#### **UNIVERSIDADE FEDERAL DE SANTA CATARINA**

## CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

## UMA NOVA FONTE CHAVEADA PWM-ZCS ALIMENTADA EM CORRENTE: ANÁLISE, PROJETO E EXPERIMENTAÇÃO

## DISSERTAÇÃO SUBMETIDA A UNIVERSIDADE FEDERAL DE SANTA CATARINA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA

#### PETER MANTOVANELLI BARBOSA

FLORIANÓPOLIS, OUTUBRO DE 1993.

## UMA NOVA FONTE CHAVEADA PWM-ZCS ALIMENTADA EM CORRENTE: ANÁLISE, PROJETO E EXPERIMENTAÇÃO

#### PETER MANTOVANELLI BARBOSA

# ESTA DISSERTAÇÃO FOI JULGADA ADEQUADA PARA A OBTENÇÃO DO GRAU DE MESTRE EM ENGENHARIA ELÉTRICA, ESPECIALIDADE ELETRÔNICA DE POTÊNCIA, E APROVADA EM SUA FORMA FINAL PELO PROGRAMA DE PÓS-GRADUAÇÃO

Prof. Ivo Barbi, Dr. Ing. Orientador

obut Salquder

Prof. Roberto Salgado de Souza, PhD. Coordenador do Curso de Pós-Graduação em Engenharia Elétrica

#### **BANCA EXAMINADORA:**

Prof. Ivo Barbi, Dr. Ing.

Prof. Arnaldo José Perin, Dr. Ing.

Ra I

Prof. Ênio Valmor Kassick, Dr.

Prof. Donizar Cruz Martins, Dr.

Ao sorriso de Lê e ao brilho da Lua.

. .

#### AGRADECIMENTOS

Ao prof. Ivo Barbi, cuja orientação e processo de criação são admiráveis. Pela sua ética e objetividade dispensadas durante todas as etapas deste trabalho.

Aos professores do Lamep pela assessoria durante a fase de créditos. Agradecimentos especiais aos professores Kassick e Hari.

Aos técnicos e secretária do Lamep pelo serviço de apoio prestado durante a realização deste trabalho.

Aos amigos do Lamep, em especial ao Dalton e ao Paulo, pelas contribuições, questionamentos e discussões que contribuiram para o êxito deste trabalho.

À minha família, pela consideração e respeito para com meu trabalho.

Ao sofrido trabalhador brasileiro que possibilitou, através do pagamento de impostos, o suporte financeiro para a execução deste trabalho.

À Deus, pelo privilégio de fazer parte de uma classe que, infelizmente, pode ser considerada elite neste país.

# UMA NOVA FONTE CHAVEADA PWM-ZCS ALIMENTADA EM CORRENTE: ANÁLISE, PROJETO E EXPERIMENTAÇÃO

# ÍNDICE

| Introdução Geral                                                          | 1  |
|---------------------------------------------------------------------------|----|
|                                                                           | •  |
| 1) Geração de Novas Topologias via Dualidade                              | 5  |
| 1.1) Introdução                                                           | 5  |
| 1.2) Conceitos Básicos                                                    | 5  |
| 1.3) Dualidade de Chaves Ideais                                           | 8  |
| 1.4) Concepção da Estrutura Proposta                                      | 10 |
| 1.5) Conclusão                                                            | 12 |
|                                                                           |    |
| 2) Fonte Chaveada Alimentada em Corrente, Modulação PWM Assimétrica e     |    |
| Comutação Dissipativa                                                     | 14 |
| 2.1) Introdução                                                           | 14 |
| 2.2) Descrição do Circuito Proposto                                       | 14 |
| 2.3) Estudo Qualitativo dos Modos de Operação                             | 16 |
| 2.3.1) Configurações Topológicas Possíveis                                | 16 |
| 2.3.2) Geração dos Modos de Operação                                      | 18 |
| 2.4) Estudo Quantitativo dos Modos de Operação                            | 18 |
| 2.4.1) Modo I de Operação                                                 | 18 |
| 2.4.2) Modo II de Operação                                                | 21 |
| 2.4.3) Modo III de Operação                                               | 24 |
| 2.4.4) Modo IV de Operação                                                | 26 |
| 2.5) Característica Externa do Conversor CC/CC PWM Alimentado em Corrente | 28 |
| 2.6) Conclusão                                                            | 30 |
|                                                                           |    |
| 3) Fonte Chaveada Alimentada em Corrente: Esforços, Projeto e Simulação   | 33 |
| 3.1)Introdução                                                            | 33 |

| 3.2)Esforços de Tensão e Corrente sobre as Chaves S1 e S2                         | 33 |
|-----------------------------------------------------------------------------------|----|
| 3.2.1) Tensão Máxima sobre as Chaves S1 e S2                                      | 33 |
| 3.2.2) Corrente Média Através das Chaves S1 e S2                                  | 35 |
| 3.2.2.1) Corrente Média Através das Chaves S1 e S2 para o Modo I de Operação      | 35 |
| 3.2.2.2) Corrente Média Através das Chaves S1 e S2 para o Modo II de Operação     | 36 |
| 3.2.2.3) Corrente Média Através das Chaves S1 e S2 para o Modo III de Operação    | 36 |
| 3.2.2.4) Corrente Média Através das Chaves S1 e S2 para o Modo IV de Operação     | 36 |
| 3.2.3) Corrente Eficaz Através das Chaves S1 e S2                                 | 37 |
| 3.2.3.1) Corrente Eficaz Através das Chaves S1 e S2 para o Modo I de Operação     | 37 |
| 3.2.3.2) Corrente Eficaz Através das Chaves S1 e S2 para o Modo II de Operação    | 38 |
| 3.2.3.3) Corrente Eficaz Através das Chaves S1 e S2 para o Modo III de Operação   | 39 |
| 3.2.3.4) Corrente Eficaz Através das Chaves S1 e S2 para o Modo IV de Operação    | 39 |
| 3.3) Esforços de Tensão e Corrente sobre os Diodos da Ponte Retificadora de Saída | 41 |
| 3.3.1) Tensão de Pico Inversa Máxima                                              | 41 |
| 3.3.2) Corrente Média Através dos Diodos da Ponte Retificadora                    | 41 |
| 3.3.3) Corrente de Pico Repetitiva através dos Diodos Retificadora                | 42 |
| 3.3.3.1) Corrente de Pico Repetitiva através dos Diodos Retificadora para o       |    |
| Modo I de Operação                                                                | 42 |
| 3.3.3.2) Corrente de Pico Repetitiva através dos Diodos Retificadora para o       |    |
| Modo II de Operação                                                               | 42 |
| 3.3.3.3) Corrente de Pico Repetitiva através dos Diodos Retificadora para o       |    |
| Modo III de Operação                                                              | 43 |
| 3.3.3.4) Corrente de Pico Repetitiva através dos Diodos Retificadora para o       |    |
| Modo IV de Operação                                                               | 43 |
| 3.4) Corrente Eficaz através do Capacitor de balanço Cb                           | 44 |
| 3.4.1) Corrente Eficaz através do Capacitor de balanço Cb para o Modo I de        |    |
| Operação                                                                          | 44 |
| 3.4.2) Corrente Eficaz através do Capacitor de balanço Cb para o Modo II de       |    |

vii

viii

| Operação                                                                       | 45 |
|--------------------------------------------------------------------------------|----|
| 3.4.3) Corrente Eficaz através do Capacitor de balanço Cb para o Modo III de   |    |
| Operação                                                                       | 45 |
| 3.4.4) Corrente Eficaz através do Capacitor de balanço Cb para o Modo IV de    |    |
| Operação                                                                       | 46 |
| 3.5) Corrente Eficaz através do Capacitor de Filtragem Co                      | 47 |
| 3.5.1) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo I de   |    |
| Operação                                                                       | 47 |
| 3.5.2) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo II de  | ·  |
| Operação                                                                       | 48 |
| 3.5.3) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo III de |    |
| Operação                                                                       | 49 |
| 3.5.4) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo IV de  |    |
| Operação                                                                       | 49 |
| 3.6) Procedimento e Exemplo de Projeto                                         | 50 |
| 3.6.1) Especificações para Projeto                                             | 50 |
| 3.6.2) Cálculo da Razão Cíclica                                                | 51 |
| 3.6.3) Localização da Faixa de Operação na Característica de Saída             | 51 |
| 3.6.4) Cálculo da Indutância Magnetizante Mínima                               | 52 |
| 3.6.5) Esforços de Tensão e Corrente na Chave S1 para a Condição Nominal       | 53 |
| 3.6.6) Esforços de Tensão e Corrente na Chave S2 para a Condição Nominal       | 53 |
| 3.6.7) Esforços de Tensão e Corrente sobre os diodos Retificadores             | 53 |
| 3.6.8) Corrente Eficaz através do Capacitor de Balanço Cb                      | 54 |
| 3.6.9) Corrente Eficaz através do Capacitor de Filtragem Co                    | 54 |
| 3.7) Resultados de Simulação                                                   | 54 |
| 3.8) Influência da Indutância de Dispersão                                     | 56 |
| 3.8.1) Comutação da Corrente de Entrada da Chave S1 para a Chave S2            | 57 |
| 3.8.2) Comutação da Corrente de Entrada da Chave S2 para a Chave S1            | 58 |

.

ς.

3.9) Conclusão

| 4) Fonte Chaveada Alimentada em Corrente, Modulação PWM Assimétrica e   |    |
|-------------------------------------------------------------------------|----|
| Comutação Suave                                                         | 63 |
| 4.1) Introdução                                                         | 63 |
| 4.2) Descrição do Circuito Proposto                                     | 63 |
| 4.3) Análise Qualitativa                                                | 65 |
| 4.3.1) Operação do Circuito                                             | 65 |
| 4.3.2) Formas de Ondas Típicas                                          | 68 |
| 4.4) Análise Quantitativa                                               | 68 |
| 4.4.1) Característica Externa                                           | 68 |
| 4.4.2) Balanço de Fluxo Magnético no Transformador                      | 71 |
| 4.5) Estudo dos Esforços de Tensão e Corrente sobre os Componentes      | 71 |
| 4.5.1) Chaves S1 e S2                                                   | 71 |
| 4.5.2) Diodos Retificadores                                             | 72 |
| 4.5.3) Corrente Eficaz através do Capacitor Paralelo Cp                 | 73 |
| 4.5.4) Corrente Eficaz através do Capacitor de Balanço Cb               | 74 |
| 4.5.5) Corrente Eficaz através do Capacitor de Filtragem Co             | 75 |
| 4.6) Análise da Comutação                                               | 75 |
| 4.6.1) Comutação da Corrente de Entrada Iin da Chave S1 para a Chave S2 | 76 |
| 4.6.2) Comutação da Corrente de Entrada Iin da Chave S2 para a Chave S1 | 79 |
| 4.7) Circuito de Auxílio a Comutação                                    | 81 |
| 4.7.1) Condições para Comutação Suave em toda a Faixa de Carga          | 83 |
| 4.8) Conclusão                                                          | 85 |
|                                                                         |    |
| 5) Projeto e Experimentação                                             | 88 |
| 5.1) Introdução                                                         | 88 |
| 5.2) Procedimento de Projeto                                            | 88 |

60

| 5.2.1) Especificações para Projeto                             | 88  |
|----------------------------------------------------------------|-----|
| 5.2.2) Localização da Faixa de Carga na Característica Externa | 88  |
| 5.2.3) Capacitor Paralelo Cp                                   | 89  |
| 5.2.4) Capacitor de Balanço Cb                                 | 90  |
| 5.2.5) Capacitor de filtragem Co                               | 90  |
| 5.2.6) Diodos Retificadores                                    | 91  |
| 5.2.7) Cálculo Térmico para os Diodos Retificadores            | 92  |
| 5.2.8) Cálculo do Transformador                                | 93  |
| 5.2.9) Cálculo do Circuito de Auxílio a Comutação              | .95 |
| 5.2.10) Escolha das Chaves S1 e S2                             | 97  |
| 5.2.11) Cálculo do indutor Ls                                  | 98  |
| 5.3) Circuito de Comando                                       | 99  |
| 5.4) Resultados Experimentais                                  | 102 |
| 5.5) Conclusão                                                 | 109 |
| Conclusão Geral                                                | 111 |
| Referências Bibliográficas                                     | 113 |
|                                                                |     |
| APÊNDICES                                                      |     |
| A) Projeto do Transformador                                    | A.2 |
| A.1) Determinação do Produto Ae.Aw                             | A.2 |
| A.2) Cálculo do Número de Espiras do Primário e Secundário     | A.2 |
| A.3) Profundidade de Penetração                                | A.3 |
| A 4) Dimensionamento dos Condutores do Primário                | A.3 |
| A.5) Dimensionamento dos Condutores do Secundário              | A.3 |
| A.6) Cálculo das Perdas no Cobre                               | A.3 |
| A.7) Cálculo das Perdas no Núcleo                              | A.4 |
|                                                                |     |

x

х

| A.8) Cálculo da Elevação de Temperatura |             |
|-----------------------------------------|-------------|
| B) Projeto de Indutores                 | <b>B</b> .2 |
| B.1) Cálculo do Produto Ae.Aw           | B.2         |
| B.2) Cálculo do Número de espiras       | B.2         |
| B.3) Cálculo do Entreferro Físico       | B.2         |
| B.4) Bitola do Fio Condutor             | B.2         |
| B.5) Perdas no Cobre                    | <b>B</b> .3 |
| B.6) Perdas no Núcleo                   | <b>B</b> .3 |
| B.7) Elevação de Temperatura            | B.3         |

.

#### SIMBOLGIA

 $\Delta \phi$ : variação de fluxo magnético.

 $\Delta$ : profundidade de penetração.

 $\Delta B$ : excursão da densidade de fluxo magnético.

 $\Delta B$ : variação da densidade de fluxo.

 $\Delta ICop$  : variação máxima da corrente através do capacitor Co.

 $\Delta$ Iin : ondulação pico-a-pico da corrente de entrada.

ΔILaxpp : ondulação pico-a-pico da corrente através de Lax.

 $\Delta T$ : elevação de temperatura com relação a temperatura ambiente.

 $\Delta t$ : tempo de magnetização.

 $\Delta tc_{1,2}$ : duração da comutação da corrente Iin da chave S1 para a chave S2.

 $\Delta tc_{2,1}$ : duração da comutação da corrente Iin da chave S2 para a chave S1.

 $\Delta tcl_{1,2}$ : duração da etapa linear da comutação da corrente Iin da chave S1 para a chave S2.

 $\Delta tcl_{2,1}$ : duração da etapa linear da comutação da corrente Iin da chave S2 para S1.

 $\Delta tcr_{1,2}$ : duração da etapa ressonante da comutação da corrente Iin da chave S1 para S2.

 $\Delta tcr_{2,1}$ : duração da etapa ressonante da comutação da corrente lin da chave S2 para S1.

 $\mu_0$ : permeabilidade magnética do vácuo.

Ae : área da perna central do núcleo de ferrite tipo E.

Aw : área da janela do carretel.

Aw : área da janela do carretel.

Bmáx : densidade de fluxo máxima.

Cb : capacitor de balanço refletido ao primário.

Co : capacitor de filtragem refletido ao primário.

D : razão cíclica de operação do IGBT1.

Dn : razão cíclica de operação do IGBT1 para a condição de carga nominal.

fpri : número de fios a ser utilizado com secção transversal  $S_{\Lambda}$ .

fsec : número de fios a ser utilizado com secção transversal  $S_{\Lambda}$ .

Ia : corrente de ataque.

Iap : corrente impulsiva através do enrolamento auxiliar.

ICbef : corrente eficaz através do capacitor de balanço Cb.

ICbefs : corrente eficaz através do capacitor Cbs.

ICoef : corrente eficaz através do capacitor de filtragem Co.

ICoefs : corrente eficaz através do capacitor Cos.

ICpef : corrente eficaz através do capacitor paralelo Cp.

ICpefs : corrente eficaz através do capacitor Cps.

Idi : corrente média através dos diodos ímpares D1 e D3.

Idip : corrente de pico repetitiva através dos diodos ímpares.

Idips : corrente de pico através dos diodos ímpares refletida para o secundário.

Idis : corrente média através dos diodos ímpares referida ao secundário.

Idmd : Corrente média através dos diodos retificadores.

Idp : corrente média através dos diodos pares D2 e D4.

Idpp : Corrente de pico repetitiva através dos diodos pares.

Idpps : corrente de pico através dos diodos pares refletida para o secundário.

Idps : corrente média através dos diodos pares referida ao secundário.

Ig : corrente de grampeamento.

Iin : corrente de entrada.

Inbl : corrente de atuação do circuito de sobrecorrente.

Iinmín : corrente de entrada para a condição de carga mínima.

ILef : corrente eficaz através do indutor L.

Im : corrente média através da indutância magnetizante.

Io : corrente média de saída referida ao primário.

Ipef : corrente eficaz do enrolamento primário, neste caso é a própria corrente eficaz através da chave S2.

Ipk : corrente de pico através da indutor L.

IS1 : corrente média através da chave S1.

IS1ef : Corrente eficaz através da chave S1.

IS2 : corrente média através da chave S2.

IS2ef : Corrente eficaz através da chave S2.

J : densidade de corrente.

K : razão entre a indutância magnetizante e a indutância de entrada.

Ke : coeficiente de perdas por corrente parasita  $Ke = 4 \times 10^{-10}$ .

Kh : coeficiente de perdas por histerese  $Kh = 4 \times 10^{-5}$ .

Kp : fator de utilização para o enrolamento primário Kp=0,5.

Kw : fator de ocupação da área da janela do carretel.

L : valor da indutância.

lg : comprimento físico do entreferro.

Llk : indutância de dispersão.

Llkcr : indutância de dispersão crítica que permite a comutação suave na condição nominal de carga.

Lmmin : indutância magnetizante mínima.

lt : comprimento médio por espira.

n : relação de transformação.

Na : número de espiras do enrolamento auxiliar.

nf : número de condutores.

N<sub>L</sub> : número de espiras.

Np : número de espiras do primário.

Ns : número de espiras do secundário.

Ns : número de espiras do secundário.

P12 : potência média entregue ao grampeador a cada período de chaveamento para a comutação da corrente de entrada da chave S1 para a chave S2.

P21 : potência média entregue ao grampeador a cada período de chaveamento para a comutação da corrente de entrada da chave S2 para a chave S1.

Pcu : perdas no cobre.

Pn : perdas no núcleo.

P<sub>RSE</sub> : perda causada pela RSEs.

 $P_{S1}$ : perda de condução na chave S1.

 $P_{S2}$ : perda de condução na chave S2.

Pt = Pcu1 + Pcu2 + Pn: perdas totais.

R : resistência térmica equivalente.

Rc : resistência por unidade de comprimento por condutor.

Rc1 : resistência por unidade de comprimento do fio utilizado primário.

Rda : resistência térmica dissipador-ambiente.

Rgr : resistor de balanço de energia.

Ro : resistência equivalente de carga refletida ao primário.

RSEs : resistência série equivalente do capacitor.

Rt : resistência térmica do núcleo.

 $S_{\Delta}$ : área transversal efetiva do condutor ocupada pela corrente.

Scu : secção equivalente do condutor de cobre.

Spr: secção transversal do condutor primário.

Ssec : secção transversal do condutor secundário.

Ts : período de chaveamento.

Vc : tensão média sobre o capacitor de balanço Cb.

Vgr : tensão de grampeamento.

Vin : tensão de entrada.

Vm : tensão sobre a indutância magnetizante na configuração (4), Fig. 2.3(d).

Vo : tensão de saída refletida ao primário.

vol : volume do núcleo.

Von, Vcn, Iinn e Imn : valores de tensão e corrente para a condição nominal de carga.

Vpiv : Tensão de pico inversa máxima aplicada sobre os diodos da ponte retificadora.

Vpivs : tensão de pico inversa sobre os diodos referida ao secundário.

Vpk : tensão de pico sobre o circuito de auxílio a comutação.

Vpka : tensão de pico sobre o circuito auxiliar para o primeiro critério de cálculo.

Vpkb : tensão de pico sobre o circuito auxiliar considerando o segundo critério de cálculo.Vs : tensão sobre o indutor de entrada na configuração (4), Fig. 2.3(d).

Vs1máx : tensão máxima sobre a chave S1.

Vs2máx : tensão máxima sobre a chave S2.

Wp : frequência de ressonância.

Zp : impedância característica do circuito ressonante.

Zpcr : impedância característica crítica do circuito ressonante que permite a comutação suave na condição nominal de carga.

#### RESUMO

Este trabalho apresenta a análise, projeto e experimentação de uma nova fonte chaveada PWM-ZCS alimentada em corrente.

A nova estrutura é isolada, utiliza apenas duas chaves ativas moduladas por largura de pulso e absorve a indutância de dispersão do transformador no processo de comutação.

O conversor apresenta baixas perdas de condução em comparação com os conversores CC/CC PWM convencionais e comutação suave como os conversores ressonantes.

Os resultados experimentais apresentados foram tomados de um protótipo de laboratório projetado para 400W/48V, 40KHz, usando IGBT.

#### ABSTRACT

This work introduces a new power supply regulated by PWM, operating at constant frequency, with soft commutation. The new topology uses only two active switches and absorbs the transformer leakage inductance. Besides, the soft commutation takes place with no conduction loss penalty, in comparison with the conventional hard switch PWM converters.

Principle of operation, analysis, design and experimentation results taken from a laboratory prototype rated at 400W/48V, 40KHz, using IGBT are presented.

### INTRODUÇÃO GERAL

Os conversores CC/CC PWM convencionais possuem como principal vantagem as baixas perdas de condução, entretanto, a comutação desses conversores é dissipativa impedindo a operação em alta frequência.

O problema da comutação dissipativa foi resolvido com a introdução dos conversores ressonantes, com isto, a frequência de operação pôde ser acrescida [7,8]. Infelizmente, estes conversores apresentam grandes esforços de tensão e/ou corrente nos seus componentes causando um aumento das perdas de condução.

Os conversores ressonantes originaram os conversores quase-ressonantes que não acrescentaram nada em termos de redução das perdas de condução, visto que os componentes também sofrem com os esforços de tensão e corrente. Todavia, os conversores quase-ressonantes enriqueceram muito o contexto conceitual dos pesquisadores da área.

Além disso, os conversores ressonantes e quase-ressonantes são modulados em frequência [FM], prejudicando o projeto dos componentes reativos e exigindo a adição de chaves auxiliares para tornar a modulação por largura de pulso [PWM] [9].

O uso da ressonância como meio de transferência de energia é a principal causa das elevadas perdas de condução verificadas nos conversores ressonantes e quase-ressonantes. Esta desvantagem foi suprimida com a introdução dos conversores que usam a ressonância somente para realizar a comutação. Estes conversores apresentam perdas de condução da ordem de grandeza das perdas apresentadas pelos conversores CC/CC PWM convencionais e têm a vantagem da comutação suave. Esta comutação suave não penaliza as perdas de condução e é obtida graças a estratégia de modulação empregada e conhecida como modulação por deslocamento de fase (phase shift) [5,6].

Nos conversores em ponte completa esta técnica de modulação é aplicada defazando-se os sinais de comando dos braços inversores, onde cada chave opera com razão cíclica igual a 1/2 e

1

são acometidas de um pequeno tempo morto para evitar curto-circuito do barramento CC/CC de entrada. Assim, a frequência de operação é constante.

