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Development of a Biomarker Panel for Identifying Stress on Marine Mammals 
 
 

Abstract 
 
 

by Laura Pujade Busqueta 
 

University of the Pacific  
2019 

 

 Increasing anthropogenic disturbance in marine ecosystems such as fishing, oil-drilling, 

and noise pollution can have detrimental effects on the reproduction and survival of apex 

predators such as marine mammals.  Stress activates the hypothalamic-pituitary-adrenal (HPA) 

axis, resulting in increased circulating glucocorticoid (GCs) hormones, which alter expression of 

target genes encoding metabolic enzymes and other mediators of stress.  Prolonged HPA axis 

stimulation may increase catabolism of nutrient stores and suppress immune and reproductive 

functions, impacting the fitness of marine mammals.  GCs measurements are used to identify 

wild animals experiencing stress.  However, these measurements may not be sensitive enough to 

distinguish between an acutely and a chronically stressed individuals.  In this study, we present a 

new approach of assessing stress states in marine mammals, by measuring expression levels of 

gene markers in blubber.   We previously characterized transcriptional and metabolic profiles 

and identified genes and metabolites that were differentially expressed in response to single and 

repeated adrenocorticotropic hormone (ACTH) administration in juvenile northern 
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elephant seals.   We then measured expression of these target genes in blubber tissue collected 

from juvenile northern elephant seals in their natural baseline stress states (n=30), and correlated 

their gene expression values with cortisol, aldosterone, total triiodothyronine (tT3), reverse 

triiodothyronine (rT3), and triglyceride levels, and body condition index.  We found that blubber 

genes that were upregulated in response to repeated ACTH administration in the previous study 

were positively correlated with cortisol and inversely correlated with tT3 in the baseline sample 

set.  These markers included genes that encode a lipid particle protein (PLIN1), an adipogenesis 

promoting transcription factor (DKK1), an oxidative stress enzyme (GPX3), and a lipid 

metabolism enzyme (AZGP1).  Blubber genes differentially expressed in response to acute 

ACTH administration in the previous study included an adipokine (ADIPOQ) and a ketogenesis 

enzyme (HMGCS2), which were upregulated, and an adipogenesis inhibitor, TGFBI, which was 

downregulated. ADIPOQ and HMGCS2 were positively correlated with cortisol and negatively 

correlated with tT3 levels, while TGFBI was positively correlated with tT3 and body condition 

index, and negatively correlated with rT3 in the baseline sample set.  These results provide 

insights into the molecular mediators of the physiological stress response and provide markers 

that can be used as a part of a potential diagnostic panel for differentiating between acute and 

prolonged stress states in marine mammals. 
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Chapter 1: Introduction 
 

Vertebrates cope with unpredictable and uncontrollable stimuli by mounting an adaptive 

stress response that causes hormonal, behavioral, and physiological changes [1, 2].  Chronic or 

sustained stress can lead to an allostatic overload, which occurs when the energy requirements of 

the stress response impair homeostatic processes [3, 4].  This impairment can greatly affect key 

physiological functions and impact the survival of the animal [5].  In addition to predictable and 

unpredictable biological stressors, such as reproduction and fluctuations in prey availability, 

marine mammals experience additional physiological challenges, such as hypoxia and extended 

fasting during energy-demanding life history stages, which are uncommon in other mammals [6, 

7].  Furthermore, marine mammals are subject to disturbance by human activities in their 

environment, such as oil drilling, ocean transport, industrialization of coastal lines, ecotourism, 

commercial fishing and noise pollution.  The combination of these natural and anthropogenic 

stressors has been correlated with marine mammal population declines [8-10].  There are a 

number of marine mammal species listed as endangered under the U.S. Endangered Species Act 

including the Hawaiian monk seal, the Amazonian manatee, the dugong, and some populations 

of humpback, killer, and right whales.  Given their status at the top of the food chain, a decrease 

in population numbers of marine apex predators can greatly impact the stability of the marine 

ecosystem [11].  An increasing number of studies have attempted to develop stress markers that 

can be used to identify stressed and unhealthy animals, but the majority of this work has been 

focused on terrestrial mammalian species [12-14].  However, studies in marine mammals have 

suggested that there are differences in their stress response from that of terrestrial mammals due 

to their unique physiological adaptation to an aquatic existence [15].  Unraveling the biological 

and physiological impacts of both acute and chronic stress in marine mammals is of foremost 
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interest for understanding how prolonged exposure to environmental and anthropogenic 

disturbances can alter marine mammals’ fitness.  Proper evaluation of an animal’s stress state 

can be used to inform conservation management strategies that reduce anthropogenic disturbance 

and prevent marine mammal population declines [16, 17]. 

Mammalian Stress Response 

The principal mediator of the physiological stress response in vertebrates is the 

hypothalamic-pituitary-adrenal (HPA) axis, the stimulation of which results in the secretion of 

glucocorticoids (GCs): cortisol in mammals, and corticosterone in birds, amphibians and reptiles 

[1, 15, 18].  In mammals, the adaptive response to acute stress induces an increase in secretion of 

catecholamines (norepinephrine and epinephrine) by the adrenal medulla, stimulated by the 

sympathetic nervous system, which allow for a rapid response by regulating vital functions (e. g. 

increased heart rate and respiration).  At the same time, the paraventricular nucleus of the 

hypothalamus releases corticotropin-releasing hormone, which regulates the secretion of 

adrenocorticotropic hormone (ACTH) by the anterior pituitary gland, which in turn stimulates 

the synthesis of GCs by the adrenal gland [1, 15, 19, 20].  

As the end product of the HPA axis hormone cascade, cortisol is considered the primary 

mammalian stress hormone and is commonly used as a biomarker of stress [1, 21-23].  In target 

cells, cortisol binds to intracellular cortisol receptors, which translocate to the nucleus and bind 

to glucocorticoid-response elements (GREs), affecting transcription of genes implicated in 

metabolic, immune, and other pathways.  Chromatin immunoprecipitation sequencing (ChIPSeq) 

and microarray analyses of GCs target tissues have identified genes containing GREs, many of 

which are involved in triglyceride synthesis, lipolysis, insulin signaling, and lipid transport and 
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storage [24-26].  These findings provide insights into the role of GCs in regulating many 

physiological functions.   

Acute increases in cortisol during stress-induced conditions promote an adaptive response 

to stress by increasing catabolism of metabolic stores to meet increased energy demands, and 

suppress energetically expensive functions such as immune responses, reproduction and growth 

[27].  This mechanism is regulated by negative feedback, which can be impaired due to repeated 

stress and can lead to adverse physiological effects, such as alterations in behavior, growth 

inhibition, immune and reproductive suppression and hyperglycemia [19, 28, 29].  Depletion of 

adipose tissue lipids as a result of increased catabolism in marine mammals can have detrimental 

consequences, as marine mammals rely on fat stores in blubber not only as an energy source, but 

for other life history challenges as well (e.g. buoyancy, thermoregulation, hydrodynamics). 

