvette was diluted to 0.8 mL with HEPES buffer (5mM, pH 7.4) and slowly added 

to a disposable cuvette (DTS1070, Malvern Instruments) to ensure that the sample 

covered the anodes of the cell without any air bubbles.  The ζ-potential of each sample 

was measured in triplicates on a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK). 

2.2.4.3 Catalase activity assay.  The loading and stability of payload catalase 

in the LPP formulations were measured using a Catalase Assay Kit (Cayman Chemical, 

Ann Arbor, MI) per the manufacturer’s protocol.  Catalase formulations were diluted 

~75-fold to a final catalase concentration of 5 nM to fit into the linear range of the 

assay.  Percentage of catalase activity in the LPP formulations was calculated by: 

Catalase activity % =
Catalase activity measured in the formulation

Catalase activity measured in catalase solution used for loading
∗ 100 

2.5 Results 

2.5.1 Effect of extrusion on catalase encapsulated in cationic 

liposomes.  After hydrating the DOTAP/cholesterol (1/1 mol/mol) lipid film with a 

catalase solution (lipid/protein = 1.6 x 104 mol/mol), the resultant suspension was 

extruded multiple times (1, 3, 5, 7, 13) through a 200 nm polycarbonate membrane to 

yield catalase-encapsulated liposomes (CE LP).  Repetitive extrusion caused substantial 

loss of protein activity (Fig. 2.9).  This was probably because the process exerted 

substantial mechanical stress that partially denatured the protein.  Even a single 
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extrusion through 200 nm membrane resulted in more than 10% activity loss.  3x 

extrusion was chosen as it was enough to homogenize the size (233 nm with a PDI of 

0.2) of CE LP, while retaining about 60% of the catalase activity. 

 
 

 

 

Fig. 2.9. Effect of extrusion on catalase loaded into CE LP. Data presented as mean ± 
SD (n=3). 
 
 
 

2.5.1.1 Effect of lipid molar ratio (5/5 vs 7/3).  Previously, we found that a 

DOTAP/cholesterol molar ratio of 7/3 formed smaller unloaded cationic liposomes, 

which were then complexed with catalase (Table 2.1)[80].  To test how the 7/3 lipid 

molar ratio would influence CE LP, the process described in the previous section (2.5.1) 

was repeated by hydrating and extruding a DOTAP/cholesterol (7/3 mol/mol) lipid film.  

The 7/3 lipid molar ratio indeed reduced the size of liposomes compared to 5/5 lipid 

molar ratio (columns in Fig. 2.10).  However, the 7/3 lipid molar ratio also caused 

greater catalase activity loss in that even one single extrusion through 200 nm 

membrane caused about 70% loss of the catalase activity (lines in Fig. 2.10).  Because 
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the liposomes with 7/3 (DOTAP/cholesterol) lipid molar ratio have a higher 

concentration of the cationic lipid DOTAP, the catalase may have been complexed to 

the lipid rather than being encapsulated within the aqueous core, making it more 

susceptible to the mechanical stress from the extrusion.  Therefore, a 

DOTAP/cholesterol molar ratio of 1/1 was used for encapsulating catalase (CE LP) and a 

DOTAP/cholesterol molar ratio of 7/3 was used for complexing catalase (CC LP) in this 

dissertation. 

 

 
 

 

 

Fig. 2.10. Effect of extrusion on CE LP at different lipid ratios. Data presented as mean 
± SD (n=3). 
 
 
 

2.5.2 Procedure optimization for cationic liposomes.  The complexation 

loading approach, where unloaded cationic liposomes were first prepared followed by 

mixing with catalase, allowed us to subject the liposomes to multiple extrusions and to 
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achieve reduced sizes without compromising the activity of the cargo protein catalase.  

The colloidal properties of the cationic liposomes prepared using a manual hand-held 

extruder, a LIPEX extruder and a benchtop NanoAssemblr (microfluidics) were 

compared. 

2.5.2.1 Extrusion with Mini-Extruder.  The DOTAP/cholesterol (7/3 mol/mol) 

lipid films were hydrated with HEPES buffer (5mM, pH 7.4) and extruded 13 times each 

through 400 nm, 200 nm, 100 nm and 50 nm polycarbonate membranes using a hand-

held Mini-Extruder (Avanti Polar Lipids, Alabaster, AL).  The resultant liposomes carried 

an average diameter of 80 nm with a PDI of 0.11 (Table 2.2). 

Mini-extruder is very useful when extruding small sample volumes <500 µL, 

however, 1 mL is the maximum volume that can be extruded each time.  The resistance 

increases when extruding through lower pore size membranes, especially 50 nm, 

making it very difficult to push the syringe plunger.  Applying excess pressure to 

overcome this resistance, often results in membrane damage or sample leakage. 

 
 
 

Table 2.2. Hydrodynamic diameter (D) and ζ-Potential of cationic liposomes prepared 
using a mini-extruder 

# Composition 
Membranes 

Used (nm) 

Number of 

Extrusions 
D (nm) PDI 

ζ-Potential 

(mV) 

1 
DOTAP/Chol 

(7/3 mol/mol) 
400 13 233.6 0.198  

2 
DOTAP/Chol 

(7/3 mol/mol) 
400 + 200 13 + 13 171.2 0.123  

3 
DOTAP/Chol 

(7/3 mol/mol) 
400 + 200 + 100 13 + 13 + 13 120.3 0.12  

4 
DOTAP/Chol 

(7/3 mol/mol) 

400 + 200 + 100 

+ 50 

13 + 13 + 13 

+ 13 
80.4 0.11 48.6 
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2.5.2.2 Extrusion with LIPEX extruder.  After hydrating the 

DOTAP/cholesterol (7/3 mol/mol) lipid film with HEPES buffer (5mM, pH 7.4), the lipid 

suspension was extruded using a LIPEXTM extruder (Evonik Industries, Burnaby, BC), 

which uses controlled nitrogen gas pressure to push the lipid suspension through the 

membrane(s).  As shown in Table 2.3, several trials were made with different 

combinations of membranes and increasing number of extrusions.  The best and 

reproducible outcome was obtained by first extruding the liposomes 5x through 

200/100 nm membranes (200 nm stacked on 100 nm, 240 psi pressure) followed by 5x 

extrusion through 80/50 nm membranes (80 nm stacked on 50 nm, 280 psi pressure).  

The resultant liposomes carried an average diameter of 62 nm with a PDI of 0.135. 

In comparison to manual extrusion, the LIPEX extruder can handle 1-10 mL of 

volume each time and is very easy to use.  Furthermore, LIPEX extruder is the current 

industry standard for liposome preparation and is capable of scale-up to 100-800 mL for 

GMP production of early-stage clinical products.  However, the pumping of the nitrogen 

gas must not be too fast or unsteady to avoid the formation of a milky paste. 
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Table 2.3. Hydrodynamic diameter (D) and ζ-Potential of cationic liposomes prepared 
using a LIPEX extruder 

# Composition 
Membranes Used 

(nm) 
Number of 
Extrusions 

D (nm) PDI 
ζ-

Potential 
(mV) 

1 DOTAP/Chol 
(7/3 mol/mol) 

200/100/100 1 194.3 0.264 76.6 

2 DOTAP/Chol 

(7/3 mol/mol) 

200/100/100 5 144.2 0.204 72.7 

3 DOTAP/Chol 

(7/3 mol/mol) 

200/100/100 10 130.4 0.174 65.5 

4 DOTAP/Chol 
(7/3 mol/mol) 

200/100/100 15 126.4 0.144 64.1 

5 DOTAP/Chol 

(7/3 mol/mol) 

200/100/100 10 97.18 0.119 44.3 

6 DOTAP/Chol 

(7/3 mol/mol) 

200/100 + 50 13 + 5 81.15 0.364 
 

7 DOTAP/Chol 
(7/3 mol/mol) 

200/100 + 50 + 100 13 + 5 + 3 77.1 0.264 
 

8 DOTAP/Chol 

(7/3 mol/mol) 

200/100 + 50 + 100 13 + 5 + 13 66.99 0.183 
 

9 DOTAP/Chol 

(7/3 mol/mol) 

200/100 13 108.7 0.122 
 

10 DOTAP/Chol 
(7/3 mol/mol) 

200/100 + 80 13 + 5 88.47 0.111 39.2 

11 DOTAP/Chol 

(7/3 mol/mol) 

200/100 5 117.3 0.164 
 

12 DOTAP/Chol 

(7/3 mol/mol) 

200/100 + 80/50 5 + 5 77.28 0.161 
 

13 DOTAP/Chol 
(7/3 mol/mol) 

200/100 + 80/50/100 5 + 5 146.8 0.502 
 

14 DOTAP/Chol 

(7/3 mol/mol) 

200/100 + 80/50 5 + 5 65.82 0.135 33.3 

15 DOTAP/Chol 

(7/3 mol/mol) 

200/100 + 80/50 5 + 5 62.21 0.135 32.1 

 
 
 

2.5.2.3 Microfluidic mixing with NanoAssemblr.  NanoAssemblr Benchtop 

(Precision Nanosystems, Vancouver, BC) was used to prepare cationic liposomes by 

microfluidic mixing.  Lipids in ethanol were mixed with HEPES buffer (5mM, pH 7.4) in a 

controlled manner using a microfluidic cartridge.  As shown in Table 2.4, multiple 

batches of liposomes were prepared by using different total flow rate (TFR) and flow 
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rate ratio (FRR) settings.  Finally, a flow ratio of 2.5/1 (HEPES buffer/20mM total lipids 

in ethanol) at a total flow rate of 12 mL/min was chosen.  The resultant liposomes 

carried an average diameter of 125.8 nm and a low PDI of 0.06, indicating a high 

degree of homogeneity.  The liposomes shrunk to 69.3 nm after overnight dialysis in 

HEPES buffer (Table 2.5).  A similar degree of shrinking was observed in all the samples 

that were dialyzed and may have been caused by the loss of anhydrous ethanol from 

the liposomal sample. 

The NanoAssemblr Benchtop instrument uses a proprietary microfluidic mixing 

technology which enables us to precisely control size by optimizing flow rates and flow 

ratios.  It can be easily scaled-up to meet preclinical and clinical (GMP) production 

requirements.  However, in our week-long experience of using the Benchtop instrument 

(1-week DEMO), we found that our results were not reproducible (see #9, 14, 15, 16 in 

Table 2.4) even though we used the same settings, probably due to the overuse of the 

cartridge.  The microfluidic cartridge is compatible with a limited set of organic solvents 

and has a short lifetime.  Each cartridge needs to be replaced after 20 sample runs of 2 

mL each, which makes this procedure very expensive compared to extrusion. 
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Table 2.4. Hydrodynamic diameter (D) of cationic liposomes prepared using a 
NanoAssemblr Benchtop 

# Composition 

Total 

lipid 

(mM in 

ethanol) 

Nanoassemblr settings 

Final 

liposomes 

(mM total 

lipid) 

D (nm) PDI Total 

Volume 

(mL) 

FRR 
TFR 

(mL/

min) 

HEPES 

(5mM, 

pH 7.4) 

Ethanol 

DEMO 

 
10 

mg/mL 
1 

1.5 

(PBS) 
1 12 4mg/mL 101.3 0.07 

1 
DOTAP/Chol 

(7/3 mol/mol) 
40 4 3 1 18 10 38.7 0.15 

2 
DOTAP/Chol 

(7/3 mol/mol) 
40 4 3 1 12 10 39.7 0.13 

3 
DOTAP/Chol 

(7/3 mol/mol) 
40 4 3 1 12 10 42.9 0.11 

4 
DOTAP/Chol 

(7/3 mol/mol) 
40 1 3 1 6 10 34.9 0.18 

5 
DOTAP/Chol 

(7/3 mol/mol) 
40 1 3 1 1 10 34.7 0.19 

6 
DOTAP/Chol 

(7/3 mol/mol) 
40 1 1.5 1 12 16 209.1 0.26 

7 
DOTAP/Chol 

(7/3 mol/mol) 
20 1 2 1 12 6.7 161.5 0.11 

8 
DOTAP/Chol 

(7/3 mol/mol) 
20 1 2 1 18 6.7 169.1 0.10 

9 
DOTAP/Chol 

(7/3 mol/mol) 
20 1 2.5 1 12 5.7 79.8 0.18 

10 
DOTAP/Chol 

(7/3 mol/mol) 
20 1 2.75 1 12 5.3 61.1 0.34 

11 
DOTAP/Chol 

(7/3 mol/mol) 
20 1 3 1 12 5 64.5 0.25 

12 
DOTAP/Chol 

(7/3 mol/mol) 
20 4 3 1 18 5 48.9 0.34 

13 
DOTAP/Chol 

(7/3 mol/mol) 
20 4 2.75 1 12 5.3 55.4 0.16 

14 
DOTAP/Chol 

(7/3 mol/mol) 
20 1.25 2.5 1 12 5.7 70.4 0.27 

15 
DOTAP/Chol 

(7/3 mol/mol) 
20 2.5 2.5 1 12 5.7 87.0 0.26 

16 
DOTAP/Chol 

(7/3 mol/mol) 
20 10.5 2.5 1 12 5.7 125.8 0.06 
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Table 2.5. Hydrodynamic diameter (D) and ζ-Potential of cationic liposomes before and 
after dialysis 

# 

Before dialysis After dialysis 

D (nm) PDI 
ζ-Potential 

(mV) 
D (nm) PDI 

ζ-Potential 

(mV) 

1 38.7 0.15 20.8 19.6 0.15 30.6 

3 42.9 0.11  18.9 0.16  

13 55.4 0.16  38.5 0.38  

15 87.0 0.26  41.9 0.24  

16 125.8 0.06 34.5 69.3 0.07 48.9 

 
 
 

2.5.3 Physicochemical characteristics of LPP and its components.  

Catalase encapsulated liposomes (CE LP) carried a hydrodynamic diameter of 233 nm, 

which is slightly larger than the 200 nm pore size of the polycarbonate membrane 

(Table 2.6).  CE LP also carried a polydispersity index (PDI) of 0.2 and a ζ-potential at 

53 mV, indicating excess positive charges on its surface.  Cationic liposomes (LP) that 

were extruded to prepare for CC LP carried a reduced hydrodynamic diameter of 82 nm 

with a PDI of 0.12.  The cationic liposomes increased in size after being mixed with 

catalase, indicating the formation of a catalase-liposome complex.  Additionally, the ζ-

potential of the catalase complexed liposomes (CC LP) was slightly neutralized by the 

adsorption/complexation of negatively charged catalase onto the liposome surface.  

