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Abstract

Inflammation plays a critical role in initiation of adaptive immunity, pathogen clearance and tis-
sue repair. Interleukin (IL)-1p is a potent pro-inflammatory cytokine and therefore its production
is tightly regulated: its secretion requires the assembly of a macromolecular protein complex,
termed the inflammasome. Aberrant activation of the inflammasome has been linked to debili-
tating human diseases including chronic inflammatory and autoimmune diseases. Thus, there
is a great interest in understanding how inflammasomes are regulated. Here we show that
Dicer, an enzyme necessary for the production of mature micro-RNAs (miRNAs), is required
for optimal activation of NLRP3 inflammasomes in bone marrow macrophages. Our data indi-
cate that miRNAs may play an important role in promoting inflammasome activation.

Introduction

The innate immune system employs germ line encoded pattern recognition receptors (PRRs)
that recognize “molecular patterns” from microbes, environmental stressors and damaged tis-
sue. Once activated, these receptors initiate robust inflammatory responses that include the
secretion of potent inflammatory cytokines such as Interleukin (IL)-1B, IL-6, TNF-o and Inter-
ferons (IFNs) [1-3]. IL-1P and IL-18 are among the most potent cytokines produced by
human and murine innate immune systems, and they are released primarily as a part of the
immune response to invading pathogens. However, excessive release of these cytokines, partic-
ularly IL-1, is associated with autoinflammatory and autoimmune disorders [2-4]. Therefore,
its secretion is tightly regulated, and typically requires two independent signals to be secreted.
As with other cytokines, the first signal entails transcription of the IL-1 gene, but the gene
product, pro-IL1f is not active. The second signal entails activation of the inflammasome, a
multimeric protein complex typically composed of an NLR protein, the adapter protein ASC
and the inactive zymogen caspase-1. Following inflammasome assembly, caspase-1 is activated
and directs the cleavage of pro-IL1f into active and secreted IL-1p.
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The canonical inflammasome can be nucleated by the NLR members NLRP1, NLRP3 and
NLRCH4 or by the ALR member AIM2. The NLRP3 inflammasome stands out among the
inflammasomes for the large number of “danger associated molecular patterns (DAMPs)” it
responds to and the large number of human diseases in which it has been implicated (reviewed
in [5-7]). The DAMPs include molecules associated with cellular damage or sterile inflamma-
tion (e.g., ATP and uric acid), as well as molecules associated with metabolic diseases (e.g., ele-
vated glucose, B-amyloid and cholesterol crystals), environmental stressors (e.g., silica,
hydroxyl-apatite and asbestos crystals), as well as responding to pathogen associated toxins,
like nigericin [8-11]). Gain-of-function mutations in the NLRP3 gene lead to autoinflamma-
tory syndromes known collectively as cryopyrin-associated periodic syndromes (CAPS;
reviewed in [12]). Importantly, dysfunctional NLRP3 inflammasomes are drivers of autoim-
mune diseases such as gout, rheumatoid arthritis (RA) and lupus [5, 6]. Moreover, chronic
over-activation of the NLRP3 inflammasome is involved in the pathogenesis of debilitating
metabolic disorders (e.g. obesity and atherosclerosis) and can also exacerbate liver damage
(reviewed in [6]). For these reasons, cells employ several mechanisms to limit aberrant inflam-
matory responses to sterile insults and to cell death. This includes transcriptional regulation of
the ASC and NLRP3 genes [10, 11]. Additional conserved negative regulators of inflamma-
some activity include MEFV (sequesters ASC; [13, 14]), Serpin B2, Serpin B9 (which inhibits
caspase-1 proteolysis; [15]), PSTPIP1 (which interacts with MEFV; [16]) and NLRP10
(reviewed in [11]). Humans feature two additional families of negative regulators: pyrin only
proteins (POPs) and CARD-only proteins (COPs; [10, 11, 17-20]).