Another endocrine pathway altered by stress in mammals is the hypothalamic-pituitary-

thyroid (HPT) axis [30, 31].  The hypothalamus releases thyrotropin releasing hormone which 

causes the anterior pituitary gland to produce and secrete thyroid stimulating hormone (TSH).  

The thyroid gland produces thyroid hormones (thyroxine, T4 and triiodothyronine, T3) when 

stimulated by TSH.  This mechanism is regulated by negative feedback [32].  Deiodinases can 

convert T4 into the metabolically active form T3, as well to the inactive form, reverse T3 (rT3) 

[33].  In target cells, T3 binds to intracellular receptors that activate or repress transcription of 

target genes.  Thyroid hormones regulate homeostasis and many metabolic functions such as 

lipid, protein and carbohydrate metabolism, as well as development and sexual maturation [32, 

34, 35].  Stress causes a decline in circulating T3, the biologically active form of thyroid 

hormone, and an increase in T4 deiodination to reverse T3, its inactive form, leading to a 

decrease in metabolic rate [30, 31].  The consequent reduction in metabolism can have 
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detrimental effects on animals that require especially high energy expenditure during life history 

challenges such as reproduction and migration [36-38].  Marine mammals are particularly 

susceptible to stress-induced hormonal changes due to their metabolically challenging life 

histories, which include prolonged periods of fasting concomitant with reproduction, migration, 

molting, and repeated bouts of hypoxia [6, 39]. 

Many stress studies have used baseline cortisol measurements as an indicator of stress in 

wild animals, with the assumption that stressed animals have elevated baseline GCs [40-43].  

However, many animals show seasonal patterns in GC secretion, and baseline levels may be 

routinely elevated during reproduction, fasting, or other life history stages [44].  For example, 

northern elephant seals elevate cortisol, the primary driver of lipolysis, during their breeding and 

molting fasts [45].  In addition, while a rise in circulating levels of GCs is indicative of an 

activation of the physiological stress response, it does not determine whether the animal is 

responding to an acute or chronic stressor.  An animal exposed to chronic stress can experience a 

physiological acclimation, or habituation of the HPA axis and may no longer respond to the 

repeated stressor, making it appear unstressed [27].  Most of the stress studies do not 

differentiate between acutely and chronically stressed individuals, which can be critical for 

identifying animals experiencing chronic stress and predicting its impacts on their physiology 

and fitness [46].  Thus, there is a need for additional markers of stress, such as downstream 

changes in GC target gene expression, that can provide a better mechanistic understanding of 

acute and chronic stress and additional diagnostics of stress state.  Hormones that bind 

intracellular receptors, such as corticosteroid and thyroid hormones, produce biological effects 

by altering expression of target genes, causing long-lasting effects that can be detected even after 

blood hormone levels return to baseline levels.  Furthermore, gene expression measurements are 
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more sensitive and tissue-specific than measurements of circulating hormones.  Therefore, 

differences between acute and chronic stress states may be more apparent at the levels of target 

gene expression rather than circulating hormone levels.  Previous studies of marine mammals 

have identified endocrine and metabolic responses and gene expression changes in response to 

acute stress [23, 47-50], but there is not a clear understanding on the effects of repeated stress on 

gene expression in GC target tissues in marine mammals and most wild animals.  

Northern Elephant Seals as a Marine Mammal Study System 

 This study was conducted using the northern elephant seal (Mirounga angustirostris) as a 

model marine mammal.  Northern elephant seals undergo extreme physiological challenges as 

part of their life history.  They spend most of the year foraging in the mesopelagic zone, and 

come out on land (haul out) for 1-3 months twice a year, fasting for the entire duration of the 

haul out while enduring energetically demanding activities such as breeding, lactation, or skin 

and hair growth in the winter and spring, respectively [51].  Juveniles (1-3 years old) haul out for 

a month during the fall instead of the winter.  Animals generally return to the same site where 

they were born [7]. The predictability of these haul outs, and relative ease of research handling 

due to the lack of extant land predators, make this organism an amenable marine mammal model 

system [47-50, 52, 53].  In addition, well-established anesthesia procedures minimize the impact 

of handling on baseline GC levels in this species [54], allowing for measurement of true baseline 

hormone and gene expression levels.  Consequently, northern elephant seals are an ideal model 

system for stress manipulation studies and can serve as a proxy for other marine mammals that 

are difficult to sample (e.g. fully aquatic cetaceans or critically endangered pinnipeds). 
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Repeated Stress in Northern Elephant Seals  

Previously, our laboratory conducted a repeated stress manipulation experiment was 

performed during which ACTH was injected once a day, for a period of four days, to juvenile 

northern elephant seals to simulate exposure to repeated stressors [55, 56]. Blood and blubber 

samples were collected immediately before ACTH administration and four hours post-ACTH on 

the first and fourth days of the experiment.  Blubber, a modified subcutaneous adipose tissue in 

marine mammals, was targeted due to its ease of sampling, its importance in marine mammal 

energy homeostasis, and the role of adipose tissue in response to GCs in other mammals.  

Hormone, metabolite, and transcriptome analyses were then used to examine differences 

between baseline and stress-induced hormone and metabolite responses and blubber gene 

expression levels on the first (acute ACTH response) and last day (repeated ACTH response) 

days of the experiment.  

The repeated ACTH stress response was characterized by suppression of total T3 (tT3) 

levels, an increase in its inactive form, reverse T3 (rT3), as well as a decrease in circulating 

triglyceride (TAG) levels, and an increase in levels of cortisol and the osmoregulatory hormone 

aldosterone [55, 57].  However, the magnitude of the cortisol response to ACTH did not vary 

between the first and last ACTH administration, highlighting the inability of cortisol levels to 

distinguish between acute and repeated stress states, suggesting that expression of hormone 

target genes may therefore be more indicative of stress states than hormone levels alone [55].  