MgP NP prepared as per Module 2 displayed a relatively large cumulative hydrodynamic 

diameter of 400 ± 67 nm with a ζ-Potential of -10 ± 2 mV, confirming the negative 

surface charges imparted by sodium citrate coating [41].  The final CE LPP and CC LPP 

formulations carried ζ-Potentials of 40 ± 2 mV and 31 ± 2 mV, respectively, which were 

slightly lower than those of CE LP and CC LP (53 ± 5 and 40 ± 4 mV, respectively).  
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This supported the working hypothesis that the formation of the LPP formulations 

(module 3) upon mixing the catalase-loaded liposomes (CE LP or CC LP) with MgP NP 

was driven by electrostatic interactions, where the anionic MgP NP partially neutralized 

the excess positive charge of the cationic liposomes.  The resultant complexed 

formulation (CC LPP) had a hydrodynamic diameter of 141 ± 15 nm, which is about half 

of the encapsulated formulation (CE LPP), whose diameter was 284 ± 37 nm. 

Intriguingly, both the LPP formulations displayed smaller diameters than one of 

their two components, MgP NP.  This phenomenon could be attributed to the following 

two factors.  First, MgP NP suspension is a heterogenous mixture of both small, tight 

nanoparticles and their loose aggregates, together displaying a hydrodynamic diameter 

of around 400 nm.  This was later confirmed under a transmission electron microscope, 

where both small nanoparticles and their large aggregates were observed (Chapter 3, 

Fig. 3.1).  As MgP NP and CE LP/CC LP were mixed with stirring on a vortex in Module 

3, the loose aggregates would be dispersed into smaller nanoparticles that would then 

be coated separately by CE LP/CC LP to yield smaller LPP.  Secondly, as the larger 

aggregates of MgP NP scattered more light than the smaller nanoprecipitates, they 

dominated the computation of the hydrodynamic diameter of the whole MgP NP 

population; as the small nanoprecipitates gained size after being coated with CE LP/CC 

LP, they scattered more light to dominate the DLS measurements, thereby displaying a 

smaller overall hydrodynamic diameter of the final LPP formulations. 
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Table 2.6. Hydrodynamic diameter (D), ζ-Potential and catalase activity of encapsulated 
and complexed LPP formulations and their components 

Component Lipid composition D (nm) PDI 
ζ-Potential 

(mV) 

Catalase 
Activity % 

MgP NP N/A 400 ± 67 0.22 ± 0.03 -10 ± 2 N/A 

CE LP 
DOTAP/Chol 
1/1 mol/mol 

233 ± 28 0.20 ± 0.05 53 ± 5 47 ± 15 

CE LPP 
DOTAP/Chol 
1/1 mol/mol 

284 ± 37 0.19 ± 0.05 40 ± 2 49 ± 21 

LP 
DOTAP/Chol 
7/3 mol/mol 

82 ± 14 0.12 ± 0.02 44 ± 1 N/A 

CC LP 
DOTAP/Chol 
7/3 mol/mol 

114 ± 16 0.24 ± 0.07 40 ± 4 118 ± 6 

CC LPP 
DOTAP/Chol 
7/3 mol/mol 

141 ± 15 0.27 ± 0.04 31 ± 2 132 ± 10 

Data presented as mean ± SD (n=5). 
 
 
 

CC LPP prepared using the complexation loading approach, successfully 

preserved over 100% activity after the preparation process, whereas, CE LPP retained 

less than 50% activity (Table 2.6). 

2.5.4 Tracking of catalase payload through LPP preparation.  Cyanine 7.5 

labeled catalase was loaded into LPP formulations and the percentage of fluorescence 

intensity and catalase activity remaining in the LPP formulations (initial free catalase 

intensity/activity = 100%) were tracked through all the processing steps of LPP 

preparation.  During the preparation of CE LPP (Fig. 2.11a), catalase activity was 

partially lost during the extrusion and concentration steps.  Extrusion involved 

mechanical forces, and concentration involved centrifugal forces, both of which could 

have denatured the cargo protein catalase; the catalase protein could also be lost 

during the formulation process.  However, there was no significant decrease in 
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fluorescent intensity (λex = 790 nm and λem = 810 nm) of the fluorescently labeled 

catalase during the preparation of CE LPP, which showed that loss of activity was 

mostly due to protein denaturation rather than physical loss of protein from the LPP 

formulation.  In correlation with our previous observations, the preparation of CC LPP 

preserved the activity of the payload catalase through the entire preparation process 

(Fig. 2.11b).  In both the CE LPP and CC LPP formulations, the input protein was equal 

to the final output after the concentration step, as marked by the retention of 

fluorescence signal from the protein.  Therefore, the dose calculation for animal 

experiments in this study was based on the protein initially loaded 

(encapsulated/complexed) into the liposomes. 
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Fig. 2.11. Tracking catalase payload at different preparation stages of CE LPP (a) and 
CC LPP (b). Data presented as mean ± SD (n=3). * p<0.05. 
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2.5.5 Colloidal stability of LPP formulations.  As shown in Table 2.7, the 

LPP formulations (CC LPP and CE LPP) and their precursors, namely cationic LP, CC LP 

and CE LP remained colloidally stable over a period of 2 months at 4 °C when each of 

them maintained similar hydrodynamic diameters, PDI and positive surface charges.  A 

loss of 10-15% catalase activity was observed in all the formulations stored for a week 

at 4 °C, which increased to 20-25% over a month at 4 °C.  After storage for a week or 

more at 4 °C, MgP NP showed substantially larger hydrodynamic diameter and PDI 

(Table 2.8), indicating its aggregation.  Therefore, a new batch of MgP NP was always 

prepared, and complexed with the liposomes within a day or two.  Similarly, new 

batches of LPP were always prepared and used for biological evaluations within a week. 
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Table 2.7. Hydrodynamic diameter (D), ζ-Potential and catalase activity of LPP 
formulations and their precursors stored at 4 °C 

Component 
Storage 

Condition 
D (nm) PDI 

ζ-Potential 

(mV) 
CAT Activity % 

Cationic LP 

Initial 62 0.14  N/A 

1 week at 4 °C 64 0.12 32 N/A 

Initial 95 0.09 44 N/A 

1 month at 4 °C 97 0.09 36 N/A 

2 months at 4 °C 96 0.08 39 N/A 

CC LP 

Initial 90 0.27  128 

1 week at 4 °C 84 0.25 38 114 

Initial 120 0.2 41 110 

1 month at 4 °C 120 0.18 39 86 

2 months at 4 °C 117 0.19 33 86 

CC LPP 

Initial 116 0.25 29 153 

1 week at 4 °C 112 0.32 26 120 

Initial 147 0.22 33 124 

1 month at 4 °C 142 0.25 32 93 

2 months at 4 °C 146 0.29 33 101 

CE LP 

Initial 200 0.19  35 

1 week at 4 °C 202 0.18 55 30 

Initial 228 0.17 46 75 

1 month at 4 °C 243 0.17 52 53 

2 months at 4 °C 234 0.21 54 58 

CE LPP 

Initial 229 0.2 39 36 

1 week at 4 °C 215 0.21 46 33 

Initial 274 0.17 39 80 

1 month at 4 °C 276 0.21 41 54 

2 months at 4 °C 262 0.12 43 63 
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Table 2.8. Hydrodynamic diameter (D), ζ-Potential and phosphate concentration of MgP 
NP stored at 4 °C 

Component 
Storage 

Condition 
D (nm) PDI 

ζ-Potential 

(mV) 

Phosphate 

Conc (mM) 

MgP NP 

Initial 342 0.23 -9 7.1 

1 day at 4 °C 609 0.43 -6  

2 day at 4 °C 461 0.3 -5  

4 day at 4 °C 503 0.3 -6  

1 week at 4 °C 2076 0.45 -13 7.1 

Initial 394 0.18 -9 5.8 

1 month at 4 °C 1223 0.3 -12 4.6 

2 months at 4 °C 1154 0.45 -17 6.1 

 
 
 

2.5.6 Isotonicity of LPP formulations 

2.5.6.1 Influence of salt on complexation.  As shown in table 2.9, CE LP 

and CC LP prepared in an isotonic buffer (5mM HEPES, 149 mM NaCl, pH 7.4) had 

larger hydrodynamic diameters and greater PDIs than those prepared in a low salt 

buffer (5mM HEPES, pH 7.4).  To avoid this, liposomes were first prepared in low salt 

HEPES buffer followed by isotonicity adjustment at a later stage. 

 
 
 

Table 2.9. Hydrodynamic diameter (D) and ζ-Potential of CE LP and CC LP prepared in 
buffers containing low salt and isotonic salt concentration 

Component Buffer Used D (nm) PDI ζ-Potential (mV) 

CE LP 

Low salt buffer 

(5mM HEPES) 
226 0.16 52 

Isotonic buffer (5mM 

HEPES, 149 mM NaCl) 
323 0.36 69.5 

CC LP 

Low salt buffer 

(5mM HEPES) 
119 0.23 41 

Isotonic buffer (5mM 

HEPES, 149 mM NaCl) 
155 0.35 56 
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2.5.6.2 Isotonicity adjustment post-preparation.  In order to adjust the 

isotonicity of the liposome suspension containing low salt (5mM HEPES), an aliquot of a 

concentrated salt or glucose solution was added.  Addition of concentrated salt solution 

resulted in the aggregation of the liposomes as seen by the drastic increase in the 

hydrodynamic diameter (Table 2.10).  In contrast, isotonicity adjustment by glucose 

solution maintained the colloidal properties of the liposomes. 

 
 
 

Table 2.10. Hydrodynamic diameter (D) and ζ-Potential of LP and LPP formulations after 
isotonicity adjustment with concentrated salt and glucose solutions 

Component Condition D (nm) PDI 
ζ-Potential 

(mV) 

CE LP 

Initial 226 0.16 52 

Isotonicity adjusted w/ salt 2845 0.12  

Isotonicity adjusted w/ glucose 202 0.11 43 

CE LPP 

Initial 238 0.12 41 

Isotonicity adjusted w/ salt 2389 0.12  

Isotonicity adjusted w/ glucose 203 0.14 48 

CC LP 

Initial 127 0.45 36 

Isotonicity adjusted w/ salt 4317 0.22  

Isotonicity adjusted w/ glucose 114 0.35 36 

CC LPP 

Initial 137 0.4 30 

Isotonicity adjusted w/ salt 2445 0.55  

Isotonicity adjusted w/ glucose 149 0.39 29 
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2.6 Discussion 

Electrostatic interactions have driven the assembly of several nanocarriers of 

biomolecules, such as lipoplexes of cationic liposomes and DNA [85], polyplexes of 

cationic polymers and DNA, and stabilized plasmid-lipid particles containing cationic PEG 

lipids [86].  Furthermore, electrostatic interactions have also driven the multistep 

assembly of more complex nanocarrier systems such as LPD formulation of DNA [87], 

and LCP formulation of siRNA [88], both of which involve the coating of a condensed 

nanocore with lipid membranes carrying opposite charges.  In this study, the 

construction of the LPP formulations for protein delivery (CE LPP and CC LPP) also 

exploited electrostatic interactions between its components.  In the case of CE LP, the 

cargo protein catalase was loaded not only by passive encapsulation, but also by 

charge-facilitated encapsulation and adsorption onto the positively charged lipid.  The 

loading of catalase in CC LP was mainly driven by electrostatic adsorption.  Moreover, 

the excessive positive charges of the catalase-loaded liposomes (CE LP and CC LP) 

interacted with the negative surface charges of MgP NP to induce coating of MgP NP 

with the liposomes to yield the final LPP formulations (CE LPP and CC LPP) (Fig. 2.8).  

The lipid/protein molar ratio of 1.6 x 104 was intentionally chosen to ensure that the 

liposomes carried excessive positive charges to facilitate the sequential assembly of LPP 

driven by electrostatic forces [39].  The excessive positive charges from DOTAP were 

confirmed by highly positive ζ-potential of both the catalase-loaded liposomes (CE LP 

and CC LP) and their respective final LPP formulations (Table 2.6). 
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In module 1, compared to encapsulation (CE LP), the complexation strategy 

yielded catalase-complexed liposomes (CC LP) of significantly lower size and preserved 

all the protein activity (Table 2.6) by minimizing the mechanical stress exerted on the 

protein during extrusion.  Although both microfluidic mixing and extrusion with a LIPEX 

extruder yielded small cationic liposomes of 70 nm in diameter, LIPEX extruder was 

chosen for preparing cationic liposomes for this study, due to the accessibility of the 

equipment and the ease of use and scale-up for animal studies. 

The overall colloidal stability of the LPP formulations depended on the 

electrostatic repulsions from the excess positive charges of the cationic lipids [58].  As a 

result, the liposomal formulations remained physically stable when stored for up to 2 

months in a refrigerator.  Although MgP NP precipitated after being stored for a week at 

4 °C, no MgP NP precipitate was observed in the final LPP formulations, indicating that 

the coating by the cationic liposomes stabilized MgP NP. 

The formation of larger liposomes and liposome-protein complexes in isotonic 

HEPES containing NaCl suggests the interference of salt in the complexation process.  