MicroRNAs (miRNAs) are an evolutionarily conserved set of noncoding RNAs that fine-
tune important physiological responses by targeting critical genes for down regulation
(reviewed in [21-23]). These miRNAs are processed from a primary transcript by Drosha, a
conserved RNAse III enzyme, into ~70 bp hairpin pre-microRNAs. Pre-microRNAs are
exported to the cytoplasm, where they undergo additional processing by Dicer, a well-con-
served RNAse III endoribonuclease, into 18-24 bp dsRNA. Dicer then facilitates loading of the
antisense strand onto the RNA induced silencing complex (RISC). This complex is directed to
complementary sequences in the 3’ UTR of target genes, culminating in their suppression [24].
miRNAs regulate an increasing number of important cellular processes, including apoptosis,
cell proliferation and inflammation (reviewed in [21-23]). Consistent with this, dysregulation
of miRNAs has been linked to a number of human diseases, including cancer and inflamma-
tion, RA and diabetes (reviewed in [22, 25]). More recently, several miRNAs have been impli-
cated in regulation of signal 1 for inflammasome activation. Both miR-146a and miR-21,
through their capacity to negatively regulate TLR or RIG-I signaling pathways, potentially
impede the inflammasome Signal 1 [22, 26, 27]. In contrast, miR-155 has been reported to
enhance Signal 1 by targeting two negative regulators, SHIP1 and SOCS1 [22].

In this report, we show that Dicer-deficient macrophages are significantly impaired in their
ability to activate the NLRP3, but not the Aim2, inflammasome. Moreover, we demonstrate
that certain miRNAs that are predicted to target negative regulators of the NLRP3 inflamma-
some are upregulated following inflammasome activation. These results suggest that miRNAs
have an overall positive effect on NLRP3 inflammasome activation, potentially by targeting
specific negative regulators of the inflammasome.

Materials and methods
Bone marrow macrophage preparation and inflammasome stimulation

Primary bone marrow-derived macrophages (BMMs) were prepared from Dicer fl/Cre- &
Dicer fl/Cre+ mice, as we previously described [28]. Briefly, femurs and tibias were flushed
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with S+ media (RPMI 1640 supplemented with 10% Fetal Bovine Serum, non-essential amino
acids, 2-mercaptoethanol, sodium pyruvate and penicillin-streptomycin), and RBCs were
lysed with RBC lysis buffer before being plated into 100 mm Petri dishes containing S+ media
containing 20% L929-conditioned media to drive their differentiation into macrophages. Cells
were then treated with 1 M 4-hydroxy tamoxifen (4-OHT; Sigma-Aldrich) at days 1, 5 and 6
to induce ERT-Cre mediated deletion of Dicer in cells from Dicer fl/Cre+. Day 7 BMMs were
then primed with LPS (1 ug/ml, 4 h; E. coli type 025:86; Sigma-Aldrich) before stimulation
with 5 mM ATP (1, 3 or 6 h; Sigma-Aldrich), or transfected (lipofectamine; Invitrogen) with

1 pg/ml Poly (dA:dT) (6 h; Sigma-Aldrich). For miRNA studies (see below), day 6 BMMs from
WT C57/Bl6 mice were primed with LPS (1 ug/ml; 3 h) followed by stimulation with ATP (5
mM; 1 or 3 h) or nigericin (10 uM; 1 h) to activate the NLRP3 inflammasome.

No in vivo studies were performed. Prior to collection of bones, mice were euthanized by
CO2 asphyxiation followed by cervical dislocation as recommended by the Panel on Euthana-
sia of the American Veterinary Medical Association. This animal protocol was approved by
the Institutional Animal Care and Use Committee of Columbia University is (Approval num-
ber AAAD1804).

Confirmation of Dicer deletion

Genomic DNA was prepared from BMM:s of Dicer fl/Cre- & Dicer fl/Cre+ mice using DNeasy
kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. PCR was then
performed to confirm the deletion of the floxed allele in the Dicer fl/Cre+, as previously
described [29].