Transcriptome analyses of blubber biopsies collected during the experiment identified 31 

differentially expressed genes (DEGs) in response to the first ACTH administration, 7 DEGs in 

response to the fourth ACTH administration, and 34 DEGs over the course of the entire 

experiment [56].   
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Objectives 

The purpose of this study was to characterize the downstream effects of repeated stress, 

and to evaluate the potential of gene expression as an indicator of stress that can distinguish 

between acute and repeated stress in marine mammals.  To validate these new potential markers 

of stress, I collected blood and blubber samples from a separate cohort of juvenile northern 

elephant seals of variable body condition, and thus, potentially variable baseline stress states.  I 

correlated the expression values of the candidate gene markers with stress hormone 

measurements, triglyceride levels, and body condition index of the animals, to evaluate 

variability in baseline stress-related gene expression levels and the potential use of these markers 

to detect physiological stress in northern elephant seals.  Therefore, expression levels of hormone 

target genes in blubber may provide a new diagnostic tool for conservation management 

strategies.  For instance, these markers, in combination with other physiological metrics, may be 

able to test if low reproductive rates of some marine mammal populations are related to stress, or 

to evaluate and manage the physiological impacts of anthropogenic disturbance on vulnerable 

marine mammal populations. 
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Chapter 2: Methodology 
 
 

Study Subjects 

All animal handling procedures were conducted under National Marine Fisheries Service 

permit 19108 and approved by Sonoma State University and University of the Pacific 

Institutional Animal Care and Use Committees and Department of the Navy Bureau of Medicine 

and Surgery.  A total of 30 juvenile northern elephant seals of varying apparent body condition 

were selected as study subjects: 17 females, 11 males and two animals of unknown gender.  

Seals that had not been previously identified for other studies were marked with rear flipper tags 

(Dalton, Oxon, UK). 

Sample Collection and Preservation 

Baseline sample collection took place from September to November of 2017 in Año 

Nuevo State Park, San Mateo County, CA, USA.  Seals were chemically immobilized using an 

intramuscular injection of ~1 mg/kg tiletamine-zolazepam HCl (Telazol, Fort Dodge Animal 

Health, Fort Dodge, IA, USA), and sedation was maintained with intravenous doses of ketamine 

(0.25-1 mg/kg) (Fort Dodge Animal Health, Fort Dodge, IA, USA). Adipose tissue samples were 

collected from the posterior flank of the animal, previously sterilized with ethanol and iodine to 

avoid infection of the wound, using a 6.0 mm diameter biopsy punch (Miltex, USA).  Two 

blubber biopsies were cut to separate the inner and outer blubber sections. Inner blubber is highly 

vascularized and is the closest section to musculature, while outer blubber is closer to 
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skin, and the two layers can be distinguished morphologically.  One set was immediately frozen 

in liquid nitrogen while the other set was incubated in RNAlaterTM Stabilization Solution (~300 

mg tissue per 1.5 mL; Invitrogen USA). RNAlaterTM solution was removed from samples after 

24 hours of incubation at 4°C.  All samples were brought to the laboratory and stored at -80°C.  

Blood samples were collected from the extradural vessel using an 18 G, 3.25-inch spinal needle 

and drawn into vacuum collection tubes, which were stored at 4°C immediately after collection.  

Serum and plasma were isolated by centrifugation at 3,000 x g for 15 minutes, kept frozen on dry 

ice until return to the laboratory, and stored in -80°C until further analysis.  After collection of 

morphometric measurements (standard length, axillary girth), seals were allowed to recover from 

anesthesia and resume normal activity. 

Stress Markers Analyses 

 Body condition index was determined by calculating the residuals of linear regression of 

the axillary girth plotted against standard length of each animal [58].  Serum cortisol was 

measured using a radioimmunoassay (RIA; MP Biomedicals, Burlingame, CA, USA) previously 

validated for northern elephant seals [48].  Aldosterone was measured using an enzyme-linked 

immunosorbent assay (ELISA; cat #11-ALDHU-E0, lot # 172040; Alpco, Salem, NH, USA), 

validated for northern elephant seals in a previous study [55].  Total triiodothyronine (tT3) and 

reverseT3 (rT3) were measured in duplicate using RIAs (tT3: cat #0613254215, lot # T3K1825; 

rT3: cat #38-RT3HU-R125, lot # REW125-1827A; MP, Biomedicals, Burlingame, CA); average 

CVs were 2.2% and 2.4% for tT3 and rT3 assay, respectively.  Total T3 and reverse T3 RIAs 

were previously validated for northern elephant seals [59].  A previous study used lipidomics to 

show that triglyceride levels in plasma were significantly suppressed by repeated ACTH 

administration [57].  These results were validated in the same sample set (from Deyarmin et al.) 
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using a colorimetric triglyceride (TAG) assay (Triglyceride Colorimetric Assay Kit, Cayman 

Chemical, MI, USA).  Circulating levels of TAG were then measured in duplicate in plasma 

from the baseline sample set using the same assay; average replicate CVs were 3.1 and 2.4% for 

the repeated ACTH samples and the baseline samples respectively. 

Selection of Candidate Genes  

Genes of interest were previously identified as differentially expressed in elephant seal 

blubber in response to repeated ACTH administration [56].  Candidate genes were selected based 

on three characteristics: significant BlastX hit to a protein with known function in the UniProt 

SwissProt proteome database, transcript abundance (number of transcripts per million equal to or 

greater than 20), low variability in expression level between biological replicates for each 

condition (Table 1). Candidate genes were also selected based on differential expression between 

first and last ACTH response, to account for differential gene expression in acute and repeated 

physiological stress. 

RNA Isolation  

Inner blubber samples were minced with a sterile scalpel on ice (~300 mg of tissue) and 

added to NextAdvance RNase-free RINO-blue tubes pre-filled with Qiazol (500 µL, Qiagen, 

USA) and one 3.5 mm UFO bead (Next Advance, USA).  The tissue was homogenized in a 

Bullet Blender Storm 24 (Next Advance, USA; Speed 12, two 2-minute cycles with 1 minute of 

cooling on ice between blend cycles).  Another 0.5 mL of Qiazol was added to each sample after 

homogenization and incubated for 5 minutes at room temperature with occasional vortexing to 

allow further lysis of the tissue.  Lysed tissue was added to QIAshredder tubes (Qiagen, USA) to 

filter out insoluble cell debris and reduce viscosity of the tissue lysate.  Flow-through was 

centrifuged again to separate insoluble material and separate lipids from the rest of the 
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homogenate.  To separate RNA from protein content, clean homogenate was added into 

microcentrifuge tubes pre-filled with 200 µL of chloroform (VWR Life Sciences, USA), 

vortexed and centrifuged.  The aqueous layer containing RNA was extracted and RNA was 

precipitated with RNase-free 70% ethanol.  RNA was isolated using RNeasy Lipid Mini Kit 

(Qiagen, USA) with a 20-minute on-column DNase I digest step (10 µL per column; Qiagen, 

USA).  RNA was stored at -80°C until further analysis. RNA quantity was determined using 

Qubit 3.0 Fluorometer Broad-Range RNA Assay (Life Technologies, USA). The two sample 

handling methods, flash freezing in liquid nitrogen in the field and preservation in RNAlaterTM 

Stabilization Solution, were compared to evaluate their effects on RNA quality, which was 

assessed using microcapillary gel electrophoresis (Bioanalyzer, Agilent Technologies, USA) 

(Fig. 5).  No differences in RNA quality were observed between samples preserved in liquid 

nitrogen and those preserved in RNAlaterTM solution.  RNA samples had integrity values (RIN) 

between 7.0 – 8.6.  Therefore, tissues preserved using either method were used interchangeably 

for RNA isolation. 