Salts are known to produce charge shielding/electrical double layer due to their ionic 

properties [89], which may have resulted in the formation of loose liposome-protein 

complexes or larger liposome-salt-protein complexes.  Preparation of liposomes in a low 

salt buffer followed by subsequent addition of a hypertonic NaCl solution to adjust 

isotonicity resulted in liposome disruption and precipitation.  Because glucose preserved 

the colloidal properties of the liposomes, it was used for isotonicity adjustment in the 

LPP formulations of catalase for animal studies. 
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Overall, isotonic LPP formulations of catalase were successfully prepared and 

characterized for in vivo application.  CE LPP carried an average diameter around 284 

nm whereas CC LPP had a reduced diameter of 141 nm as a result of the complexation 

technique.  The complexation technique (CC LPP) also helped in preserving the activity 

of the catalase payload. 
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Chapter 3: Morphological Studies of Lipid-coated Magnesium Phosphate 

Nanoparticles Using Transmission Electron Microscopy 

3.1 Introduction 

3.1.1 Principle of transmission electron microscopy.  Transmission 

electron microscopy (TEM) is a microscopy technique that uses electrons transmitted 

through a sample to obtain invaluable information on the sample’s inner structure [90].  

An ultrathin section of the specimen or a suspension of the sample on a grid is 

subjected to an accelerated beam of electrons.  The transmitted electrons form an 

image, which is then magnified and focused to obtain a 2D image of the sample.  

Electrons are scattered by metals present in the sample.  If the sample contains heavy 

metals, the sample structures would appear darker and would have greater contrast 

against the background.  However, samples composed of non-metals such as C, H and 

O do not scatter electrons much and cannot be distinguished from the background on a 

TEM image.  In order to visualize such samples, additional staining techniques are 

needed [91].  Positive staining of the specimen helps to visualize its inner components, 

for example, organelles inside a cell.  Conversely, negative staining of the specimen's 

background helps to visualize its size and structure [92]. 

3.1.2 Negative staining techniques in TEM.  Negative staining is a quick 

and easy qualitative technique for visualizing samples in TEM.  Heavy metal stains such 

as phosphotungstic acid (PTA), uranyl acetate (UA) and uranyl formate (UF) are 

commonly used for negative staining [91].  Ideally, the negative stain does not interact 

with the sample structures but stains the background to create a contrast that allows us 
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to visualize the sample.  However, negative staining can result in structural artifacts 

caused by sample-stain interactions such as flattening of spherical or cylindrical 

structures, or formation of myelin figures and staining artifacts due to uneven 

distribution of the stain [93].  Nevertheless, negative staining is a very useful technique 

because it is easy, rapid and cost-effective because it does not require any additional 

specialized equipment other than what is already available in an EM laboratory. 

3.1.3 Applications of TEM in nanotechnology.  TEM is used to obtain 

morphological, topographical, compositional and crystalline information of samples and 

is applicable to numerous disciplines such as life sciences, nanotechnology, material 

research, forensic analysis, gemology and metallurgy.  In nanotechnology, TEM serves 

as a very important tool for characterizing the particle size and morphology of 

nanocarriers [94]. 

3.1.3.1 Characterization of LPP with TEM.  The aim of research reported in 

this chapter was to use TEM to examine the morphology and the particle size 

distribution of different components of LPP, namely, magnesium phosphate 

nanoparticles (MgP NP), catalase-encapsulated liposomes (CE LP), catalase-complexed 

liposomes (CC LP), catalase-encapsulated lipid-coated phosphate nanoparticles (CE LPP) 

and catalase-complexed lipid-coated phosphate nanoparticles (CC LPP).  In addition, 

TEM was also used to examine changes in the morphology of LPP in response to acidic 

pH. 
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3.2 Materials and Methods 

3.2.1 Materials.  Two-hundred mesh continuous carbon-coated copper grids 

were obtained from TED PELLA (Redding, CA).  Phosphotungstic acid was purchased 

from Fisher Scientific (Hampton, NH). 

3.2.2 Sample preparation for characterization with TEM.  The 

morphology of LPP and its formulation precursors was studied on a JEOL-JEM 1230 

Electron Microscope (JEOL, Japan).  Two-hundred mesh carbon-coated copper TEM 

grids were exposed to glow discharge before use to increase their hydrophilicity.  MgP 

NP sample (5 µL) was dripped onto the grid, air-dried for about 30 minutes and blotted 

with a filter paper to generate a thin film.  Liposomal samples (5 µL) were deposited on 

the grid, air-dried for a minute and blotted using a filter paper to generate a thin film 

on the grid.  Samples containing cationic lipids were negatively stained with PTA (5 

cycles of quick staining with 5 µL 2% PTA and blotting).  The grids were then 

transferred into the electron microscope for imaging at an accelerating voltage of 100 

KV, with the help of Dr. Fei Guo at the Electron Imaging Facility, Department of 

Molecular and Cellular Biology, UC Davis.  Digital images were recorded and analyzed 

with EMMENU4 (TIETZ imaging software). 

3.2.2.1 Sample preparation for characterizing LPP after exposure to 

acidic pH.  In order to characterize the morphological changes in response to acidic 

pH, LPP formulations (both CE LPP and CC LPP) were incubated in pH 5.5 acetate buffer 

for 30 minutes prior to TEM sample preparation and imaging as described above 

(3.2.2). 
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3.3 Results 

3.3.1 Morphology of LPP and its components at pH 7.4. The morphology 

of CE LPP, CC LPP and their formulation precursors were studied by TEM. 

3.3.1.1 Morphology of MgP NP.  As shown in Fig. 3.1, MgP NP suspension 

contained both small (about 50–100 nm in diameter) nanoparticles (Fig. 3.1a, b) and 

larger aggregates above 1000 nm in diameter (Fig. 3.1c).  This would explain the larger 

hydrodynamic diameter of MgP NP than the final LPP formulations seen in Table 2.6.  

Electrostatic repulsion induced by adding sodium citrate kept some nanoparticles 

separate.  However, a substantial portion of the smaller nanoparticles still stuck 

together to form larger aggregates (Fig. 3.1d). 

 
 
 

 

Fig. 3.1. TEM images of MgP NP nanoparticles (a-d) 
 
 
 

3.3.1.2 Morphology of CE LP and CC LP.  CE LP appeared as bright spherical 

structures with a dark background due to the negative staining by PTA (Fig. 3.2a, b).  

Smaller white dots around a few nanometers in diameter were observed inside, on the 

surface and around the liposomes.  These dots most probably represented the catalase 
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molecules that were encapsulated inside the liposomes, adsorbed onto the liposome 

surface, or free in solution around the vesicles.  Unloaded cationic liposomes (Fig. 3.2c) 

appeared as much smaller structures compared to CE LP (Fig. 3.2a, b).  A lot of white 

dots were observed around the vesicles in CC LP samples (Fig. 3.2d), which were most 

likely the protein complexed to the cationic liposomes. 

 
 
 

 

Fig. 3.2. TEM images of CE LP (a, b), cationic LP (c) and CC LP (d) 
 
 
 

3.3.1.3 Morphology of CE LPP and CC LPP.  A darker center was observed 

inside the liposomal vesicles in both CE LPP (Fig. 3.3a, b) and CC LPP (Fig. 3.3c, d), 

which was not seen in CE LP (Fig 3.2a, b) or CC LP (Fig. 3.2d).  This suggests that the 

darker center represents a MgP NP core in both the LPP formulations. 
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Fig. 3.3. TEM images of CE LPP (a, b) and CC LPP (c, d) 
 
 
 

3.3.2 Morphological changes in LPP in response to acidic pH.  TEM 

images of CE LPP and CC LPP formulations showed tight, spherical structures at pH 7.4 

(Fig. 3.3a-d) but deformed and scattered structures upon incubation at pH 5.5 for 30 

minutes (Fig. 3.4a-d). 

 
 
 

 

Fig. 3.4. TEM images of CE LPP (a, b) and CC LPP (c, d) in response to acidic pH 
 
 
 

3.3.3 Comparison of diameters obtained from TEM with DLS.  The 

diameters of the structures seen in the TEM images were measured using ImageJ 

software.  For the liposomal components of LPP, around 10-15 structures were 
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measured, and their average diameter was calculated.  Due to the wide size distribution 

of MgP NP, 50-60 structures were randomly measured, and their average was 

calculated.  The diameters measured from TEM images were consistent with dynamic 

light scattering (DLS) measurements.  The TEM diameter of MgP NP had a large 

standard deviation as the structures ranged from small precipitates measuring 20 nm in 

diameter to large aggregates measuring 1.9 µm. 

 
 
 

Table 3.1. Diameters of LPP and its precursors measured using TEM and DLS 

Component TEM diameter (nm) DLS diameter (nm) 

MgP NP 320 ± 460 400 ± 67 

CE LP 270 ± 110 233 ± 28 

CE LPP 230 ± 90 284 ± 37 

Cationic LP 80 ± 20 82 ± 14 

CC LP 100 ± 30 114 ± 16 

CC LPP 100 ± 40 141 ± 15 

Data represented as mean ± SD, n=5 for DLS measurements. 
 
 
 
3.4 Discussion 

The TEM images of LPP and the formulation precursors were consistent with the 

Dynamic Light Scattering measurements and confirmed the location of the protein and 

the presence of a MgP NP core in the final LPP formulations.  Both TEM and DLS 

showed that the strategy of complexing cationic LP with catalase yielded smaller CC LP 

when compared with the encapsulation technique (CE LP). 
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The bursting of LPP formulations in response to acidic pH is evident and can be 

visualized more clearly in this study compared to our previous report (Chapter 1, Fig. 

1.3).  The deformation of LPP formulations is consistent with our previous studies [39, 

80].  Taken together, these observations strongly support the proposed mechanism of 

pH-triggered release of catalase, where the MgP NP core dissolves at acidic pH into a 

solution of high osmotic pressure, which consequently swells, deforms, and in many 

cases lyses the LPP formulation.  

In addition to morphological characterization, TEM could be used in combination 

with confocal microscopy to monitor the cellular uptake and endosomal escape of LPP 

inside the cell [95, 96]. 

  



84 
 

Chapter 4: Evaluation of Protein Delivery by LPP in Healthy Mouse Lung 

4.1 Introduction 

4.1.1 In vivo evaluation of LPP in healthy mice.  The aim of studies 

reported in this chapter is to evaluate the efficiency of protein delivery by LPP in healthy 

lungs and to determine the optimal route of administration to facilitate intrapulmonary 

delivery of LPP.  In order to do so, intranasal (IN) administration and intravenous (IV) 

administration were both attempted and were compared in healthy animals. 

Catalase, the cargo protein in this study, is an endogenous antioxidant enzyme in 

normal lungs, and contributes to the lung’s antioxidant defense system [45].  Lung 

inflammation is often associated with oxidative stress of pulmonary cells [42-44], which 

can be alleviated by catalase.  Thus, the lung was chosen as the target organ for the 

catalase formulations in order to explore their potential applications in pulmonary 

diseases that are associated with inflammation [97, 98].  

4.1.2 Route of administration 

4.1.2.1 Intravenous dosing.  Cationic liposomes have been reported to 

rapidly accumulate in the lung tissue following intravenous administration [50, 51, 99].  

To exploit this phenomenon in our study, catalase formulations were administered 

intravenously by tail-vein injection in healthy animals.  The maximum dose volume that 

can be administered intravenously (IV bolus, duration <1 minute) in mice is 5 mL/Kg, 

so ~100 µL was given to each animal [100].  Tail-vein injection demands considerable 

hands-on skills and needs a lot of practice.  There is a high chance of missing the vein 

and injecting the solution into the surrounding tissue. 
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4.1.2.2 Intranasal dosing.  Intranasal route of administration is commonly 

used for intrapulmonary delivery of liquids and aerosols [97, 101].  In our study, 

catalase formulations were dosed intranasally by dripping small droplets of liposomal 

suspension onto the nostrils of healthy animals.  The ideal volume for intranasal dosing 

targeted to the lung is 25-50 µL whereas volumes <20 µL are used for brain delivery 

[102, 103].  The intranasal route is easy to administer, non-invasive and directly 

delivers the dose to the lung, thus tissue avoiding stability and clearance issues related 

to administration into the systemic blood circulation.  However, intranasal dosing 

provides no control over the percentage of dose successfully delivered into the lungs 

because the dose may be swallowed by the animal to enter the gastrointestinal tract 

instead. 

Alternatively, the oropharyngeal route of administration has also been studied for 

direct lung delivery [104].  It is another non-invasive technique where the animal’s 

tongue is pulled out, and the dose volume is pipetted onto the distal part of the 

oropharynx while simultaneously closing the nostrils.  This route was not explored in 

this dissertation because the gentle occlusion of the tiny nostrils in mice is difficult, yet 

crucial for the success of this route of administration. 

4.2 Materials and Methods 

4.2.1 Materials.  Pierce protease inhibitor cocktail and T-PER protein extraction 

reagents were purchased from Fisher Scientific (Hampton, NH).  Carboxy-H2DCFDA was 

purchased from Molecular Probes (Eugene, OR).  Bovine liver catalase (E3289) was 

purchased from Sigma-Aldrich (St. Louis, MO).  Cyanine 7.5 labeled bovine liver 
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catalase was purchased from Nanocs Inc (New York, NY).  Isoflurane, ketamine, 

xylazine, and acepromazine were purchased from Patterson Veterinary (Greeley, CO). 

4.2.2 Experimental animals.  CD-1 female mice (7 weeks old) were 

purchased from Charles River Laboratories (Wilmington, MA).  All work performed on 

animals was in accordance with and approved by the University of the Pacific 

Institutional Animal Care and Use Committee (Protocol# 15R12). 

4.2.3 Preparation of LPP for in vivo administration.  CE LPP and CC LPP 

formulations were prepared as per the three modules described in Chapter 2 (2.2.2) 

and carried 5.9 mM total lipid and 0.37 µM catalase each.  Liposomal formulation of 

catalase (L-CAT) was prepared as described previously (Chapter 2, 2.2.2.1.1) and 

carried 9.8 mM total lipid and 0.61 µM catalase.  CC LPP, CE LPP and L-CAT were 

concentrated using an Amicon® Ultra-4 mL centrifugal filter (MWCO 10K) to obtain the 

catalase concentration required for intranasal and intravenous dosing.  Briefly, 4 mL of 

formulations were added to the Amicon filter tubes and centrifuged at 4000g, 4 °C on a 

Beckman GS-6R centrifuge (Beckman Coulter Inc., Brea, CA) for 1-2 hours to 

concentrate the suspensions to 1 mL.  The concentrated samples were recovered from 

the filter and an aliquot of concentrated glucose solution (2 M) was added to adjust the 

isotonicity.  The recovered formulations were then diluted appropriately with isotonic 

HEPES buffer (5mM, pH 7.4 with 5% w/v glucose) to attain the following 

concentrations: 6.4 mM total lipid and 0.4 µM catalase for intravenous administration 

and 21.3 mM total lipid and 1.3 µM catalase for intranasal administration. 
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For fluorescent imaging studies, the formulations (f-CC LPP, f-CE LPP and L-f-

CAT) were prepared as described above using catalase that were labeled with Cyanine 

7.5 fluorescent probe (Nanocs Inc, NY).  Care was taken to protect the fluorescently 

labeled catalase from light during preparation. 