Através da modulação PWM assimétrica [1,2] é possível obter, para os conversores em meia ponte, comutação suave sem penalizar as perdas de condução, utilizando apenas duas chaves ativas e operando com frequência constante. Neste tipo de modulação as chaves operam com razão cíclica assimétrica e complementar entre si.

Os conversores que utilizam as duas últimas estratégias de modulação combinam a vantagem das baixas perdas de condução apresentadas pelos conversores CC/CC PWM com a vantagem da comutação não dissipativa apresentada pelos conversores ressonantes. Além disso, a frequência de operação é constante, permitindo um projeto menos restritivo dos componentes reativos.

O objetivo deste trabalho é estudar o comportamento de um conversor inédito que utiliza a estratégia de modulação PWM assimétrica relatada acima, analisando as propriedades e características que o novo conversor possa ter.

A apresentação deste trabalho está feita em três etapas distintas: análise, projeto e experimentação realizadas no Laboratório de Eletrônica de Potência da Universidade Federal de Santa Catarina.

Inicialmente, no capítulo 1 é realizada uma análise básica dos conceitos de dualidade. Tais princípios são imediatamente aplicados na concepção da estrutura topológica do conversor a ser analisado.

O capítulo 2 apresenta um estudo teórico do novo conversor operando com comutação dissipativa, abordando o princípio de funcionamento e apresentando a característica externa.

O estudo dos esforços de tensão e corrente sobre os componentes, exemplo de projeto e simulação são apresentados no capítulo 3.

O capítulo 4 introduz a versão do conversor operando com comutação suave, apresentando o princípio de operação, a característica externa, a análise dos esforços e o estudo da comutação Finalmente, no capítulo 5 é apresentado um procedimento-exemplo de projeto com a análise dos resultados experimentais que comprovam a abordagem teórica.

Os resultados experimentais foram tomados de um protótipo projetado para 400W/48V, 40KHz, usando IGBT.

# CAPÍTULO 1 GERAÇÃO DE NOVAS TOPOLOGIAS VIA DUALIDADE

## 1) GERAÇÃO DE NOVAS TOPOLOGIAS VIA DUALIDADE

## 1.1) INTRODUÇÃO

A aplicação dos conceitos de dualidade tem grande importância na geração de novas topologias de conversores estáticos, permitindo o estudo básico do comportamento do conversor dual e o entendimento das principais relações entre os conversores original e dual [3,4].

Neste capítulo são rapidamente discutidos os princípios básicos que possibilitam a aplicação da dualidade, estabelecendo a existência e identificando os componentes duais passivos e ativos, tais como chaves ideais.

Através de um simples algoritmo descrito é possível derivar o conversor estudado no restante deste trabalho, estabelecendo as principais características esperadas do comportamento da nova estrutura.

#### **1.2) CONCEITOS BÁSICOS**

A dualidade aplicada a um elemento de dois terminais produz um segundo elemento, também de dois terminais, cujas características estão intimamente relacionadas com o elemento original. Embora um componente físico possa ter mais que dois terminais, é possível considera-lo como um conjunto de elementos de dois terminais cujas tensões e correntes estão relacionadas de alguma maneira que possa descrever o comportamento do dispositivo multi-terminal e assim aplicar os conceitos de dualidade.

Algumas convenções simples devem ser observadas, mostradas na Fig. 1.1.

(a) todo elemento deverá possuir uma orientação assinalada, indicando o sentido de tensão e corrente;

- (b) o uso do asterisco para identificar o elemento original;
- (c) a dupla seta indica reversibilidade na transformação dual.
- A transformação dual ocorre basicamente em duas etapas:

(a) primeira etapa: ocorre apenas o intercâmbio das formas de ondas de tensão e corrente entre os elementos original e dual;

(b) segunda etapa: envolve a transformação topológica que rearranja os elementos de modo a satisfazer as leis de Kirchhoff.



Fig. 1.1. Orientação assinalada, asterisco para identificação e transformação reversível.

O elemento dual é estabelecido simplesmente permutando-se as formas de ondas de tensão e corrente do elemento original, ou seja, a tensão V<sup>\*</sup> do elemento original passa a ser a corrente I do elemento dual. Da mesma forma, a corrente I<sup>\*</sup> do elemento original passa a ser a tensão V do elemento dual. Assim, o princípio da conservação da energia é mantido e vale a relação I<sup>\*</sup>xV<sup>\*</sup> = VxI.

Alguns elementos duais comuns estão apresentados na Fig. 1.2.



Fig. 1.2. Dualidade de elementos comuns.

Para um exemplo de como a dualidade é derivada, considere o capacitor C<sup>\*</sup>, cuja energia armazenada é C<sup>\*</sup> × V<sup>\*2</sup>/2. Para dualizar deve-se permutar tensão e corrente, resultando a relação dual correspondente, C<sup>\*</sup> × I<sup>2</sup>/2. Esta é a equação da energia armazenada em um indutor com indutância L = C<sup>\*</sup>. Portanto, diz-se que o elemento dual de um capacitor com capacitância C<sup>\*</sup> é um indutor com indutância L numericamente igual a C<sup>\*</sup> e vice-versa.

Entretanto, o simples intercâmbio entre as formas de ondas de tensão e corrente não basta para finalizar a dualização. É preciso rearranjar as conexões da rede a fim de satisfazer as leis de Kirchhoff.

Um simples algoritmo para rearranjar a estrutura dual está descrito a seguir.

(a) os nós da estrutura dual são colocados dentro das malhas da rede original, onde a malha externa também é considerada;

(b) cada elemento fonte (tensão e corrente no mesmo sentido) é dualizado, rotacionado no sentido anti-horário para ser conectado aos nós alocados nas malhas adjacentes, e cada elemento carga (tensão e corrente em sentidos opostos) é dualizado, rotacionado no sentido horário e conectado aos nós que estão alocados nas malhas adjacentes.

O processo é direto, sendo essencial que as convenções destacadas anteriormente sejam cuidadosamente seguidas.

Um exemplo simples de pesquisa do circuito dual está apresentado na Fig. 1.3. A dualização é iniciada assinalando a orientação de tensão e corrente em todos os elementos, como mostrado na Fig. 1.3(a). Em seguida, Fig. 1.3(b), coloca-se os nós da estrutura dual nas malhas da rede original.

Finalmente, dualizando e rotacionando cada elemento conforme descrito no algoritmo, obtém-se a rede dual mostrada na Fig. 1.3(c)

As equações das malhas do circuito original são:

$$V^* = V1^* + V2^*$$
 (1.1)  
 $V2^* = V3^*$  (1.2)

Dualizando as equações (1.1) e (1.2), ou seja, permutando tensão e corrente, resultam:

## I = I1 + I2 (1.3) I2 = I3 (1.4)

Verificando as equações (1.3) e (1.4), conclui-se que estas expressões representam as equações de nó do circuito dual resultante, validando desta forma o método de pesquisa do circuito dual usado. Isto prova que o conhecimento das formas de ondas do circuito original permite estabelecer uma análise prévia do comportamento do circuito dual.

A única exigência para a aplicação deste método é que o circuito original apresente planaridade através de toda a sua rede. Evidentemente não foi abordado neste estudo um método mais geral que seja aplicado a redes não planares.



(c) circuito dual

Fig. 1.3. Exemplo de pesquisa do circuito dual.

### **1.3) DUALIDADE DE CHAVES IDEAIS**

A Fig. 1.4 é um resumo de algumas chaves utilizadas para a conversão de energia. A primeira coluna contém a representação esquemática de cada chave. O lado esquerdo da segunda coluna contém as relações que definem a tensão e a corrente do componente em termos de uma

entrada de controle. Permutando as formas de ondas de tensão e corrente produz-se as relações que definem o componente dual, mostrado do lado direito da segunda coluna. A terceira coluna contém uma representação do componente dual, obtido por inspeção das relações estabelecidas na coluna central.

| Componente                                                                                                                                            | Relações                                                                                                                                                                                                                                         |                                                                                                                                                                            | Componente                                                                     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| origina}                                                                                                                                              | Relações Originais                                                                                                                                                                                                                               | Relações Duais                                                                                                                                                             | Dual                                                                           |  |
| + V <sup>*</sup> -<br>                                                                                                                                | I*≥ 0<br>V*< 0                                                                                                                                                                                                                                   | V ≥ 0<br>I ≤ 0                                                                                                                                                             | + V -<br>                                                                      |  |
| Diodo                                                                                                                                                 | IxV <sup>*</sup> = 0 (sempre)                                                                                                                                                                                                                    | VxI = 0 ( sempre)                                                                                                                                                          | diodo                                                                          |  |
| I* Y*-                                                                                                                                                | $d = 0  \begin{cases} I = 0 \\ V \ge 0 \end{cases}$                                                                                                                                                                                              | $   \begin{aligned}     V &= 0 \\     d &= 1  \begin{cases}     V &= 0 \\     I &\geq 0   \end{aligned} $                                                                  | $\rightarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ |  |
| d*<br>transistor                                                                                                                                      | $d^{*}=1  \begin{cases} I > 0 \\ V^{*}=0 \end{cases}$ $I^{*}_{X}V^{*}=0 \text{ (sempre)}$                                                                                                                                                        | $d = 0  \begin{cases} V \ge 0 \\ I = 0 \end{cases}$ $VxI = 0 (sempre)$                                                                                                     | d<br>transistor                                                                |  |
| + V*.                                                                                                                                                 | $d = 0$ $\{ v \ge 0 \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\$                                                                                                                                                                             |                                                                                                                                                                            |                                                                                |  |
| t <sub>d</sub> *<br>(chave bidirecional em I <sup>*</sup> )                                                                                           | $d^{*} = 1$ { $V = 0$<br>IxV*= 0 (sempre)                                                                                                                                                                                                        | $d = 0  \begin{cases} V \ge 0 \text{ ou } V \le 0 \\ I = 0 \end{cases}$ $VxI = 0 \text{ (sempre)}$                                                                         | d (chave bidirecional em V)                                                    |  |
| $ \begin{array}{c} + v^{*} \\ - \left( \begin{array}{c} + v^{*} \\ - \end{array} \right) \\ + \end{array} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$ | $d^{*} = 0$ $d^{*} = 0$ $V^{*} > 0 \text{ ou } V^{*} < 0$ $d^{*} = 1$ $V^{*} = 0$                                                                                                                                                                | $d = 1  \begin{cases} V = 0 \\ I \ge 0 \text{ ou } I \le 0 \end{cases}$ $d = 0  \begin{cases} V \ge 0 \text{ ou } V < 0 \\ I = 0 \end{cases}$                              | $- \begin{bmatrix} d \\ + v \\ - \end{bmatrix} \rightarrow$                    |  |
| (chave bidirecional em V e I                                                                                                                          | $I_{x}^{*}V^{*}=0$ (sempre)                                                                                                                                                                                                                      | VxI = 0 (sempre)                                                                                                                                                           | (chave bidirecional em 1 e V)                                                  |  |
|                                                                                                                                                       | $d^{*} = 0;  \sqrt{2} \ge 0 \text{ ou}$ $d^{*} = 0 \{ \qquad \sqrt{2} \le 0 \\ \text{se } 1 \ge 0;  \sqrt{2} = 0 \\ \text{se } 1 \le 0;  1 \ge 0 \\ \text{se } 1 = 0;  1 \ge 0 \\ 1 \le \sqrt{2} = 0;  1 \ge 0 \\ 1 \le \sqrt{2} = 0;  1 \ge 0 $ | $d = 1 \begin{cases} I > 0 \text{ ou} \\ se V = 0; I \le 0 \\ I \le 0 \end{cases}$<br>se V > 0; I = 0<br>se I < 0; V = 0<br>d = 0<br>se I = 0; V \ge 0<br>VxI = 0 (sempre) |                                                                                |  |
| (tiristor)                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                                            | (tiristor dual)                                                                |  |

Fig. 1.4. Dualidade de chaves ideais.

Um exemplo de como obter a dualidade de uma chave ideal, considere o diodo da primeira coluna. Este diodo admite corrente direta  $I^* \ge 0$ , não suporta tensão direta  $V^* \le 0$  e não gera nem absorve potência  $I^*xV^*=0$ . O componente dual é obtido através do intercâmbio das formas de ondas de tensão e corrente. Portanto, admite tensão reversa  $V\ge 0$ , não suporta corrente reversa  $I\le 0$  e tem tensão nula ou corrente nula em qualquer instante VxI=0. O componente com estas características é simplesmente outro diodo com orientação contrária ao componente original.

## 1.4) CONCEPÇÃO DA ESTRUTURA PROPOSTA

A topologia proposta neste trabalho é concebida a partir da dualização do conversor apresentado na Fig. 1.5 [1,2].



Fig. 1.5. Conversor com modulação PWM assimétrica e comutação ZVS.

Este conversor apresenta as seguintes propriedades:

(a) entrada com característica de tensão e saída em corrente;

(b) as chaves são bidirecionais em corrente e unidirecionais em tensão, próprias para o uso do tiristor dual;

(c) a comutação ocorre sob tensão nula com energia armazenada na indutância Lp\* que incorpora a indutância de dispersão do transformador;

(d) modulação por largura de pulso (PWM);

(e) apresenta baixas perdas de condução, pois não usa a ressonância como meio de transferência de energia;

(f) utiliza apenas duas chaves ativas;

É importante frisar uma importante característica deste conversor que é a comutação suave com frequência constante utilizando apenas duas chaves ativas. Esta propriedade é garantida graças ao comando assimétrico usado para o par de chaves S1\* e S2\*.

Estas características incentivaram o estudo da estrutura dual que será derivada a seguir. Dualmente, espera-se que as propriedades mencionadas acima sejam mantidas e desta forma indiquem uma possível aplicação prática da nova estrutura. O circuito da Fig. 1.5 pode ser referido para o primário do transformador e redesenhado de outra maneira já com os nós do circuito dual alocados, conforme apresenta a Fig. 1.6(a).



Fig. 1.6. Circuito original referido ao primário e circuito dual.

Através do algoritmo descrito anteriormente e dos conceitos básicos de dualidade rapidamente discutidos obtém-se o circuito dual apresentado na Fig. 1.6(b)

O circuito dual desenhado de outra maneira é apresentado na Fig. 1.7.



Fig. 1.7. Circuito dual proposto.

Algumas características deste conversor podem ser intuitivamente estabelecidas e outras por inspeção visual:

(a) entrada com característica de corrente e saída em tensão;

(b) as chaves são bidirecionais em tensão e unidirecionais em corrente, próprias para o uso do tiristor;

(c) a comutação das chaves S1 e S2 ocorrerá sob corrente nula com energia armazenada no capacitor Cp;

(d) modulação por largura de pulso (PWM);

(e) apresenta baixas perdas de condução, pois não usa a ressonância como meio de transferência de energia;

(f) utiliza apenas duas chaves ativas;

(g) o comando não necessita ser isolado, pois os gates dos IGBT's estão na mesma referência.

Durante o restante do trabalho este conversor será analisado estabelecendo-se as principais relações e ábacos para projeto.

## 1.5) CONCLUSÃO

A dualidade, quando bem explorada torna-se um ferramenta poderosa na concepção, análise e predição das principais propriedades de novas topologias.

Através de um estudo simplificado foi possível traçar um perfil das relações duais mais comumente usadas em eletrônica de potência.

Um simples algoritmo permite obter corretamente a dualidade de circuitos que possuam planaridade em toda a sua rede topológica.

A estrutura proposta para o estudo foi introduzida neste capítulo, juntamente com as principais características que devem garantir uma performance que indique uma possível aplicação prática do conversor

# CAPÍTULO 2

# Fonte Chaveada Alimentada em Corrente, Modulação PWM Assimétrica e Comutação Dissipativa

# 2) FONTE CHAVEADA ALIMENTADA EM CORRENTE, MODULAÇÃO PWM Assimétrica e Comutação Dissipativa

## 2.1) INTRODUÇÃO

Neste capítulo, será estudado o conversor anteriormente obtido via dualidade. Inicialmente, será discutido o princípio de operação do conversor, onde serão estabelecidos quatro modos distintos de operação.

Em seguida cada modo será analisado quantitativamente determinando as principais relações que permitem traçar graficamente a característica externa do conversor.

## 2.2) DESCRIÇÃO DO CIRCUITO PROPOSTO

O circuito proposto está mostrado na Fig. 2.1. Este conversor opera com comutação dissipativa em virtude da ausência do capacitor Cp que deveria ficar em paralelo com o transformador a fim de armazenar energia para a comutação.



Fig. 2.1. Conversor CC/CC PWM alimentado em corrente.

A fonte Vin e o indutor Ls formam a fonte de alimentação com característica de corrente. As chaves S1 e S2 são chaves unidirecionais em corrente, formadas pela composição série dos componentes diodo e IGBT. O transformador Tr isola os estágios de entrada e saída. A relação de transformação é dada por Np/Ns e o balanço de fluxo magnético é realizado pelo capacitor de balanço Cbs. Os diodos D1, D2, D3 e D4 formam a ponte retificadora de saída. O filtro de saída é representado pelo capacitor Cos e a carga equivalente pelo resistor Ros.

Algumas vantagens iniciais desta estrutura são evidentes:

- (a) estrutura isolada;
- (b) operação em frequência fixa com modulação PWM;
- (c) utiliza apenas duas chaves ativas;
- (d) o comando não necessita ser isolado;
- (e) as perdas de condução são similares àquelas apresentadas pelos conversores CC/CC PWM convencionais.

O conversor ainda opera com comutação dissipativa e outras desvantagens serão discutidas à medida que se tornarem evidentes.

A análise que segue será baseada no circuito refletido para o primário do transformador, mostrado na Fig. 2.2, onde o transformador está representado através de sua indutância magnetizante Lm.



Fig. 2.2. Circuito proposto refletido para o primário do transformador.

Definindo-se a relação de transformação pela eq. (2.1), resulta:

$$n = \frac{Np}{Ns} \quad (2.1)$$

Logo, os parâmetros referidos ao primário são:

$$Cb = \frac{Cos}{n^2} \quad (2.2)$$

$$Co = \frac{Cos}{n^2} \quad (2.3)$$

$$Ro = Ros \times n^2 \quad (2.4)$$

$$Vc = Vcs \times n \quad (2.5)$$

$$Vo = Vos \times n \quad (2.6)$$

Cbs

Onde:

n : relação de transformação;

Np : número de espiras do primário;

Ns : número de espiras do secundário;

Cb : capacitor de balanço refletido ao primário;

Co : capacitor de filtragem refletido ao primário;

Ro : resistência equivalente de carga refletida ao primário;

Vc : tensão média sobre o capacitor Cb refletida ao primário;

Vo : tensão de saída refletida ao primário.

## 2.3) ESTUDO QUALITATIVO DOS MODOS DE OPERAÇÃO

A fim de simplificar a análise, são feitas as seguintes considerações:

(a) todos os semicondutores são ideais;

(b) a tensão de saída Vo é constante;

(c) o capacitor de balanço Cb é considerado uma fonte ideal de tensão, cujo valor é Vc;

(d) a comutação é instantânea.

#### 2.3.1) CONFIGURAÇÕES TOPOLÓGICAS POSSÍVEIS

O conversor pode assumir quatro configurações topológicas distintas, que combinadas adequadamente geram os modos de operação identificados via simulação digital. A Fig. 2.3 mostra as configurações topológicas que o conversor <u>pode assumir</u> num período de chaveamento.



Fig. 2.3. Configurações topológicas que o conversor <u>pode</u> <u>assumir</u> num período de chaveamento.

A seguir descreve-se qualitativamente as configurações topológicas que o conversor pode assumir.

Configuração 1, Fig. 2.3(a). Crescimento linear da corrente de entrada e desmagnetização linear do transformador.

Nesta configuração, o IGBT1 e o diodo DIG1 estão conduzindo a corrente de entrada que cresce linearmente com o tempo segundo a taxa Vin/Ls. A corrente através da indutância magnetizante decresce linearmente com o tempo segundo a taxa (Vo+Vc)/Lm, caracterizando a desmagnetização do transformador. Esta energia é transferida para a saída através de D2 e D4.

Configuração 2, Fig. 2.3(b). Crescimento linear da corrente de entrada.

A carga é suprida pela energia armazenada no filtro de saída. O IGBT1 e o diodo DIG1 conduzem a corrente de entrada que cresce linearmente com o tempo segundo a taxa Vin/Ls.

Configuração 3, Fig. 2.3(c). Decrescimento linear da corrente de entrada e magnetização linear do transformador.

Nesta configuração, a corrente de entrada decresce linearmente com o tempo através do IGBT2 e do diodo DIG2 segundo a taxa (Vo-Vc-Vin)/Lin. Esta energia é transferida, parte para a

saída através dos diodos D1 e D3, e parte para a magnetização do transformador, cuja corrente magnetizante cresce linearmente com o tempo segundo a taxa (Vo-Vc)/Lm.

Configuração 4, Fig. 2.3(d). Crescimento linear da corrente de entrada e da corrente magnetizante.

Nesta configuração, a corrente de entrada e a corrente magnetizante crescem linearmente com o tempo através do IGBT2 e do diodo DIG2. A carga é suprida pelo filtro de saída.

#### 2.3.2) GERAÇÃO DOS MODOS DE OPERAÇÃO

Os modos de operação são gerados a partir das configurações descritas anteriormente. O resultado das combinações possíveis está mostrado na Fig. 2.4. Nesta figura, as setas indicam a sequência em que cada configuração topológica é assumida pelo conversor. A combinação das sequências forma o modo de operação em questão. O intervalo de duração de cada configuração topológica também está indicado.



Fig. 2.4. Geração dos modos de operação considerando as configurações topológicas descritas.

#### 2.4) ESTUDO QUANTITATIVO DOS MODOS DE OPERAÇÃO

Este item estuda matematicamente os modos de operação, estabelecendo as relações entre as diversas variáveis de interesse. O objetivo é determinar a característica externa do conversor. Para tanto, cada modo será analisado e o resultado final será obtido concatenando-se os resultados parciais.

#### 2.4.1) MODO I DE OPERAÇÃO

As formas de ondas típicas para este modo de operação estão mostradas na Fig. 2.5.


Fig. 2.5. Formas de ondas típicas para o modo I de operação.

Considerando a Fig. 2.5(a), para que ocorra o balanço de fluxo magnético sobre o indutor de entrada Ls, a igualdade da eq. (2.7) deve ser observada, ou seja, a tensão média sobre o indutor Ls deve ser nula.

$$\int_0^{T_s} v Ls(t) \times dt = 0 \quad (2.7)$$

Integrando a forma de onda mostrada na Fig. 2.5(a), resulta:

$$\operatorname{Vin} \times (t1 - t_0) = (\operatorname{Vo} - \operatorname{Vc} - \operatorname{Vin}) \times (t2 - t1) \quad (2.8)$$

Onde

t1-to : tempo de condução do IGBT1;

t2-t1 : tempo de condução do IGBT2.

Normalizando a eq. (2.8), resulta:

$$\left(\overline{\mathrm{Vo}}-\overline{\mathrm{Vc}}-1\right)=\frac{\mathrm{D}}{1-\mathrm{D}}$$
 (2.9)

Onde:

$$D = \frac{t1 - to}{Ts} \quad (2.10)$$
$$\overline{Vo} = \frac{Vo}{Vin} \quad (2.11)$$
$$\overline{Vc} = \frac{Vc}{Vin} \quad (2.12)$$

D : razão cíclica de operação do IGBT1;

Ts : período de chaveamento.