 
 
 
 
 

 

 

 

 

 
Figure 1: Bioanalyzer electropherograms of RNA isolated from a sample flash frozen in the field 
with liquid nitrogen, RIN = 8.10 (A), and a sample preserved in RNAlaterTM solution, RIN = 
8.60 (B).  

A B 
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Quantitative RT-PCR   

Complementary DNA (cDNA) was synthesized from 500 ng of total RNA using 

SuperScript IV VILO Master Mix with ezDNase digestion (Thermo Fisher, USA). cDNA 

samples were diluted 1:10 and 2 µL were used in each 20 µL real-time PCR (qPCR) reaction, in 

triplicate, with PowerUp SYBR-Green Master Mix (Thermo Fisher, USA).  qPCR was 

performed on a QuantStudio 5 Real-Time PCR System instrument (Thermo Fisher, USA) using 

the following program: 2 min at 50°C, 2 min at 95°C, followed by 40 cycles of 15 s at 95°C, and 

60 s at 60°C.  All the replicate SDs were < 0.167 Ct, as recommended by MIQE Guidelines [60].  

No-template and no-reverse transcriptase controls were included in each run and showed no 

amplification. 

Primers were designed using the NCBI Primer-Blast program and elephant seal transcript 

sequences generated in the previous study [56].  Gene primers were designed to target the 

portion of the transcript that encoded a highly conserved sequence within the encoded protein, 

basen on the NCBI RefSeq database.  Primers were selected to have a melting temperature of 60-

62°C and a qPCR product size between 75 to 150 bp for all genes.  Primer sequence specificity 

was confirmed by BlastN against the RefSeq database.  All primers were used at 400 nM final 

concentration.  Primer efficiency was determined using standard curves with five 1:2 dilutions of 

cDNA dilution of blubber samples of northern elephant seals from a previous ACTH 

administration study done by Khudyakov et al. [48], and primer efficiency was calculated as 

recommended in MIQE Guidelines [60].  Primer efficiency scores were within 90 and 110% 

(Table 1).  Melting curve analysis was used to determine specificity of the primer by the 

presence of a single peak produced by dissociation of the qPCR amplicon.  Amplification of a 

single product of the expected size was also confirmed using agarose gel electrophoresis (E-gel 
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2% Agarose, Thermo Fisher, USA) (Fig. 6).  Faint double bands at the bottom of the gel (< 100 

bp) correspond to unbound primer sequences.  

 
 

Table 1:  Primer sequences and efficiency values of candidate gene markers used for qPCR 
analysis. 
 

 
 
 
 

 

 

 
Transcript ID 

 
Gene 

homolog 

 
Protein name 

 
Primer sequence 

 
Amplification 

Efficiency 
(%) 

 
TRINITY_DN592797_c2_g1 
 

PLIN1 Perilipin 1 F:GCGGTCAACAAGGACCCAAC 
R:GGAAACACTCACAGGTGCCG 

94 

TRINITY_DN572974_c28_g1 
 

ADIPOQ Adiponectin F: CCAATGTTCCCATTCGCTTTAC 
R: CATTCCTGGGCTGTACTACTTC 

93 

TRINITY_DN581259_c1_g6 
 

LEP Leptin F: ACAGGACCAAAGCCACAGGA 
R:GCGAGGCCTGAGAAGCACAT 

104 

TRINITY_DN585354_c4_g5 
 

DKK1 Dickkopf-related 
protein 1 

F: CCAAGATCTGTAAACCTGTCCTC 
R: CACAGTAACAGCGCTGGAATA 

103 

TRINITY_DN571555_c4_g2 
 

GPX3 Glutathione peroxidase 
3 

F: CCGGACGGTGTACCCATCAT 
R: GGCAGGTCTGATTTACTGCCC 

107 

TRINITY_DN587426_c4_g1 
 

CIDEA Cell death activator 
CIDE-A 

F: CGCGTTGCCAATCTAGACGC 
R: TCCGTATCCACCACGGTTCC 

100 

TRINITY_DN560507_c9_g1 
 

HMGCS2 Hydroxymethylglutaryl
-CoA synthase 2 

F:TGATGTTCAGTGACTTCCTGTC 
R: TGTAGGTTTCTTCCAGCGTTAG 

100 

TRINITY_DN591927_c4_g2 
 

CDO1 Cysteine dioxygenase 1 F:TGACAAATTCCTGTCCGATAAGT 
R:TTCTGCCCTCCCTTTCATTAC 

97 

TRINITY_DN591034_c2_g1 
 

TGFBI Transforming growth 
factor beta-induced 

F:TCCTGAAGGGGGACAATCGC 
R: GACCCCTTCCCTGTTGAGCA 

97 

TRINITY_DN571072_c3_g3 
 

ACSL1 Long-chain-fatty-acid 
CoA ligase 1 

F:GTAGCGATGGTGCTCGGAGA 
R: ACTTGACACCTGGATGCCCC 

97 

TRINITY_DN587150_c2_g2 
 

AZGP1 Zinc-alpha-2-
glycoprotein 1 

F: TCGTTCTCCCAGTCCTCTATTC 
R:CCTACCTCAATGACCAGGATTTC 

94 

TRINITY_DN551341_c9_g1 
 

GLRA2 Glycine receptor 
subunit alpha-2 

F: GTCTCCAGACAACACAAGGAG 
R: CCCATCCCATAACCACTGAAA 

107 

TRINITY_DN587322_c7_g1 
 

PIAS 4 E3-SUMO-protein 
ligase PIAS4 

F:GCGGACTTAAACACGAACTTGTCA 
R: GAGCTCTTCTTGGCGTAGCG 

106 

TRINITY_DN592891_c7_g1 
 

MGST1 Microsomal glutathione 
S-transferase 1 

F: TTAACGACTGAGCCACCCAGG 
R:GCATCAAGATGAACCACAAGTTGG 

100 

From Khudyakov et al., 2017 NONO Non-POU domain-
containing octamer-

binding protein 

F:GAGGAAGGTTTCGGACTGTAAG 
R:GCGGAGATTGCCAAAGTAGA 

95 

From Khudyakov et al., 2017 YWHAZ 14-3-3 Protein 
zeta/delta 

F: AGCAGAGAGCAAAGTCTTCTATT 
R: GACTGATCCACAATCCCTTTCT 

100 
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Figure 2: Specificity of primer pairs for RT-qPCR amplification. cDNA from all samples were 
mixed as the template.  

 
 
 
Two genes, YWHAZ and NONO, were evaluated for stability as reference genes as they 

were previously used for similar gene expression analyses of elephant seal blubber tissue [49].  