4.2.4 Administration of LPP in healthy mice.  CD-1 female mice (~8 weeks 

old at the time of dosing) were randomly divided into ten groups (n=6): CC 

LPP/intravenous, CE LPP/intravenous, L-CAT/intravenous, free CAT/intravenous, control 

group/intravenous, CC LPP/intranasal, CE LPP/intranasal, L-CAT/intranasal, free 

CAT/intranasal and control group/intranasal. 

4.2.4.1 Intravenous dosing.  Before intravenous dosing, each animal was 

lightly anesthetized with 1-3% isoflurane vaporized with 1 mL/min O2.  The animal was 

then moved into a plastic rodent restrainer for tail vein injection of the respective 

treatment (0.3 mg/Kg catalase in ~100 µL dose volume) using a 1 mL disposable 

sterilized syringe with a 30 G needle.  The tail was cleaned with 70% IPA and immersed 

in warm water to enhance the visibility of the veins.  Untreated animals were used as a 

control. 

4.2.4.2 Intranasal dosing.  Animals were anesthetized with 1-3% isoflurane 

vaporized with 1 mL/min O2 before dosing.  While the animal was waking up from 

anesthesia, marked by the start of limb movements and deep abdominal breath, the 

respective treatment (0.3 mg/Kg catalase in ~36 µL dose volume) was administered 

intranasally.  The control group received an equivalent volume of PBS.  The mouse was 

restrained and held at a 45-90° angle and the treatment solution was dripped onto its 
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nostrils using a 20 µL Eppendorf pipette.  Care was taken to ensure slow and gradual 

dosing to avoid drowning, choking or expulsion of the liquid by animal’s sneezing.  The 

dose volume was evenly distributed across both nostrils (~18 µL per nostril).  After 

completion of dosing, the animal was awake, returned to its cage and monitored for 

any signs of distress. 

4.2.5 Fluorescence imaging of LPP distribution in healthy mice.  In a 

separate study, catalase that was fluorescently labeled with Cyanine 7.5 (λex = 790 nm, 

λem = 810 nm) was used to study the distribution of different catalase formulations in 

mice [105].  Animals were randomly divided into eight groups (n=3 each): f-CC 

LPP/intranasal, f-CE LPP/intranasal, L-f-CAT/intranasal, free f-CAT/intranasal, f-CC 

LPP/intravenous, f-CE LPP/intravenous, L-f-CAT/intravenous and free f-

CAT/intravenous.  All mice were dosed at 0.3 mg/Kg fluorescently labeled catalase and 

were then subjected to in vivo imaging to detect the distribution of the cyanine 

fluorescence. 

Mice were anesthetized with isoflurane (2-3% for induction and 1-2% for 

maintenance) before being placed in the MousePOD® and imaged with a Li-Cor 

Odyssey® Fluorescence Imaging System (LI-COR Biosciences, Lincoln, NE) (Instrument 

settings: Resolution: 337 µm, Focus: 2.0 mm, Channel intensities: 700 nm – L2 and 

800nm – 3) at select time points (0.5, 1, 2, 4, 8, 12, 24 and 48 hours) up to 48 hours 

post administration while remaining sedated.  The mice regained consciousness within 

few minutes after the imaging.  Image Studio Lite (LI-COR Biosciences) was used for 

processing and analyzing the images.  All the images were normalized by fixing the 
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intensity scale to the same minimum and maximum value.  Signal intensity (SI) was 

obtained from regions of interest such as head, lungs and abdominal region by drawing 

box shapes around those regions in each mouse.  Mean signal intensity (MSI) was 

calculated by dividing the SI with the area of the box.  Normalized intensity percent was 

calculated by: 

Normalized intensity % =
MSIregion of interest

MSIbackground
∗ 100 

Where MSIregion of interest corresponds to the MSI obtained from a specific region (for 

example, lung of mice treated with CC LPP at 0.5 hour) and MSIbackground corresponds to 

the MSI obtained for the same region from an untreated mouse (background intensity) 

[106]. 

4.2.6 Tissue collection and analysis.  Four hours post-dosing, the animals 

dosed with bovine liver catalase (4.2.4) were anesthetized by intraperitoneal injection of 

an anesthetic cocktail (65 mg/kg ketamine, 12 mg/kg xylazine and 2 mg/kg 

acepromazine).  The lung tissue was flushed with ice-cold PBS and transferred into 

tubes containing T-PER lysis buffer with protease inhibitors.  Zirconium beads were 

added to the tubes for homogenization on a Mini Bead-Beater 1 (BioSpec Products, 

Bartlesville, OK) followed by centrifugation at 14000 g for 15 minutes at 4 °C on a 

Micromax RF microcentrifuge (Thermo Fisher Scientific, Waltham, MA).  The resultant 

supernatants were analyzed immediately. 

4.2.6.1 Measurement of catalase activity.  The activity of the catalase 

delivered to the lungs was measured using both the H2O2 decomposition assay and the 
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Catalase Assay Kit (Cayman Chemical, Ann Arbor, MI).  For H2O2 decomposition assay, 

H2O2 (25 mM, 1.2 mL) was transferred into a 1.5 mL quartz cuvette placed in a 

Beckman DU 640 Spectrophotometer (Beckman Coulter Inc, Brea, CA).  At time zero, 

the reaction was initiated by transferring 0.2 mL tissue supernatant (diluted 20-fold with 

lysis buffer) into the cuvette.  The cuvette housing unit was quickly closed and the UV 

absorbance of H2O2 at 240 nm was immediately recorded every 2 seconds for 1 minute.  

Lysis buffer (0.2 mL) was used as blank.  The tissue samples were diluted by 20-fold so 

that the H2O2 decomposition in the first 60 seconds exhibited linear pseudo-zero order 

kinetics without generating substantial oxygen bubbles that would interfere with the UV 

absorbance. 

Catalase activity was also measured using the catalase assay kit per the 

manufacturer’s instructions.  Tissue supernatants were diluted 100-fold with lysis buffer 

to fit into the linear range of the assay.  The absorbance of the samples was measured 

at 540 nm using an Epoch Microplate Spectrophotometer (BioTek Instruments Inc, 

Winooski, VT).  

4.2.6.1.1 Establishing a correlation between H2O2 decomposition assay and 

catalase activity kit.  Catalase activity was initially analyzed in the tissue supernatants 

using the H2O2 decomposition assay.  The catalase assay kit (Cayman Chemical, Ann 

Arbor, MI) was used later in the dissertation research because it offered higher 

sensitivity.  Developing a correlation between both the assays was important to allow 

comparisons between all the data sets.  Catalase standards (0.01 nM – 25 nM) were 

prepared and their activity was analyzed using both the assays.  The output of both the 
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assays were correlated and linear regression was performed with EXCEL to obtain an 

equation that would allow us to convert the H2O2 decomposition rates (AU/sec) into 

catalase activity (U/mL) for each sample. 

4.2.6.2 Measurement of ROS levels.  The ROS levels in the lung tissue 

supernatants were measured using the fluorescent probe Carboxy H2DCFDA [107]. 

Briefly, 10 µL of 50 µM Carboxy H2DCFDA was added to 100 µL of tissue supernatant 

that had been diluted 10-fold with lysis buffer in a 96-well plate, which was then 

incubated for an hour at 37 °C.  The fluorescence (λex = 485 nm, λem = 528 nm) was 

measured on a BioTek Synergy HT microplate reader (BioTek Instruments Inc, 

Winooski, VT). 

4.2.6.3 Measurement of total protein.  The total protein in the lung tissue 

supernatants was measured using the Pierce BCA protein assay (Thermo Fisher 

Scientific, Waltham, MA) per the manufacturer’s instructions.  Tissue supernatants were 

diluted 10-fold to fit into the linear range of the assay.  The absorbance of the samples 

was measured at 540 nm using a TriStar LB 941 Multimode Microplate Reader (Berthold 

Technologies, Bad Wildbad, Germany). 

4.2.7 Statistical analysis.  Values that had both biological (multiple mice) and 

analytical (multiple measurements) replicates are expressed as mean ± SEM.  One-way 

ANOVA paired with Tukey’s posthoc analysis was performed using GraphPad Prism 

(GraphPad Software).  Statistical significance was acknowledged at p < 0.05. 
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4.3 Results 

4.3.1 Biodistribution of LPP in healthy mice.  In this study, both intranasal 

and intravenous administration were attempted to deliver the catalase formulations into 

the lung.  The distribution of fluorescently labeled catalase was monitored up to 48 

hours following intranasal and intravenous administration of Cy7.5-labeled catalase 

formulations in CD-1 female mice. 

4.3.1.1 LPP distribution after intranasal delivery.  The fluorescent images 

(Fig. 4.1) obtained after intranasal dosing showed substantially higher lung distribution 

of f-CC LPP compared to f-CE LPP, L-f-CAT and free f-CAT groups (Fig. 4.2b).  Free f-

CAT distributed mainly into the lung during the first few hours but showed redistribution 

into the metabolic region between 4-8 hours post dosing (Fig. 4.1).  The redistribution 

was significantly higher than other groups (Fig. 4.2c).  In comparison, the Cy7.5-labeled 

catalase formulated in f-CC LPP was retained in the lung for up to 8 hours without much 

signal in the metabolic region, indicating the advantage of the complexed LPP 

formulation in delivering catalase into the lung.  However, the fluorescence signal of f-

CE LPP in the lung following IN administration was significantly lower, indicating much 

poorer lung distribution than f-CC LPP.  f-CC LPP’s higher intrapulmonary distribution 

could be attributed to its small particle size (~140 nm) and positive surface charges 

(+30 mV), whereas the much large size of f-CE LPP, which is about double that of f-CC 

LPP, may have hindered its inhalation and distribution into the lung [54].  The L-f-CAT 

formulation loaded with Cy7.5-labeled catalase had the lowest lung distribution.  The 

fluorescence signal of Cy7.5-labeled catalase observed in the head region was probably 
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because the formulations were mostly limited in the animal’s nasal cavity and were then 

spread around the head and paws due to the animal’s grooming habits.  Interestingly, 

the fluorescence of the larger f-CE LPP and L-f-CAT in the head region was still lower 

than that of f-CC LPP, suggesting that the animal’s grooming may have caused partial 

loss of f-CE LPP and L-f-CAT (Fig. 4.2a). 

 
 
 

 

Fig. 4.1. Biodistribution of different Cy7.5-labeled catalase formulations after intranasal 
(IN) administration in CD-1 mice 
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Fig. 4.2. Normalized fluorescence intensity of Cy7.5-labeled catalase in the head (a), 
lung (b) and metabolic (c) regions of CD-1 mice. Data presented as mean ± SD (n=3). 

 

4.3.1.2 LPP distribution after intravenous delivery.  Imaging of 

fluorescently labeled catalase showed that the same formulations as discussed in the 

last section distribution into the liver instead of the lungs after intravenous 

administration.  Intravenous injection through the tail vein was successful only in some 

(1 out of 3 replicates in each group) of the mice and the successful images are shown 

in Fig. 4.3.  The other animals in each group were partially successful because the 

fluorescence imaging showed that most of the Cy7.5-labeled catalase was stuck in the 

tail while some signal corresponding to the injected portion was observed in the liver 

region (data not shown). 
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Fig. 4.3. Biodistribution of different Cy7.5-labeled catalase formulations after 
intravenous (IV) administration in CD-1 mice 
 
 
 

4.3.2 Activity of LPP in healthy mouse lung.  The functionality of the 

intrapulmonarily delivered catalase in the LPP formulations was assessed using two 

markers: 1) the increase of catalase activity in the lungs after the administration, and 2) 

the decrease of ROS level as a measure of whether the delivered cargo catalase can 

protect the lung tissue from oxidative stress. 

4.3.2.1 LPP activity after intranasal delivery.  Following intranasal 

administration, the complexed catalase formulation (CC LPP), which was smaller and 
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which better preserved catalase activity than CE LPP, showed both better distribution 

and higher catalase activity in the lung compared to the encapsulated formulation (CE 

LPP).  Both the LPP formulations yielded higher pulmonary catalase activity than the 

free catalase solution and were able to restore the catalase activity to that of the PBS-

treated control group 4 hours after IN dosing (Fig. 4.4a).  Both the CC LPP and CE LPP 

groups were able to significantly reduce the ROS levels in the lung tissue compared to 

the free catalase and the L-CAT group (Fig. 4.4c).  The L-CAT group lacked the MgP NP 

core, suggesting the importance of the MgP NP core in facilitating protein delivery into 

the lung.  In addition, administration of L-CAT increased the lung ROS levels compared 

to the PBS-treated control group, probably due to cationic lipid toxicity [108].  