Analogamente, para que ocorra o balanço de fluxo magnético no transformador, o valor médio da forma de onda mostrada na Fig. 2.5(c) deve ser nulo, logo:

$$(\mathbf{Vo} + \mathbf{Vc}) \times (\mathbf{t1} - \mathbf{to}) = (\mathbf{Vo} - \mathbf{Vc}) \times (\mathbf{t2} - \mathbf{t1})$$
 (2.13)

Normalizando a eq. (2.13), tem-se:

$$\left(\overline{\mathbf{Vo}} + \overline{\mathbf{Vc}}\right) \times \mathbf{D} = \left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}}\right) \times (1 - \mathbf{D})$$
 (2.14)

Das equações (2.9) e (2.14), resultam:

$$\overline{\mathbf{Vc}} = \frac{1 - 2 \times \mathbf{D}}{2 \times \mathbf{D} \times (1 - \mathbf{D})} \quad (2.15)$$

$$\overline{\mathbf{Vo}} = \frac{1}{2 \times \mathbf{D} \times (1 - \mathbf{D})} \quad (2.16)$$

A eq. (2.15) é a tensão média normalizada sobre o capacitor Cb, cujo valor é função da razão cíclica D e deve se ajustar de forma a manter o balanço de fluxo magnético sobre o transformador. Esta equação está representada graficamente na Fig. 2.6.

A eq. (2.16) representa a característica de transferência do conversor CC/CC PWM alimentado em corrente. Este conversor apresenta uma característica elevadora de tensão, onde a tensão de saída é sempre maior ou igual ao dobro da tensão de entrada, como mostra a Fig. 2.7.

A tensão de saída é independente da carga, ou seja, o conversor é transparente neste modo I de operação.



Fig. 2.6. Tensão média normalizada sobre o capacitor Cb em função da razão cíclica D.



Fig. 2.7. Característica de transferência do conversor CC/CC PWM alimentado em corrente.

### 2.4.2) MODO II DE OPERAÇÃO

As principais formas de ondas estão mostradas na Fig. 2.8.

A eq. (2.17) representa o resultado do balanço de fluxo magnético no indutor de entrada Ls realizado sobre a forma de onda mostrada na Fig. 2.8(a)

$$Vin \times (t1-to) + Vs \times (t2-t2') = (Vo - Vc - Vin) \times (t2'-t1)$$
 (2.17)

$$t1 - to = D \times Ts$$
 (2.18)  
 $t2' - t1 = \Delta tr1$  (2.19)



Fig. 2.8. Formas de ondas típicas para o modo II de operação.

Substituindo (2.18), (2.19) e (2.20) em (2.17) e resolvendo para  $\Delta$ tr1, resulta a eq. (2.21) em sua forma normalizada:

$$\overline{\Delta tr1} = \frac{\mathbf{D} + \mathbf{Vs} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} + \overline{\mathbf{Vs}} - 1} \quad (2.21)$$

Onde:

$$\overline{\Delta tr1} = \frac{\Delta tr1}{Ts} \quad (2.22)$$

Para a configuração topológica (4), Fig. 2.3(d), pode-se escrever:

$$Vs = \frac{Ls}{Ls + Lm} \times Vin \quad (2.23)$$
$$Vm = \frac{Lm}{Ls + Lm} \times Vin \quad (2.24)$$
$$Vin = Vs + Vm \quad (2.25)$$

Onde:

Vs : tensão sobre o indutor de entrada na configuração (4), Fig. 2.3(d);

Vm : tensão sobre a indutância magnetizante na configuração (4), Fig. 2.3(d).

Definindo-se:

$$\mathbf{K} = \frac{\mathbf{Lm}}{\mathbf{Ls}} \quad (2.26)$$

K : razão entre a indutância magnetizante e a indutância de entrada.

Substituindo (2.26) em (2.23) e (2.24), resultam as equações (2.27) e (2.28) em sua forma normalizada:

$$\overline{Vs} = \frac{Vs}{Vin} = \frac{1}{1+K} \quad (2.27)$$
$$\overline{Vm} = \frac{Vm}{Vin} = \frac{K}{1+K} \quad (2.28)$$

Onde:

$$1 = \overline{Vs} + \overline{Vm} \quad (2.29)$$

Através da forma de onda da tensão sobre a indutância magnetizante do transformador mostrada na Fig. 2.8(c), resulta, do balanço de fluxo magnético, a eq. (2.30):

$$\overline{\mathbf{Vc}} = \frac{1 - \mathbf{D} \times \overline{\mathbf{Vo}}}{\mathbf{D}} \quad (2.30)$$

A corrente média de saída normalizada é obtida através da Fig. 2.8(e). Evidentemente o valor médio da corrente de saída é calculado sobre a forma de onda da corrente retificada.

$$\gamma = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \overline{\Delta tr1}^{2} \quad (2.31)$$

$$\gamma = \frac{Io \times Ls}{Vin \times Ts} \quad (2.32)$$

Io : corrente média de saída referida ao primário.

Finalmente, as equações que definem a característica externa do conversor para o modo II de operação podem ser reunidas em um sistema de equações não-lineares que deve ser resolvido numericamente.

$$\gamma = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \overline{\Delta tr1}^{2} \quad (2.33)$$
$$\overline{Vc} = \frac{1 - D \times \overline{Vo}}{D} \quad (2.34)$$
$$\overline{\Delta tr1} = \frac{D + \overline{Vs} \times (1 - D)}{\overline{Vo} - \overline{Vc} + \overline{Vs} - 1} \quad (2.35)$$

Neste sistema de equações a razão cíclica D é a variável de controle e K deve ser fixado. Observa-se que a tensão de saída é função da corrente de carga, característica típica dos conversores em condução descontínua.

#### 2.4.3) MODO III DE OPERAÇÃO

As formas de ondas típicas geradas pelo conversor operando neste modo estão mostradas na Fig. 2.9.

Para que o balanço de fluxo magnético no indutor de entrada Ls seja realizado, a sua tensão média deve ser nula. Portanto, através da forma de onda mostrada na Fig. 2.9(a), obtém-se

$$Vin \times (t1 - to) = (Vo - Vc - Vin) \times (t2 - t1)$$
 (2.36)

Onde:

$$t1 - to = D \times Ts$$
 (2.37)  
 $t2 - t1 = (1 - D) \times Ts$  (2.38)

Normalizando a eq. (2.36), resulta:

$$\overline{\mathrm{Vc}} = \overline{\mathrm{Vo}} - \frac{1}{1 - \mathrm{D}} \quad (2.39)$$



Fig. 2.9. Formas de ondas típicas para o modo III de operação.

Da mesma maneira, para o balanço de fluxo magnético no transformador, pode-se obter através da forma de onda mostrada na Fig. 2.9(c) o seguinte resultado:

$$(\mathbf{Vo} + \mathbf{Vc}) \times (\mathbf{t1'} - \mathbf{to}) = (\mathbf{Vo} - \mathbf{Vc}) \times (\mathbf{t2} - \mathbf{t1}) \quad (2.40)$$

Onde:

$$t1' - to = \Delta tf 1$$
 (2.41)

Substituindo (2.41) em (2.40), resulta a eq. (2.42) em sua forma normalizada:

$$\overline{\Delta tf1} = (1-D) \times \frac{\overline{Vo} - \overline{Vc}}{\overline{Vo} + \overline{Vc}} \quad (2.42)$$

Onde:

$$\overline{\Delta tf1} = \frac{\Delta tf1}{Ts} \quad (2.43)$$

A corrente média de saída normalizada é obtida através da Fig. 2.9(e). Evidentemente o valor médio da corrente de saída é calculado sobre a forma de onda retificada.

$$\gamma = \left(\frac{1-D}{K}\right) \times \left(\frac{\overline{Vo} - \overline{Vc}}{\overline{Vo} + \overline{Vc}}\right) \quad (2.44)$$

Finalmente, as equações que definem a característica externa do conversor para o modo III de operação podem ser reunidas em um sistema de equações não-lineares que deve ser resolvido numericamente.

$$\gamma = \left(\frac{1-D}{K}\right) \times \left(\frac{\overline{Vo} - \overline{Vc}}{\overline{Vo} + \overline{Vc}}\right) \quad (2.45)$$
$$\overline{Vc} = \overline{Vo} - \frac{1}{1-D} \quad (2.46)$$
$$\overline{Vo} - \overline{Vc}$$

$$\overline{\Delta tf 1} = (1 - D) \times \frac{Vo - Vc}{Vo + Vc} \quad (2.47)$$

Novamente, a tensão de saída é dependente da corrente de carga.

### 2.4.4) MODO IV DE OPERAÇÃO

A análise deste item tem como base as formas de ondas da Fig. 2.10.

Inicialmente, o balanço de fluxo magnético no indutor de entrada Ls fornece o resultado expresso na eq. (2.48).

$$Vin \times (t1 - to) + Vs \times (t2 - t2') = (Vo - Vc - Vin) \times (t2' - t1)$$
 (2.48)

Onde:

$$t1 - to = D \times Ts$$
 (2.49)  
 $t2' - t1 = \Delta tr1$  (2.50)  
 $t2 - t2' = \Delta tr2 = (1 - D) \times Ts - \Delta tr1$  (2.51)

Substituindo (2.49), (2.50) e (2.51) em (2.48), resulta a eq. (2.52) em sua forma normalizada.

$$\overline{\Delta tr1} = \frac{\mathbf{D} + \overline{\mathbf{Vs}} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \overline{\mathbf{Vc}} + \overline{\mathbf{Vs}} - 1}} \quad (2.52)$$



Fig. 2.10. Formas de ondas típicas para o modo IV de operação.

A eq. (2.53) é obtida através do balanço de fluxo magnético no ramo magnetizante do transformador representado pela indutância magnetizante Lm, cuja forma de onda da tensão está mostrada na Fig. 2.10(c).

$$(Vo - Vc) \times (t2' - t1) + Vm \times (t2 - t2') = (Vo + Vc) \times (t1' - to)$$
 (2.53)

Onde:

$$t1' - to = \Delta tf1$$
 (2.54)

Normalizando a eq. (2.53) e simplificando, resulta:

$$\overline{\Delta tf1} = \frac{1}{\overline{Vo} + \overline{Vc}} \quad (2.55)$$

O balanço de carga elétrica no capacitor Cb produz o resultado em sua forma normalizada dado pela eq. (2.56). Este resultado garante que o valor médio da corrente através do capacitor Cb seja nulo.

27

$$\overline{\Delta tf 1} = \overline{\Delta tr 1} \times \sqrt{\frac{\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1}{\frac{\overline{Vo} + \overline{Vc}}{K}}} \quad (2.56)$$

Retificando-se a forma de onda mostrada na Fig. 2.10(e) e extraindo o seu valor médio, obtém-se a eq. (2.57) que representa a corrente média de saída em sua forma normalizada.

$$\gamma = \left(\frac{\overline{Vo} + \overline{Vc}}{2 \times K}\right) \times \overline{\Delta tf 1}^{2} + \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \frac{\overline{\Delta tr 1}^{2}}{2} \quad (2.57)$$

Finalmente, as equações que definem a característica externa do conversor para o modo IV de operação podem ser reunidas em um sistema de equações não lineares que deve ser resolvido numericamente, onde a tensão de saída é dependente da corrente de carga.

$$\gamma = \left(\frac{\overline{Vo} + \overline{Vc}}{2 \times K}\right) \times \overline{\Delta tf 1}^{2} + \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \frac{\overline{\Delta tr 1}^{2}}{2} \quad (2.58)$$
$$\overline{\Delta tr 1} = \frac{D + \overline{Vs} \times (1 - D)}{\overline{Vo} - \overline{Vc} + \overline{Vs} - 1} \quad (2.59)$$
$$\overline{\Delta tf 1} = \frac{1}{\overline{Vo} + \overline{Vc}} \quad (2.60)$$

$$\overline{\Delta tf 1} = \overline{\Delta tr 1} \times \sqrt{\frac{\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1}{\frac{\overline{Vo} + \overline{Vc}}{K}}}$$
(2.61)

## 2.5) CARACTERÍSTICA EXTERNA DO CONVERSOR CC/CC PWM Alimentado em Corrente

O traçado das curvas seguintes é baseado nos resultados expressos pelas equações obtidas. As curvas traçadas são da tensão de saída normalizada  $\overline{Vo}$  em função da corrente de saída normalizada  $\gamma$  tomando-se D como parâmetro e fixando-se um valor para o fator K. A Fig. 2.11(a) mostra a característica externa para 0,15≤D≤0,45, enquanto a Fig. 2.11(b) mostra a característica externa para 0,55≤D≤0,85. Ambas as curvas são traçadas considerando K=1,0.

Pela característica externa apresentada na figura (2.11), conclui-se:

(a) o conversor opera como elevador de tensão;

(b) o crescimento abrupto das curvas  $\overline{Vo} \times \gamma$  indica que o conversor necessita de carga mínima;

(c) a razão cíclica D é a variável de controle do fluxo de potência,

(d) para uma determinada faixa de carga o conversor é absolutamente transparente, ou seja, possui impedância interna nula. No caso, esta faixa de carga é o próprio modo I de operação.



Fig. 2.11. Característica externa do conversor para K=1,0 e D como parâmetro.

A Fig. 2.12 mostra a influência do fator K sobre a característica externa do conversor. Nesta figura, a razão cíclica de operação foi fixada e o fator K sofreu a variação mostrada.

Verifica-se através da Fig. 2.12 que a faixa de operação no modo I torna-se mais larga, ou seja, o conversor é mais transparente à medida que o fator K sofre um aumento, justificando a escolha de K=1,0 para as curvas traçadas anteriormente.



Fig. 2.12. Influência do fator K sobre a característica externa do conversor para D=0,5.

A Fig. 2.13 mostra a tensão normalizada sobre o capacitor Cb em função da corrente de carga normalizada para K=1,0 e a razão cíclica D como parâmetro. Esta curva representa a variação da tensão Vc para manter o balanço de fluxo magnético do transformador.



Fig. 2.13. Tensão normalizada sobre o capacitor Cb versus corrente de carga para K=1,0 e D como parâmetro.

### 2.6) CONCLUSÃO

Neste capítulo foi estudado um novo conversor CC/CC PWM alimentado em corrente, cuja desvantagem mais evidente é a comutação dissipativa.

Inicialmente, foram estabelecidas as principais vantagens que incentivaram o estudo. Em seguida, foi apresentado um estudo qualitativo do princípio de operação, estabelecendo as configurações topológicas possíveis e gerando, a partir destas, os modos de operação.

O estudo quantitativo estabeleceu as relações de interesse para o traçado da característica externa do conversor, mostrando que o conversor opera como elevador de tensão e a razão cíclica D é a variável de controle do fluxo de potência.

Finalizando, foi apresentado um estudo que mostrou a influência exercida pelo fator K sobre a característica externa do conversor, onde o aumento de K aumenta a faixa de carga sob a qual o conversor opera no modo I, ou seja, opera como conversor transparente. Assim, a escolha do fator K=1,0 para o traçado das curvas obtidas fica justificada, visto que para este valor a faixa de operação como conversor transparente torna-se suficientemente larga.



Biblioteca Universitária U F S C

### 3) FONTE CHAVEADA ALIMENTADA EM CORRENTE: ESFORÇOS, Projeto e Simulação

### 3.1)INTRODUÇÃO

O objetivo deste capítulo é estabelecer as relações de projeto do conversor que foi caracterizado anteriormente. Estas relações são colocadas em gráficos com o intuito de facilitar o projeto propriamente dito.

Os resultados de simulação validam a análise realizada.

Finalmente, é estudado a influência causada pela indutância de dispersão na operação do conversor, introduzindo as relações básicas do projeto do circuito grampeador de tensão que ameniza as elevadas sobretensões produzidas pela dispersão durante o bloqueio das chaves.

## 3.2) ESFORÇOS DE TENSÃO E CORRENTE SOBRE AS CHAVES S1 E S2

### 3.2.1) TENSÃO MÁXIMA SOBRE AS CHAVES S1 E S2

As chaves principais são formadas pela combinação série dos componentes diodo e IGBT Portanto, quando for referenciado o termo <u>chave</u>, deve-se entender como o arranjo de componentes descrito acima e mostrado na Fig. 3.1.



Fig. 3.1. Arranjo físico das chaves principais S1 e S2.

As equações (3.1) e (3.2), normalizadas, determinam os valores máximos de tensão sobre as chaves S1 e S2, respectivamente.

$$\overline{Vs1m\acute{a}x} = \overline{Vo} - \overline{Vc} \quad (3.1)$$
$$\overline{Vs2m\acute{a}x} = \overline{Vo} - \overline{Vc} \quad (3.2)$$

Onde:

$$\overline{\text{Vs1máx}} = \frac{\text{Vs1máx}}{\text{Vin}} \quad (3.3)$$

$$\overline{\text{Vs2máx}} = \frac{\text{Vs2máx}}{\text{Vin}} \quad (3.4)$$

Vs1máx : tensão máxima sobre a chave S1;

Vs2máx : tensão máxima sobre a chave S2.

As equações (3.1) e (3.2) estão representadas graficamente na Fig. 3.2.

Através da figura pode-se destacar o seguinte:

(a) as chaves são submetidas a tensões elevadas;

(b) as tensões sobre as chaves crescem abruptamente para baixos valores de carga;

(c) a tensão máxima sobre a chave S1 aumenta com o aumento da razão cíclica;

(d) a tensão máxima sobre a chave S2 decresce com o aumento da razão cíclica.

De acordo com a análise acima, verifica-se que as chaves ficam submetidas a elevados níveis de tensão. Portanto, se fosse utilizado o Mosfet na implementação das chaves S1 e S2, a sua alta resistência de condução causaria grandes perdas. Assim, justifica-se o uso do IGBT na implementação das chaves principais S1 e S2.



Fig. 3.2. Tensão máxima normalizada sobre as chaves S1 e S2 em função da corrente normalizada de carga para K=1,0 e D como parâmetro.

### 3.2.2) CORRENTE MÉDIA ATRAVÉS DAS CHAVES S1 E S2

As formas de ondas mostradas na Fig. 3.3 são usadas na análise que segue.

3.2.2.1) Corrente Média Através das Chaves S1 e S2 para o Modo I de Operação

Considerando as formas de ondas da Fig. 3.3(a), tem-se



Fig. 3.3. Formas de ondas de corrente em S1, S2 e Lm para os quatro modos de operação

Onde:

$$\overline{\text{IS1}} = \frac{\text{IS1} \times \text{Ls}}{\text{Vin} \times \text{Ts}} \quad (3.7)$$

$$\overline{\text{IS2}} = \frac{\text{IS2} \times \text{Ls}}{\text{Vin} \times \text{Ts}} \quad (3.8)$$

IS1 : corrente média através chave S1;

IS2 : corrente média através chave S2.

# 3.2.2.2) Corrente Média Através das Chaves S1 e S2 para o Modo II de Operação

As equações (3.9) e (3.10) são obtidas através das formas de ondas da Fig. 3.3(b).

$$\overline{IS1} = \mathbf{D} \times \overline{\mathbf{Vo}} \times \mathbf{\gamma} - \frac{\overline{\Delta tr1}}{2} \times \left[ \left( \overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} \right) \times \left( \mathbf{D}^2 - \mathbf{D} \right) + \mathbf{D} \right] \quad (3.9)$$
$$\overline{IS2} = (1 - \mathbf{D}) \times \overline{\mathbf{Vo}} \times \mathbf{\gamma} + \frac{\overline{\Delta tr1}}{2} \times \left[ \left( \overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} \right) \times \left( \mathbf{D}^2 - \mathbf{D} \right) + \mathbf{D} \right] \quad (3.10)$$

Onde:

$$\overline{\Delta tr1} = \frac{\mathbf{D} + \mathbf{Vs} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \mathbf{Vc} + \mathbf{Vs} - 1}} \quad (3.11)$$

3.2.2.3) Corrente Média Através das Chaves S1 e S2 para o Modo III de Operação

De acordo com as formas de ondas mostradas na Fig. 3.3(c), obtém-se:

$$IS1 = D \times Vo \times \gamma \quad (3.12)$$
$$\overline{IS2} = (1 - D) \times \overline{Vo} \times \gamma \quad (3.13)$$

3.2.2.4) Corrente Média Através das Chaves S1 e S2 para o Modo IV de Operação

Analogamente, para o modo IV, obtém-se:

$$\overline{IS1} = \mathbf{D} \times \overline{Vo} \times \gamma - \frac{\overline{\Delta tr1}}{2} \times \left[ \left( \overline{Vo} - \overline{Vc} \right) \times \left( \mathbf{D}^2 - \mathbf{D} \right) + \mathbf{D} \right] \quad (3.14)$$
$$\overline{IS2} = (1 - \mathbf{D}) \times \overline{Vo} \times \gamma + \frac{\overline{\Delta tr1}}{2} \times \left[ \left( \overline{Vo} - \overline{Vc} \right) \times \left( \mathbf{D}^2 - \mathbf{D} \right) + \mathbf{D} \right] \quad (3.15)$$

As equações obtidas anteriormente estão representadas graficamente na Fig. 3.4 em função da corrente de carga normalizada, para K=1.0 e D como parâmetro.



Fig. 3.4. Corrente média através das chaves SI e S2 em função da corrente de carga normalizada para K=1,0 e D como parâmetro.

### 3.2.3) CORRENTE EFICAZ ATRAVÉS DAS CHAVES S1 E S2

Este item também é baseado nas formas de ondas mostradas na Fig. 3.3.

3.2.3.1) Corrente Eficaz Através das Chaves S1 e S2 para o Modo I de Operação

Através da Fig. 3.3(a) pode-se determinar a forma normalizada das equações mostradas abaixo.

$$\overline{\mathbf{IS1ef}} = \sqrt{\frac{\mathbf{D}^{3}}{12} + (\overline{\mathbf{Vo}} \times \gamma)^{2} \times \mathbf{D}} \quad (3.16)$$
$$\overline{\mathbf{IS2ef}} = \sqrt{(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1) \times \frac{(1 - \mathbf{D})^{3}}{12} + (\overline{\mathbf{Vo}} \times \gamma)^{2} \times (1 - \mathbf{D})} \quad (3.17)$$

)

Onde:

$$\overline{\text{IS1ef}} = \frac{\text{IS1ef} \times \text{Ls}}{\text{Vin} \times \text{Ts}} \quad (3.18)$$

$$\overline{\text{IS2ef}} = \frac{\text{IS2ef} \times \text{Ls}}{\text{Vin} \times \text{TS}} \quad (3.19)$$

IS1ef : Corrente eficaz através da chave S1;

IS2ef : Corrente eficaz através da chave S2.