Expression stability was evaluated using BestKeeper algorithm [61].  YWHAZ was the most 
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stable gene across all samples (SD [±CP] = 0.47, CV [%CP] = 2.06) and was selected for use as 

reference gene in this study.  Gene expression was determined by the qPCR cycle during which 

fluorescent amplicons were first detected by the instrument, or cycle threshold (Ct). Relative 

gene expression values were normalized to the reference gene expression values using the delta 

Ct method (Equation 1) [62, 63].   

DCt = Ct (YWHAZ) – Ct (GOI) 

Equation 1: Mathematical equation of the delta Ct method used to normalize qPCR data. Ct: 
cycle threshold, GOI: gene of interest. 

 

Statistical Analyses 

 All statistical analyses were conducted using JMP 14 Software (SAS, USA). Linear 

mixed models, with subject ID as a random effect and sampling time as fixed effect was used to 

assess differences in triglyceride levels in plasma collected from elephant seals during a repeated 

ACTH administration experiment [56].  Variables measured in the present study were analyzed 

for normality and homogeneity of variance.  Variables that met normality were correlated with 

the gene markers using Pearson’s correlation analysis.  Variables that did not meet normality 

were correlated with gene markers using Spearman’s correlation analysis. 

 

 

 

 



Chapter 3: Results 

 

Baseline blood and blubber samples were collected from 30 juvenile northern elephant 

seals, of varying apparent body condition, for evaluation of biomarkers identified in a previous 

repeated ACTH administration experiment [55, 56].  The biomarkers included cortisol, 

aldosterone, tT3, rT3, TAG, and genes that were identified as significantly altered by repeated 

ACTH administration in elephant seals. 

Body condition index (BCI), which is related to adiposity in elephant seals, was 

determined using residuals of linear regression of axillary girth plotted against standard length of 

each study animal (Fig. 1) [58].  Animals with lower adiposity are likely experiencing nutritional 

stress, another type of physiological stress [64].  Thus, positive residual values indicate healthy 

animals, whereas negative residual values indicate individuals with low body condition, as 

animals with larger axillary girth than average for their length have higher adiposity, and vice 

versa (Table 2).  Body condition residuals indicate that 15 individuals had negative BCI, and 15 

animals had positive BCI.  
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Figure 3: Body condition residuals calculated from the linear regression of axillary girth and 
standard length for all study subjects (n = 30). Dots represent each individual sampled; red lines 
indicate body condition residuals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Table 2: Morphometrics of animals used in this study.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seal ID Sex Axillary 
girth (cm) 

Standard Length 
(cm) 

Body condition 
residual 

CSS 1 F 131 168 6.0 
CSS 2 F 136 186 -4.9 
CSS 3 M 122 173 -7.4 
CSS 4 F 150 187 8.2 
CSS 5 F 137 175 5.8 
CSS 6 M 153 182 15.7 
CSS 7 M 150 180 14.4 
CSS 8 F 144 181 7.5 
CSS 9 F 142 184 2.9 
CSS 10 F 143 187 1.2 
CSS 11 F 152 183 13.8 
CSS 12 - 100 143 -3.0 
CSS 13 M 118 157 2.7 
CSS 14 M 122 174 -8.3 
CSS 15 M 116 162 -3.7 
CSS 16 M 115 142 12.9 
CSS 17 F 119 160 1.0 
CSS 18 - 111 164 -10.5 
CSS 19 M 117 159 -0.1 
CSS 20 F 107 152 -3.9 
CSS 21 F 130 179 -4.7 
CSS 22 F 107 162 -12.7 
CSS 23 M 118 177 -14.9 
CSS 24 F 112 179 -22.7 
CSS 25 F 113 168 -12.0 
CSS 26 M 120 151 10.0 
CSS 27 F 129 175 -2.2 
CSS 28 F 123 160 5.0 
CSS 29 F 124 161 5.1 
CSS 30 M 123 167 -1.1 
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Circulating concentrations of cortisol, aldosterone, total T3, reverse T3 and triglycerides 

(TAG) were measured from the 30 study subjects to assess their potential to discriminate 

between physiological stress states.  Study subjects displayed variability in baseline levels of 

total serum cortisol (mean ± s.d.: 231.7 ± 155.2 nM, max = 562.4 nM, min = 46.5 nM; Fig. 2A) 

and aldosterone (mean ± s.d.: 1019.6 ± 780.6 pM, max = 3906.3 pM, min = 317.6 pM; Fig. 2B), 

and the data were positively skewed (Shapiro-Wilk test for normality, p = 0.02 and p < 0.0001 

for cortisol and aldosterone, respectively).  Total T3 (mean ± s.d.: 2.10 ± 0.54 nM, max = 3.04 

nM, min = 1.15 nM; Fig. 2C), reverse T3 (mean ± s.d.: 2.84 ± 1.20 nM, max = 5.34 nM, min = 

1.18 nM; Fig. 2C), TAG levels (mean ± s.d.: 78.1 ± 34.1 mg/dL, max = 196.9 mg/dL, min = 30.7 

mg/dL; Fig. 2D), and body condition index were normally distributed (Shapiro-Wilk test for 

normality, p > 0.02 for all the previously mentioned hormones, metabolite, and BCI).  
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Figure 4: Measurements of cortisol (A), aldosterone (B), total and reverse triiodothyronine (T3, 
C), and triglycerides (TAG, D) for all study subjects (n=30). Whiskers indicate maximum and 
minimum concentration values, box indicates first and third quartile, line indicates the median. 

 
 
 
In the previous repeated ACTH administration study, a lipidomics approach showed that 

TAG levels were significantly suppressed by ACTH [65].  To use TAG as a marker in this study, 

I first validated these data in the same sample set using a targeted colorimetric TAG assay.  I 

used samples that were collected from 4 individuals before each of four ACTH.  Injections 

(administered 24 hours apart), and four and eight hours after the first and fourth ACTH 

administration.  TAG levels significantly decreased between the first day and the last day of 

ACTH injections (LMM: F7,21 = 4.62, p = 0.003; Tukey’s post-hoc test on Day 1 and Day 4 
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ACTH administration: p = 0.0012; Fig. 3), and were consistent with the lipidomics data.  

Consequently, TAG levels in plasma were used as a stress marker in the present study. 

 

 

 

 

 

 

 

 

 
 
Figure 5: Circulating triglyceride (TAG) levels in plasma samples from 4 elephant seals during a 
repeated ACTH administration experiment [56].  Each subject is represented by a different color 
according to the legend.  Seals received 4 ACTH injections 24 hours apart and blood samples 
were collected prior to and 4 and 8 hours after each ACTH injection.   