Immunoblotting

Proteins were obtained from supernatants of inflammasome-stimulated BMMs by trichloro-
acetic acid (TCA) precipitation (10% T'CA for 10 min on ice). Pellets were dissolved in 2x
Laemmli buffer and pH was readjusted with 1 M NaOH. Samples were then loaded onto 12%
gels followed by SDS-PAGE and transferred to 0.2 um PVDF membranes. The level of IL-1B
and caspase-1 in culture supernatants was measured by immunoblotting with anti-IL-1 (AF-
401-NA; R&D System; Minneapolis, MN) or anti-murine-caspasel (SC-514; Santa Cruz; Santa
Cruz, CA).

Identification of potential miRNA targets by bioinformatic analysis

The miRNA target prediction was performed using the miRDB tool. mirDB employs a predic-
tion program based on support vector machines (SVMs) and high-throughput training data-
sets. Targets in Table 1 were selected based on the “Target prediction score”, which is a new
computational target prediction algorithm [30, 31]. Predicted targets with prediction score
<60 were excluded because they indicate a low confidence and would require additional sup-
porting evidence.

miRNA isolation and real-time Q-PCR

Following NLRP3 inflammasome activation (see above), day 6 bone-marrow macrophages
(BMM) from WT C57/Bl6 mice were washed with 1X PBS, and miRNAs were extracted by Pure
Link miRNA Isolation Kit (Invitrogen; Carlsbad, CA) following manufacturer’s instructions.
One pug miRNA was then converted into cDNA by miScript Il Reverse Transcription Kit (Qiagen,
Hilden, Germany). Quantitative real-time PCR was performed with miScript SYBR Green PCR
Kit (Qiagen). The Q-PCR reaction contained the universal reverse primer from the Qiagen kit,
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Table 1. miRNAs predicted to target some of the known regulators of inflammasomes. Information obtained
from miRDB, an miRNA target prediction and functional annotation database, which uses the bioinformatics tool,
MirTarget. Target scores below 60 were excluded from the analysis as they indicate low confidence in the prediction

mmu-miR-7a-1-3p

mmu-miR-7011-3p

tool.

MiRNA Target Gene Inflammasome Component Regulated by Target Gene
mmu-miR-6951-3p BRCC3 NLRP3
mmu-miR-7116-3p BAD Caspase-1, NLRP1 and NLRP3

NROB2 NLRP3
SERPINB2 NLRP3 and ASC
mmu-miR-7078-3p BRCC3 NLRP3
mmu-miR-7056-5p EIF2AK2 NLRP3, NLRP1, NLRC4 and AIM2
mmu-miR-669n BRCC3 NLRP3
GBP5 NLRP3 and AIM2
mmu-miR-7210-3p BRCC3 NLRP3
mmu-miR-6929-5p SERPINB2 NLRP3 and ASC
mmu-miR-6344
mmu-miR-383-5p
mmu-miR-504-3p
POP1 ASC
mmu-miR-590-3p GBP5 NLRP3 and ATM2
SERPINB2 NLRP3 and ASC
mmu-miR-344-5p MEFV NLRP3
mmu-miR-1964-5p SERPINB2 NLRP3 and ASC
MEFV NLRP3
mmu-miR-126b-5p NROB2 NLRP3
mmu-miR-335-3p BRCC3 NLRP3
mmu-miR-3058-3p
mmu-miR-7681-5p
mmu-miR-3075-5p EIF2AK2 NLRP3, NLRP1, NLRC4 and AIM2
mmu-miR-3090-5p
mmu-miR-6933-3p
mmu-miR-7053-3p GBP5 NLRP3 and AIM2
mmu-miR-6976-3p
mmu-miR-7229-3p
mmu-miR-6971-3p MEFV NLRP3
mmu-miR-6966-3p
mmu-miR-9769-5p
mmu-miR-5621-5p NROB2 NLRP3
mmu-miR-7033-5p
mmu-let-7g-3p
mmu-miR-879-5p SERPINB2 NLRP3 and ASC

https://doi.org/10.1371/journal.pone.0215689.t001

miRNA-specific forward primers (miScript Primer Assay; Qiagen) for ubiquitously expressed U6
small nuclear RNA (for normalization), mmu-miR-590-3p, mmu-miR-344, mmu-miR-6951-3p
and mmu-miR-7078-3p along with 1:10 dilution of cDNA. Real time PCR was performed with
an initial activation at 95°C for 15 min, followed by 40 cycles of 94°C for 15 s, 55°C for 30 s and
70°C for 30s on a Bio-Rad CFX384 Touch Real-Time PCR Detection System.
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Statistical analysis

Statistical analysis was carried out using GraphPad software (Prism) using student’s t-test,
where P <0.05 was considered significant.