Overall, the ROS levels corresponding to different catalase groups correlated 

inversely with the respective catalase activities in the lung tissue.  CC LPP produced 

higher catalase activity that corresponded to lower ROS levels compared to the CE LPP, 

L-CAT and free catalase groups.  Compared to PBS-treated control, both free catalase 

solution and L-CAT elevated the ROS levels and lowered the catalase activity in the lung 

tissue 4 hours after intranasal administration.  The lower catalase activity levels could 

result from the depletion of the endogenous catalase in combating the increased ROS 

after L-CAT and free catalase solution administration. 
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Fig. 4.4. H2O2 decomposition rate (a), calculated catalase activity (b) and ROS levels (c) 
in mouse lung supernatants after intranasal (IN) dosing of different catalase 
formulations. Data presented as mean ± SEM (n=6). *p≤0.05 versus L-CAT; ‡≤0.05 
versus free CAT 
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4.3.2.2 LPP activity after intravenous delivery.  Intravenous dosing of CC 

LPP, CE LPP, L-CAT and free catalase groups caused no substantial changes in the 

catalase activities (Fig. 4.5a) nor in the ROS levels (Fig. 4.5c) in the lung compared to 

untreated baseline levels.  Fluorescence imaging of the biodistribution of Cy7.5-labeled 

catalase indicated that the formulations do not distribute substantially into the lung 

following intravenous dosing.  Based on these results, intranasal administration but not 

intravenous administration was selected for further studies on the intrapulmonary 

delivery of LPP. 
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Fig. 4.5. H2O2 decomposition rate (a), calculated catalase activity (b) and ROS levels (c) 
in mouse lung supernatants after intravenous (IV) dosing of different catalase 
formulations. Data presented as mean ± SEM (n=6). 
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4.3.2.3 Statistical correlation between H2O2 decomposition assay and 

catalase activity kit.  In order to correlate the catalase activities acquired by two 

different absorbance assays, two catalase standard curves were prepared: one showing 

the relationship between H2O2 decomposition rate (AU/sec) and catalase concentration 

(Fig. 4.6a), and the other showing the relationship between the enzyme activity of 

catalase (U/mL) and catalase concentration (Fig. 4.6b).  The output activity obtained 

from both the assays had a correlation coefficient (r) of 0.9 (Fig 4.7), indicating strong 

positive correlation between them.  The linear equation (𝑦 = 19406𝑥 + 6.3379) obtained 

from regression analysis was used to convert catalase activity measurements from 

AU/sec to U/mL.  To validate this equation, three lung tissue supernatant samples were 

analyzed for catalase activity using both the assays to compare the calculated value 

(AU/sec obtained from H2O2 decomposition converted to U/mL) with the measured 

value (U/mL obtained from the catalase assay kit).  The calculated values matched the 

measured values (Fig 4.8), thus validating the correlation and conversion between both 

the activity assays.  In addition, the calculated catalase activity values (U/mL) (Fig. 4.4b 

and 4.5b) showed similar trends as the catalase activities measured using H2O2 

decomposition (Fig. 4.4a and 4.5a) following intranasal and intravenous dosing of 

different catalase formulations. 
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a.

 

b.

 
  

Fig. 4.6. Dependence of H2O2 decomposition rate (a) and catalase activity (b) on 
catalase concentration 
 
 
 

 

Fig. 4.7. Correlation between H2O2 decomposition rate and catalase activity 
 
 
 

  
Fig. 4.8. Comparison between measured and calculated catalase activities. Data 
presented as mean ± SD (n=4). 
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4.4 Discussion 

 
In this chapter, CC LPP and CE LPP formulations were evaluated for their protein 

delivery efficiency into healthy lung tissue in mice.  Lung was chosen as the target 

organ in order to explore LPP’s potential applications in clinically relevant diseases that 

are associated with lung inflammation.  Catalase has been reported to mitigate the 

pathology of inflammatory diseases by protecting the cells from oxidative stress [45]. 

The intravenous route of administration was chosen to target the endothelial cells in the 

lung capillaries whereas intranasal route was chosen to target the bronchiolar and 

alveolar epithelial cells in the lung. 

Intravenous administration of cationic lipoplexes for gene delivery result in 

accumulation of majority of the administered dose in pulmonary capillaries in the lung 

[50, 51].  In contrast, intravenously injected cationic LPP formulations in our study did 

not accumulate substantially into the lung but distributed quickly into the liver.  This 

could be due to lower serum stability of the LPP constructs than cationic lipoplexes of 

DNA or siRNA, and/or rapid clearance by the reticuloendothelial system (RES) [109, 

110].  Forster resonance energy transfer (FRET) can be employed in the future to 

monitor the extent of dissociation of LPP formulations in serum [111].  In order to 

reduce LPP’s clearance and prolong its circulation time in the blood, hydrophilic 

polyethylene glycol (PEG) polymers can be used to coat LPP’s surface to shield its 

positively charged, hydrophobic surface from opsonization [62, 112].  The LPP surface 

could also be modified with a ligand to target endothelial receptors such as platelet-
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endothelial cell adhesion molecule (PECAM) because the pulmonary endothelium is the 

preferential accumulation site for endothelial-targeted carriers [113, 114]. 

The partial success of tail-vein injection was one of the limitations of this study.  

As an alternative to tail-vein injection, penile-vein injection in male mice could be tested 

to improve the success rate of intravenous administration.  The penile vein is clearly 

visible, easy to inject and is surrounded by tissue rich in capillaries which can enhance 

systemic absorption of injections that miss the vein [115]. 

Success of intranasal administration is governed by parameters such as depth of 

anesthesia, animal position and dose volume [102].  In order to avoid inhomogenous 

dosing, these parameters were carefully controlled.  A dose volume of ~36 µL was 

chosen based on prior studies where 25-50 µL was found to be the ideal volume for 

lung delivery [103].  Of the fluorescently labeled formulations successfully delivered via 

intranasal route, f-CC LPP showed higher distribution and retention in the lung.  The 

intranasal administration of f-CE LPP might have been partially successful because the 

mice treated with these formulations showed noticeably lower signal in the lungs, head 

and paws compared to other treatment groups.  The smaller particle size and the 

positive charges of f-CC LPP may have boosted their dispersion, cellular binding and 

cellular uptake in the lung tissue [60]. 

Airways are lined by mucus, which is a hydrogel complex composed of secreted 

polypeptides, proteins, carbohydrates, lipids, antibodies and cellular debris tethered 

together by dense network of mucin fibers.  The mucus layer protects the underlying 

tissue from exposure to external environment and its barrier properties are rooted in its 
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dense network of hydrophobic, negatively charged, glycosylated mucin fibers [116]. 

The lipophilic, positively charged CC LPP system may have been trapped in the mucus 

membranes of the nasal passages, which could explain the high intensity in the head 

region.  Surface coating with hydrophilic, low molecular weight PEG can be explored to 

shield the positive surface charges of LPP in order to reduce interactions between the 

LPP nanocarrier and mucus [117]. 

Another limitation of this study was both the H2O2 decomposition assay and the 

catalase assay kit measured the combined activities of endogenous murine catalase and 

exogenous bovine catalase.  An unanticipated observation was that intranasal delivery 

of exogenous catalase lowered the catalase activity in the lung compared to the control 

group that received an equal volume of PBS.  In order to understand the underlying 

cause for this decrease in catalase activity, two different enzyme-linked immunosorbent 

assay (ELISA) kits can be employed to distinguish and specifically detect the levels of 

endogenous murine catalase and exogenous bovine catalase.  Additionally, ELISA can 

be useful to detect the total catalase concentration in a sample accounting for both 

functional and denatured protein, whereas, catalase activity measurement is limited to 

the detection of the functional protein. 

Although it may be argued that the LPP formulations only alleviated the ROS 

damage from the intrapulmonary administration itself, intrapulmonary delivery of the 

catalase protein by LPP was evident, which prompted further evaluation of both the LPP 

formulations (CE LPP and CC LPP) in a mouse model of lung inflammation to test their 

potential therapeutic benefits.  
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Chapter 5: Evaluation of the Potential Therapeutic Efficacy of LPP in a Murine 

Inflammatory Lung Disease Model 

5.1 Introduction 

The aim of this chapter is to test the potential therapeutic efficacy of LPP in a 

clinically relevant inflammatory lung disease model in mice. 

5.1.1 Clinically relevant inflammatory lung diseases.  Inflammation is 

involved in numerous clinically important lung diseases, including chronic obstructive 

pulmonary disease, asthma, acute lung injury, bronchitis, pneumonia, influenza and 

tuberculosis. 

Chronic obstructive pulmonary disease (COPD) is mainly caused by exposure to 

cigarette smoke and inhaled pollutants.  It is characterized by chronic airway 

inflammation and airflow obstruction, which lead to a progressive and irreversible 

decline in lung function [118].  In COPD, the activated structural and inflammatory cells 

(epithelial and alveolar macrophages) release chemotactic mediators to recruit T cells, 

neutrophils, monocytes and lymphocytes into the lung, triggering chronic inflammation 

that leads to structural changes and obstruction of the airway. 

Asthma, a heterogeneous airway disorder, is also associated with chronic 

inflammation of the airways, declining lung function and tissue remodeling [98].  

Clinical symptoms of asthma include breathlessness, wheezing and varying degrees of 

airflow obstruction.  In asthma, the conducting airways become hyper-responsive and 

highly sensitive to a given stimulus and react by bronchoconstriction, which is usually 

treated by bronchodilators. 
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Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is an acute 

inflammatory disorder characterized by disruption of endothelial and epithelial barriers, 

loss of alveolar-capillary membrane integrity, excessive recruitment of neutrophils and 

elevated levels of pro-inflammatory, cytotoxic mediators in the lung (Fig. 5.1) [44]. 

 
 
 

 

Fig. 5.1. Diagrammatic representation of the normal alveolus (left) and the injured 
alveolus in the acute phase of ALI/ARDS (right) (Adapted from ref.[44]) 

ALI/ARDS is an unmet medical need and a major cause of morbidity and 

mortality in critically ill patients.  Recent advances have led to reduction in the duration 
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of mechanical ventilation and improvement of survival time with a lung-protective 

ventilation strategy [119]. 

5.1.2 Pre-clinical models of inflammatory lung diseases.  

Lipopolysaccharide (LPS) is an endotoxin derived from the outer membrane of gram-

negative bacteria, which contains three regions (Fig. 5.2): an O-antigen with repeating 

oligosaccharide units, core sugars, and phospholipid A containing a di-glucosamine head 

group linked to acyl chains [120]. 

 
 
 

 
Fig. 5.2. Basic structure of lipopolysaccharide (Adapted from ref. [120]) 

LPS is recognized by the toll like receptor-4 (TLR4) present on alveolar 

macrophages and epithelial cells during pulmonary infection, which triggers a cascade 
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of intracellular signaling pathways that activate nuclear transcription factors such as 

nuclear factor kappa-enhancer of activated B cells (NF-кB) [101].  NF-кB induces the 

production of pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β 

(IL-1β), interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNF-α), which then 

upregulate chemokines to recruit neutrophils [121].  In the lung, activated neutrophils 

are a major source of reactive oxygen species that oxidize lipid and protein constituents 

of cells and damage the pulmonary endothelium [46, 122].  Acute inflammation induced 

by LPS further causes rapid deletion of endogenous antioxidants including catalase, 

superoxide dismutase and glutathione peroxidase. 

LPS has been reported a potent agent to induce acute lung injury in mice 

following intranasal, intratracheal or intraperitoneal administration [123-125].  LPS has 

also been used for developing COPD models in mice, rats and guinea pigs [126].  

Additionally, LPS induced an inflammatory reaction in human lungs in a clinical trial 

evaluating the effect of aspirin on reducing inflammation in human model of ALI [127].  

In this trial, bronchoalveolar (BAL) levels of IL-8 was the primary outcome measured 6 

hours after LPS inhalation.  Secondary outcome measures included alveolar 

inflammatory markers such as neutrophils, cytokines and neutrophil proteases in BAL 

fluid (BALF) [127]. 

The intratracheal (IT) route of administration is well-established and technique of 

choice for lung delivery as it involves direct instillation of the dose volume into the 

trachea.  In our study, LPS isolated from Escherichia coli (sterile serotype 0111.B4) was 

administered intratracheally to induce ALI in mice. 
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5.1.3 Role of catalase in alleviating inflammation.  Catalase, an 

endogenous tetrameric heme protein, is one of the major intracellular antioxidant 

enzymes responsible for detoxifying reactive oxygen species (ROS) produced under 

physiological conditions.  In the lung, catalase is expressed in macrophages, bronchiolar 

and alveolar epithelial cells and is a crucial part of its endogenous antioxidant defense 

system.  Decreased endogenous levels of catalase have been reported in inflamed lungs 

associated with lung cancer, asthma and pneumonia [24, 45].  Additionally, Odajima et 

al. [45] reported that acatalasemic mice are more sensitive to bleomycin-induced 

inflammation and show prolonged upregulation of proinflammatory cytokines compared 

to wild-type mice.  These reports suggest the role of catalase in regulating oxidative 

stress in inflammation.  Therefore, LPP formulations loaded with catalase were 

delivered into inflamed mice lung to test if such formulations can replenish the depleted 

endogenous catalase and/or provide any therapeutic benefit to ALI. 

5.1.4 Biomarkers selected for evaluation.  For studies reported in this 

chapter, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were the 

biomarkers chosen for assessing inflammation in the lung.  IL-6, a pro-inflammatory 

cytokine that is promptly produced in response to tissue injury, is a major contributor to 

the host’s defense mechanism by stimulating acute phase responses, hematopoiesis 

and immune reactions [128].  TNF-α, a cytokine produced by macrophages and 

monocytes during acute inflammation, is responsible for triggering a variety of cell-

signaling events that result in necrosis/apoptosis [129]. 
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The degree of oxidative stress in the lung tissue was evaluated by measuring 

catalase activity, ROS levels and malondialdehyde (MDA) levels.  Catalase activity 

measurement accounts for the endogenous catalase in the lung as well as the 

intrapulmonarily delivered catalase.  Reactive oxygen species (ROS) consist of both 

radical and non-radical oxygen species such as hydrogen peroxide (H2O2), nitric oxide 

(NO), superoxide anion (O2
−) and hydroxyl radical (•OH).  ROS are produced 

endogenously during mitochondrial oxidative metabolism and in response to 

xenobiotics, cytokines and bacterial invasion.  ROS generation beyond the cell’s 

antioxidant capability results in oxidative stress [130].  MDA is a product of peroxidation 

of polyunsaturated lipids, and is used as a biomarker indicative of oxidative damage 

[131].  