3.2.3.2) Corrente Eficaz Através das Chaves S1 e S2 para o Modo II de Operação

Considere as formas de ondas mostradas na Fig. 3.3(b). Da análise determina-se as equações descritas abaixo.

$$\overline{\text{IS1ef}} = \sqrt{\frac{\text{D}^3}{3} + \overline{\text{lit}} \times \text{D}^2 + \overline{\text{lit}}^2 \times \text{D}} \quad (3.20)$$

Onde, Iit está indicada na Fig. 3.3(b) e obedece a expressão normalizada seguinte:

$$\overline{\text{lit}} = \left[\frac{\mathbf{D} \times \left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}}\right) - \overline{\mathbf{Vs}}}{2}\right] \times \overline{\Delta \text{tr} \mathbf{1}} + \frac{(1 - \mathbf{D}) \times \overline{\mathbf{Vs}}}{2} + \overline{\mathbf{Vo}} \times \gamma \quad (3.21)$$

Para a chave S2 a análise resultante está descrita a seguir.

$$\overline{\mathrm{IS2ef}} = \sqrt{\overline{\mathrm{I1}}^2 + \overline{\mathrm{I2}}^2} \quad (3.22)$$

$$\overline{\mathbf{I1}} = \sqrt{\left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right)^2 \times \frac{\overline{\Delta tr1}^3}{3} - \left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right) \times \overline{\operatorname{limáx}} \times \overline{\Delta tr1}^2 + \overline{\operatorname{limáx}}^2 \times \overline{\Delta tr1}} \quad (3.23)$$

$$\overline{12} = \sqrt{\overline{Vs}^2} \times \frac{\left(1 - D - \overline{\Delta tr 1}\right)^3}{3} + \overline{Vs} \times \overline{\lim n} \times \left(1 - D - \overline{\Delta tr 1}\right)^2 + \overline{\lim n}^2 \times \left(1 - D - \overline{\Delta tr 1}\right)$$
(3.24)

$$\overline{\lim \Delta x} = \left[\frac{\mathbf{D} \times \left(\overline{\mathbf{Vc}} - \overline{\mathbf{Vo}}\right) - \overline{\mathbf{Vs}}}{2}\right] \times \overline{\Delta tr \mathbf{1}} + \left(\frac{1 - \mathbf{D}}{2}\right) \times \overline{\mathbf{Vs}} + \mathbf{D} + \overline{\mathbf{Vo}} \times \gamma \quad (3.25)$$

$$\overline{\lim n} = \left[\frac{\mathbf{D} \times \left(\overline{\mathbf{Vc}} - \overline{\mathbf{Vo}}\right) + \overline{\mathbf{Vs}}}{2}\right] \times \overline{\Delta tr1} - \left(\frac{1-\mathbf{D}}{2}\right) \times \overline{\mathbf{Vs}} + \overline{\mathbf{Vo}} \times \gamma \quad (3.26)$$

$$\overline{\mathrm{Vs}} = \frac{1}{1+\mathrm{K}} \quad (3.27)$$

$$\overline{\Delta tr 1} = \frac{\mathbf{D} + \mathbf{Vs} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \mathbf{Vc} + \mathbf{Vs} - 1}} \quad (3.28)$$

3.2.3.3) Corrente Eficaz Através das Chaves S1 e S2 para o Modo III de Operação

Para este modo, as formas de ondas estão mostradas na Fig. 3.3(c). A análise determina as expressões mostradas a seguir.

$$\overline{1S1ef} = \sqrt{\frac{D^3}{12} + (\overline{Vo} \times \gamma)^2 \times D} \quad (3.29)$$

$$\overline{\mathbf{IS2ef}} = \sqrt{\left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - \mathbf{I}\right) \times \frac{\left(\mathbf{1} - \mathbf{D}\right)^2}{\mathbf{12}} + \left(\overline{\mathbf{Vo}} \times \gamma\right)^2 \times (\mathbf{1} - \mathbf{D}) \quad (3.30)$$

3.2.3.4) Corrente Eficaz Através das Chaves S1 e S2 para o Modo IV de operação

Este modo de operação é analisado a partir das formas de ondas mostradas na Fig. 3.3(d). Como resultados, são derivadas as expressões descritas a seguir.

$$\overline{1S1ef} = \sqrt{\frac{D^3}{3} + \overline{1it} \times D^2 + \overline{1it}^2 \times D} \quad (3.31)$$

Onde:

$$\overline{\text{lit}} = \left(\frac{\overline{\text{Vo}} - \overline{\text{Vc}}}{K}\right) \times \overline{\Delta \text{tr1}} + \overline{\text{Vs}} \times \left(1 - D - \overline{\Delta \text{tr1}}\right) \quad (3.32)$$

Para a chave S2 a análise resultante está descrita a seguir.

$$\overline{\text{IS2ef}} = \sqrt{\overline{\text{I1}}^2 + \overline{\text{I2}}^2} \quad (3.33)$$

$$\overline{\mathbf{I1}} = \sqrt{\left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right)^2 \times \frac{\overline{\Delta tr1}^3}{3} - \left(\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right) \times \overline{\mathrm{lim}\mathbf{a}\mathbf{x}} \times \overline{\Delta tr1}^2 + \overline{\mathrm{lim}\mathbf{a}\mathbf{x}}^2 \times \overline{\Delta tr1}} \quad (3.34)$$

$$\overline{12} = \sqrt{\overline{Vs}^2} \times \frac{\left(1 - D - \overline{\Delta tr1}\right)^3}{3} + \overline{Vs} \times \overline{\lim n} \times \left(1 - D - \overline{\Delta tr1}\right)^2 + \overline{\lim n}^2 \times \left(1 - D - \overline{\Delta tr1}\right)$$
(3.35)

$$\overline{\lim \acute{ax}} = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \overline{\Delta tr1} \quad (3.36)$$

$$\overline{\lim n} = \left(\frac{\overline{Vo} - \overline{Vc}}{K}\right) \times \overline{\Delta tr1} \quad (3.37)$$

As equações estabelecidas estão representadas graficamente nas figuras 3.5 e 3.6.



Fig. 3.5. Corrente eficaz normalizada na chave S1 para K=1,0 e D como parâmetro.



Fig. 3.6. Corrente eficaz normalizada na chave S2 para K=1,0 e D como parâmetro.

## **3.3)** Esforços de Tensão e Corrente sobre os Diodos da Ponte Retificadora de Saída

Este tópico analisa os esforços de tensão e corrente sobre os diodos da ponte retificadora. A ponte é formada pelos diodos D1, D2, D3 e D4. Os diodos D1 e D3 são denominados diodos ímpares e estão habilitados a conduzir corrente na ocasião em que a chave S2 estiver conduzindo. Os diodos D2 e D4 são denominados diodos pares e estão habilitados a conduzir corrente na ocasião em que a chave S1 estiver conduzindo, ou seja, apenas na desmagnetização do transformador.

#### 3.3.1) TENSÃO DE PICO INVERSA MÁXIMA

Quando os diodos pares estão conduzindo, a tensão reversa aplicada sobre os diodos ímpares é a própria tensão de saída. Analogamente, quando os diodos ímpares conduzem, a tensão reversa aplicada sobre os diodos pares é igual a tensão de saída. Logo:

#### $Vpiv = Vo \quad (3.38)$

Vpiv : Tensão de pico inversa máxima aplicada sobre os diodos da ponte retificadora.

3.3.2) CORRENTE MÉDIA ATRAVÉS DOS DIODOS DA PONTE RETIFICADORA

Considere a Fig. 3.7, mostrada a seguir.



Fig. 3.7. Estágio de saída da fonte chaveada.

Inspecionando-se esta figura conclui-se que os diodos da ponte dividem igualmente a corrente média de saída, visto que a corrente média através de Cb deve ser nula. Logo:

$$\mathbf{Idmd} = \frac{\mathbf{Io}}{2} \quad (3.39)$$

Idmd : Corrente média através dos diodos retificadores.

## 3.3.3) CORRENTE DE PICO REPETITIVA ATRAVÉS DOS DIODOS RETIFICADORES

Neste item, os modos de operação são analisados individualmente e o resultado final é obtido através da concatenação dos resultados parciais. A análise é baseada nas formas de ondas mostradas na Fig. 3.8.

3.3.3.1) Corrente de Pico Repetitiva através dos Diodos Retificadores para o Modo I de Operação

As equações (3.40) e (3.41) são determinadas a partir da Fig.3.8(a).

$$\overline{\text{Idpp}} = \frac{\text{Idpp} \times \text{Ls}}{\text{Vin} \times \text{Ts}} = (1 - D) \times \overline{\text{Vo}} \times \gamma + D \times \left(\frac{\overline{\text{Vo}} + \overline{\text{Vc}}}{2 \times K}\right) \quad (3.40)$$

$$\overline{\text{Idip}} = \frac{\text{Idip} \times}{\text{Vin} \times \text{Ts}} = \frac{D}{2} \times \left(1 + 2 \times \overline{\text{Vo}} \times \gamma + \frac{\overline{\text{Vo}} + \overline{\text{Vc}}}{K}\right) \quad (3.41)$$

Idpp : Corrente de pico repetitiva através dos diodos pares;

Idip : Corrente de pico repetitiva através dos diodos ímpares.

3.3.3.2) CORRENTE DE PICO REPETITIVA ATRAVÉS DOS DIODOS RETIFICADORES PARA O MODO II DE OPERAÇÃO

Segundo a Fig. 3.8(b), pode-se obter as equações abaixo.

$$\overline{Idpp} = \mathbf{D} \times \left(\frac{\overline{Vo} + \overline{Vc}}{2 \times K}\right) - \frac{1}{2 \times D} \times \left[\left(\frac{\overline{Vo} - \overline{Vc}}{2 \times K \times D}\right) - 1\right] \times \overline{\Delta tr1} + \frac{\gamma}{D} \quad (3.42)$$
$$\overline{Idip} = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \overline{\Delta tr1} \quad (3.43)$$

$$\overline{\Delta tr 1} = \frac{\mathbf{D} + \overline{\mathbf{Vs}} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \overline{\mathbf{Vc}} + \overline{\mathbf{Vs}} - 1}} \quad (3.44)$$

3.3.3.3) Corrente de Pico Repetitiva através dos Diodos Retificadores para o Modo III de Operação

Baseando-se na Fig. 3.8(c), chega-se a:



Fig. 3.8. Formas de ondas de iin(t), im(t) e iCb(t) para os quatro modos de operação.

$$\overline{\text{Idpp}} = \overline{\text{Vo}} \times \gamma + \frac{D}{2} \quad (3.45)$$

$$\overline{\text{Idip}} = \left(\frac{\overline{\text{Vo}} - \overline{\text{Vc}}}{K}\right) \times (1 - D) \quad (3.46)$$

3.3.3.4) Corrente de Pico Repetitiva através dos Diodos Retificadores para o Modo IV de Operação

Através da Fig. 3.8(d) determina-se as expressões (3.47) e (3.48).

$$\overline{Idpp} = \left(\frac{\overline{Vo} - \overline{Vc}}{K}\right) \times \overline{\Delta tr1} + \left(\frac{1 - \overline{Vs}}{K}\right) \times \left(1 - D - \overline{\Delta tr1}\right) \quad (3.47)$$
$$\overline{Idip} = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \overline{\Delta tr1} \quad (3.48)$$

Os resultados parciais combinados geram as curvas mostradas na Fig. 3.9.



Fig. 3.9. Corrente de pico repetitiva normalizada através dos diodos retificadores para K=1,0 e D como parâmetro

# 3.4) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE BALANÇO CB

# 3.4.1) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE BALANÇO CB PARA O MODO I DE OPERAÇÃO

As expressões normalizadas (3.49), (3.50) e (3.51) são o resultado da análise feita sobre as formas de ondas mostradas na Fig. 3.8(a).

$$\overline{\text{ICbef}} = \frac{\text{ICbef} \times \text{Ls}}{\text{Vin} \times \text{Ts}} = \sqrt{\overline{11}^2 + \overline{12}^2} \quad (3.49)$$

$$\overline{11} = \sqrt{\left(\frac{\overline{Vo} + \overline{Vc}}{K}\right)^2 \times \frac{D^3}{12} + \left(\overline{Vo} \times \gamma\right)^2 \times D \times (1 - D)^2} \quad (3.50)$$

$$\overline{12} = \sqrt{\left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right)^2 \times \frac{(1-D)^3}{12} + (\overline{Vo} \times \gamma) \times D^2 \times (1-D)}$$
(3.51)

ICbef : corrente eficaz através do capacitor de balanço Cb.

# 3.4.2) Corrente Eficaz através do Capacitor de balanço Cb para o Modo II de Operação

As expressões normalizadas que resultam da análise das formas de ondas da Fig. 3.8(b) estão mostradas a seguir.

$$\overline{\text{ICbef}} = \sqrt{\overline{11}^2 + \overline{12}^2} \quad (3.52)$$

$$\overline{11}^{2} = \sqrt{\left(\frac{\overline{Vo} + \overline{Vc}}{K}\right)^{2} \times \frac{D^{3}}{3} - \left(\frac{\overline{Vo} + \overline{Vc}}{K}\right) \times \overline{\operatorname{Im}\max} \times D^{2} + \overline{\operatorname{Im}\max}^{2} \times D} \quad (3.53)$$

$$\overline{12} = \sqrt{\left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \frac{\overline{\Delta tr1}^3}{3}} \quad (3.54)$$

Onde:

$$\overline{\operatorname{Im} \mathsf{max}} = \left[ \left( \frac{\mathbf{K} + 2}{2 \times \mathbf{K}} \right) \times \overline{\mathbf{Vs}} - \frac{1}{\mathbf{K}} + \frac{\mathbf{D}}{2} \times \left( \overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} \right) \right] \times \overline{\Delta \mathsf{tr1}} - \overline{\mathbf{Vs}} \times \frac{(1 - \mathbf{D}) \times (\mathbf{K} + 2)}{2 \times \mathbf{K}} + \overline{\mathbf{Vo}} \times \gamma + \left( \frac{1 - \mathbf{D}}{\mathbf{K}} \right) \quad (3.55)$$

$$\overline{\Delta tr1} = \frac{\mathbf{D} + \mathbf{Vs} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \mathbf{Vc} + \mathbf{Vs} - 1}} \quad (3.56)$$

### 3.4.3) Corrente Eficaz através do Capacitor de balanço Cb para o Modo III de Operação

Considerando as formas de ondas da Fig. 3.8(c), as expressões normalizadas resultantes são descritas a seguir.

$$\overline{\text{ICbef}} = \sqrt{\overline{\text{I1}}^2 + \overline{\text{I2}}^2} \quad (3.57)$$

$$\overline{11} = \sqrt{\left(\frac{\overline{V0} + \overline{Vc}}{K}\right) \times \frac{\overline{\Delta tf1}^{3}}{3}} \quad (3.58)$$

$$\overline{12} = \sqrt{\left(\frac{\overline{V_0} - \overline{V_c}}{K} + \overline{V_0} - \overline{V_c} - 1\right)^2} \times \frac{(1 - D)^3}{3} - \left(\frac{\overline{V_0} - \overline{V_c}}{K} + \overline{V_0} - \overline{V_c} - 1\right) \times \overline{\lim_{k \to \infty} 1} \times (1 - D)^2 + \overline{\lim_{k \to \infty} 1} \times (1 - D)$$
(3.59)

Onde:

$$\overline{\text{lim}(n)} = \overline{\text{Vo}} \times \gamma + \left(\overline{\text{Vo}} - \overline{\text{Vc}} - 1\right) \times \frac{(1-D)}{2} \quad (3.60)$$

$$\overline{\Delta tf1} = (1-D) \times \left(\frac{\overline{Vo} - \overline{Vc}}{\overline{Vo} + \overline{Vc}}\right) \quad (3.61)$$

3.4.4) Corrente Eficaz através do Capacitor de balanço Cb para o Modo IV de operação

Através da Fig. 3.8(d) determina-se as expressões normalizadas abaixo:

$$\overline{\text{ICbef}} = \sqrt{\overline{\text{I1}}^2 + \overline{\text{I2}}^2} \quad (3.62)$$

$$\overline{11} = \sqrt{\left(\frac{\overline{V0} + \overline{Vc}}{K}\right)^2 \times \frac{\overline{\Delta tf1}^3}{3}} \quad (3.63)$$

$$\overline{12} = \sqrt{\left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \times \frac{\overline{\Delta tr1}^3}{3}} \quad (3.64)$$

Onde:

$$\overline{\Delta tf 1} = \frac{1}{\overline{Vo} + \overline{Vc}} \quad (3.65)$$

$$\overline{\Delta tr 1} = \frac{\mathbf{D} + \mathbf{Vs} \times (1 - \mathbf{D})}{\overline{\mathbf{Vo} - \mathbf{Vc} + \mathbf{Vs} - 1}} \quad (3.66)$$

As expressões determinadas anteriormente estão mostradas graficamente na Fig. 3.10.



Fig. 3.10. Corrente eficaz normalizada através do capacitor de balanço Cb para K=1,0 e D como parâmetro

# 3.5) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE FILTRAGEM CO

### 3.5.1) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo I de Operação

Considerando as formas de ondas da Fig. 3.8(a), obtém-se as equações normalizadas descritas abaixo.

$$\overline{\text{ICoef}} = \frac{\text{ICoef} \times \text{Ls}}{\text{Vin} \times \text{Ts}} = \sqrt{\overline{11}^2 + \overline{12}^2} \quad (3.67)$$

$$\overline{II} = \sqrt{\left(\frac{\overline{Vo} + \overline{Vc}}{K}\right)^2 \times \frac{D^3}{3} - \left(\frac{\overline{Vo} + \overline{Vc}}{K}\right) \times \left(\overline{Im \ max} - \gamma\right) \times D^2 + \left(\overline{Im \ max} - \gamma\right)^2 \times D} \quad (3.68)$$

$$\overline{12} = \sqrt{\overline{Vx} \times \frac{(1-D)^3}{3} - Vx \times (\overline{\lim ax} - \overline{\lim ax} - \gamma) \times (1-D)^2 + (\overline{\lim ax} - \overline{\lim ax} - \gamma)^2 \times (1-D)} \quad (3.69)$$

$$\overline{\mathbf{Vx}} = \left(\frac{\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}}}{\mathbf{K}} + \overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right) \quad (3.70)$$

$$\overline{\lim \Delta x} = \overline{Vo} \times \gamma + \left(\overline{Vo} - \overline{Vc} - 1\right) \times \frac{(1-D)}{2} \quad (3.71)$$

$$\overline{\operatorname{Im}\operatorname{max}} = (1 - \mathbf{D}) \times \overline{\operatorname{Vo}} \times \gamma + \left(\frac{\overline{\operatorname{Vo}} + \overline{\operatorname{Vc}}}{2 \times K}\right) \times \mathbf{D} \quad (3.72)$$

$$\overline{\text{Im min}} = (1 - D) \times \overline{\text{Vo}} \times \gamma - \left(\frac{\overline{\text{Vo}} - \overline{\text{Vc}}}{2 \times K}\right) \times (1 - D) \quad (3.73)$$

ICoef : corrente eficaz através do capacitor de filtragem Co.

### 3.5.2) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE FILTRAGEM CO PARA O MODO II DE OPERAÇÃO

As formas de ondas básicas para a análise estão mostradas na Fig. 3.8(b), cujos resultados mais importantes estão descritos a seguir.

$$\overline{\text{ICoef}} = \sqrt{\overline{\text{II}}^2 + \overline{\text{I2}}^2 + \overline{\text{I3}}^2} \quad (3.74)$$

$$\overline{II} = \sqrt{\left(\frac{\overline{Vo} + \overline{Vc}}{K}\right)^2 \times \frac{D^3}{3} - \left(\frac{\overline{Vo} + \overline{Vc}}{K}\right) \times \left(\overline{Im \ max} - \gamma\right) \times D^2 + \left(\overline{Im \ max} - \gamma\right)^2 \times D \quad (3.75)$$

$$\overline{I2} = \sqrt{\overline{Vx}^2 \times \frac{\overline{\Delta tr1}^3}{3} - \overline{Vx} \times \gamma \times \overline{\Delta tr1}^2 + \gamma^2 \times \overline{\Delta tr1}} \quad (3.76)$$

$$\overline{I3} = \gamma \times \sqrt{1 - D - \overline{\Delta tr1}} \quad (3.77)$$

$$\overline{Vx} = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \quad (3.78)$$

$$\overline{Im \ max} = \left[\left(\frac{K+2}{2 \times K}\right) \times \overline{Vs} - \frac{1}{K} + \frac{D}{2} \times \left(\overline{Vo} - \overline{Vc}\right)\right] \times \overline{\Delta tr1} - \overline{Vs} \times \frac{(1-D) \times (K+2)}{2 \times K} + \overline{Vo} \times \gamma + \left(\frac{1-D}{K}\right) \quad (3.79)$$

$$\overline{\Delta tr1} = \frac{D + \overline{Vs} \times (1-D)}{Vo - \overline{Vc} + \overline{Vs} - 1} \quad (3.80)$$

### 3.5.3) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE FILTRAGEM CO PARA O MODO III DE OPERAÇÃO

Considerando as formas de ondas da Fig. 3.8(c), determina-se as expressões normalizadas descritas a seguir

$$\overline{\text{ICoef}} = \sqrt{\overline{\text{I1}}^2 + \overline{\text{I2}}^2 + \overline{\text{I3}}^2} \quad (3.81)$$

Onde:

$$\overline{11} = \sqrt{\left(\frac{\overline{V0} + \overline{Vc}}{K}\right)^2 \times \frac{\overline{\Delta tf1}^3}{3} - \left(\frac{\overline{V0} + \overline{Vc}}{K}\right) \times \gamma \times \overline{\Delta tf1}^2 + \gamma^2 \times \overline{\Delta tf1}} \quad (3.82)$$
$$\overline{12} = \gamma \times \sqrt{D - \overline{\Delta tf1}} \quad (3.83)$$

$$\overline{13} = \sqrt{\overline{Vx}^2} \times \frac{(1-D)^3}{3} - Vx \times (\overline{\lim ax} - \gamma) \times (1-D)^2 + (\overline{\lim ax} - \gamma)^2 \times (1-D)$$
(3.84)

$$\overline{\mathbf{Vx}} = \left(\frac{\overline{\mathbf{Vo}} - \overline{\mathbf{Vc}}}{\mathbf{K}} + \overline{\mathbf{Vo}} - \overline{\mathbf{Vc}} - 1\right) \quad (3.85)$$

$$\overline{\lim \Delta x} = \overline{Vo} \times \gamma + (\overline{Vo} - \overline{Vc} - 1) \times \frac{(1-D)}{2} \quad (3.86)$$

$$\overline{\Delta tf1} = (1-D) \times \left(\frac{\overline{Vo} - \overline{Vc}}{\overline{Vo} + \overline{Vc}}\right) \quad (3.87)$$

### 3.5.4) Corrente Eficaz através do Capacitor de Filtragem Co para o Modo IV de Operação

Para o modo IV, resulta da análise da corrente eficaz através do capacitor de filtragem Co as expressões descritas a seguir.

$$\overline{1Coef} = \sqrt{\overline{11}^2 + \overline{12}^2 + \overline{13}^2 + \overline{14}^2}$$
 (3.88)

$$\overline{11} = \sqrt{\left(\frac{\overline{Vo} + \overline{Vc}}{K}\right)^2 \times \frac{\overline{\Delta tf1}^3}{3} - \left(\frac{\overline{Vo} + \overline{Vc}}{K}\right) \times \gamma \times \overline{\Delta tf1}^2 + \gamma^2 \times \overline{\Delta tf1}} \quad (3.89)$$

$$\overline{I2} = \gamma \times \sqrt{D - \Delta tf \overline{I}} \quad (3.90)$$

$$\overline{I3} = \sqrt{\overline{Vx}^2 \times \frac{\Delta tr \overline{I}^3}{3} - \overline{Vx} \times \gamma \times \overline{\Delta tr \overline{I}^2} + \gamma^2 \times \overline{\Delta tr \overline{I}} \quad (3.91)$$

$$\overline{I4} = \gamma \cdot \sqrt{1 - D - \overline{\Delta tr \overline{I}}} \quad (3.92)$$

$$\overline{Vx} = \left(\frac{\overline{Vo} - \overline{Vc}}{K} + \overline{Vo} - \overline{Vc} - 1\right) \quad (3.93)$$

$$\overline{\Delta tr \overline{I}} = \frac{D + \overline{Vs} \cdot (1 - D)}{\overline{Vo} - \overline{Vc} + \overline{Vs} - 1} \quad (3.94)$$

$$\overline{\Delta tf \overline{I}} = \frac{1}{\overline{Vo} + \overline{Vc}} \quad (3.95)$$

Finalmente, as equações determinadas previamente estão representadas graficamente na Fig. 3.11.