 
 
 
Correlation Between Corticosteroids, Thyroid Hormones, Triglycerides, and BCI 
 

Pairwise correlation analyses were used to examine potential associations between 

corticosteroid, thyroid hormones, body condition, and triglycerides.  Serum cortisol was 

negatively correlated with total T3 levels (Pearson’s correlation, r = -0.41, p = 0.026; Fig. 4A) 

and body condition index (Pearson’s correlation, r = -0.44, p = 0.014; Fig. 4B), and positively 

correlated with aldosterone concentration (Pearson’s correlation, r = 0.50, p = 0.004; Fig. 4C).  

Reverse T3 was negatively correlated with body condition index of the subjects (Pearson’s 

correlation, r = -0.40, p = 0.031; Fig. 4D) and triglyceride levels in plasma (Pearson’s 

correlation, r = -0.43, p = 0.017; Fig. 4E).  There was, however, no significant correlation 
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between total T3 and reverse T3 (p > 0.05). Triglyceride levels were not significantly correlated 

with any of the corticosteroids, and BCI (p > 0.05). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 6: Significant correlations (p < 0.05) between hormones, metabolites, and  
body condition index of the study subjects. Pearson’s correlations (r) were detected between (A) 
total T3 (tT3) and cortisol concentrations, (B) body condition index (BCI) and cortisol 
concentration, (C) aldosterone and cortisol concentrations, (D) triglycerides (TAG) and reverse 
T3 (rT3) concentrations, and (E) body condition index and rT3 levels. 
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Gene Expression Analyses 
 

Candidate genes for qPCR assays were selected from the set of genes differentially 

expressed in elephant seal blubber in response to single and repeated ACTH administration in a 

previous study [56]. They had the following characteristics: 1) a significant BlastX hit to a 

protein with known function in the UniProt SwissProt proteome database, 2) high transcript 

abundance in the transcriptome ( £ 20 transcript per million), and 3) low variability in expression 

level between biological replicates for each condition (Table 3).  

 
 
Table 3: Candidate gene markers selected using a previous study [56].  Genes selected were 
differentially expressed in response to a single and repeated exogenous ACTH administration 
(acute response and repeated response, respectively). Two genes were differentially expressed in 
both responses. ­ : upregulation; ¯ : downregulation. 
 
 
Acute ACTH response ­ Hydroxylmethylglutaryl CoA-synthase 2 (HMGCS2) 

­ Cysteine dioxygenase 1 (CDO1) 
­ Adiponectin (ADIPOQ) 
­ Microsomal glutathione S-transferase 1 (MGST1) 

Repeated ACTH response ­ Perilipin 1 (PLIN1) 
­ Long-chain-fatty-acid CoA ligase 1 (ACSL1) 
­ Leptin (LEP) 
­ Zinc-alpha-2-glycoprotein 1 (AZGP1) 
­ Cell death activator CIDE-A (CIDEA) 
­ E3-SUMO-protein ligase PIAS4 (PIAS4) 
­ Glycine receptor subunit alpha-2 (GLRA2) 
¯ Transforming growth factor beta-induced (TGFBI) 

Differentially expressed 
genes common to both 
ACTH responses 

­ Glutathione peroxidase 3 (GPX3) 
­ Dickkopf-related protein 1 (DKK1) 
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Candidate Gene Expression Level Correlations With Other Stress Markers 
 
 We used targeted qPCR assays to measure expression of 14 genes that were differentially 

expressed in response to HPA axis stimulation in a previous study in blubber tissue of northern 

elephant seals sampled in their baseline stress state. Normalized gene expression value (delta Ct) 

was analyzed for potential associations with the other stress markers previously measured.  Total 

serum cortisol concentrations were positively correlated with baseline expression levels of six of 

the candidate genes.  Cortisol was correlated with the adipokine adiponectin (ADIPOQ) 

(Spearman’s correlation, r = 0.52, p = 0.004; Fig. 7A), the lipid droplet protein perilipin 1 

(PLIN1), and the lipolysis stimulator zinc-alpha-2-glycoprotein 1 (AZGP1), were positively 

correlated with cortisol (Spearman’s correlation, r = 0.38, p = 0.05 and r = 0.40, p = 0.03; Fig. 

7B and 7C, respectively).  The adipogenesis promoter, dickkopf-related protein 1 (DKK1), the 

ketogenesis enzyme, hydroxymethylglutaryl-CoA synthase 2 (HMGCS2), and the antioxidant 

enzyme, glutathione peroxidase 3 (GPX3) were also positively correlated with cortisol levels 

(Spearman’s correlation, r = 0.53, p = 0.0034, r = 0.46, p = 0.01 and r = 0.64, p = 0.0002; Fig. 

7D, 7E and 7F, respectively).  There was no correlation between aldosterone concentration and 

normalized expression levels of any of the target genes (p > 0.05). 
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Figure 7: Significant Spearman’s correlation (r) between blubber gene expression and cortisol 
levels for all study subjects (p < 0.05), Cortisol was positively associated (p < 0.05) with 
normalized expression values (DCt) of (A) ADIPOQ, (B) PLIN1, (C) AZGP1, (D) DKK1, (E) 
HMGCS2, and (F) GPX3. 
 
 
 
 The same genes that were positively correlated with cortisol were negatively correlated 

with total T3 concentrations (ADIPOQ: r = -0.59, p = 0.001; DKK1: r = -0.72, p < 0.0001; 



 36 

PLIN1: r = -0.59, p = 0.001; GPX3: r = -0.60, p = 0.0007; AZGP1:  r = -0.54 p = 0.003; 

HMGCS2: r = -0.47, p = 0.012; Fig. 8A-C, 8G-H).  Two additional genes showed positive 

correlation with total T3: fatty acid oxidation enzyme long-chain-fatty-acid CoA ligase 1 

(ACSL1) and lipid droplet protein cell death activator CIDE-A (Pearson’s correlation; ACSL1: r 

= -0.40, p = 0.037; CIDEA: r = -0.48, p = 0.01; Fig. 8E and 8F).  Transforming growth beta-

induced (TGFBI) was the only target gene used in the study that was downregulated in response 

to repeated ACTH administration [56].  TGFBI was positively correlated with total T3 

(Pearson’s correlation, r = 0.38 p = 0.049; Fig. 8I). 
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Figure 8: Significant correlation (r) between blubber gene marker expression value and 
circulating total T3 levels (p < 0.05). Total T3 was negatively associated with normalized gene 
expression values (DCt) of (A) ADIPOQ, (B) DKK1, (C) PLIN1, (D) GPX3, (E) ACSL1, (F) 
CIDEA, (G) HMGCS2, (H) AZGP1, and positively associated with (I) TGFBI. 

 
 
 
Reverse T3 was negatively correlated with TGFBI and the adipokine leptin (LEP) (Fig. 