5.2 Materials and Methods 

5.2.1 Materials.  Pierce protease inhibitor cocktail and T-PER protein extraction 

reagents were purchased from Fisher Scientific (Hampton, NH).  Carboxy-H2DCFDA was 

purchased from Molecular Probes (Eugene, OR).  Bovine liver catalase (E3289) was 

purchased from Sigma-Aldrich (St. Louis, MO).  Cyanine7.5-labeled bovine liver catalase 

was purchased from Nanocs Inc (New York, NY).  Lipopolysaccharide (L2630) was 

purchased from Sigma-Aldrich (St. Louis, MO).  Isoflurane, ketamine, xylazine, and 

acepromazine were purchased from Patterson Veterinary (Greeley, CO). 

5.2.2 Experimental animals.  CD-1 female and male mice, 7 weeks old were 

purchased from Charles River Laboratories (Wilmington, MA).  All work performed on 
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animals was in accordance with and approved by the University of the Pacific 

Institutional Animal Care and Use Committee (Protocol# 18R12). 

5.2.3 Development of lipopolysaccharide induced acute lung injury in 

mice.  Acute lung injury (ALI) was induced in CD-1 mice, 8 weeks old at the time of 

experiment, by administering lipopolysaccharide (LPS) intratracheally [132].  To 

understand the role of LPS induction time in the disease model, CD-1 female mice (8 

weeks old) were administered a suspension of LPS in PBS (1.5 mg/Kg LPS, n=3) or an 

equivalent volume of PBS (~50 µL, n=3) intratracheally and the lung tissues were 

collected and analyzed 4, 6 and 12 hours after LPS injury.  Additionally, lung tissues 

from untreated mice (n=3) were collected and analyzed for comparison.  In order to 

test if a higher amount of LPS would further upregulate the inflammatory and oxidative 

stress biomarkers, CD-1 female mice were administered a suspension of LPS in PBS (3 

mg/Kg LPS, n=3) and the lung tissue was collected and analyzed 6 hours after LPS 

administration.  Additionally, to understand the role of sex hormones in inflammation, 

CD-1 male mice (8 weeks old) were administered a suspension of LPS in PBS (3 mg/Kg 

LPS, n=3 and 1.5 mg/Kg LPS, n=3) or an equivalent volume of PBS (~50 µL, n=3) 

intratracheally and the lung tissues were collected and analyzed 6 hours later. 

 For intratracheal administration of LPS, the animals were first anesthetized with 

an intraperitoneal injection of anesthetic cocktail (65 mg/kg ketamine, 12 mg/kg 

xylazine and 2 mg/kg acepromazine).  Once the animal was sedated, veterinary 

ointment was applied to its eyes and buprenorphine (0.05 mg/Kg) was administered 

subcutaneously.  The neck was shaved and swabbed with betadine and alcohol.  The 
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mouse was placed supine on a platform sloped at 45-90° angle [133].  Sharp scissors 

were used to make a small surgical incision approximately 12 mm below the lower 

incisors.  A one-inch long 20-gauge Jelco® IV catheter was used without the needle for 

intratracheal intubation.  The skin near the neck was pulled caudally by forceps to 

visualize the ventral wall of the trachea through the incision.  The tongue was gently 

retracted, and the white catheter was inserted into the trachea through the mouth.  

Once the insertion of catheter into the tracheal was visually confirmed, it was gently 

advanced further.  An aqueous suspension of LPS in PBS was injected into the catheter 

using a gel-loading pipette tip.  The lungs were quickly inflated by injecting 0.6 mL of 

air with a 1 mL syringe through the catheter to help disperse the liquid deep into the 

lungs, immediately followed by removal of the catheter.  The incision was sealed with 

surgical glue and all tools used for LPS administration were removed.  To avoid the 

interference of any fluorescence signal from the surgical glue in the neck region, the 

incision was sealed with a suture in the animals used for the fluorescence imaging study 

(5.2.5).  The animals were kept warm by a lamp while under anesthesia and were 

continuously monitored. 

5.2.4 Evaluation of LPP’s antioxidant effects in mice of ALI.  To evaluate 

the efficiency of the LPP delivery system in inflamed lungs, CD-1 male mice were 

randomly divided into ten groups (n=8): LPS + CC LPP/intranasal, LPS + CE 

LPP/intranasal, LPS + Free CAT/intranasal, LPS + Vehicle(LPS control)/intranasal, PBS + 

Vehicle(control)/intranasal, LPS + CC LPP/intratracheal, LPS + CE LPP/intratracheal, LPS 

+ Free CAT/intratracheal, LPS + Vehicle(LPS control)/intratracheal and PBS + 
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Vehicle(control)/intratracheal.  Lung inflammation was induced in the animals under 

anesthesia by administering 3 mg/Kg LPS by intratracheal intubation as described 

above.  The healthy control group received an equal volume (~30 µL) of PBS.  The 

animals that received treatments via intranasal route were anesthetized with a lower 

dose of anesthetic cocktail to ensure they were almost awake at the time of intranasal 

administration (30 minutes post-LPS administration).  The mice were treated with the 

respective formulations containing 0.3 mg/Kg catalase 30 minutes post-LPS 

administration and then allowed to recover from anesthesia.  The control group 

received an equal volume (~30 µL for IN, ~50 µL for IT) of the formulation vehicle 

(5mM HEPES, 5% w/v glucose, pH 7.4). 

CC LPP and CE LPP were prepared as described in Chapter 4 (4.2.3) and 

contained 19.2 mM total lipid and 1.2 µM catalase (in 5mM HEPES buffer with 5% w/v 

glucose) for IN administration and 12.8 mM total lipid and 0.8 µM catalase (in 5mM 

HEPES buffer with 5% w/v glucose) for IT administration.  Free catalase solutions of 

equivalent concentrations (1.2 µM for IN and 0.8 µM for IT) were prepared in HEPES 

buffer (5mM HEPES, 5% w/v glucose). 

5.2.5 Fluorescence imaging of LPP distribution in mice of ALI.  In a 

separate study, cyanine 7.5-labeled catalase (Nanocs Inc., NY) was used to 

fluorescently image the distribution of the encapsulated and the complexed LPP 

formulations (CE LPP and CC LPP, respectively) in an inflammatory acute lung injury 

(ALI) model.  CD-1 male mice were randomly divided into six groups (n=3 each): LPS + 

CC LPP/intranasal, LPS + CE LPP/intranasal, LPS + free CAT/intranasal, LPS + CC 
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LPP/intratracheal, LPS + CE LPP/intratracheal and LPS + free CAT/intratracheal.  The 

animals were anesthetized followed by intratracheal administration of 3 mg/Kg LPS to 

induce lung inflammation.  The animals were kept under anesthesia and received 

group-specific treatments containing 0.3 mg/Kg fluorescently labeled catalase 30 

minutes after LPS administration.  The animals were imaged on a LI-COR Pearl Trilogy 

small animal imaging system (LI-COR Biosciences, Lincoln, NE) (Instrument settings: 

Resolution :170 µm, Focus: 0 mm, Channels: 700 nm, 800 nm and white) to detect the 

fluorescence of the Cy-7.5 dye (λex = 790 nm, λem = 810 nm).  Images were captured 

at select time points up to 24 hours post catalase treatment.  The animals were then 

perfused with PBS and their lungs, liver, kidneys and brain tissue were collected for ex 

vivo imaging.  Image Studio Lite (LI-COR Biosciences) was used to process and analyze 

the images.  All the images were normalized by fixing the intensity scale to the same 

minimum and maximum value.  Signal intensity (SI) was obtained from regions of 

interest such as head, lungs and abdominal region by drawing box shapes in each 

mouse.  The box drawn in the lung region was further divided into three equal boxes 

representing upper airway/lung region, mid-lung region and deep lung region.  Mean 

signal intensity (MSI) was calculated by dividing the SI with the area of the box.  

Normalized intensity percent was calculated by: 

Normalized intensity % =
MSIregion of interest

MSIbackground
∗ 100 

Where MSIregion of interest corresponds to the MSI obtained from a specific region (for 

example, deep lung of mice treated with CC LPP at 0.5 hour) and MSIbackground 
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corresponds to the MSI obtained for the same region from an untreated mouse 

(background intensity).  The normalized intensity percent for ex vivo tissue images was 

calculated in a similar manner [106]. 

5.2.6 Tissue collection and analysis.  Six hours after LPS administration 

followed by different catalase treatments (5.2.4), the animals were anesthetized with an 

intraperitoneal injection of anesthetic cocktail (65 mg/kg ketamine, 12 mg/kg xylazine 

and 2 mg/kg acepromazine), and their tracheas exposed and intubated with a 20 G IV 

catheter.  PBS (1 mL, with protease inhibitor) was then injected through the catheter 

followed by gentle suction to collect the bronchoalveolar lavage fluid (BALF) [134].  The 

BALF samples were centrifuged at 800 g for 10 minutes at 4 °C on a Micromax RF 

microcentrifuge (Thermo Fisher Scientific, Waltham, MA).  The lungs were flushed with 

ice-cold PBS, removed and transferred into tubes containing T-PER lysis buffer with 

protease inhibitors.  Zirconium beads were then added into the tubes and the lung 

tissue samples were homogenized on a Mini Bead-Beater 1 (BioSpec Products, 

Bartlesville, OK) followed by centrifugation at 14000 g for 15 minutes at 4 °C on a 

Micromax RF microcentrifuge (Thermo Fisher Scientific, Waltham, MA).  The resultant 

bronchoalveolar lavage fluid and lung tissue supernatant samples were stored on ice for 

immediate use or transferred to -80 °C for future analysis. 

5.2.6.1 Measurement of cytokines.  Pro-inflammatory cytokines IL-6 and 

TNF-α in the lung tissue supernatants and BALF were measured using respective 

DuoSet® ELISA kits (R&D Systems, Minneapolis, MN) per manufacturer’s protocol.  

ELISA assay was validated by spike-and-recovery, and the appropriate fold of sample 



116 
 

dilutions was identified to ensure that the readings fall into the linear range of the 

assay.  Briefly, the tissue supernatant and BALF samples were assayed at multiple 

dilutions (neat sample, 10-fold, 100-fold, 1000-fold, 10000-fold), with and without a 

spike of known amount of standard.  Based on the results of the sample validation, 

tissue supernatants were diluted 1000-fold and BALF was diluted 100-fold to fit into the 

linear range of the ELISA.  The absorbance of the samples was measured at 450 nm 

(corrected with absorbance at 540 nm) using an Epoch Microplate Spectrophotometer 

(BioTek Instruments Inc, Winooski, VT). 

5.2.6.2 Measurement of catalase activity.  Catalase activity in the lung 

tissue supernatants and BALF was measured immediately on the day of experiment 

using a catalase assay kit (Cayman Chemical, Ann Arbor, MI) per the manufacturer’s 

instructions.  Tissue supernatants were diluted 100-fold and BALF was diluted 10-fold to 

fit into the linear range of the assay.  The absorbance of the samples was measured at 

540 nm using an Epoch Microplate Spectrophotometer (BioTek Instruments Inc, 

Winooski, VT). 

5.2.6.3 Measurement of ROS levels.  The ROS levels in the lung tissue 

supernatants and BALF were measured immediately on the day of experiment using the 

fluorescent probe Carboxy H2DCFDA [107].  Briefly, 10 µL of 50 µM Carboxy H2DCFDA 

was added to 100 µL of tissue supernatant (diluted 10-fold in lysis buffer) or 100 µL of 

BALF in a 96-well plate, which was then incubated for an hour at 37 °C.  The 

fluorescence (λex = 485 nm, λem = 528 nm) was measured on a BioTek Synergy HT 

microplate reader (BioTek Instruments Inc, Winooski, VT). 
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5.2.6.4 Measurement of malonaldehyde.  Lipid peroxidation in the lung 

tissue supernatants was determined by measuring the malonaldehyde content using the 

TBARS-TCA method assay kit (Cayman Chemical, Ann Arbor, MI) per the manufacturer’s 

instructions.  The absorbance of the samples was measured at 540 nm using an Epoch 

Microplate Spectrophotometer (BioTek Instruments Inc, Winooski, VT). 

5.2.6.5 Measurement of total protein.  The total protein in the lung tissue 

supernatants and BALF were measured using the Pierce BCA protein assay (Thermo 

Fisher Scientific, Waltham, MA) per the manufacturer’s instructions.  Tissue 

supernatants were diluted 10-fold and BALF was used as is to fit into the linear range of 

the assay.  The absorbance of the samples was measured at 540 nm using an Epoch 

Microplate Spectrophotometer (BioTek Instruments Inc, Winooski, VT). 

5.2.7 Statistical analysis.  Values that had both biological (multiple mice) and 

analytical (multiple measurements) replicates are expressed as mean ± SEM.  One-way 

ANOVA paired with Tukey’s posthoc analysis was performed using GraphPad Prism 

(GraphPad Software).  Statistical significance was acknowledged at p < 0.05. 

5.3 Results 

5.3.1 Lipopolysaccharide-induced acute lung injury in mice.  To establish 

a robust inflammatory lung disease model in CD-1 mice, the influence of a number of 

parameters such as duration of LPS induction, amount of LPS administered and sex of 

the animal was studied.  Cytokines IL-6 and TNF-α levels in lung tissue were evaluated 

as biomarkers of inflammation.  Catalase activity, ROS levels and lipid peroxidation were 

evaluated as markers of oxidative stress. 
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5.3.1.1 Timing of tissue collection.  

IL-6 (Fig. 5.3a) and TNF-α (Fig. 5.3b) levels in the lung tissue were significantly 

elevated at 4 hours and 6 hours post LPS injury, confirming the onset of inflammation 

in the lung.  The cytokine levels nearly returned to baseline 12 hours after LPS injury.  