Fig. 3.11. Corrente eficaz normalizada através do capacitor de filtragem Co para K=1,0 e D como parâmetro.

## **3.6) PROCEDIMENTO E EXEMPLO DE PROJETO**

### 3.6.1) ESPECIFICAÇÕES PARA PROJETO

(a) Tensão de entrada Vin=48V;

(b) Tensão de saída Vo=97V;

50

(c) Potência nominal de saída Po=400W;

(d) Potência mínima de saída Pomín=80W;

(e) Frequência de chaveamento fs=40KHz.

### 3.6.2) CÁLCULO DA RAZÃO CÍCLICA

É interessante limitar a operação do conversor ao modo I, visto que para este modo a tensão de saída não depende da carga. Esta linearidade facilitaria a implementação de uma malha de controle da tensão de saída.

A característica de transferência do conversor é dada pela equação seguinte.

$$\frac{\text{Vo}}{\text{Vin}} = \frac{1}{2 \times D \times (1 - D)} \quad (3.96)$$

A partir de (3.96) e das especificações de projeto, determina-se:

$$D = 0,45$$
 ou  $D = 0,55$  (3.97)

A fim de reduzir a corrente média através da indutância magnetizante Lm é adequado operar o conversor com D>0,5, assim, escolhe-se D=0,55. Esta escolha pode ser justificada através da Fig. 3.4(b) que mostra a corrente média através da chave S2 diminuindo com o aumento da razão cíclica D. Ora, a corrente média através da indutância magnetizante do transformador é a própria corrente média através da chave S2, assim, com o objetivo de reduzir a corrente média através da indutância magnetizante do transformador é a própria corrente média através da chave S2, assim, com o objetivo de reduzir a corrente média através da indutância magnetizante do transformador justifica-se operar o conversor com D>0,5.

## 3.6.3) LOCALIZAÇÃO DA FAIXA DE OPERAÇÃO NA CARACTERÍSTICA DE SAÍDA

(a) Tensão de saída normalizada:

$$\overline{\mathrm{Vo}} = \frac{\mathrm{Vo}}{\mathrm{Vin}} = \frac{97}{48} \cong 2,02 \quad (3.98)$$

(b) Corrente de saída normalizada:

(b.1) Carga mínima:

$$\gamma_{\min} = \frac{\text{lomin} \times \text{Ls}}{\text{Vin} \times \text{Ts}} = \frac{0.82 \times 800 \times 10^{-6}}{48 \times 25^{-6}} \cong 0.55$$
 (3.99)

(b.2) Carga nominal:

$$\gamma_{\text{nom}} = \frac{\text{lonom} \times \text{Ls}}{\text{Vin} \times \text{Ts}} = \frac{4,12 \times 800 \times 10^{-6}}{48 \times 25^{-6}} \cong 2,75$$
 (3.100)

## 3.6.4) Cálculo da Indutância Magnetizante Mínima

Para que o conversor opere apenas no modo I é necessário que a corrente através da indutância magnetizante Lm não se anule durante o período de funcionamento. O caso crítico está ilustrado na Fig. 3.12.



Fig. 3.12. Condução crítica em Lm.

Através da figura anterior e considerando que a corrente média na chave S2 é igual a corrente média através de Lm, obtém-se:

$$Lm_{min} = \frac{Vin}{2 \times (1 - D) \times lin_{min} \times fs} \quad (3.101)$$

Onde:

Lm<sub>mín</sub> : indutância magnetizante mínima;

lin<sub>mín</sub> : corrente de entrada para a condição de carga mínima.

Para os valores especificados, resulta:

$$Lm_{min} = \frac{48}{2 \times (1 - 0.55) \times 1.67 \times 40 \times 10^3} \cong 800 \,\mu H \quad (3.102)$$

Para o fator K=1,0, chega-se a:

$$Ls = \frac{Lm}{K} \cong 800 \,\mu \text{H} \quad (3.103)$$

3.6.5) ESFORÇOS DE TENSÃO E CORRENTE NA CHAVE S1 PARA A CONDIÇÃO Nominal

(a) Tensão máxima, Fig. 3.2(a):

$$VS1máx = VS1máx \times Vin = 2.3 \times 48 \cong 110, 4V$$
 (3.104)

(b) Corrente média, Fig. 3.4(a):

$$IS1 = \frac{IS1 \times Vin}{Ls \times fs} = \frac{3 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 4, 5A \quad (3.105)$$

(c) Corrente eficaz, Fig. 3.5(b):

$$IS1ef = \frac{IS1ef \times Vin}{Ls \times fs} = \frac{4 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 6A \quad (3.106)$$

3.6.6) ESFORÇOS DE TENSÃO E CORRENTE NA CHAVE S2 PARA A CONDIÇÃO NOMINAL

(a) Tensão máxima, Fig. 3.2(b):

$$VS2máx = VS2máx \times Vin = 1,8 \times 48 \cong 86,4V$$
 (3.107)

(b) Corrente média, Fig. 3.4(b):

$$IS2 = \frac{IS2 \times Vin}{Ls \times fs} = \frac{2, 5 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 3,75A \quad (3.108)$$

(c) Corrente eficaz, Fig. 3.6(b):

IS 2ef = 
$$\frac{\text{IS 2ef} \times \text{Vin}}{\text{Ls} \times \text{fs}} = \frac{3,75 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 5,625\text{A}$$
 (3.109)

3.6.7) ESFORÇOS DE TENSÃO E CORRENTE SOBRE OS DIODOS RETIFICADORES

(a) Tensão de pico inversa, eq. (3.38):

$$Vpiv = Vo = 97V$$
 (3.110)

(b) Corrente média, eq. (3.39):

$$\mathbf{Idmd} = \frac{\mathbf{Io}}{2} \cong \mathbf{2}, \mathbf{07A} \quad (\mathbf{3.111})$$

(c) Corrente de pico:

(c.1) Diodos pares D2 e D4, Fig. 3.9(a):

Idpp = 
$$\frac{Idpp \times Vin}{Ls \times fs} = \frac{3 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 4, 5A$$
 (3.112)

(c.2) Diodos impares D1 e D3, Fig. 3.9(b):

$$Idip = \frac{Idip \times Vin}{Ls \times fs} = \frac{3, 6 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 5, 4A \quad (3.113)$$

## 3.6.8) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE BALANÇO CB

Através da Fig. 3.10(b), obtém-se:

$$ICbef = \frac{ICbef \times Vin}{Ls \times fs} = \frac{3,0 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 4,5A \quad (3.114)$$

3.6.9) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE FILTRAGEM CO

Pelo gráfico da Fig. 3.11(b), resulta:

ICoef = 
$$\frac{\text{ICoef} \times \text{Vin}}{\text{Ls} \times \text{fs}} = \frac{0, 5 \times 48}{800 \times 10^{-6} \times 40 \times 10^{-6}} \cong 0,75\text{A}$$
 (3.115)

### **3.7) RESULTADOS DE SIMULAÇÃO**

A Fig. 3.13 mostra o circuito projetado e simulado com o programa de simulação SCVOLT [10].



Fig. 3.13. Esquema do circuito projetado e simulado.
A Fig. 3.14 mostra a tensão e a corrente sobre as chaves S1 e S2.

A Fig. 3.15 mostra a tensão e a corrente sobre Ls e Lm.

A Fig. 3.16 mostra a tensão e a corrente através dos diodos da ponte retificadora.

A Fig. 3.17 mostra a tensão e a corrente sobre os capacitores Cb e Co.

As formas de ondas obtidas através da simulação digital estão em pleno acordo com aquelas previstas no capítulo anterior, validando a análise desenvolvida até o momento.



Fig. 3.15. Tensão e corrente sobre Ls e Lm.

55



Fig. 3.17. Tensão e corrente sobre os capacitores Cb e Co.

## 3.8) INFLUÊNCIA DA INDUTÂNCIA DE DISPERSÃO

Até o momento, a análise desprezou a indutância de dispersão do transformador. Evidentemente, num caso prático é importante conhecer o efeito causado pela indutância de dispersão na operação do conversor. Inicialmente, pode-se prever que a presença da dispersão provocaria sobretensões destrutivas no bloqueio de uma das chaves, e para amenizar este problema utiliza-se o circuito de grampeamento da tensão sobre as chaves como descrito a seguir e mostrado na Fig. 3.18. A fim de descrever o que ocorre do ponto de vista da comutação e da ação de grampeamento, Iin, Im, Vc e Vo serão consideradas constantes e iguais aos seus respectivos valores médios para a condição nominal de operação.

56



Fig. 3.18. Circuito para análise da influência da indutância de dispersão na operação do conversor e circuito grampeador.

# 3.8.1) COMUTAÇÃO DA CORRENTE DE ENTRADA DA CHAVE S1 PARA A CHAVE S2

Inicialmente, a chave S1 conduz a corrente de entrada, de maneira que iLlk e igr são nulas. No instante tro a chave S1 é bloqueada e a corrente Iin é instantaneamente transferida para o circuito grampeador.



Fig. 3.19. Ação de grampeamento para a comutação da corrente de entrada da chave S1 para a chave S2.

Com o bloqueio de S1, a chave S2 começa a conduzir. A corrente através da indutância de dispersão cresce linearmente segundo a taxa (Vgr+Vo+Vc)/Llk, conforme mostra a Fig. 3.19(a). No instante tr1, a corrente iLlk torna-se igual a Im, bloqueando os diodos pares da ponte

retificadora e fazendo com que os diodos ímpares entrem imediatamente em condução. A partir do instante tr1, passa a ser válido o circuito equivalente da Fig. 3.19(b), desta forma, a corrente iLlk cresce com o tempo segundo a taxa (Vgr-Vo+Vc)/Llk. No instante tr2, a corrente iLlk tornase igual a Iin, finalizando a ação de grampeamento. É importante notar que a corrente através do circuito de grampeamento decresce na mesma taxa em que cresce a corrente através da indutância de dispersão Llk.

A potência média entregue ao grampeador a cada período de chaveamento é determinada pela equação seguinte.

$$P12 = \frac{Vgr}{2} \times \left[ \frac{(Vgr + Vc) + Vo \times (2.D^2 - 1)}{(Vgr + Vo + Vc) \times (Vgr - Vo + Vc)} \right] \times Llk \times lin^2 \times fs \quad (3.116)$$

Onde:

P12 : potência média entregue ao grampeador a cada período de chaveamento para a comutação da corrente de entrada da chave S1 para a chave S2;

Vgr : tensão de grampeamento;

Llk : indutância de dispersão;

Vo, Vc, Im e D : valores médios para a condição de carga nominal.

A potência entregue ao grampeador durante a ação de grampeamento descrita acima poderia ser reduzida caso os comandos das chaves fossem superpostos por um pequeno intervalo de tempo. Esta sobreposição garantiria que a evolução da corrente através da indutância de dispersão do transformador durante o intervalo (tro,tr1), mostrado na Fig. 3.19(a), não dependa do circuito grampeador. Portanto, uma parcela de energia deixaria de fluir para o grampeador e as perdas seriam reduzidas.

3.8.2) COMUTAÇÃO DA CORRENTE DE ENTRADA DA CHAVE S2 PARA A CHAVE S1

Inicialmente, a chave S2 conduz a corrente de entrada, de maneira que iLlk é igual a corrente de entrada lin. No instante tro a chave S2 é bloqueada e a corrente lin é instantaneamente transferida para o circuito grampeador.



Fig. 3.20. Ação de grampeamento para a comutação da corrente de entrada da chave S2 para a chave S1.

Com o bloqueio de S2, a chave S1 começa a conduzir. A corrente através da indutância de dispersão decresce linearmente com o tempo segundo a taxa (Vgr+Vo-Vc)/Llk, conforme mostra a Fig. 3.20(a). No instante tr1, a corrente iLlk torna-se igual a Im, bloqueando os diodos ímpares da ponte retificadora e fazendo com que os diodos pares entrem imediatamente em condução. A partir do instante tr1, passa a ser válido o circuito equivalente da Fig. 3.20(b), desta forma, a corrente iLlk decresce com o tempo segundo a taxa (Vgr-Vo-Vc)/Llk. No instante tr2, a corrente iLlk anula-se, finalizando a ação de grampeamento. É importante notar que a corrente através do circuito de grampeamento é a própria corrente iLlk.

A potência média entregue ao circuito de grampeamento pode ser calculada pela equação a seguir.

$$P21 = \frac{Vgr}{2} \times \left[ \frac{(1-2 \times D) \times (Vo + Vc) + Vgr \times (1+2 \times D - D^2)}{(Vgr + Vo + Vc) \times (Vgr - Vo - Vc)} \right] \times Llk \times lin^2 \times fs \quad (3.117)$$

P21 : potência média entregue ao grampeador a cada período de chaveamento para a comutação da corrente de entrada da chave S2 para a chave S1.

Para esta ação de grampeamento, a sobreposição dos comandos das chaves S1 e S2 também seria benéfica para a redução das perdas causadas pela ação do circuito grampeador de tensão. Durante o intervalo (tro, tr1), mostrado na Fig. 3.20(a), não haveria a presença do circuito grampeador de tensão, reduzindo a energia que fluiria para o circuito grampeador.

A potência total entregue ao grampeador é a soma de P12 e P21, ou seja:

$$Pgr = P12 + P21$$
 (3.118)

O resistor de balanço, quando conectado a fonte de entrada Vin, pode ser calculado conforme a equação seguinte.

$$Rgr = \frac{(Vgr - Vin)^2}{Pgr} \quad (3.119)$$

Rgr : resistor de balanço de energia.

Esta conexão permite a regeneração de uma parcela da energia entregue ao circuito de grampeamento.

O capacitor Cgr pode ser determinado de forma que a frequência de corte do circuito grampeador fique 10 vezes abaixo da frequência de chaveamento.

$$Cgr = \frac{10}{2 \times \pi \times Rgr \times fs} \quad (3.120)$$

## 3.9) CONCLUSÃO

Neste capítulo foi realizado o estudo dos esforços de tensão e corrente sobre os componentes do circuito. Desta análise surgiu como desvantagem do conversor as elevadas tensões a que ficam submetidas as chaves, justificando o uso do IGBT na implementação das mesmas.

Com os resultados da análise foi possível traçar diversos gráficos que auxiliam o cálculo de tensão e corrente sobre os componentes, facilitando o projeto do conversor.

Um exemplo de projeto e simulação mostrou a validade do estudo realizado, onde pôde-se notar que as formas de ondas obtidas via simulação estão em pleno acordo com aquelas previstas durante a descrição do princípio de operação do conversor, realizada no capítulo anterior.

Finalmente, a presença da indutância de dispersão do transformador causaria sobretensões destrutivas no bloqueio das chaves. A fim de amenizar este efeito foi desenvolvido o estudo que permite o projeto do circuito de grampeamento da tensão sobre as chaves, onde parte da energia entregue ao grampeador é regenerada para a fonte de entrada e parte é consumida no resistor de balanço de energia.

61

# **CAPÍTULO 4**

# Fonte Chaveada Alimentada em Corrente, Modulação PWM Assimétrica e Comutação Suave

# 4) FONTE CHAVEADA ALIMENTADA EM CORRENTE, MODULAÇÃO PWM Assimétrica e Comutação Suave

## 4.1) INTRODUÇÃO

A desvantagem da estrutura estudada nos capítulos precedentes é a comutação dissipativa. A fim de contornar tal problema, este capítulo introduz a idéia que torna a comutação suave usando apenas duas chaves ativas e operando com frequência fixa.

A indutância de dispersão do transformador é absorvida no processo de comutação. A comutação é suave e não ocorre a penalização das perdas de condução, fato que pode ser verificado nos conversores ressonantes em virtude dos elevados níveis de corrente eficaz que circula através dos semicondutores.

A comutação é estudada minuciosamente propondo-se o circuito de auxílio a comutação tornando-a suave na condição de carga nominal.

# 4.2) DESCRIÇÃO DO CIRCUITO PROPOSTO

O circuito proposto está mostrado na Fig. 4.1.



Fig. 4.1. Fonte chaveada alimentada em corrente PWM-ZCS.

As chaves principais são unidirecionais em corrente e formadas pelo arranjo série dos componentes diodo e IGBT. O conversor é alimentado em corrente pela fonte Iin e a saída possui característica de fonte de tensão. O circuito é isolado através do transformador Tr, cuja relação

de espiras é Np/Ns. Comparado com o conversor estudado nos capítulos anteriores, o capacitor paralelo Cps é o único componente adicional, cujo principal papel é armazenar energia para que a comutação possa se realizar sem perdas. O capacitor Cbs é responsável pelo balanço de fluxo magnético do transformador. O filtro de saída é formado pelo capacitor de filtragem Cos e a ponte retificadora é formada pelos diodos D1, D2, D3 e D4. A carga equivalente do conversor está representada pela resistência Ros.

A Fig. 4.2 mostra o circuito referido para o primário do transformador. Este circuito será analisado durante o restante do capítulo.



Fig. 4.2. Circuito referido para o primário do transformador.

Onde:

$$Cp = \frac{Cps}{n^2} \quad (4.1)$$

$$Cb = \frac{Cbs}{n^2} \quad (4.2)$$

$$Co = \frac{Cos}{n^2} \quad (4.3)$$

$$Ro = Ros \times n^2 \quad (4.4)$$

$$Vc = Vcs \times n \quad (4.5)$$

$$Vo = Vos \times n \quad (4.6)$$

n : relação de transformação Np/Ns;

Vc : tensão média sobre o capacitor Cb refletida para o primário do transformador;

Vo : tensão de saída;

Cp : capacitor paralelo refletido para o primário;

Cb : capacitor de balanço refletido para o primário;

Co : capacitor de filtragem refletido para o primário;

Ro : carga equivalente refletida para o primário.

## 4.3) ANÁLISE QUALITATIVA

As hipóteses simplificativas para a análise são as seguintes:

(a) todos os semicondutores são ideais;

(b) a tensão de saída é constante;

(c) a tensão Vc é constante.

4.3.1) OPERAÇÃO DO CIRCUITO

A Fig. 4.3 mostra a operação do conversor em oito etapas.

Primeira etapa (to, t1), Fig. 4.3(a). Descarga linear do capacitor paralelo.

No instante *to*, o IGBT2 é bloqueado sob corrente nula e o IGBT1 assume a corrente de entrada lin. O capacitor paralelo Cp passa a se descarregar linearmente com a corrente Im até o instante *t1* quando sua tensão torna-se igual a -(Vo+Vc). Neste instante, os diodos pares D2 e D4 são polarizados diretamente, finalizando a etapa. Durante esta etapa a carga é suprida pela energia armazenada no capacitor de filtro.

Segunda etapa (t1,t2). Fig. 4.3(b) Transferência de energia e desmagnetização do transformador.

Nesta etapa a energia armazenada na indutância magnetizante é transferida para a carga através dos diodos pares D2 e D4. Esta etapa caracteriza a desmagnetização do transformador.

Terceira etapa (t2,t3), Fig. 4.3(c). Crescimento linear da corrente iLlk

No instante 12, o IGBT2 é comandado sob corrente nula. A corrente através da indutância de dispersão cresce linearmente com o tempo segundo a taxa (Vo+Vc)/Llk, atingindo o valor Im



no instante 13. Neste instante a corrente através capacitor Cb se anula bloqueando os diodos pares D2 e D4 e finalizando a etapa.

Fig. 4.3. Etapas de operação.

#### Quarta etapa (t3,t4), Fig. 4.3(d). Crescimento ressonante da corrente iLlk

Com o bloqueio dos diodos retificadores pares, a indutância de dispersão Llk entra em ressonância com o capacitor paralelo Cp. No instante 14, a corrente iLlk torna-se igual a lin e o IGBT1 pode ser bloqueado sob corrente nula. É importante ressaltar que a energia inicial necessária para completar esta transição está armazenada no capacitor paralelo Cp. Torna-se uma condição necessária que esta energia seja suficiente para que a comutação do IGBT1, ou de uma forma mais geral da chave S1, ocorra sob corrente nula.

Quinta etapa (t4,t5) Fig. 4.3(e). Carga linear do capacitor paralelo

Como citado, no instante *t4*, o IGBT2 assume a corrente de entrada lin e o IGBT1 pode ser bloqueado sob corrente nula. O capacitor paralelo Cp passa a se carregar linearmente com a corrente lin-Im até o instante *t5* quando sua tensão torna-se igual a Vo-Vc. Neste instante, os diodos ímpares D1 e D3 são diretamente polarizados e a etapa é finalizada.

Sexta etapa (t5,t6), Fig. 4.3(f). Transferência de energia e magnetização do transformador.

Durante esta etapa, é transferida energia da fonte de entrada Iin para o estágio de saída com a magnetização do transformador. Esta etapa termina com o comando do IGBT1.

<u>Sétima Etapa (t6,t7), Fig. 4.3(g)</u>. Decrescimento linear da corrente iLlk

No instante 16, o IGBT1 entra em condução sob corrente nula. A corrente através da indutância de dispersão decresce linearmente com o tempo segundo a taxa (Vo-Vc)/Llk, enquanto a corrente através da chave S1 cresce na mesma taxa. No instante 17, a corrente iLlk torna-se igual a Im bloqueando os diodos retificadores ímpares D1 e D3 e finalizando a etapa.

Oitava etapa (t7,t8), Fig. 4.3(h). Decrescimento ressonante da corrente iLlk.

Nesta etapa, a corrente através da indutância de dispersão do transformador Llk e a tensão sobre o capacitor paralelo Cp evoluem de uma forma ressonante. No instante *t8*, a corrente iLlk se anula e o IGBT2 é bloqueado sob corrente nula finalizando a etapa e reiniciando a operação cíclica que em regime permanente é idêntica a primeira etapa.

A energia inicial disponível para a evolução ressonante da corrente iLlk está armazenada no capacitor paralelo Cp. Esta energia deve ser suficiente para que o bloqueio do IGBT2, ou de uma maneira mais geral da chave S2, ocorra sob corrente nula.

### 4.3.2) FORMAS DE ONDAS TÍPICAS

As formas de ondas esperadas estão representadas na Fig. 4.4. Nota-se que a comutação de ambas as chaves ocorre sob corrente nula.



Fig. 4.4. Formas de ondas típicas.

## 4.4) ANÁLISE QUANTITATIVA

### 4.4.1) CARACTERÍSTICA EXTERNA

A característica externa, ou de saída, é extremamente importante no projeto do conversor. Além de fornecer os resultados de tensão e corrente de saída, fornece também uma idéia da faixa de operação do conversor. Neste item, a característica externa é determinada com a hipótese de que a corrente Im seja constante e igual a corrente média através da chave S2. Supõe-se também que a transferência de energia não seja afetada pela comutação.