9A-B).  HMGCS2, GPX3, CIDEA and the adipogenesis marker, cysteine dioxygenase (CDO1) 

[66], were positively correlated with reverse T3 (Fig. 9C-F). 
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Figure 9: Significant correlation (r) between blubber gene expression value and circulating 
reverse T3 levels (p < 0.05). Reverse T3 was negatively associated (p < 0.05) with normalized 
gene expression values (DCt) of (A) TGFBI, (B) LEP, and positively associated with DCt of (C) 
HMGCS2, (D) GPX3, (E) CIDEA, and (F) CDO1. 
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 Circulating TAG levels were negatively correlated with HMGCS2 (Pearson’s correlation, 

r = -0.38, p = 0.043; Fig. 10).  TAG concentration showed no significant correlations with any of 

the other target genes (p > 0.05).  Body condition index was positively correlated with TGFBI 

(Pearson’s correlation, r = 0.37, p = 0.047; Fig. 11) and did not show any significant correlation 

with any other gene markers (p > 0.05). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Plasma triglyceride (TAG) levels were negatively associated (p < 0.05) with 
normalized gene expression value (DCt) of HMGCS2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Body condition index was positively associated (p < 0.05) with normalized gene 
expression value (DCt) of TGFBI. 
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Chapter 4: Discussion 

 

The aim of this study was to validate if variability in baseline stress states can be detected 

as changes in expression of stress-related genes measured by real-time quantitative polymerase 

chain reaction (RT-qPCR).  I selected 14 candidate genes that were differentially expressed in 

elephant seal blubber during responses to acute and repeated HPA axis stimulation [56] and 

measured their expression levels in blubber tissue of 30 juvenile northern elephant seals of 

varying body conditions, and thus, variable baseline stress states.  I used circulating 

corticosteroid, thyroid hormone, triglyceride levels and body condition index as metrics of the 

baseline physiological stress state of our study subjects.  I then examined whether these metrics 

were correlated with normalized expression values of the candidate genes.  A total of 11 genes, 

out of the 14 total that were evaluated, were correlated with one or more of the aforementioned 

metrics (Table 4).  Three of the genes that were significantly correlated with hormone levels in 

this study were also differentially expressed in response to a single ACTH administration in our 

previous experiment, six genes were differentially expressed in response to repeated ACTH 

administration, and two genes were differentially expressed in both ACTH responses [56].  

These novel molecular markers of tissue responses to HPA axis activation could potentially be 

used to differentiate a stressed marine mammal from a healthy one, and predict if the animal’s 

stress response was due to an acute or a repeated (chronic) stressor. 

Circulating free cortisol and aldosterone levels were used as hormone markers to assess 

baseline stress state of the study subjects.  Values were within the range of baseline 

corticosteroid concentrations previously reported in juvenile northern elephant seals [47, 48].  

Genes that were positively correlated with cortisol were associated with lipid metabolism 
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(ADIPOQ), lipid droplet formation (PLIN1), lipolysis (AZGP1), adipogenesis (DKK1), 

ketogenesis (HMGCS2), and oxidative stress (GPX3).  All of these genes were upregulated in 

response to repeated HPA axis activation in a previous experiment, with the exception of 

ADIPOQ and HMGCS2, which were upregulated in response to a single ACTH administration.  

DKK1 was upregulated during both stress responses in the transcriptome study [56], as well as in 

another acute ACTH challenge on northern elephant seals [48].  ADIPOQ and HMGCS2 are 

associated with fatty acid oxidation [67, 68].  In addition, ADIPOQ has anti-inflammatory 

properties, and is correlated with increased energy expenditure, important for the stress response 

[69]. Increased expression of these two genes during an acute stress response can stimulate 

energy production from fatty acid catabolism to meet increased energy demands, as well as 

reduce inflammation, which is energetically costly.  DKK1 promotes differentiation of pre-

adipocytes into mature adipocytes, by Wnt signaling inhibition [70].  Adipogenesis can be 

beneficial during both stress responses, as it increases the number of mature adipocytes available 

for energy usage.  AZGP1 and phosphorylation of PLIN1 have been associated with an increase 

in lipid mobilization and consequently, a decrease in adipose tissue in humans [71, 72], which is 

consistent with the known lipolytic effects of cortisol [73, 74].  Dysregulation of adipose GPX3 

has been associated with an accumulation of local oxidative stress markers in obese subjects 

[75].  Upregulation of this gene during a chronic stress response could prevent damage from the 

increased production of reactive oxygen species in result of the sustained secretion of 

glucocorticoids [76].  Furthermore, oxidative genes could be used as markers to determine 

oxidative status of wild animals to enhance success of conservation and wildlife management 

[77].  An increase in expression levels of these genes in response to cortisol suggests that these 
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genes are its potential downstream effectors and may be used as additional molecular markers of 

stress in combination with hormone, metabolite, and other measurements. 

 
 

Table 4:  Stress-related biomarkers studied in this thesis, that could be used to identify and 
differentiate a stressed seal from a healthy seal. ­ : increase in concentration or expression; ¯ : 
decrease in index value, concentration or expression. 

 

Stressed seal 

­ Cortisol                  ¯ BCI  
­ rT3       ¯ T3 
­ ADIPOQ    ¯ TAG 
­ PLIN1    ¯TGFBI 
­ DKK1 
­ HMGCS2 
­ GPX3 
­ AZGP1 
­ ACSL1 
­ CIDEA 
­ CDO1 

 
 
 
 

Aldosterone is a mineralocorticoid involved in osmoregulation.  Although its role in the 

stress response has not been extensively studied in terrestrial mammals [78], studies in several 

marine mammals, such as bottlenose dolphins and harbor seals, have shown increases of this 

mineralocorticoid in response to stressors, suggesting its potential involvement in the stress 

response in marine mammals [15, 16, 47, 55, 59].  Cortisol and aldosterone measurements were 

positively correlated in this study, as it has been previously seen in other northern elephant seal 

stress studies [47, 59, 79].  However, none of the candidate stress-related genes measured in this 

study were correlated with aldosterone.  Mineralocorticoid receptors (MR) are present in adipose 

tissue, as well as other non-epithelial tissues in the body [80].  Increased levels of circulating 
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aldosterone have been correlated with body mass index and insulin sensitivity in obese patients 

[81], however its role in adipose tissue is not clear.  In addition, MR may regulate preadipocytes 

differentiation to mature adipocytes [82].  Thus, further research on adipose-MR is necessary to 

understand aldosterone’s role in adipose tissue regulation. 

HPA axis activation induces a decrease in thyroid stimulating hormone release, which in 

turn inhibits biologically active triiodothyronine (T3) synthesis.  I measured total T3 (tT3) as 

well as rT3 concentrations of our study subjects, and used these as additional stress markers for 

the validation of the candidate gene markers.  Total T3 and rT3 levels were within the range of 

previously reported baseline values in juvenile northern elephant seals [47, 59].  While tT3 was 

negatively correlated with cortisol, rT3 was not associated with either tT3 or cortisol.  However, 

other studies, in this species have shown that rT3 is positively correlated with cortisol [47, 59].  