Results and discussion

Given the significance of inflammasome regulation in controlling inflammation and associated
human diseases, we explored whether microRNAs under the control of Dicer play a role in
NLRP3 inflammasome activation. Bone marrow macrophages (BMMs) were prepared from
Dicer™™ x ER"-Cre+ (germ line deletion of Dicer is embryonic lethal) and littermate control
Dicer™ x ER"-Cre- mice. Addition of tamoxifen led to the efficient deletion of Dicer in the
Cre+ but not Cre- cells as evident by the deletion of the floxed allele (Fig 1A; [29, 32]). As
expected, stimulation of WT control, LPS-pretreated (Signal 1) Dicer™® x ER"-Cre” macro-
phages with two well-characterized NLRP3 activators, ATP and nigericin, led to a robust
increase in the secretion of processed IL-1f p17 (Fig 1B and 1C) and active caspase-1 p10 (Fig
2) into culture supernatants. Stimulation with poly(dA:dT), an AIM2 inducer, yielded an anal-
ogous increase in secreted IL-13 p17 and caspase-1 p10 (Figs 1B, 1C and 2). In stark contrast,
there was a marked reduction in the secretion of both IL-1p and caspase-1 in ATP- and nigeri-
cin-stimulated Dicer-deficient macrophages (i.e., from Tamoxifen treated Dicer” x ER"-Cre
+ mice) (Figs 1B, 1C and 2). Remarkably, the response to poly(dA:dT) was not affected by the
loss of Dicer. These results demonstrate that in the absence of Dicer, NLRP3 inflammasome
but not AIM2 inflammasome activation is significantly impaired. Importantly, the ability of
poly(dA:dT) to activate the AIM2 inflammasome in Dicer deficient macrophages provided
strong evidence that ASC levels were not affected by Dicer deletion.

One possible reason why miRNA deficiency due to the loss of Dicer could attenuate NLRP3
inflammasome activation is that some miRNAs might be required to relieve the inhibition
mediated by certain negative regulators of NLRP3 inflammasomes. Thus, we employed
miRNA target prediction databases to identify miRNAs that might target known negative reg-
ulators of the NLRP3 inflammasome but not the AIM2 inflammasome. The miRNAs that are
predicted to target regulators of inflammasomes are shown in Table 1. In order to validate
whether some of these miRNAs might indeed be involved in promoting inflammasome activa-
tion, we hypothesized that their expression levels should be upregulated upon inflammasome

C
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= = -
- —alE £ L —_ATP £ 5 7 600000 g owr
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Fig 1. Dicer is required for optimal secretion of mature IL-1p following stimulation of the NLRP3 but not the AIM2 inflammasome. (A) Deletion of the
floxed allele from day 7 bone marrow macrophages prepared from Dicer™ x ER"-Cre” (WT) or Dicer" x ER"-Cre* (KO) mice was confirmed by PCR. (B)
Dicerfl/fl x ERT-Cre- (WT) or Dicerfl/fl x ERT-Cre+ (KO) BMMs were primed with 1 pug/ml LPS for 4 h (signal 1) before stimulation with 5 mM ATP for 1, 3
or 6 hours or transfected (lipofectamine; Ipftm) with 1 pg/ml poly dA:dT (dA:dT) for 6 hours (signal 2). Secreted IL-1p levels were then evaluated by
immunoblotting. Arrows indicate the immature form of IL-1B (pro-IL1B) and the mature secreted form (IL-1pB). (C) Quantitative analysis of the mature
secreted form of IL-1B shown in panel B.