Logo:

$$Im = IS2 = (1 - D) \times Iin$$
 (4.7)

Im : corrente média através da indutância magnetizante;

IS2 : corrente média através da chave S2;

D : razão cíclica de operação do IGBT1;

Iin : corrente de entrada.

Através da forma de onda mostrada na Fig. 4.4(f) é possível obter o valor médio da corrente de saída Io, como descrito na eq. (4.8).

$$Io = \frac{1}{Ts} \times \left[Im \times (t2 - t1) + (Iin - Im) \times (t6 - t5)\right] \quad (4.8)$$

Onde:

$$(t2-t1) = D \times Ts - (t1-to)$$
 (4.9)  
 $(t6-t5) = (1-D) \times Ts - (t5-t4)$  (4.10)

(t1-to) : intervalo de tempo de descarga do capacitor paralelo Cp, Fig. 4.3(a);

(t5-t4) : intervalo de tempo de carga do capacitor paralelo Cp, Fig. 4.3(e);

Ts : período de chaveamento;-

Io : corrente de saída refletida ao primário.

Os intervalos de descarga e carga do capacitor paralelo Cp são dados pelas equações (4.11) e (4.12), respectivamente.

$$(t1-to) = \frac{2 \times Vo \times Cp}{Im} \quad (4.11)$$
$$(t5-t4) = \frac{2 \times Vo \times Cp}{Iin - Im} \quad (4.12)$$

Fazendo as substituições adequadas e considerando uma eficiência de 100% chega-se a eq. (4.13) que representa a característica externa em sua forma normalizada, representada graficamente na Fig. 4.5.

$$\overline{\mathbf{Vo}} = \frac{1}{2 \times \mathbf{D} \times (1 - \mathbf{D}) - \frac{4}{\overline{\mathbf{Io}}}} \quad (4.13)$$

Onde:

$$\overline{\mathrm{Vo}} = \frac{\mathrm{Vo}}{\mathrm{Vin}} \quad (4.14)$$

$$\overline{Io} = \frac{Io \times Ts}{Vin \times Cp} \quad (4.15)$$



Fig. 4.5. Característica externa. Tensão de saída normalizada versus corrente de saída normalizada tomando-se D como parâmetro.

A característica externa apresenta um comportamento mais plano para cargas elevadas. Entretanto, para baixos valores de carga as curvas tornam-se mais íngremes, visto que o tempo para a carga e descarga do capacitor paralelo Cp aumenta para baixos valores de corrente.

4.4.2) BALANÇO DE FLUXO MAGNÉTICO NO TRANSFORMADOR

Para que ocorra o balanço de fluxo magnético no transformador é preciso que o valor médio da tensão através da indutância magnetizante seja nulo. Desta condição, uma vez que o capacitor paralelo Cp e a indutância magnetizante Lm estão em paralelo, pode-se estabelecer o seguinte:

$$\int_0^{T_s} vCp(t) \times dt = 0 \quad (4.16)$$

O resultado da integral acima, realizado sobre a forma de onda mostrada na Fig. 4.4(a), está mostrado pela eq. (4.17).

$$Vc = \frac{1 - 2 \times D}{2 \times D \times (1 - D)} \times Vin \quad (4.17)$$

Vc : tensão média sobre o capacitor de balanço Cb.

# 4.5) ESTUDO DOS ESFORÇOS DE TENSÃO E CORRENTE SOBRE OS COMPONENTES DO CONVERSOR

#### 4.5.1) CHAVES S1 E S2

(a) Tensão Máxima

Para D<0,5:

$$Vs1máx = Vs2máx = Vo + Vc \quad (4.18)$$

Para D>0,5:

$$Vs1máx = Vs2máx = Vo - Vc \quad (4.19)$$

Para D=0,5:

$$Vs1m\dot{a}x = Vs2m\dot{a}x = Vo \quad (4.20)$$

Vs1máx : tensão máxima sobre a chave S1;

Vs2máx : tensão máxima sobre a chave S2.

As expressões acima estão graficamente representadas na Fig. 4.6.

Os elevados valores de tensão justificam o uso do IGBT como meio de reduzir as perdas de condução, uma vez que os MOSFET's de alta tensão possuem elevada resistência de condução e causariam grandes perdas.





(b) Corrente Média através das Chaves S1 e S2

 $IS1 = D \times Iin$  (4.21)

$$IS2 = (1 - D) \times Iin$$
 (4.22)

IS1 : corrente média através da chave S1;

IS2 : corrente média através da chave S2.

(c) Corrente Eficaz através das Chaves S1 e S2

IS1ef = 
$$\sqrt{D} \times \text{lin}$$
 (4.23)  
Is2ef =  $\sqrt{1-D} \times \text{lin}$  (4.24)

IS1ef : corrente eficaz através da chave S1;

IS2ef : corrente eficaz através da chave S2.

#### 4.5.2) DIODOS RETIFICADORES

A figura 4.7 mostra o estágio de saída do conversor, necessário para a análise que segue.

(a) Tensão de Pico Inversa

Os diodos de saída ficam submetidos a tensão Vo quando estão bloqueados.

$$Vpiv = Vo$$
 (4.25)

Onde:

Vpiv : tensão de pico inversa máxima.

(b) Corrente média

A corrente média através do capacitor Cb é nula, logo:

$$Idp = Idi = \frac{Io}{2} \quad (4.26)$$

Idp : corrente média através dos diodos pares D2 e D4;

Idi : corrente média através dos diodos ímpares D1 e D3.



Fig. 4.7. Estágio de saída do conversor.

(c) Corrente de pico repetitiva

Os diodos pares conduzem a corrente Im, enquanto os diodos ímpares conduzem a diferença Iin-Im. Assim, a partir da eq. (4.7) resultam:

$$Idpp = (1 - D) \times Iin \quad (4.27)$$

### $Idip = D \times Iin \quad (4.28)$

Idpp : corrente de pico repetitiva através dos diodos pares;

Idip : corrente de pico repetitiva através dos diodos ímpares.

# 4.5.3) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR PARALELO CP

Da análise da corrente eficaz através de Cp resulta a eq. (4.29), representada na Fig. 4.8.

$$\overline{\text{ICpef}} = \frac{\text{ICpef} \times \text{Ts}}{\text{Vin} \times \text{Cp}} = \frac{\sqrt{2} \times \overline{\text{lo}^{3/2}}}{2 \times \left[\overline{\text{Io}} \times \text{D} \times (1-\text{D}) - 2\right]} \quad (4.29)$$



ICpef : corrente eficaz através do capacitor paralelo Cp.

Fig. 4.8. Corrente eficaz normalizada através do capacitor paralelo Cp versus corrente de carga normalizada tomando-se D como parâmetro.

# 4.5.4) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE BALANÇO CB

Da análise da forma de onda da corrente através do capacitor Cb resulta a expressão (4.30) que está graficamente representada na Fig. 4.9.

$$\overline{\text{ICbef}} = \frac{\text{ICbef} \times \text{Ts}}{\text{Vin} \times \text{Cp}} = \frac{\overline{\text{Io}}^{3/2}}{2\sqrt{\overline{\text{Io}} \times \text{D} \times (1-\text{D}) - 2}} \quad (4.30)$$

ICbef : corrente eficaz através do capacitor de balanço Cb.



Fig. 4.9. Corrente eficaz normalizada através do capacitor Cb versus corrente de carga normalizada tomando-se D como parâmetro.

## 4.5.5) CORRENTE EFICAZ ATRAVÉS DO CAPACITOR DE FILTRAGEM CO

A expressão (4.31) representa a corrente eficaz através do capacitor de filtragem Co em sua forma normalizada.

$$\overline{\text{ICoef}} = \frac{\text{ICoef} \times \text{Ts}}{\text{Vin} \times \text{Cp}} = \frac{\overline{\text{Io}}}{2} \times \sqrt{\frac{\overline{\text{Io}} \times (2 \times \text{D} - 1)^2 + 8}{\overline{\text{Io}} \times \text{D} \times (1 - \text{D}) - 2}} \quad (4.31)$$



ICoef : corrente eficaz através do capacitor de filtragem Co.

Fig. 4.10. Corrente eficaz normalizada através do capacitor Co versus corrente de saída normalizada tomando-se D como parâmetro.

## 4.6) ANÁLISE DA COMUTAÇÃO

A comutação ocorre em duas etapas: linear e ressonante. Durante a etapa linear a corrente através da indutância de dispersão do transformador evolui segundo uma taxa constante com o tempo, como visto nas figuras 4.3(c) e 4.3(g). Entretanto, durante a etapa ressonante a evolução da corrente através da indutância de dispersão depende sobretudo da energia previamente armazenada no capacitor paralelo Cp, como pode ser visto nas figuras 4.3(d) e 4.3(h). Esta energia é função quadrática da tensão de saída e da tensão sobre o capacitor Cb. Portanto, uma das comutações será mais crítica em termos de energia inicial para a comutação armazenada no capacitor paralelo Cp.

Supondo que a comutação da corrente lin seja da chave S1 para a chave S2, a energia inicial armazenada no capacitor Cp será:

$$Ep_{1,2} = \frac{Cp \times (Vo + Vc)^2}{2}$$
 (4.32)

Analogamente, supondo que ocorra a comutação da corrente Iin da chave S2 para a chave S1, a energia inicial armazenada no capacitor Cp será:

$$Ep_{2,1} = \frac{Cp \times (Vo - Vc)^2}{2}$$
 (4.33)

A partir das equações (4.32) e (4.33) é possível determinar qual das comutações é mais crítica em termos de energia armazenada em Cp.

Se a razão cíclica de operação do conversor é escolhida como D>0,5, através da equação (4.17) verifica-se que Vc<0, então pelas equações (4.32) e (4.33) conclui-se que:

$$Ep_{1,2} < Ep_{2,1}$$
 (4.34)

Portanto, a comutação da corrente de entrada Iin da chave S1 para a chave S2 é mais crítica em termos de energia armazenada em Cp. Obviamente, se o conversor operasse com D<0,5 a comutação da corrente de entrada da chave S2 para a chave S1 seria mais crítica em termos de energia inicial.

4.6.1) COMUTAÇÃO DA CORRENTE DE ENTRADA IIN DA CHAVE S1 PARA A CHAVE S2



As etapas da comutação em questão estão representadas na Fig. 4.11.

Fig. 4.11. Comutação da corrente Iin da chave S1 para a chave S2.

As condições de contorno para a etapa linear são:

(a) condições inicias

$$iLlk(t2) = 0$$
  
 $vCp(t2) = -(Vo + Vc)$  (4.35)

(b) condições finais

$$iLlk(t3) = Im$$
  
 $vCp(t3) = -(Vo + Vc)$  (4.36)

Durante a etapa linear a corrente iLlk evolui segundo a expressão abaixo.

$$iLlk(t) = \frac{Vo + Vc}{Llk} \times (t - t2) \quad (4.37)$$

Substituindo as condições finais na eq. (4.37), resulta:

$$\Delta tcl_{1,2} = \frac{Llk \times Im}{(Vo + Vc)} \quad (4.38)$$

 $\Delta tcl_{1,2}$ : duração da etapa linear da comutação da corrente Iin da chave S1 para a chave S2.

As condições de contorno para a etapa ressonante estão indicadas a seguir.

(a) condições iniciais

$$iLlk(t3) = Im$$

$$vCp(t3) = -(Vo + Vc)$$
(4.39)

(b) condições finais

$$iLlk(t4) = lin$$
  
vCp(t4) = -Vp4 (4.40)

A corrente iLlk(t) e a tensão vCp(t) evoluem conforme as expressões abaixo.

$$iLlk(t) = Im + \frac{Vo + Vc}{Zp} \times sen[Wp \times (t - t3)] \quad (4.41)$$
$$vCp(t) = -(Vo + Vc) \times cos[Wp \times (t - t3)] \quad (4.42)$$

Onde:

$$Wp = \sqrt{\frac{1}{Llk \times Cp}} \quad (4.43)$$

$$\mathbf{Zp} = \sqrt{\frac{\mathbf{Llk}}{\mathbf{Cp}}} \quad (4.44)$$

Wp : frequência de ressonância;

Zp : impedância característica do circuito ressonante.

Substituindo as condições finais para a etapa ressonante na equação da corrente iLlk, resulta a duração desta etapa.

$$\Delta tcr_{1,2} = \frac{1}{Wp} \times sen^{-1} \left[ \frac{(Iin - Im) \times Zp}{Vo + Vc} \right] \quad (4.43)$$

 $\Delta tcr_{1,2}$ : duração da etapa ressonante da comutação da corrente lin da chave S1 para S2.

Portanto, a duração total da comutação em questão é dada por:

$$\Delta tc_{1,2} = \Delta tcl_{1,2} + \Delta tcr_{1,2} = \frac{Llk \times Im}{Vo + Vc} + \frac{1}{Wp} \times sen^{-1} \left[ \frac{(Iin - Im) \times Zp}{Vo + Vc} \right] \quad (4.46)$$

 $\Delta tc_{1,2}$ : duração da comutação da corrente lin da chave S1 para a chave S2.

Deseja-se que a comutação seja suave para toda a faixa de carga. O pior caso ocorre para a condição nominal, onde a corrente de entrada Iin é máxima. Neste ponto de operação, toda a energia armazenada no capacitor paralelo Cp é transferida para indutância de dispersão Llk durante a etapa ressonante da comutação. Assim, pode-se escrever o seguinte:

$$\frac{\mathrm{Cp} \times (\mathrm{Von} + \mathrm{Vcn})^2}{2} = \frac{\mathrm{Llkcr} \times (\mathrm{linn} - \mathrm{Imn})^2}{2} \quad (4.47)$$

Ou seja:

$$Zpcr = \frac{Von + Vcn}{Iinn - Im n} \quad (4.48)$$

$$\mathbf{Zpcr} = \sqrt{\frac{\mathbf{Llkcr}}{\mathbf{Cp}}} \quad (4.49)$$

Von, Vcn, linn e Imn : valores de tensão e corrente para a condição nominal de carga;

Llkcr : indutância de dispersão crítica que permite a comutação suave na condição nominal de carga;

Zpcr : impedância característica crítica do circuito ressonante que permite a comutação suave na condição nominal de carga.

# 4.6.2) Comutação da Corrente de Entrada Iin da Chave S2 para a Chave S1

As etapas desta comutação estão representadas na Fig. 4.12. As condições de contorno da etapa linear estão descritas a seguir.

(a) condições inicias

$$iLlk(t2) = IinvCp(t2) = Vo - Vc$$
 (4.50)

iLlk(t3) = Im

(b) condições finais

$$\mathbf{vCp(t3)} = \mathbf{Vo} - \mathbf{Vc} \qquad (4.51)$$

$$\lim_{l \to 0} \frac{1}{|l|k|} \lim_{l \to 0} \frac{1}{|l|k|} \lim_{l$$

Fig. 4.12. Comutação da corrente Iin da chave S2 para a chave S1.

Durante a etapa linear, a corrente iLlk evolui segundo a expressão abaixo.

$$iLlk(t) = lin - \frac{Vo - Vc}{Llk} \times (t - t6)$$
 (4.52)

Substituindo as condições finais na eq. (4.52), resulta:

$$\Delta tcl_{2,1} = Llk \times \frac{lin - lm}{Vo - Vc} \quad (4.53)$$

 $\Delta tcl_{2,1}$ : duração da etapa linear da comutação da corrente Iin da chave S2 para S1. As condições de contorno para a etapa ressonante estão indicadas a seguir.

(a) condições iniciais

$$iLlk(t3) = Im$$
  
vCp(t3) = Vo - Vc (4.54)

(b) Condições finais

$$iLlk(t4) = 0$$
  
vCp(t4) = Vp8 (4.55)

A corrente iLlk(t) e a tensão vCp(t) evoluem conforme as expressões abaixo.

$$iLlk(t) = Im - \frac{Vo - Vc}{Zp} \times sen[Wp \times (t - t7)] \quad (4.56)$$
$$vCp(t) = (Vo - Vc) \times cos[Wp \times (t - t7)] \quad (4.57)$$

Substituindo as condições finais para a etapa ressonante na equação da corrente iLlk, resulta a duração desta etapa.

$$\Delta tcr_{2,1} = \frac{1}{Wp} \times sen^{-1} \left[ \frac{Im \times Zp}{Vo - Vc} \right] \quad (4.58)$$

 $\Delta tcr_{2,1}$ : duração da etapa ressonante da comutação da corrente lin da chave S2 para S1.

Portanto, a duração total da comutação em questão é dada por:

$$\Delta tc_{2,1} = \Delta tcl_{2,1} + \Delta tcr_{2,1} = Llk \times \frac{lin - Im}{Vo - Vc} + \frac{1}{Wp} \times sen^{-1} \left[ \frac{lm \times Zp}{Vo - Vc} \right] \quad (4.59)$$

 $\Delta tc_{2,1}$ : duração da comutação da corrente Iin da chave S2 para a chave S1.

# 4.7) CIRCUITO DE AUXÍLIO A COMUTAÇÃO

Anteriormente, foi estudado o limite crítico para que a comutação suave fosse obtida na condição nominal de carga. Como foi constatado, este limite é extremamente dependente da indutância de dispersão do transformador, cujo valor deve ser reduzido para permitir a comutação suave em plena carga. Evidentemente, a indutância de dispersão é um parâmetro difícil de ser previsto nos projetos clássicos de transformadores e não é menos complicado conseguir valores reduzidos para a dispersão. Este fato torna difícil a comutação suave do conversor para a condição nominal de carga.

A fim de tornar esta dependência da comutação suave com a indutância de dispersão menos taxativa, propõe-se o circuito de auxílio a comutação composto pelo arranjo paralelo do capacitor Cax e do indutor Lax, conforme mostrado na Fig. 4.13.

Com a introdução do circuito de auxílio a comutação não há mudança do princípio de operação do conversor, visto que a evolução média dos estados não é alterada. Assim, o processo de transferência de potência não é afetado e a característica externa não muda. As formas de ondas esperadas através do circuito auxiliar estão mostradas na Fig. 4.14. A comutação sempre ocorre quando a tensão sobre o circuito auxiliar estiver passando pelo máximo ou mínimo.



Fig. 4.13. Conversor e circuito de auxílio a comutação proposto.

81

Certamente, a única desvantagem trazida com a introdução do circuito de auxílio a comutação é o esforço extra de tensão que aparecerá sobre as chaves S1 e S2, tornando ainda mais crítica a escolha das chaves com respeito a tensão máxima.

Considerando que o capacitor Cax comporta-se como uma fonte de tensão durante o intervalo de comutação, haverá energia suficiente para completar a transição de corrente na indutância de dispersão mesmo para o pior caso que é a condição de carga nominal, isto é, o conversor passa a operar com comutação suave em toda faixa de carga possível.



Fig. 4.14. Formas de ondas esperadas para o circuito auxiliar.

Durante o intervalo 0<t<DxTs, a corrente através do capacitor Cax é Im, assim:

$$Cax = \frac{Dn \times (1 - Dn) \times linn}{2 \times Vpk \times fs} \quad (4.60)$$

Dn : razão cíclica de operação do IGBT1 para a condição de carga nominal;

Vpk : tensão de pico sobre o circuito de auxílio a comutação.

Estimando-se a ondulação de corrente pico-a-pico através do indutor Lax, pode-se obter o seguinte resultado:

$$Lax = \frac{Dn \times Vpk}{2 \times fs \times \Delta ILaxpp} \quad (4.61)$$

 $\Delta$ ILaxpp : ondulação pico-a-pico da corrente através de Lax.

# 4.7.1) CONDIÇÕES PARA COMUTAÇÃO SUAVE EM TODA A FAIXA DE CARGA

A comutação, como descrito anteriormente, ocorre em duas etapas: linear e ressonante. Aqui, serão analisadas as condições para tornar a comutação suave em toda a faixa de carga possível. A comutação mais crítica ocorre quando deseja-se comutar a corrente Iin da chave S1 para a chave S2, visto que nesta comutação a energia armazenada em Cp é menor e pode ser insuficiente para completar a transição de corrente através da indutância de dispersão, dependendo das condições de carga e da impedância característica do circuito ressonante.

Os circuitos equivalentes das etapas da comutação estão representados na Fig. 4.15.



Fig. 4.15. Circuitos equivalentes para o estudo da comutação da corrente lin da chave S1 para a chave S2.

Para a etapa linear pode-se escrever as equações abaixo:

$$iLlk(t) = \frac{Vo + Vc + Vpk}{Llk} \times (t - t2) \quad (4.62)$$
$$vCp(t) = -(Vo + Vc) \quad (4.63)$$

Quando a corrente iLlk atingir Im a etapa estará finalizada, logo a duração da etapa linear será:

$$\Delta tcl_{1,2} = \frac{Llk \times lm}{Vo + Vc + Vpk} \quad (4.64)$$

A etapa ressonante, mostrada na Fig. 4.15(b), evolui segundo:

$$iLlk(t) = Im + \frac{Vo + Vc + Vpk}{Zp} \times sen[Wp \times (t - t3)] \quad (4.65)$$

$$\mathbf{vCp}(t) = \mathbf{Vpk} - (\mathbf{Vo} + \mathbf{Vc} + \mathbf{Vpk}) \times \cos[\mathbf{Wp} \times (t - t3)] \quad (4.66)$$

A finalização da etapa ressonante ocorre quando a corrente iLlk atingir a corrente de entrada lin.

$$\Delta tcr_{1,2} = \frac{1}{Wp} \times sen^{-1} \left[ \frac{(Iin - Im) \times Zp}{Vo + Vc + Vp} \right] \quad (4.67)$$

Então, a duração total da comutação pode ser determinada pela soma de (4.64) e (4.67).

$$\Delta tc_{1,2} = \frac{Llk \times Im}{Vo + Vc + Vpk} + \frac{1}{Wp} \times sen^{-1} \left[ \frac{(Iin - Im) \times Zp}{Vo + Vc + Vpk} \right] \quad (4.68)$$

O plano de fase que representa a evolução das variáveis de estado para a comutação em questão está mostrado na Fig. 4.16.



Fig. 4.16. Plano de fase para a comutação da corrente Iin da chave S1 para a chave S2.

Pelo plano de fase nota-se que a comutação pode finalizar-se no ponto A ou no ponto B, dependendo de qual critério seja adotado para o cálculo da tensão de pico Vpk.

(a) primeiro critério

Neste caso, a comutação terminaria no ponto A, ou seja, o capacitor Cp contribuiria com energia durante todo o processo da comutação. Assim, pode-se obter do plano de fase a seguinte relação:

$$(Von + Vcn + Vpka)^2 = [(Iinn - Imn) \times Zp]^2 + Vpka^2$$
 (4.69)

Resultando:

$$Vpka = \frac{\left[\left(Iinn - Im n\right) \times Zp\right]^{2} - \left(Von + Vcn\right)^{2}}{2 \times (Von + Vcn)} \quad (4.70)$$

Vpka : tensão de pico sobre o circuito auxiliar para o primeiro critério de cálculo.

(b) segundo critério

Para este caso, a comutação terminaria no ponto B, onde o capacitor paralelo Cp contribuiria com energia apenas durante uma parte da comutação. Resulta do plano de fase a seguinte relação:

$$Von + Vcn + Vpkb = (linn - lmn) \times Zp \quad (4.71)$$

Ou seja:

$$Vpkb = (Iin - Im n) \times Zp - (Von + Vcn) \quad (4.72)$$

Vpkb : tensão de pico sobre o circuito auxiliar considerando o segundo critério de cálculo.