This suppression of tT3 and increase in rT3 has also been observed in other marine mammal 

species, such as odontocetes [83].  While tT3 regulates metabolism of many tissues, such as 

brain [84], muscle [85], liver [86], and adipose tissue [87], rT3 suppresses metabolism of these 

tissues by binding to tT3 receptors and blocking its normal function [33].  

The same genes that were positively correlated with cortisol were negatively correlated 

with tT3, with the addition of a fatty acid metabolism gene, ACSL1 [88], and a lipid droplet 

protein, CIDEA [89].  ACSL1 is involved in anabolic and catabolic pathways of triglycerides 

and fatty acids [90]; for example, ACSL1 expression in adipocytes is related to TAG synthesis 

[91].  CIDEA expression regulates lipid metabolism by stimulating the formation of lipid 

droplets in adipose tissue [92-94].  Both genes were upregulated in blubber tissue of northern 

elephant seals during the response to repeated ACTH administration [56].  Expression of these 

genes during prolonged or repeated exposure to stress could be an adaptation of marine 
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mammals, as both genes are involved in replenishment of energy stores in fat tissue, crucial for 

marine mammals undergoing highly metabolic activities while fasting. 

In addition, tT3 was positively correlated with TGFBI, a gene that was downregulated in 

response to repeated ACTH administration in juvenile northern elephant seals [56].  TGFBI was 

also positively correlated with body condition index and negatively correlated with rT3 levels.  

TGFB expression is associated with adipogenesis and inflammation in mice and humans [95, 

96].  Expression of TGFBI is induced by TGFB, and has been linked to suppression of human 

preadipocyte differentiation [97].  Elevated tT3 is associated with fasting in northern elephant 

seals [98].  Furthermore, body condition in marine mammals is associated with increased 

adiposity [64].  In this study we show a negative correlation between body condition index and 

rT3 concentration.  Based on these results, we suggest that increased expression of TGFBI is 

correlated with adiposity, and thus the absence of nutritional stress in marine mammals.  

However, further investigation is required to clarify the role of TGFBI in adipose tissue.  

Reverse T3 was positively correlated with some of the genes that were negatively 

correlated with tT3; HMGCS2, CIDEA, and GPX3.  In addition, other genes positively 

associated with rT3 were a gene involved in adipogenesis, CDO1, and an adipokine, LEP.  

CDO1 was upregulated during an acute stress response to ACTH, whereas LEP was upregulated 

in response to repeated ACTH administration on our previous study [56].  CDO1 catalyzes the 

oxidation of cysteine to cysteine sulfinic acid during the synthesis of taurine [99], an amino acid 

important in the metabolism of fats in the liver [100].  Also, expression of this gene increases 

during differentiation of preadipocytes to mature adipocytes, which suggests that CDO1 may 

regulate adipogenesis [66, 101].  LEP is an adipokine involved in control of energy homeostasis, 

as well as modulating immune responses [102].  Expression of these genes during the stress 
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response might be advantageous, as they act to manage energy storage and regulate 

inflammatory signals. 

Lipidomics analysis of samples from our previous study showed that triglycerides (TAG) 

levels of individuals were significantly decreased in response to repeated ACTH administration 

[56, 57].  Furthermore, previous research on northern elephant seals has shown that non-

esterified free fatty acids, product of triglyceride catabolism, increase with increasing cortisol in 

the system [47].  These measurements are consistent with the known lipolytic functions of 

cortisol and the increases in free fatty acids observed in multiple studies on northern elephant 

seals in response to ACTH [48, 49, 57, 59].  We used this metabolite as one of our markers of 

stress.  To our surprise, triglyceride levels were only associated with rT3, and were not correlated 

with cortisol.  However, we previously found that both rT3 and cortisol concentrations increased 

significantly in response to repeated ACTH administration [55], while TAG decreased.  

Nonetheless, triglyceride levels were negatively correlated with HMGCS2, a gene involved in 

ketogenesis, the formation of ketone bodies from fatty acids [68, 103].  In addition, HMGCS2 is 

also involved in beta-oxidation in the liver [68], a metabolic process that might be happening in 

adipose tissue as well.  This negative correlation makes sense in the context of acute HPA axis 

activation, during which cortisol stimulates fatty acids mobilization from triglycerides, which are 

then catabolized by beta-oxidation.  

Glucocorticoids and thyroid hormone measurements alone can be unreliable markers of 

stress states due to diurnal, seasonal, and life history variation in their baseline levels [46, 55, 

59].  In this study, I introduce additional markers of stress state in marine mammals.  Few wild 

animal studies that have used gene expression markers to evaluate stress states.  However, 

transcriptome analyses of the cortisol target tissues blubber and muscle in elephant seals have 
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detected changes in gene expression 24 hours after a single HPA axis activation, even after 

cortisol levels returned to baseline[48, 49].  Therefore, gene activity may be a sensitive indicator 

of recent stress exposure that cannot be detected at the hormone level.  Because tissue responses 

to GC are driven by changes in expression of target genes, identifying these downstream 

effectors of GCs can elucidate the functional consequences of stress, as well as potentially 

distinguish between acute and repeated stress responses.  These data and those from our previous 

ACTH administration experiment suggest that HMGCS2 and ADIPOQ are upregulated in 

response to a single, or acute stressor in northern elephant seals, whereas, PLIN1, ACSL1, 

AZGP1, CIDEA, and TGFBI, are differentially regulated in response to repeated, or chronic 

stressors.  In addition, GPX3 and DKK1, are genes involved in both stress responses.  All of the 

previously mentioned genes were correlated with cortisol, as well as tT3.  Our study suggests 

that high cortisol, a negative BCI, decreased levels of circulating tT3, and upregulation of 

PLIN1, GPX3, ADIPOQ, HMGCS2, AZGP1, and DKK1, could predict a stressed versus a non-

stressed marine mammal. 

 Further research needs to be done to be able to utilize these biomarkers of stress on other 

marine mammal species, especially those that are endangered, such as the Hawaiian monk seal, 

or whale populations with low reproductive success.  An increase in anthropogenic disturbance 

in the marine ecosystem can impact the fitness of marine mammal populations by inducing 

physiological stress that compounds the extreme physiological challenges these animals 

experience during the frequent hypoxia bouts, and the prolonged periods of fasting as part of 

their life histories.  The ability to distinguish a stressed marine mammal from a healthy one, can 

assist marine ecosystem conservation strategies, and be used to justify closure of an area or 
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restriction of human activities in the area, such as reducing boat traffic, fishing, narrow shipping 

lanes, or decreasing sonar tests.  
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