https://doi.org/10.1371/journal.pone.0215689.9001
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Fig 2. Dicer is required for activation of caspase-1 following stimulation of the NLRP3 but not the AIM2 inflammasome. (A) Day 7 bone marrow macrophages
prepared from Dicer”" x ER"-Cre” (WT) or Dicer" x ER"-Cre" (KO) mice were primed with 1 pg/ml LPS for 4 h (signal 1) before stimulation with 5 mM ATP for 1, 3
or 6 hours or transfected (lipofectamine; Ipftm) with 1 ug/ml poly dA:dT (dA:dT) for 6 hours (signal 2). Secreted caspase-1 (caspl) levels were then evaluated by
immunoblotting. Arrows indicate the inactive caspase-1 zymogen (pro-casp1l) and the active form (casp1 p10). (B) Quantitative analysis of the mature secreted form of
IL-1pB shown in panel A.

https://doi.org/10.1371/journal.pone.0215689.9002

stimulation. Indeed, real-time Q-PCR analysis showed that mature miR-590-3p, miR-344,
miR-6951-3p and miR-7078-3p levels are induced following activation of the NLRP3 inflam-
masome (Fig 3). Interestingly, the expression of these miRNAs was not induced by LPS stimu-
lation alone (signal 1) and required signal 2 (ATP or nigericin), indicating that their role
might be more important in sustaining NLRP3 inflammasome activity rather than for the ini-
tial activation. Interestingly, these miRNAs were induced with distinct kinetics (Fig 3). miR-
344, miR-6951-3p peaked 1 h after ATP stimulation, while miR-7078-3p and miR-590-3p
peaked 3 h after stimulation. This might be due to differences in the kinetics through which
the targets of these miRNAs act to downregulate or shut down the inflammasome. These

miR-344-5p Q-PCR miR-6951-3p Q-PCR miR-7078-3p Q-PCR miR-590-3p Q-PCR
51 4 6 4

- ok

Hkk

*ok

Fold change wrt untreated control
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~
1
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»

1
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ue div
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| e | e | e |
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Fig 3. miRNAs predicted to target negative regulators of NLRP3 inflammasome are upregulated following
inflammasome activation. Day 6 bone marrow macrophages prepared from WT C57/Bl6 mice were primed with

1 ug/ml LPS for 3 h (signal 1) before stimulation with NLRP3 inflammasome activators: 5 mM ATP for 1 or 3 hours or
10 uM nigericin for 1 hour (signal 2). Real-time Q-PCR analysis for the expression of mature miR-590-3p, miR-344,
miR-6951-3p and miR-7078-3p was performed. Ubiquitously expressed U6 small nuclear RNA was used as a reference
to normalize the data. * p<0.05; ** p<0.01; *** p<0.001.

https://doi.org/10.1371/journal.pone.0215689.g003
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miRNAs target various negative regulators of NLRP3 inflammasomes and their upregulation
might be required to sustain the activation of the inflammasome.

Concluding statement

In this study, we explored whether miRNAs may regulate inflammasome activity. Using
Dicer-deficient murine macrophages, we demonstrated, in the absence of miRNAs, a striking
reduction in NLRP3 inflammasome activity, highlighting an overall positive role for miRNAs
in this response.

Our observations reveal that overall, miRNAs play an important role in positively regulat-
ing the NLRP3, but not the AIM2 inflammasome. This positive regulation appears to be more
important than or outweighs the negative activity recently attributed to miR-17, miR-21, miR-
146a, and miR-223 [11, 22, 33-36]. Specifically, miR-223, whose expression is down regulated
by lipopolysaccharide (LPS), was reported to suppress NLRP3 expression, and miR-17 has
been implicated in the negative regulation of TXNIP, which may direct ER-stress dependent
NLRP3 inflammasome activation [33-36]. Moreover, the positive regulatory activity observed
by us does not appear to be secondary to miR-155, since there were no obvious defects in Sig-
nal #1. None of the predicted targets that could regulate inflammasomes shown in Table 1
have been described until now. Importantly, we show that some of these miRNAs are upregu-
lated following activation of the NLRP3 inflammasome. Thus, the intriguing mechanism by
which miRNAs potently upregulate the NLRP3 inflammasome will be the focus of future
studies.
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