Evidentemente, o valor a ser escolhido para Vpk deve estar dentro do intervalo:

$$Vpkb < Vpk < Vpka$$
 (4.73)

## 4.8) CONCLUSÃO

Este capítulo apresentou o estudo de um novo conversor operando em frequência fixa, comutação suave e modulação PWM.

Dentre as principais vantagens pode-se destacar:

(a) conversor isolado;

(b) utiliza apenas duas chaves ativas;

(c) comando não-isolado;

(d) comutação suave;

(e) a indutância de dispersão do transformador é absorvida no processo de comutação;

(f) as formas de ondas de corrente são retangulares.

A característica externa mostrou que o conversor opera como elevador de tensão, onde para baixos valores de corrente de carga esta característica torna-se mais ingreme devido ao aumento do tempo de carga e descarga do capacitor paralelo Cp.

Uma desvantagem da estrutura é a elevada tensão imposta sobre as chaves S1 e S2, justificando o uso do IGBT. Outro motivo pelo qual deve-se utilizar o IGBT é o tipo de comutação, neste caso ZCS que dispensa a capacitância parasita do componente.

As principais relações para o cálculo dos esforços de tensão e corrente sobre os componentes foram estabelecidas.

A análise da comutação concluiu que o limite da comutação suave é função da carga e da indutância de dispersão do transformador. Uma vez que a indutância de dispersão do transformador é um parâmetro não muito preciso no projeto clássico de transformadores foi proposto o circuito de auxílio a comutação que elimina esta dependência e torna a comutação suave para toda a faixa de carga possível, apesar de introduzir um esforço extra de tensão sobre as chaves S1 e S2.



## 5) PROJETO E EXPERIMENTAÇÃO

## 5.1) INTRODUÇÃO

Este capítulo trata do projeto e implementação prática do conversor PWM-ZCS estudado no capítulo anterior.

Todos os componentes são calculados e dimensionados através dos ábacos que foram desenvolvidos no capítulo anterior.

## **5.2) PROCEDIMENTO DE PROJETO**

5.2.1) ESPECIFICAÇÕES PARA PROJETO

potência de saída Po = 400W;

potência mínima de saída Pomín = 80W;

tensão de entrada Vin=48V;

tensão de saída Vos=48V;

frequência de chaveamento fs=40KHz.

#### 5.2.2) LOCALIZAÇÃO DA FAIXA DE CARGA NA CARACTERÍSTICA EXTERNA

É desejável operar o conversor na região mais plana possível da característica de saída com o objetivo de manter a característica PWM do conversor. Através da eq. (4.13) pode-se notar que ocorre um ganho de razão cíclica quando o conversor opera em cargas mais leves, este efeito é contrário nos conversores PWM-ZVS que apresentam uma perda de razão cíclica para cargas maiores.

(a) carga mínima

Considerando o exposto acima, escolhe-se a razão cíclica mínima Dmín = 0, 5 e a carga normalizada mínima  $\overline{Iomín} = 48$ . Com estes valores e a partir da eq. (4.13), obtém-se:

$$\overline{Vo} = \frac{1}{2 \times 0, 5 \times (1 - 0, 5) - \frac{4}{48}} \cong 2,4$$
 (5.1)

Logo, como  $\overline{Vo} = Vo/Vin$ , obtém-se Vo = 115, 2V. Para esta tensão e potência mínima de saída obtém-se a corrente de carga mínima Iomín = 694mA.

A relação de transformação é dada por:

$$n = \frac{V_0}{V_{0s}} = \frac{115, 2}{48} = 2,4$$
 (5.2)

A partir da eq. (4.17) e considerando a condição de carga mínima, obtém-se Vcmín = 0. (b) carga nominal

$$\overline{\text{Ion}} = \overline{\text{Iom}(n \times \frac{Po}{Po\min})} \cong 240 \quad (5.3)$$

Ou seja, Ion = 3,47A.

Através da eq. (4.13), obtém-se a razão cíclica de operação na condição nominal Dn = 0,683 que substituida na eq. (4.17) resulta em Vcn = -40,6V. Referindo-se esta tensão para o secundário resulta Vcsn = -16,92V na condição nominal.

#### 5.2.3) CAPACITOR PARALELO CP

(a) cálculo da capacitância

Através da eq. (4.15) e considerando a condição nominal obtém-se:

$$Cp = Ion \times Ts / Vin \times \overline{Ion} = {3,47 \times 25 \times 10^{-6} / 48 \times 240} \cong {7,53} \eta F$$

$$Cps = Cp \times n^{2} = {7,53 \times 10^{-9} \times 2,4^{2}} \cong 44 nF$$
(5.4)

(b) corrente eficaz para a condição nominal

Usando o ábaco da Fig. 4.8 com a corrente de carga normalizada para a condição nominal  $\overline{lon} = 240$  e razão cíclica nominal Dn = 0,683, obtém-se aproximadamente  $\overline{lCpef} \cong 60$ . Logo:

 $ICpef = \frac{ICpef \times Vin \times Cp}{Ts} = \frac{60 \times 48 \times 7,53 \times 10^{-9}}{25 \times 10^{-6}} \cong 867 \text{ mA}$   $ICpefs = ICpef \times n = 867 \times 10^{-3} \times 2,4 \cong 2,08\text{ A}$ (5.5)

ICpefs : corrente eficaz através do capacitor Cps.

### 5.2.4) CAPACITOR DE BALANÇO CB

A corrente eficaz através do capacitor Cb para a condição nominal pode ser calculada com o auxílio do ábaco mostrado na Fig. 4.9. Usando o ábaco com a razão cíclica e a corrente de carga normalizada, obtém-se  $\overline{ICbef} \cong 263$ , logo:

$$ICbef = \frac{ICbef \times Vin \times Cp}{Ts} = \frac{263 \times 48 \times 7,53 \times 10^{-9}}{25 \times 10^{-6}} \cong 3,8A$$

$$ICbefs = ICbef \times n = 3,8 \times 2,4 \cong 9,12A$$
(5.6)

ICbefs : corrente eficaz através do capacitor Cbs.

A resistência série deste capacitor deve ser tal que não provoque perdas excessivas. Considerando estas perdas em torno de 2% da potência nominal de saída, a resistência série equivalente deve ser limitada no valor a seguir.

$$RSE < \frac{0,01 \times Po}{ICbef^{2}} = \frac{0,02 \times 400}{3,8^{2}} \cong 554m\Omega$$

$$RSEs = \frac{RSE}{n^{2}} = \frac{554 \times 10^{-3}}{2,4^{2}} \cong 96m\Omega$$
(5.7)

RSEs : resistência série equivalente do capacitor Cbs.

#### 5.2.5) CAPACITOR DE FILTRAGEM CO

A corrente eficaz através de Co é calculada com o auxílio do ábaco traçado na Fig. 4.10. Entrando no ábaco com Dn e corrente de saída normalizada, resulta  $\overline{\text{ICoef}} \cong 110$ , então:

$$ICoef = \frac{ICoef \times Vin \times Cp}{Ts} = \frac{110 \times 48 \times 7,53 \times 10^{-9}}{25 \times 10^{-6}} \cong 1,59A$$

$$ICoefs = ICoef \times n = 1,59 \times 2,4 \cong 3,82A$$
(5.8)

ICoefs : corrente eficaz através do capacitor Cos.

O capacitor de filtragem Co deve ser escolhido através da resistência série equivalente de tal forma que seja observada uma ondulação da tensão de saída previamente estabelecida. Fixando esta ondulação em 1% da tensão de saída resulta  $\Delta V_{Cop} = 0,01 \times 115, 2 = 1,152V$  pico-a-pico. Supondo que esta ondulação seja causada apenas pela resistência série, basta determinar a
variação de corrente através de Co e limitar a resistência série para manter a ondulação da tensão de saída dentro do limite estabelecido. A variação máxima de corrente através do capacitor de filtragem é a corrente de pico que circula através dos diodos retificadores ímpares. Assim, para a condição nominal de carga, tem-se:

$$\Delta ICop = Idip = \frac{0,683 \times 400}{48} \approx 5,69A$$
  
RSE <  $\frac{0,01 \times Vo}{\Delta ICop} = \frac{0,01 \times 115.2}{5,69} \approx 204,4m\Omega$  (5.9)  
RSEs =  $\frac{RSE}{n^2} = \frac{202,4 \times 10^{-3}}{2,4^2} \approx 35m\Omega$ 

ΔICop : variação máxima da corrente através do capacitor Co; RSEs : resistência série equivalente do capacitor Cos.

$$P_{RSE} = RSE \times ICoef^2 = 202, 4 \times 10^{-3} \times 1, 59^2 \cong 512mW$$
 (5.10)

P<sub>RSE</sub> : perda causada pela RSEs.

### 5.2.6) DIODOS RETIFICADORES

(a) tensão de pico inversa máxima

De acordo com (4.25), tem-se:

$$Vpiv = Vo = 115, 2V$$
  
 $Vpivs = Vos = 48V$  (5.11)

Vpivs : tensão de pico inversa sobre os diodos referida ao secundário.

(b) corrente média

A partir de (4.26), obtém-se:

$$Idp = Idi = \frac{Io}{2} = \frac{400}{2} \times 115, 2 \approx 1,74A$$
  

$$Idps = Idis = \frac{Io \times n}{2} \approx 4,2A$$
(5.12)

Idps : corrente média através dos diodos pares referida ao secundário; Idis : corrente média através dos diodos ímpares referida ao secundário; (c) corrente de pico

Através das equações (4.27) e (4.28), resultam:

 $Idpp = (1 - 0, 683) \times \frac{400}{48} \cong 2,64A$   $Idpps = Idpp \times n = 2,64 \times 2,4 \cong 6,34A$   $Idip = 0,683 \times \frac{400}{48} = 5,69A$   $Idips = Idip \times n = 5,69 \times 2,4 \cong 13,66A$ (5.13)

Idpps : corrente de pico através dos diodos pares refletida para o secundário;

Idips : corrente de pico através dos diodos ímpares refletida para o secundário.

Baseando-se nos valores calculados acima, resulta como componente escolhido o diodo MUR1510, cujas características principais estão descritas a seguir.

fabricante : Motorola;

corrente média :  $I_F (AV)=15A$ ;

corrente de pico repetitiva : I<sub>FM</sub>=30A;

tensão direta : V<sub>F</sub>=0,85V;

tensão de pico inversa :  $V_{RRM}=100V$ ;

resistência térmica junção-cápsula Rjc=1,5°C/W.

# 5.2.7) CÁLCULO TÉRMICO PARA OS DIODOS RETIFICADORES

Os diodos retificadores apresentam apenas perdas de condução, visto que a comutação é suave. Assim, a perda total nos diodos retificadores pode ser obtida como segue.

$$P_{\rm D} = 4 \times V_{\rm F} \times \frac{10}{2} = 4 \times 0,85 \times 4,2 \cong 14,28 \, {\rm W}$$
 (5.14)

Seja o caso em que todos os diodos estejam montados sobre o mesmo dissipador. O equivalente elétrico para este sistema térmico está representado na Fig. 5.1. Algumas hipóteses são inicialmente tomadas:

(a) As fontes geradoras de calor Qw1, Qw2, Qw3 e Qw4 são iguais;

(b) A temperatura de junção dos diodos são iguais a Tj=100°C;

(c) a resistência térmica cápsula-dissipador será assumida Rcd=0,2°C/W para todos os diodos, portanto, as temperaturas das cápsulas dos diodos serão iguais a Tc.



Fig. 5.1. Circuito equivalente para o cálculo de Rda.

Sabe-se que a elevação de temperatura é dada pela equação abaixo.

$$\Delta T = \mathbf{R} \times \mathbf{Perdas} \quad (5.15)$$

 $\Delta T$ : elevação de temperatura com relação a temperatura ambiente;

R : resistência térmica equivalente.

Considerando a temperatura ambiente de Ta=40°C e as perdas calculadas anteriormente, determina-se a partir da eq. (5.15) a resistência térmica equivalente.

$$\mathbf{R} = \frac{\mathbf{Tj} - \mathbf{Ta}}{\mathbf{P}_{\mathrm{D}}} = \frac{100 - 40}{14,28} \cong 4,2 \ ^{\circ}\mathrm{C/W} \ (5.16)$$

Através do circuito equivalente deduz-se que a resistência térmica equivalente é dada pela equação que segue.

$$\mathbf{R} = \frac{(\mathbf{Rjc} + \mathbf{Rcd})}{4} + \mathbf{Rda} \quad (5.17)$$

Rda : resistência térmica dissipador-ambiente.

Resultando:

Rda = R - 
$$\frac{(Rjc + Rcd)}{4}$$
 = 4, 2 -  $\frac{(1, 5 + 0, 2)}{4}$  = 3,78 °C/W (5.18)

#### 5.2.8) CÁLCULO DO TRANSFORMADOR

As especificações para o projeto do transformador estão citadas a seguir.

tensão de saída Vo=115,2V;

tensão sobre o capacitor Cb Vc=-40,6V; razão cíclica de operação na condição de carga nominal Dn=0,683; corrente de entrada para a condição nominal Iinn=8,33A; fator de ocupação da área da janela do carretel Kw=0,5; fator de ocupação do enrolamento primário Kp=0,5;

densidade máxima de corrente  $J=250 A/cm^2$ ;

excursão da densidade de fluxo magnética  $\Delta B=115 mT$ ;

frequência de chaveamento fs=40KHz.

A escolha do núcleo, o cálculo do número de espiras, o dimensionamento dos condutores, o cálculo das perdas e o cálculo da elevação da temperatura são feitos através do roteiro de projeto estabelecido no apêndice A. Os resultados dos cálculos estão descritos abaixo.

núcleo escolhido EE55/21;

número de espiras do primário Np=31;

condutores do primário #4x21AWG;

número de espiras do secundário Ns=13;

condutores do secundário #10x21AWG;

perdas no cobre Pcu=2,177W;

perdas no núcleo Pn=604mW;

elevação de temperatura  $\Delta T=28,54^{\circ}C$ .





camada do primário

camada do secundário

Fig. 5.2. Estrutura das camadas dos enrolamentos.

Os enrolamentos foram distribuídos em camadas com o objetivo de reduzir a indutância de dispersão do transformador, mesmo que esta estratégia aumente o efeito de proximidade. A fim de formar um determinado enrolamento, as respectivas camadas foram conectadas em paralelo.

A indutância de dispersão medida experimentalmente foi de  $4\mu$ H e capacitância entre os enrolamentos primário e secundário de 437pF.

# 5.2.9) CÁLCULO DO CIRCUITO DE AUXÍLIO A COMUTAÇÃO

(a) impedância característica do circuito ressonante

$$Zp = \sqrt{\frac{Llk}{Cp}} = \sqrt{\frac{4 \times 10^{-6}}{7,53 \times 10^{-9}}} = 23,05\Omega$$
 (5.19)

A impedância característica crítica do circuito ressonante que permitiria a comutação suave para a condição nominal de carga é determinada pela eq. (4.48).

$$Zpcr = \frac{Vo + Vc}{linn - lmn} = \frac{115, 2 - 40, 6}{\left[\frac{400}{48} - (1 - 0, 683) \times \frac{400}{48}\right]} \cong 13, 1\Omega \quad (5.20)$$

Como Zp>Zpcr, não é possível obter comutação suave para a condição nominal de carga.

(b) cálculo da tensão de pico Vpk

(b.1) primeiro critério de cálculo

Através da eq. (4.70) e considerando uma ondulação de 20% da corrente linn e Imn, obtém-se:

$$Vpka = \frac{\left[ (9,16-2,37) \times 23,05 \right]^2 - (115,2-40,6)^2}{2 \times (115,2-40,6)} \cong 126,2V \quad (5.21)$$

(b.2) segundo critério de cálculo

Através da eq. (4.72) e considerando a mesma ondulação de corrente, obtém-se:

$$Vpkb = (9, 16 - 2, 37) \times 23, 05 - (115, 2 - 40, 6) \cong 81, 9V$$
 (5.22)

escolhe-se Vpk=126,2V.

(c) cálculo do capacitor Cax

Através da eq. (4.60), resulta:

$$Cax = \frac{0,683 \times (1-0,683) \times 400/48}{2 \times 126, 2 \times 40 \times 10^3} \cong 180 \text{ nF} \quad (5.23)$$

(d) cálculo de Lax

(d.1) cálculo da indutância Lax

Usando a eq. (4.61) e considerando uma ondulação de corrente pico-a-pico de 45% em torno do valor médio, obtém-se:

Lax = 
$$\frac{0,683 \times 126,2}{2 \times 40 \times 10^3 \times \left[ (1-0,683) \times \frac{400}{48} \times 0,45 \right]} \cong 900 \mu H$$
 (5.24)

(d.2) cálculo do indutor Lax

As especificações para o projeto estão estabelecidas abaixo.

fator de ocupação da janela do carretel Kw=0,7;

indução máxima de fluxo magnético Bmáx=0,3T;

densidade de corrente  $J=300 \text{ A/cm}^2$ .

Com estes dados e considerando o roteiro de projeto descrito no apêndice B, obtém:

núcleo de ferrite EI 40/12;

número de espiras NL=64;

comprimento físico do entreferro lg=0,412mm;

condutor #18AWG;

perdas no cobre Pcu=1,05W;

perdas no núcleo Pn=113mW;

elevação de temperatura  $\Delta T=23,2^{\circ}C$ .

## 5.2.10) ESCOLHA DAS CHAVES S1 E S2

(a) chave S1

(a.1) tensão máxima

Através da eq. (4.19) e considerando a tensão sobre o circuito de auxílio a comutação, obtém-se

VS1máx = 115, 2 + 40, 6 + 126, 2 = 282V (5.25)

(a.2) corrente média

A corrente média através da chave S1 é determinada pela eq. (4.21):

$$IS1 = 0,683 \times \frac{400}{48} \cong 5,69A \quad (5.26)$$

(a.2) corrente eficaz

Através da eq. (4.23), tem-se:

IS1f = 
$$\sqrt{0,683} \times \frac{400}{48} \approx 6,89$$
A (5.27)

(b) chave S2

(b.1) tensão máxima

Através da eq. (4.19) e considerando a tensão sobre o circuito de auxílio a comutação, obtém-se

$$VS2max = 115, 2 + 40, 6 + 126, 2 = 282V$$
 (5.28)

(b.2) corrente média

Usando a expressão (4.22), obtém-se:

$$IS2 = (1-0,683) \times \frac{400}{48} \cong 2,64A$$
 (5.29)

(b.3) corrente eficaz

Através da expressão (4.24), tem-se

IS2ef = 
$$\sqrt{1-0,683} \times \frac{400}{48} \cong 4,69$$
A (5.30)

Considerando os dados para a escolha, ambas as chaves S1 e S2 são especificadas como segue.

IGBT escolhido:

IGBT IG20N50A/Harris;

tensão máxima de BV<sub>ces</sub>=500V;

tensão de limiar  $V_{GE(th)}=2V/4,5V;$ 

tensão de saturação  $V_{CE(on)}=2,5V;$ 

resistência térmica junção-cápsula Rjc=1,67°C/W.

Diodo série escolhido:

diodo MUR850/Motorola;

tensão reversa VRRM=500V;

corrente média IF(AV)=8A;

corrente de pico repetitiva IFM=16A;

tensão direta Vf=1,2V;

resistência térmica junção-cápsula Rjc=2°C/W.

As perdas de condução nas chaves S1 e S2 são calculadas como segue:

$$\mathbf{P}_{S1} = \mathbf{IS1} \times (\mathbf{Vf} + \mathbf{V}_{CEon}) = 5,69 \times (1,2+2,5) \cong 21,05 \mathbf{W} \quad (5.31)$$

$$P_{s2} = IS2 \times (Vf + V_{CEon}) = 2,64 \times (1,2+2,5) \cong 9,8W$$
 (5.32)

 $P_{S1}$ : perda de condução na chave S1;

 $P_{S2}$ : perda de condução na chave S2.

As chaves S1 e S2 foram montadas sobre um único dissipador calculado conforme o roteiro estabelecido no item 5.2.7. Como resultado obtém-se Rda=1,43°C/W.

#### 5.2.11) CÁLCULO DO INDUTOR LS

(a) cálculo da indutância Ls

Durante o intervalo de condução da chave S1, pode-se escrever a seguinte expressão para o indutor Ls:

$$Vin = \frac{Ls \times \Delta Iin}{D \times Ts} \quad (5.33)$$

 $\Delta$ Iin : ondulação pico-a-pico da corrente de entrada.

Logo, considerando uma ondulação de 15% da corrente de entrada com relação ao seu valor médio, obtém-se:

$$Ls = \frac{Vin \times D}{fs \times \Delta Iin} = \frac{48 \times 0,683}{40 \times 10^3 \times 0,15 \times 8,33} \cong 656 \mu H \quad (5.34)$$

(b) cálculo do indutor

As especificações para o projeto estão estabelecidas abaixo.

fator de ocupação da janela do carretel Kw=0,7;

indução máxima de fluxo magnético Bmáx=0,3T;

densidade de corrente  $J=300 A/cm^2$ .

Com estes dados e considerando o roteiro de projeto descrito no apêndice B obtém-se: núcleo de ferrite EE 55/21:

número de espiras  $N_L = 55$ ;

\_

comprimento físico do entreferro lg=1,03mm;

condutor #2x16AWG;

perdas no cobre Pcu=3,9W;

perdas no núcleo Pn=210mW;

elevação de temperatura  $\Delta T=36^{\circ}C$ .

### **5.3) CIRCUITO DE COMANDO**

O circuito integrado utilizado para gerar o sinal de comando PWM foi o 3524 em sua configuração tradicional. A única implementação realizada foi a geração do tempo de sobreposição dos comandos dos IGBT1 e IGBT2. Esta configuração está mostrada na Fig. 5.3 juntamente com os sinais mais importantes para o entendimento do funcionamento.

Com o uso dos monoestáveis é possível ajustar independentemente o tempo de sobreposição para cada comutação, por exemplo, o monoestável 1 ajusta o tempo de sobreposição para a comutação da corrente Iin da chave S1 para a chave S2 e o monoestável 2 ajusta o tempo de sobreposição da comutação da corrente Iin da chave S2 para a chave S1.



Fig. 5.3. Sinais de comando e diagrama simplificado.



Fig. 5.4. Circuito de comando geral.

A proteção de sobrecorrente atuaria disparando o tiristor 2N5061 que desabilitaria os IGBT1 e IGBT2. Neste caso, é necessário drenar a energia armazenada no indutor Ls através do enrolamento auxiliar que está representado na Fig. 5.5.



Fig. 5.5. Esquema para proteção de sobrecorrente utilizando enrolamento auxiliar.

Dessa forma, a relação entre as espiras do enrolamento auxiliar Na e as espiras do enrolamento principal N<sub>L</sub> deve obedecer a eq. (5.35)

$$\frac{Na}{N_L} < \frac{Vin}{Vo - Vc + Vpk - Vin} \quad \therefore Na < 11, 28 \quad \text{espiras} \quad (5.35)$$

Escolhendo Na=11 espiras.