Catalase activity (Fig. 5.3c) decreased in the LPS group at the 4-hour and 6-hour 

endpoint, possibly because of the depletion of endogenous catalase in combating 

oxidative stress.  At 4 hours, malondialdehyde levels (Fig 5.3d) were elevated in both 

the LPS and PBS groups.  However, these levels returned to baseline at the 6-hour and 

12-hour endpoint.  No changes were observed in the baseline ROS levels (Fig. 5.3e) at 

any time point, following administration of LPS or PBS.  The data suggests that LPS 

evidently induced lung inflammation in the early time points and then may have 

recovered in the later time points.  Six-hour tissue collection endpoint was chosen for 

future studies [127]. 
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Fig. 5.3. Levels of interleukin-6 (a), tumor necrosis factor-alpha (b), catalase activity 
(c), reactive oxygen species (d) and malondialdehyde (e) in lung supernatants of CD-1 
mice at different tissue collection time points. Data is presented as mean ± SEM (n=3). 
*p<0.05 versus PBS; ‡p<0.05 versus no treatment. 



120 
 

5.3.1.2 Effect of LPS dose.  Double dose (3 mg/Kg) of LPS showed no 

significant upregulation of the inflammatory cytokines IL-6 (Fig. 5.4a) and TNF-α (Fig. 

5.4b) in the lung tissue compared to the lower LPS dose (1.5 mg/Kg).  No changes 

were observed in any of the oxidative stress biomarkers at this dose (Fig. 5.4c-e). 
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Fig. 5.4. Levels of interleukin-6 (a), tumor necrosis factor-alpha (b), catalase activity 
(c), reactive oxygen species (d) and malondialdehyde (e) in lung supernatants of CD-1 
mice at different LPS doses. Data presented as mean ± SEM (n=3). *p<0.05 versus 
PBS; ‡p<0.05 versus no treatment. 
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5.3.1.3 Effect of sex.  Sex hormones have been reported to play a major role 

in mice responsiveness to LPS-induced inflammation [135, 136].  Specifically, estrogen 

suppresses lung inflammatory responses in female mice.  Therefore, male mice have 

enhanced functional and inflammatory responses to LPS compared to females.  Male 

mice administered with LPS (3 mg/Kg) had 4.5-fold higher production of IL-6 than the 

PBS control, whereas female mice only showed 2-fold increase in the production of the 

same biomarker (Fig. 5.5a).  Similarly, male mice showed 3-fold increase in TNF-α 

levels in the LPS (3 mg/Kg) group compared to the PBS control, whereas female mice 

only showed a 2-fold increase (Fig. 5.5b).  The ROS levels and MDA levels in males 

were lower than females (Fig 5.5d, e).  No differences were observed in the ROS levels 

(Fig. 5.5d) and MDA levels (Fig. 5.5e) between the LPS and PBS groups in males, which 

was similar to the observations made in female mice.  Based on these findings, male 

mice were used for developing an ALI model to test the potential therapeutic efficacy of 

LPP formulations containing catalase. 
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Fig. 5.5. Levels of interleukin-6 (a), tumor necrosis factor-alpha (b), catalase activity 
(c), reactive oxygen species (d) and malondialdehyde (e) in lung supernatants of 
female and male CD-1 mice. Data presented as mean ± SEM (n=3). *p<0.05 versus 
PBS. 
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5.3.1.4 Validation of ELISA.  A number of strategies such as spike-and-

recovery and linearity of dilution were employed to determine and validate the optimal 

fold of sample dilution for the enzyme-linked immunosorbent assay (ELISA) 

experiments.  Immunoassays are usually prone to the high dose hook effect, which 

refers to measured levels of antigen displaying a significantly lower absorbance than 

the actual levels present in a sample [137], leading to false negatives or inaccurately 

low results.  This usually occurs at higher concentrations of the analyte, where the 

excess antigen saturates the capture/detection antibodies.  It may also occur from 

unknown interferences by other components present in biological samples, which 

makes dilution very important. 

The hook effect was observed when neat lung tissue supernatant was analyzed 

for IL-6 using an ELISA kit (R&D Systems, Minneapolis, MN).  The absorbance in the 

neat sample was very low compared to the 10-fold diluted sample (Fig. 5.6b).  A linear 

relationship between measured absorbance and sample dilution was observed for the 

10-fold, 100-fold, 1000-fold and 10000-fold dilutions.  The diluted samples were spiked 

with a known standard and compared to a control group that received the same spike 

to determine the recovery.  Spike recovery percent was calculated using either of the 

two equations: 

Spike recovery % =  
(Absorbancesample with spike − Absorbancesample without spike) 

Absorbancecontrol with spike
∗ 100 
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Spike recovery % =  
(Concsample with spike − Concsample without spike) 

Conccontrol with spike
∗ 100 

where, Absorbance refers to the measured absorbance values (λ450-540 nm, corrected by 

subtracting blank absorbance) and Conc refers to the analyte (IL-6) concentrations 

interpolated from the standard curve (Fig. 5.6a). 

A dilution fold of 1000 was chosen for subsequent studies because a) it had the 

highest spike recovery of greater than 90% and b) its absorbance (w/o spike) fit the 

linear range of the standard curve towards the lower concentration, allowing room for 

accurately interpolating increased analyte levels from the standard curve (Table 5.1). 

The optimal dilution fold for BALF samples (100-fold) was also determined in a similar 

manner. 

 
 
 

a. 

 

b. 

 
Fig. 5.6. Dependence of absorbance on the concentrations of mouse interleukin-6 
standard (a) and lung supernatants (b) 
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Table 5.1. Recovery of IL-6 spike in lung supernatants at different dilutions 

Sample # Dilution Fold 
Absorbance 

w/o spike (AU) 
Absorbance 

w/ spike (AU)  
Spike recovery 

% 

1 1 0.228 0.434 28 

2 10 0.619 1.116 68 

3 100 0.35 0.911 76 

4 1000 0.125 0.807 93 

5 10000 0.027 0.678 89 

Control N/A 0 0.733 100 

 
 
 

5.3.2 Biodistribution of LPP in mice of ALI.  Intratracheal intubation of LPS 

(3mg/Kg) induced acute lung inflammation in CD-1 male mice as marked by the 

increase of pro-inflammatory cytokines TNF-α and IL-6 (Fig. 5.5a, b).  The 

biodistribution of LPP formulations loaded with 0.3 mg/Kg Cy7.5-labeled catalase (f-CC 

LPP and f-CE LPP) after intranasal and intratracheal administration were compared to 

identify the better route for protein delivery in inflamed lungs.  Following intranasal 

dosing, most of the signal appeared near the nose and throat of the mouse (Fig. 5.7) 

and the normalized intensity percent in the head region was about 10 times greater 

than the lung region in these mice (Fig 5.8a, b).  However, the normalized intensity 

percent in the brain imaged ex vivo (Fig. 5.11b) remained at baseline (100%) following 

intranasal administration, which indicated that the high intensity in the head region was 

not because of distribution of Cy7.5-labeled catalase into the brain. 

Administration of the catalase formulations (f-CC LPP, f-CE LPP and free f-CAT) 

into the lung by intratracheal intubation helped overcome the limited distribution of the 
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formulations by intranasal dosing in mice with acute lung injury.  Following intratracheal 

administration, the Cy7.5-labeled catalase was delivered deep into the lung (Fig. 5.9).  

The normalized intensity percent in the lung region, specifically the deep lung was 

greater in the mice treated with free f-CAT compared to f-CC LPP and f-CE LPP groups 

(Fig. 5.10b, f).  The normalized intensity percent in the lungs imaged ex vivo 

corroborated both our findings: a) free f-CAT had higher lung distribution than the f-CC 

LPP and f-CE LPP groups following intratracheal administration and b) Cy7.5-labeled 

catalase formulations did not distribute into the lung following intranasal administration 

(Fig. 5.11a).  Mice treated intratracheally with free f-CAT, had higher signal in the liver 

and kidneys compared to other groups, possibly due to its elimination by hepatic or 

renal pathways (Fig, 5.11c, d).  Based on these findings from the biodistribution study, 

intratracheal route was considered more suitable for lung delivery in mice with ALI. 
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Fig. 5.7. Biodistribution of different Cy7.5-labeled catalase formulations after intranasal 
(IN) administration in CD-1 mice with ALI 
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Fig. 5.8. Normalized fluorescence intensity of Cy7.5-labeled catalase in the head (a), 
lung (b) and metabolic (c) regions of CD-1 mice with ALI after intranasal administration. 
Intensity in the lung was divided into upper lung (d), mid-lung (e) and deep lung (f). 
Data presented as mean ± SD (n=3). 
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Fig. 5.9. Biodistribution of different Cy7.5-labeled catalase formulations after 
intratracheal (IT) administration in CD-1 mice with ALI 
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Fig. 5.10. Normalized fluorescence intensity of Cy7.5-labeled catalase in the head (a), 
lung (b) and metabolic (c) regions of CD-1 mice with ALI after intratracheal 
administration. Intensity in the lung was divided into upper lung (d), mid-lung (e) and 
deep lung (f). Data presented as mean ± SD (n=3). 
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Fig. 5.11. Fluorescence intensity of Cy7.5-labeled catalase in the lungs (a), brain (b), 
liver (c) and kidneys (d) imaged ex vivo normalized to the fluorescence intensity from 
respective untreated organs. Data presented as mean ± SD (n=3). *p<0.05. 
 
 
 

5.3.3 Efficacy of LPP in inflamed mouse lungs.  Cytokines play a crucial 

role during inflammation.  TNF-α is one of the most important pro-inflammatory 

cytokines which was upregulated in both the tissue supernatant (TS) and 
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bronchoalveolar lavage fluid (BALF) in the LPS control group when compared to the 

healthy control group.  None of the markers showed any substantial changes following 

intranasal dosing of treatments (Fig. 5.12), which correlated with our findings from the 

biodistribution images which indicated that treatments administered intranasally 30 

minutes post LPS injury did not distribute into the lung.  Following intratracheal 

administration, CC LPP and CE LPP significantly reduced TNF-α production in the lungs 

as compared to LPS-challenged animals (Fig. 5.13a, b).  CC LPP lowered the TNF- α 

levels to a greater extent than CE LPP group in the lung supernatant, which could be a 

result of the following: 1) CC LPP carried a lower diameter than CE LPP which could 

improve its penetration and distribution into the lung tissue, 2) CC LPP preserved the 

activity of the cargo protein better than CE LPP and thus delivered more functional 

protein into the lungs.  This is supported by the increased catalase levels in the 

bronchoalveolar fluid following treatment with CC LPP compared to CE LPP (Fig. 5.13d).  

Although, free catalase was also delivered into the airways of the lung and showed 

similar catalase activity level as CC LPP (Fig. 5.13d), the increased catalase activity did 

not translate into reduction of TNF- α as seen in the CC LPP group (Fig. 5.13b).  This 

emphasizes the importance of LPP in delivering catalase into the cells to augment the 

natural antioxidant pool in the lungs, which can promote its ability to scavenge 

excessive ROS and restore its redox balance in disease conditions. 

Another important observation was the spike in IL-6 levels in both the tissue 

supernatant and bronchoalveolar lavage fluid following intratracheal administration of 

both the LPP formulations (Fig. 5.13e, f), which could indicate toxicity.  In addition, the 
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elevated bronchoalveolar total protein concentration in both the LPP groups, is a sign of 

neutrophil infiltration, a hallmark of pulmonary edema [101].  In corroboration, animals 

treated intratracheally with LPP formulations showed reduced movement compared to 

other groups.  This behavior was not observed when healthy mice were treated with 

LPP formulations. 

Intranasal and intratracheal dosing of different catalase treatments caused no 

substantial changes in the tissue ROS levels in mice with ALI.  The fluorescence signal 

that corresponds to the ROS levels in the bronchoalveolar fluid was very low and did 

not show any significant trends between the different treatment groups. 
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Fig. 5.12. Levels of tumor necrosis factor-alpha (a, b), catalase activity (c, d), 
interleukin-6 (e, f), total protein (g, h) and reactive oxygen species (i, j) (in lung tissue 
supernatants (TS) and bronchoalveolar lavage fluid (BALF), respectively) after 
intranasal (IN) dosing. Data presented as mean ± SEM (n=8). #p<0.05 versus LPS 
control. 
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Fig. 5.13. Levels of tumor necrosis factor-alpha (a, b), catalase activity (c, d), 
interleukin-6 (e, f), total protein (g, h) and reactive oxygen species (i, j) (in lung tissue 
supernatants (TS) and bronchoalveolar lavage fluid (BALF), respectively) after 
intratracheal (IT) dosing. Data presented as mean ± SEM (n=8). #p<0.05 versus LPS 
control. 
 
 
 
5.4 Discussion 

Acute lung injury (ALI) is an acute inflammatory disorder which leads to 

significant morbidity and mortality in the critically ill patient population [44].  ALI is 

characterized by loss of alveolar-capillary membrane integrity, excessive neutrophil 
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migration and release of pro-inflammatory cytokines.  Lipopolysaccharide (LPS), a 

potent endotoxin derived from the outer membrane of gram-negative bacteria, has 

been used to induce ALI following intranasal, intratracheal or intraperitoneal 

administration [123-125].  LPS stimulates an inflammatory response of the lung by 

triggering pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β and 

tumor necrosis factor-alpha (TNF-α).  Many nanocarriers and proteins have been 

reported to successfully alleviate pulmonary inflammation that were induced by LPS in 

mice without serious toxicity [113, 125, 138].  However, in many such studies, the anti-

inflammatory treatment took place a few minutes or hours prior to LPS challenge, which 

would count as a prophylactic measure.  To better mimic a treatment of an established 

inflammation in our study, LPS was instilled first to induce inflammation, followed by 

the treatment by LPP formulations of the catalase protein.  This could explain the 

toxicity and behavioral changes in mice of the ALI model after the LPP treatment, which 

was not observed in healthy mice.  The inflamed lungs of such animals were more 

sensitive to the toxicity associated with the cationic lipid because the immune and 

inflammatory cells had already been recruited into the lung in response to LPS. 