O circuito de proteção foi ajustado para atuar quando a corrente de entrada atingir pouco mais de 12A, neste caso, a corrente impulsiva através do enrolamento auxiliar é determinada como segue:

 $N_L \times linbl = Na \times lap \therefore lap \cong 60A$  (5.36)

Iinbl : corrente de atuação do circuito de sobrecorrente;

Iap : corrente impulsiva através do enrolamento auxiliar;

Na : número de espiras do enrolamento auxiliar.

O tempo necessário para a extinção total desta corrente impulsiva pode ser determinada da seguinte forma:

$$\Delta tap = \frac{Ls \times \left(\frac{Na}{N_L}\right)^2 \times Iap}{Vin} \quad \therefore \Delta ta \cong 32,8 \,\mu s \quad (5.37)$$

101

O condutor do enrolamento auxiliar deve ser dimensionado pelo critério da queda de tensão, visto que esta queda impulsiva adiciona-se à tensão de entrada e o resultado será refletido para o enrolamento principal aparecendo sobre a chave S1. Assim, considerando uma queda de tensão de 10% da tensão de entrada Vin, obtém-se:

$$Ra = \frac{0, 1 \times Vin}{Iap} = 80 m\Omega$$
  
la = Na × lt = 11 × 11, 6 = 127, 6 cm (5.38)  
Ra/cm = 0,00627 \Omega/cm

Ra : resistência do enrolamento;

la : comprimento do enrolamento;

lt : comprimento médio por espira para o núcleo EE55/21.

A partir destes dados, a secção escolhida foi 21AWG.

# 5.4) RESULTADOS EXPERIMENTAIS

Um protótipo de laboratório foi implementado com o objetivo de comprovar os resultados teóricos e verificar os aspectos práticos do conversor. O diagrama completo do estágio de potência está mostrado na Fig. 5.6.



Fig. 5.6. Estágio de potência.

A Fig. 5.7 mostra a corrente através do capacitor Cbs que apresenta uma oscilação de alta frequência causando um esforço extra de corrente através dos diodos retificadores.

O estágio de saída do conversor é atacado em corrente, e a indutância parasita, resultante da própria fiação do estágio de saída, ressona com o capacitor paralelo Cps provocando as oscilações mostradas. A solução então, seria grampear estas oscilações através da introdução, num ponto estratégico, de um circuito grampeador de corrente.

O modelo incremental para o estudo dessas oscilações está mostrado na Fig. 5.8, onde os capacitores Cbs e Cos podem ser considerados como curto-circuito para a frequência de oscilação.



Fig. 5.7. Corrente através do capacitor de balanço Cbs.

Na realidade, o capacitor Cps fica em paralelo com a capacitância de difusão dos diodos que estão bloqueados. Prevalece Cps, visto que a ordem de grandeza das capacitâncias de difusão é muito inferior a ordem de grandeza de Cps. O modelo incremental com grampeador de corrente é representado pela fonte de ataque Ia, capacitor paralelo Cps, indutância parasita equivalente lp da fiação do estágio de saída, corrente de grampeamento Ig e diodo grampeador Dg. O grampeador de corrente real está mostrado na Fig. 5.8(c), onde Rg é o resistor de balanço de energia e Lg a indutância que mantém a corrente Ig aproximadamente constante.



Fig. 5.8. Modelo incremental para análise do grampeamento das oscilações.

A energia que flui para o grampeador durante a ação de grampeamento é dada por:

$$\mathbf{Eg} = \mathbf{Ig} \times \frac{\Delta \mathbf{V} \times \Delta \mathbf{tg}}{2} \quad (5.39)$$

O ângulo \$\phi\$ é medido a partir do instante que a corrente através de lp ultrapassa Ia, logo:

$$Ia \times sen\phi = Ig - Ia \quad \therefore \phi = sen^{-1}(\mu - 1) \quad (5.40)$$

Onde:

$$\mu = \frac{lg}{la} \quad (5.41)$$

Ig : corrente de grampeamento;

Ia : corrente de ataque.

Durante o intervalo de grampeamento pode-se escrever o seguinte:

$$Ig - Ia = Cps \times \frac{\Delta V}{\Delta tg} \quad \therefore \Delta tg = Cps \times \frac{\Delta V}{Ig - Ia} \quad (5.42)$$

 $\Delta V e \Delta tg$  podem ser vistos na Fig. 5.8(e).

Da mesma figura, obtém-se:

$$\Delta \mathbf{V} = \mathbf{Ia} \times \sqrt{\frac{\mathbf{Ip}}{\mathbf{Cps}}} \times \cos \phi \quad \therefore \Delta \mathbf{V} = \mathbf{Ia} \times \sqrt{\frac{\mathbf{Ip}}{\mathbf{Cps}}} \times \sqrt{2 \times \mu - \mu^2} \quad (5.43)$$

Substituindo as eq. (5.42) e (5.43) em (5.39), resulta:

$$\mathbf{Eg} = \frac{1}{2} \times \mathbf{lp} \times \mathbf{Ia}^2 \times \left[ \mu^2 \times \frac{2-\mu}{\mu-1} \right] \quad (5.44)$$

A energia que flui para o grampeador de corrente é o produto da energia armazenada na indutância parasita lp pelo fator de correção Kg que expressa o nível da ação de grampeamento, conforme mostra a Fig. 5.9.



Fig. 5.9. Fator de correção Kg.

Evidentemente, para pequenos valores de µ o grampeamento é mais efetivo e a energia que flui para o grampeador aumenta.

A frequência de oscilação medida em laboratório está na faixa de 1,66MHz, resultando uma indutância parasita equivalente de 200nH. A fim de comprovar a validade e o efeito causado pelo circuito grampeador de corrente, o circuito foi simulado para a condição de carga nominal. Conforme mostrado na Fig. 5.10(a), o grampeador foi colocado na saída da ponte retificadora. Nesta configuração apenas o pico mais elevado é grampeado.

A Fig. 5.10(b) mostra a corrente através do capacitor Cbs, cuja forma de onda está muito próxima da obtida experimentalmente, validando a hipótese de que a oscilação decorre da interação entre o capacitor Cps e a indutância parasita equivalente lp.

A Fig. 5.10(c) mostra o efeito causado pelo grampeamento da corrente através de Cbs em 19A, apenas o pico mais elevado está sendo grampeado.

A Fig. 5.10(d) mostra as formas de ondas da tensão sobre o capacitor Cps e da corrente através de lp durante a ação de grampeamento, perfeitamente em acordo com as previstas.



Fig. 5.10. Simulação do grampeador ideal de corrente.

A partir da Fig. 5.10(b) verifica-se que a corrente de ataque está em torno de Ia=16A. Como a oscilação está sendo grampeada em Ig=19A, resulta o fator  $\mu$ =1,2. Usando a Fig. 5.9 e a eq. (5.44), resulta que a potência entregue ao grampeador de corrente a cada período de chaveamento está na faixa de Pg=5,9W. Considerando-se a Fig. 5.10(a), conclui-se que a corrente

106

média através do diodo de grampeamento Dg é dada pela diferença Ig-Ios=11A. Supondo que a tensão direta deste diodo seja 1V, resulta uma perda de condução da ordem de 11W. Ora, somente a perda causada pela condução do diodo é maior que a potência que deveria fluir para o grampeador a fim de manter o ponto de funcionamento previsto para o grampeador. Este fato inviabiliza a aplicação prática do grampeador de corrente, uma vez que a perda de potência num caso real seria maior que a prevista neste parágrafo, encerrando esta rápida discussão.

A Fig. 5.11(a) mostra a tensão e a corrente através da chave S1, enquanto a Fig. 5.11(b) mostra um detalhe da comutação da chave S1. A comutação ocorre sob corrente nula, praticamente sem perdas e as formas de ondas estão em pleno acordo com as previstas.

A tensão e a corrente através da chave S2 estão mostradas na Fig. 5.12(a), enquanto a Fig. 5.12(b) mostra o detalhe da comutação que ocorre praticamente sem perdas.

A tensão sobre o circuito auxiliar está mostrada na Fig. 5.13(a), a forma de onda é triangular e a comutação ocorre sempre nos valores máximo e mínimo. A Fig. 5.13(b) mostra a tensão através do capacitor Cps, onde está presente a oscilação de alta frequência causada pela indutância parasita da fiação do estágio de saída.



Fig.5.11. Tensão e corrente através da chaves S1.



Fig. 5.12. Tensão e corrente através da chave S2.



Fig. 5.13. Tensão sobre o capacitor Cax e tensão sobre o capacitor Cps.

As tensões sobre os diodos retificadores estão mostradas na Fig. 5.14. Sobre os diodos ímpares D1 e D3 foi adquirida a forma de onda da Fig. 5.14(a) e sobre os diodos pares D2 e D4 a forma de onda de tensão está apresentada na Fig. 5.14(b).



Fig. 5.14. Tensão sobre os diodos ímpares D1 e D3 e tensão sobre os diodos pares D2 e D4.

A característica externa do conversor e a curva de eficiência levantadas experimentalmente estão mostradas na Fig. 5.15.



Fig. 5.15. Tensão de saída versus potência de saída tomando-se D como parâmetro e curva de eficiência.

A tensão de entrada foi mantida constante durante o levantamento da característica externa mostrada na Fig. 5.15(a), onde a razão cíclica D é o parâmetro, ou seja, esta é a característica de malha aberta do conversor.

Os dados para o traçado da curva de eficiência apresentada na Fig. 5.15(b) foram obtidos com tensão de entrada e tensão de saída fixas e nominais. O rendimento é maior que 84% para cargas acima de 400W. Este valor pode ser considerado elevado, visto que o conversor foi projetado para baixa tensão e elevada corrente de entrada, sendo esta uma possível área de aplicação prática. As chaves S1 e S2 podem ser consideradas como as principais fontes de perdas. Este fato pôde ser observado durante o procedimento de projeto, onde as maiores perdas calculadas foram sobre as chaves S1 e S2.

### 5.5) CONCLUSÃO

Este capítulo descreveu um roteiro completo de projeto do estágio de potência do conversor estudado. Pode ser verificado que as perdas previstas para o conversor através dos cálculos somam aproximadamente 60W, resultando um rendimento teórico de 85%. Ora, o rendimento medido experimentalmente para a condição nominal de carga está na faixa de 84%.

Este fato vem validar toda a análise realizada e demonstra que as chaves realmente comutam sob corrente nula.

Experimentalmente, foi detectado a existência de uma indutância parasita equivalente resultante da própria fiação do estágio de saída. Esta indutância interage com o capacitor Cps e resultam oscilações de corrente causando um esforço extra sobre os diodos retificadores. A fim de limitar estas oscilações sugere-se duas soluções:

(a) alteração do lay-out;

(b) emprego do grampeador de corrente.

A primeira solução foi empregada e requer o encurtamento da fiação do estágio de saída. Infelizmente, este esforço de modificação do lay-out não limitou as oscilações, pois a indutância parasita equivalente sofreu pouca alteração.

A segunda solução foi apenas relatada durante o trabalho. Entretanto, os componentes atualmente disponíveis inviabilizam a implementação prática do grampeador de corrente. Por outro lado, o convívio com estas oscilações é possível e não causou danos aos diodos retificadores.

Os resultados experimentais foram obtidos para o conversor alimentando uma carga de 430W. As comutações das chaves principais ocorrem sob corrente nula, principal vantagem do conversor. Os diodos retificadores também comutam suavemente, entrando em condução sob tensão nula e bloqueando com corrente nula.

A comutação suave dos componentes semicondutores é a principal responsável pelo alto rendimento apresentado pela estrutura.

O projeto do conversor foi feito para baixa tensão, sendo um indicativo muito forte para uma possível aplicação prática.

Finalmente, o traçado da característica externa demonstrou que é possível regular a tensão de saída desde potências inferiores a 50W até potências superiores a 430W.

110

### **CONCLUSÃO GERAL**

Este trabalho apresentou a análise, projeto e experimentação de uma nova fonte chaveada PWM-ZCS alimentada em corrente projetada para 400W/48V, 40KHz, usando IGBT.

Inicialmente, foi apresentado uma revisão dos princípios de dualidade que constituem uma ferramenta poderosa na concepção e análise de novas topologias. Como resultado de aplicação da dualidade foi gerada a topologia proposta neste trabalho.

As baixas perdas de condução dos conversores CC/CC PWM convencionais e a comutação não dissipativa dos conversores ressonantes são propriedades presentes no conversor proposto.

A principal desvantagem da topologia proposta é a máxima tensão aplicada sobre as chaves, justificando o uso do IGBT. Além disso, o uso do IGBT é justificado pelo fato da comutação ocorrer sob corrente nula.

O estudo da comutação mostrou que o limite para manter de comutação suave é dependente da corrente de carga e da impedância característica do circuito ressonante formado pela indutância de dispersão do transformador e pelo capacitor paralelo Cps, cujo principal papel é armazenar energia para a etapa ressonante da comutação. Esta dependência do limite de comutação suave com a indutância de dispersão do transformador torna a faixa de carga muito restrita. Portanto, foi proposto o circuito de auxílio a comutação que torna a comutação suave para a condição de carga nominal.

As curvas experimentais foram adquiridas com o conversor alimentando uma carga equivalente de 430W/48V. As mais relevantes são as curvas da tensão e corrente sobre as chaves principais, onde pode ser verificado que a comutação é do tipo ZCS.

O rendimento global do estágio de potência ficou acima de 84%. Este valor pode ser considerado elevado, uma vez que o conversor foi projetado para operar em baixa tensão sendo submetido a altos níveis de corrente. Este projeto mostrou que esta pode ser uma aplicação prática para o conversor proposto.

Finalmente, resumindo as principais vantagens apresentadas pelo conversor:

(a) conversor CC/CC isolado;

(b) modulação PWM;

(c) utiliza apenas duas chaves;

(d) comutação sob corrente nula (ZCS);

(e) baixas perdas de condução em comparação com os conversores CC/CC PWM convencionais;

(f) comando não isolado.

## **REFERÊNCIAS BIBLIOGRÁFICAS**

- [1] Ninomiya, T., Matsumoto, N., Nakahara, M., Harada, K., "Static and DynamicAnalysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control", IEEE PESC'91 Record, pp. 230-237, 1991.
- [2] Imbertsom, P., Mohan, N., "Asymmetrical Duty Cycle Permits Zero Switching Loss in PWM Circuits with no Conduction Loss Penalty", IEEE IAS'91 Record, pp. 1061-1066, 1991.
- [3] Freeland, S., "Techniques for the Practical Application of Duality to Power Circuits", IEEE PESC'89 Record, pp. 114-123, 1989.
- [4] Wolfs, P., "A Current-Sourced DC-DC Converter Derived via the Duality Principle from the Half-Bridge Converter", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol.40, No. 1, FEBRUARY 1993, pp. 139-144.
- [5] Mweene, L. H., Wrigth, C. A., Schlecht, "A 1 KW, 500KHz Front-End Converter for a Distributed Power Supply System", IEEE APEC'89 Record, pp. 423-432.
- [6] Vieira, J. L. F., Gabiatti, G, Barbi, I., "On the Design and Experimentation of a High Performance 25A/48V Rectifier Unit", INTELEC'92 Record, pp. 540-547.
- [7] Schwarz, F. C., "An Improved Method of Resonant Current Pulse Modulation for Power Converters", IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMANTATION, Vol. IECI-23, No. 2, May 1976, pp. 133-141
- [8] Martins, D. C., Barbi, I., Canalli, V. M., "Estudo e Realização de um Conversor Série Ressonante", Anais do 7º CBA (Congresso Brasileiro de Automática), ITA, São José dos Campos, São Paulo, 1988, pp. 470-475.

- [9] Barbi, I. Bolacell, J. C., Martins, D. C., Libano, F. B., "Buck Quasi-Resonant Converter Operating at Constant Frequency: Analysis, Design and Experimentation", IEEE TRANSACTIONS ON POWER ELECTRONICS, July 1990, Vol. 5, No. 3, pp. 276-283.
- [10] Souza, A. F., Martins, D. C., "Manual de Utilização do Programa SCVOLT", Publicação Interna, UFSC, 1990.



# **A) PROJETO DO TRANSFORMADOR**

## A.1) DETERMINAÇÃO DO PRODUTO AE.AW

Utilizando a lei de Faraday durante o intervalo de magnetização do transformador pode-se escrever o seguinte:

$$Vo + Vc = Np \times \frac{\Delta \phi}{\Delta t} = Np \times \frac{\Delta B \times Ae}{D \times Ts}$$
 (A.1)

Np : número de espiras do primário;

 $\Delta \phi$  : variação de fluxo magnético;

 $\Delta B$ : excursão da densidade de fluxo magnético;

 $\Delta t$ : tempo de magnetização;

Ae : área da perna central do núcleo de ferrite tipo E.

Através da lei de Ampere aplicada aos condutores do enrolamento primário, resulta:

$$Kp \times Kw \times Aw \times J = Np \times Ipef$$
 (A.2)

Aw : área da janela do carretel;

Kw : fator de utilização da área da janela do carretel Kw=0,5;

Kp : fator de utilização para o enrolamento primário Kp=0,5;

J : densidade de corrente;

Ipef : corrente eficaz do enrolamento primário, neste caso é a própria corrente eficaz através da chave S2.

Através das equações acima determina-se o produto Ae.Aw.

$$Ae \times Aw = \frac{Dn \times \sqrt{1 - Dn} \times (Von + Vcn) \times Iinn}{Kp \times Kw \times J \times \Delta b \times fs} \times 10^{4} [cm^{4}] \quad (A.3)$$

## A.2) CÁLCULO DO NÚMERO DE ESPIRAS DO PRIMÁRIO E SECUNDÁRIO

$$Np > \frac{Dn \times (Von + Vcn)}{Ae \times \Delta b \times fs} \times 10^{4} \quad (A.4)$$

$$Ns = \frac{Np}{n} \quad (A.5)$$

Ns : número de espiras do secundário;

n : relação de transformação.

## A.3) PROFUNDIDADE DE PENETRAÇÃO

$$\Delta = \frac{7.5}{\sqrt{\text{fs}}} \text{ [cm]} \text{ (A.6)}$$
$$S_{\Delta} = \pi \times \Delta^2 \text{ [cm^2]} \text{ (A.7)}$$

 $\Delta$ : profundidade de penetração;

 $S_{\Delta}$ : área transversal efetiva do condutor ocupada pela corrente.

A.4) DIMENSIONAMENTO DOS CONDUTORES DO PRIMÁRIO

$$Spr = \frac{Ipef}{J} = \frac{\sqrt{1 - Dn} \times linn}{J} [cm^{2}] \quad (A.8)$$
$$fpri = \frac{Spr}{S} \quad (A.9)$$

(A.9)

$$/S_{\Delta}$$

Spr : secção transversal do condutor primário;

fpri : número de fios a ser utilizado com secção transversal  $S_{\Delta}$ .

## A.5) DIMENSIONAMENTO DOS CONDUTORES DO SECUNDÁRIO

$$S \sec = \frac{n \times \sqrt{1 - Dn \times Iinn}}{J} \left[ cm^2 \right] \quad (A.10)$$

$$f \sec = \frac{S \sec}{S_{\Delta}} \quad (A.11)$$

Ssec : secção transversal do condutor secundário;

fsec : número de fios a ser utilizado com secção transversal  $S_{\Delta}$ .

## A.6) CÁLCULO DAS PERDAS NO COBRE

Considerando que as perdas no cobre do primário e secundário são idênticas, tem-se:

$$Pcu1 = \frac{2 \times Rc1 \times Np \times lt}{fpri} \times (1 - Dn) \times Iinn^{2} \quad (A.12)$$

Pcu : perdas no cobre;

Rc1 : resistência por unidade de comprimento do fio utilizado no primário; lt : comprimento médio por espira.

## A.7) CÁLCULO DAS PERDAS NO NÚCLEO

$$\mathbf{Pn} = \Delta \mathbf{B}^{2,4} \times \left(\mathbf{Kh} \times \mathbf{fs} + \mathbf{Ke} \times \mathbf{fs}^2\right) \times \mathbf{Vol} \quad (\mathbf{A}.\mathbf{13})$$

Pn : perdas no núcleo ;

Kh : coeficiente de perdas por histerese  $Kh = 4 \times 10^{-5}$ ;

Ke : coeficiente de perdas por corrente parasita  $Ke = 4 \times 10^{-10}$ ;

Vol : volume do núcleo.

# A.8) CÁLCULO DA ELEVAÇÃO DE TEMPERATURA

$$\Delta T = Pt \times Rt \quad (A.14)$$

 $\Delta T$ : elevação de temperatura;

Pt = Pcu1 + Pcu2 + Pn : perdas totais;

Rt : resistência térmica do núcleo.

$$\mathbf{Rt} = \mathbf{23} \times \left(\mathbf{Ae} \times \mathbf{Aw}\right)^{-0,3} \quad (\mathbf{A.15})$$



### **B) PROJETO DE INDUTORES**

### B.1) CÁLCULO DO PRODUTO AE.AW

O produto Ae.Aw é dado pela eq. (B.1)

$$Ae \times Aw = \frac{L \times Ipk \times ILef}{Kw \times Bmáx \times J} \times 10^{4} [cm^{4}] \quad (B.1)$$

Ae : área da perna central do núcleo;

Aw : área da janela do carretel;

L : valor da indutância;

Ipk : corrente de pico através da indutor L;

ILef : corrente eficaz através do indutor L;

Kw : fator de ocupação da área da janela do carretel;

Bmáx : densidade de fluxo máxima;

J : densidade de corrente.

#### B.2) CÁLCULO DO NÚMERO DE ESPIRAS

$$N_1 = \frac{L \times Ipk}{Ae \times Bmáx} \times 10^4 \quad (B.2)$$

N<sub>L</sub> : número de espiras.

**B.3) CÁLCULO DO ENTREFERRO FÍSICO** 

$$lg = \mu_0 \times \frac{Ae \times N_L^2}{2 \times L} \times 10^{-2} [mm] \quad (B.3)$$

lg : comprimento físico do entreferro;

 $\mu_0$ : permeabilidade magnética do vácuo.

### **B.4) BITOLA DO FIO CONDUTOR**

$$Scu = \frac{ILef}{J} \quad (B.4)^{2}$$

Scu: secção equivalente do condutor de cobre.

### **B.5) PERDAS NO COBRE**

$$Pcu = \frac{Rc \times lt \times N_{L} \times ILef^{2}}{nf}$$
 (B.5)

Pcu : perdas no cobre;

Rc : resistência por unidade de comprimento por condutor;

nf : número de condutores.

B.6) PERDAS NO NÚCLEO

$$\mathbf{Pn} = \Delta \mathbf{B}^{2,4} \times \left(\mathbf{Kh} \times \mathbf{fs} + \mathbf{Ke} \times \mathbf{fs}^{2}\right) \times \mathbf{vol}\left[\mathbf{W}\right] \quad (\mathbf{B.6})$$

Pn : perdas no núcleo;

 $\Delta B$ : variação da densidade de fluxo;

Kh : coeficiente de perda por histerese;

Ke : coeficiente de perda por correntes parasitas;

vol : volume do núcleo.

### B.7) ELEVAÇÃO DE TEMPERATURA

 $\Delta \mathbf{T} = \mathbf{23} \times (\mathbf{Pcu} + \mathbf{Pn}) \times (\mathbf{Ae} \times \mathbf{Aw})^{-0.37} [^{\circ}\mathbf{C}] \quad (\mathbf{B.7})$ 

 $\Delta T$ : elevação de temperatura.