PEGylated catalase and recombinant human catalase have been reported to elicit 

therapeutic responses following intranasal administration in H1N1 influenza-induced 

pneumonia in mice [24, 97].  However, in our study, intranasal dosing of catalase 

formulations didn’t show any therapeutic benefit in the ALI mice model as the cargo 

protein did not successfully distribute into the inflamed lungs.  This is in contrast to 

findings of the last chapter, where, the LPP formulations of catalase successfully 
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distributed into the healthy lungs after intranasal administration.  The animals’ 

breathing plays a major role in the success of intranasal administration of liquid into the 

lung.  Similar to prior findings, the ideal time for intranasal dosing in our experience is 

when the animal is taking long, deep breaths while waking up from anesthesia [102, 

103].  Such deep breaths aid the inhalation of the liquid droplets into the lungs.  The 

animals with inflamed lungs had shallow and labored breathing, which may have limited 

their ability to inhale the catalase formulations into the lung.  Additionally, airway 

inflammation is associated with mucus hypersecretion and impaired mucociliary 

clearance, which may have caused the formulations to be trapped in the nasal mucosa 

[139].  Taken together, the insufficient pulmonary distribution of catalase formulations 

in ALI mice after intranasal dosing is most probably due to the denser mucosal barrier 

and shallower breathing of the animals with ALI than their healthy counterparts. 

Cationic liposomes have been reported to be associated with dose-dependent 

toxicity and pulmonary inflammation in mice following intratracheal administration [108, 

140].  Treatment with cationic nanocarriers are known to provoke pro-inflammatory 

cytokines such as IL-6, TNF-α and interferon-γ (IFN-γ) [141].  Commercially available 

cationic lipid DOTAP is a racemic mixture of two enantiomers.  (R)-DOTAP has been 

investigated as an adjuvant in cancer treatment [142-144].  One such study found that 

(R)-DOTAP that was complexed with a peptide E7, was able to enhance tumor 

regression in a dose-dependent manner comparable to the group treated with the E7 

complex with the racemic DOTAP.  In comparison, treatment with (S)-DOTAP-E7 only 

delayed tumor progression.  Although the underlying mechanism for this difference is 
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unknown, (R)-DOTAP amplified the immune response by recruiting significantly higher 

tumor infiltrating lymphocytes and cytokine IFN-γ in vivo compared to the (S)-DOTAP 

group [142].  As these reports suggest the role of (R)-enantiomer of DOTAP in 

enhancing immunogenicity, one possible approach to overcome the toxicity of the 

current study could be to explore any potential advantage of the less immunogenic (S)-

DOTAP in our LPP formulations. 

One intriguing observation is that intratracheal dosing of LPP formulations 

changed the level of two proinflammatory cytokines, IL-6 and TNF-α in opposite 

directions.  LPP delivered catalase into the pulmonary cells to augment the natural 

antioxidant pool in the lungs, which could have resulted in the restoration of its redox 

balance and reduction of TNF-α in the lungs.  The upregulation of IL-6 may be 

attributed to toxicity associated with cationic lipids, as discussed above.  However, IL-6 

has also been investigated for its anti-inflammatory properties in tissue injury [145], 

which raises a question whether IL-6 levels were elevated to combat the inflammation 

in the lung.  In order to clarify the underlying cause of IL-6 upregulation, another 

proinflammatory cytokine interleukin-1β and an anti-inflammatory cytokine interleukin-

10 can be included in the future studies [121].  If we can monitor the levels of the 

proinflammatory and anti-inflammatory cytokines in response to LPP administration in 

inflamed lungs, we may be able to better understand the therapeutic benefit versus the 

toxicity of LPP. 

One of the limitations of the current study in inflamed mice lungs was our 

inability to measure oxidative stress in the lungs.  ROS and MDA levels did not increase 
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in the LPS-induced ALI model, in contrast to several reports [101, 146].  Absence of any 

change in the tissue ROS levels after treatments with different LPP formulations was an 

unexpected result, which is inconsistent with our prior observations in healthy animals.  

Both the studies were performed on the same instrument (BioTek Synergy HT 

microplate reader) using the same settings (λex = 485/20, λem = 528/20, optics = 

bottom, gain = 35, read speed = normal) and the viability of the probe was tested by 

adding 100 µM H2O2 to the tissue supernatants as a positive control, which yielded 

higher ROS levels.  However, the ROS measurement with Carboxy H2DCFDA is a semi-

quantitative assay without a standard curve, which challenges the validity of comparing 

between the ROS data set from the healthy mice and the ROS data set from mice with 

inflamed lungs.  In addition, the ROS probe may be an insensitive way of measuring 

oxidative stress in inflamed lungs [147].  Therefore, additional biomarkers such as 

myeloperoxidase (MPO, peroxidase enzyme expressed in neutrophils), superoxide 

dismutase (SOD, intracellular antioxidant enzyme), glutathione (GSH, endogenous 

antioxidant), nitric oxide (NO, reactive oxygen species) and total antioxidant status 

(TAS, an indirect measure of oxidative stress) can be included in future studies to 

measure oxidative stress [146]. 

Overall, intratracheal administration of lipopolysaccharide (LPS) induced lung 

inflammation in CD-1 mice.  Intranasal administration to mice with ALI caused most of 

the formulation to be stuck in the nose and throat.  In contrast, intratracheal 

administration delivered the fluorescently labeled catalase deep into the lung.  

Intratracheal dosing of LPP formulations significantly reduced TNF-α production in the 
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inflamed lungs compared to free catalase solution, which highlighted the importance of 

LPP in delivering catalase into pulmonary cells to alleviate the oxidative stress 

associated with inflammation.  However, intratracheal administration of LPP 

formulations elevated IL-6 in inflamed lungs, which may indicate toxicity associated 

with cationic lipids. 
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Chapter 6: Summary 

Proteins are large biomolecules of great therapeutic potential.  Intracellular 

delivery of proteins can augment the deficient activities of dysfunctional or poorly 

expressed innate proteins and therefore represents a promising strategy to treat the 

associated diseases.  Moreover, proteins can be delivered into cells to counter several 

pathological developments such as inflammation, oxidative stress, neurodegeneration, 

and cancer cell growth.  One major barrier of intracellular protein delivery is the 

translocation of the protein across the cellular membranes.  Endocytosis provides an 

important pathway for protein nanocarriers to enter the cells across the plasma 

membrane.  However, the cargo protein must then promptly escape from the 

endosomes to exert its cellular function, and to avoid degradation in the lysosome. 

Previously, we reported a cationic lipid-coated magnesium phosphate 

nanoparticule (LPP) system for intracellular protein delivery.  LPP consists of a shell of 

concentric cationic lipid bilayers, a core of magnesium phosphate nanoparticle (MgP NP) 

and the cargo protein, catalase, which is an antioxidant enzyme.  The cationic surface 

of the LPP would first bind to the negatively charged cell surface to trigger endocytosis.  

Inside the endosome, the MgP NP would dissolve at the acidic pH to form a high-salt 

solution, which has a high osmotic pressure to cause water influx from cytosol.  

Consequently, the endosome would swell and destabilize to release the cargo protein 

into the cytosol.  The intracellular delivery of catalase by LPP protected MCF-7 cells 

from lethal levels of exogenous H2O2 and lowered the ROS level in EA.hy926 cells.  

Such promising findings of LPP in cell cultures prompted us to further develop LPP and 
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to evaluate its protein delivery in animals.  Therefore, the objective of this dissertation 

was to develop LPP formulations suitable for in vivo applications and to evaluate their 

protein delivery efficiency in both healthy and diseased animals 

The construction of LPP consists of three modules: 1) preparation of catalase-

loaded liposomes including catalase-encapsulated liposomes (CE LP) and catalase-

complexed liposomes (CC LP), 2) preparation of magnesium phosphate nanoparticles 

(MgP NP), and 3) coating of MgP NP with catalase-loaded liposomes.  CE LP were 

prepared by thin-film hydration followed by extrusion through a 200 nm membrane.  

However, LPP prepared from CE LP suffered substantial loss of protein activity due to 

extrusion and carried a large diameter around 280 nm.  As an alternative approach to 

prepare LPP, cationic liposomes were first extruded and then mixed with the negatively 

charged catalase to form CC LP. 

Cationic liposomes were prepared by a hand-held extruder, a pressured LIPEX 

extruder and a microfluidic mixing instrument and their colloidal properties were 

compared.  LIPEX extruder was chosen for preparing cationic liposomes in the following 

studies because it conveniently yielded small cationic liposomes (~70 nm in diameter) 

in sufficient scale for animal studies.  Compared to encapsulation (CE LP), the 

complexation strategy yielded catalase-complexed liposomes (CC LP) of significantly 

lower size (around 140 nm) and preserved all the protein activity by minimizing the 

mechanical stress exerted on the protein during extrusion.  Glucose was used for 

isotonicity adjustment in the LPP formulations of catalase for animal studies because it 

preserved the colloidal properties of the liposomes. 
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Transmission electron microscopy (TEM) was used to examine the morphology 

and the particle size distribution of different components of LPP.  The TEM images of 

LPP and the formulation precursors were consistent with the dynamic light scattering 

measurements and confirmed the location of the protein and the presence of a MgP NP 

core in the final LPP formulations.  Furthermore, TEM was also used to examine 

changes in the morphology of LPP in response to acidic pH.  The TEM images of LPP 

formulations that had been exposed to acidic pH showed deformed and scattered 

structures, in contrast to their tight spherical structures at pH 7.4.  The deformation of 

LPP in acidic pH supports the proposed mechanism of pH-triggered release of catalase, 

where the MgP NP core dissolves at acidic pH into a solution of high osmotic pressure, 

which consequently swells, deforms, and in many cases lyses the LPP formulation. 

LPP was administered by three different routes to CD-1 mice, where the lung 

was chosen as the target organ because many diseases such as chronic obstructive 

pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome 

(ARDS), asthma, pneumonia and bronchitis involve oxidative stress of pulmonary cells, 

which can be alleviated by catalase, an important antioxidant enzyme.  Before 

evaluation in a lung disease model, LPP was administered either intravenously or 

intranasally to healthy animals to evaluate its protein delivery efficiency and to 

determine the appropriate route for intrapulmonary delivery of LPP formulations.  

Catalase that was fluorescently labeled with Cyanine 7.5 were loaded into LPP 

formulations (CC LPP and CE LPP) to study their biodistribution in mice.  The 

fluorescently labeled catalase distributed substantially into the lung after intranasal 
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administration of CC LPP, whereas intravenous administration of CC LPP caused 

catalase distribution mainly into the liver. 

The functionality of the intrapulmonarily delivered catalase was assessed using 

two markers: 1) the increase of catalase activity in the lungs after the administration, 

and 2) the decrease of reactive oxygen species (ROS) level as a measure of whether 

the delivered cargo catalase can protect the lung tissue from oxidative stress.  

Following intranasal administration, the complexed catalase formulation (CC LPP), which 

was smaller and which better preserved catalase activity than CE LPP, showed higher 

catalase activity and lower ROS levels in the lung compared to the catalase-

encapsulated formulation (CE LPP).  Both the LPP formulations yielded higher 

pulmonary catalase activity and lower ROS levels than the liposomal catalase (L-CAT 

without the MgP NP core) and the free catalase solution after intranasal dosing.  These 

findings indicate the importance of the LPP construct with the MgP NP core in delivering 

protein into the pulmonary cells.  Intravenous dosing of LPP formulations of catalase 

caused no substantial changes in the catalase activities nor in the ROS levels in the lung 

compared to untreated baseline levels.  Based on these results, intranasal 

administration but not intravenous administration was selected for further studies on 

the intrapulmonary delivery of LPP. 

Acute lung injury (ALI) was induced in CD-1 mice by intratracheal administration 

of 3 mg/Kg lipopolysaccharide (LPS), a bacterial endotoxin.  The LPP formulations with 

Cy7.5-labeled catalase were administered either intratracheally or intranasally 30 

minutes after LPS-imposed injury, followed by fluorescence imaging to identify the 
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better route for protein delivery into inflamed lungs.  In contrast to healthy mice, 

intranasal administration to mice with ALI caused most of the formulation to be stuck in 

the nose and throat of the animal.  Intratracheal dosing delivered the fluorescently 

labeled catalase deep into the lung and was more suitable for intrapulmonary delivery 

in mice with ALI. 

Intratracheal intubation of LPS induced acute lung inflammation in CD-1 mice as 

marked by the increase of pro-inflammatory cytokines TNF-α and IL-6.  Both the 

markers showed no substantial changes following intranasal dosing of LPP formulations 

containing catalase, which is consistent with our finding that intranasally administered 

LPP formulations failed to distribute into the inflamed lungs.  Intratracheal 

administration of the LPP formulations significantly reduced TNF-α production in the 

lungs of LPS-challenged animals when compared to free catalase solution.  This 

emphasizes the importance of LPP in delivering catalase into the pulmonary cells to 

augment the natural antioxidant activities in the lungs, which serves to scavenge 

excessive ROS and to restore the redox balance in disease conditions.  However, 

intratracheal dosing of LPP formulations elevated IL-6 in inflamed lungs, which may 

indicate toxicity associated with cationic lipids.  

Rapid clearance from the systemic circulation after intravenous administration 

and toxicity in inflamed lungs after intratracheal administration were the two major 

limitations for intrapulmonary protein delivery using LPP.  Future work could include 

monitoring LPP’s stability in serum using forster resonance energy transfer (FRET) and 

attempting to prolong LPP’s circulation in blood by coating its surface with polyethylene 
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glycol (PEG).  LPP’s surface can also be coated with ligands that bind to platelet-

endothelial cell adhesion molecule (PECAM), in order to target the pulmonary 

endothelium after intravenous administration.  To address LPP’s toxicity in inflamed 

lungs, future studies could explore the potential advantage of the less immunogenic 

enantiomer of the cationic lipid, (S)-DOTAP in the LPP formulations. 

In conclusion, a novel protein nanocarrier LPP loaded with catalase (CC LPP and 

CE LPP) was prepared and optimized for in vivo application.  Characterizations by 

dynamic light scattering and transmission electron microscopy confirmed that the 

strategy of complexing cationic LP with catalase yielded smaller CC LPP than the 

encapsulation technique (CE LPP).  Although both the LPP formulations of catalase 

demonstrated promising antioxidant effects in CD-1 mice with healthy and inflamed 

lungs, CC LPP showed better distribution into the lung tissue because of its smaller size. 
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