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Abstract
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Water molecules play a significant role in biological process and are directly involved 

with bio-molecules and organic compounds and ions.  Recent research has focused on the

thermal dynamics and kinetics of water molecules in solution, including experimental 

(infrared spectroscopy and Raman spectroscopy) and computational (Quantum 

Mechanics and Molecular Dynamics) approaches. The reason that water molecules are so

unique, why they have such a profound influence on bio-activity, why water molecules 

show some anomalies compared to other small molecules, and where and how water 

molecules exert their influence on solutes are some of the areas under study. We studied 

some properties of hydrogen bond networks, and the relationship of these properties with 

solutes in water. Molecular dynamics simulation, followed by an analysis of “water 
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bridges”, which represent protein-water interaction have been carried out on folded and 

unfolded proteins. Results suggest that the formation of transient water bridges within a 

certain distance helps to consolidate the protein, possibly in transition states, and may 

help further guide the correct folding of proteins from these transition states. This is 

supporting evidence that a hydrophilic interaction is the driving force of protein folding.

Biological membranes are complex structures formed mostly by lipids and proteins. For 

this reason the lipid bilayer has received much attention, through computation and 

experimental studies in recent years. In this dissertation, we report results of a newly 

designed pH sensitive lipid MORC16, through all-atom and coarse-grained models. The 

results did not yield a MORC16 amphiphile which flips its conformation in response to 

protonation. This may be due to imperfect force field parameters for this lipid, an 

imperfect protonation definition, or formation of hydrogen bond does not responsible for 

conformation flip in our models. Despite this, some insights for future work were 

obtained.
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Chapter 1: Introduction

1.1 History and Development of MD Simulation

Experiments, along with the guidance of theory and mechanisms, enhance the 

development of science and technology. The word “experiment” can be explained in a 

general or in a narrow sense. Here we refer this word to represent all techniques to 

discover the truth of a specific phenomenon. In case of chemistry research, many 

instruments are designed and developed in order to investigate the composition or 

structures of compounds that are interesting, and such experiments may be used to verify 

hypotheses and and formulate new theory. 

With the cooperation of computer science, more and more experimental hypotheses have 

been modeled and simulated by building a virtual environment on the computer in order 

to seek the mechanism underneath the phenomenon. 

Molecular Dynamics (MD) simulation is a method used to explore chemical phenomena 

on an atom-level scale. It is a useful method in order to study condensed matter systems, 

and with the help of this method, we can model the trajectory of atoms, which provides 

details of microstates. This then produces a supplement to first-principle Quantum-

Mechanical (QM) calculations and lab experiments.
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The first paper that attempted to apply classical statistics to properties of substances was 

by Metropolis in 19531. This paper applied the Monte-Carlo technique to physical 

equations of a system composed of interacting individual molecules with only two-body 

forces are considered. 

The first “proper” molecular dynamics simulation was performed by B.J. Alder and T.E. 

Wainwright in 19562. The simulation was just able to calculate equilibrium properties and

showed significant difference from Monte Carlo results. This was the first time that 

applying periodic boundary conditions were applied in simulation.

The first realistic molecular simulation of a liquid was performed in 1964 by A.Rahhan 3, 

who has become known as father of molecular dynamics. This paper was focused on 

studying the space and time dependence of two-body correlations within a classical 

dynamics frame work. The first molecular simulation of water was also achieved in 1971,

also by A. Rahhan4. Water simulations pose a greater challenge than liquid noble gases, as

in addition to van der Waals interactions, there are coulomb and hydrogen bond 

interactions in liquid water.

The first molecular simulation of a protein was published by Michael Levitt and Arich 

Warshel5 in 1975.  This paper employed a simple representation of protein structure 

which averaged over groups of atoms, and successfully renatured BPTI from an open-

chain conformation. 

The first all-atom molecular simulation of a protein was performed by  J. Andrew 

McCammon6 in 1977. In this study, the classical equations of motion for all the atoms of 
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the protein were solved simultaneously for a suitable time around its native conformation,

thus being able to observe equilibrium properties.

The 1980s was a booming period of molecular simulation, with a range of 

biomolecules7 (protein, DNA) being simulated. A variety implicit solvent model (Poion-

Boltzmann8, Generalized-Born9) were developed, and continued development of 

potentials and enhanced sampling techniques (Umbrella Sampling10, Replica Exchange11).

In the 1990s, more and more molecular simulation packages were developed. Packages 

such as CHARMM, GROMACS, NAMD and AMBER allow researchers to perform 

molecular dynamics simulation for their own interest. In the late 1990s, driven by the 

computer game market, calculation performed on graphic cards became popular, which 

led to some optimization of MD simulation algorithm on these graphic cards12–19.

In 21st century, MD continues to move forward with the fast development of hardware. It

is only a matter of time before simulation of whole-cell system20,21 becomes feasible.

1.2 General Classical Molecular Dynamics Simulation

The key function of molecular dynamics is the creation of a potential function, described 

by the classical Newton equations. Molecular dynamics assumes atoms move with 

deterministic trajectories, with the assumption of the ignoring any quantum effects, and 

utilizing the Born-Oppenheimer adiabatic approximation, which supposes all atoms are in

their ground electronic state. The interaction between atoms in MD employs mature 
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potentials such as Lennard-Jones potential22, Morse potential23 and Embedded Atom 

Method (EAM)24. These potentials provide the relative close results of interaction 

between atoms while losing some effects of electron coupling.

The general procedure in MD is to start with a set of initial coordinates and velocities of 

the N particles contained in system. As the simulation proceeds, the particles evolve 

through the solvation of Newton’s equations of motion in increments of ∆t (typically 1-2 

fs). Since the force is calculated by taking the gradient of the total potential U, the 

specification of U essentially determines the compromise between physical fidelity and 

computational efficiency, and this “force field” becomes the most important part of the 

process.

Here we list the two most commonly-used potential functions : the AMBER25 and the 

CHARMM26,27 force fields respectively.

                                                                                                                            (1.1)

                                                                                                                                        (1.2)
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The Amber force field is a classical force field employed by many molecular dynamics 

packages. The CHARMM force field added three additional terms in version 

CHARMM2228 (released in 1991). The first term is a two-body Urey-Bradley 

term29  which is a cross-term accounting for angle bending using 1,3 nonbonded 

interactions, where ku is the respective force constant and u is the distance between the 

1,3 atoms in the harmonic potential. The second is a four-body quadratic improper term. 

which describes out of plane bending; kω is the force constant and ω is the out of plane 

angle. The third is a cross term named CMAP30, which has been used to improve the 

treatment of the conformational properties of the φ/ψ dihedral terms in the peptide 

backbone, explicitly derived in order to correct nonphysical helical structures.

Both CHARMM and AMBER give good results for proteins and DNA, but for some 

organic compounds like drug molecules, CGenFF26 (CHARMM General Force Field, an 

extension of the CHARMM forcefield) or MMFF31 (Merck Molecular Force Field, 

developed by Merck Research Laboratories) are better options.

The general limitations in MD methods include limited timescales, which are often far 

shorter than useful or effective; the force fields are inherently approximations with 

accuracy errors; and the fact that covalent bonds cannot break or form during 

conventional MD simulations.

1.3 Accelerated Molecular Dynamics Simulation

Some calculations of properties may not be available using general molecular dynamics 

simulation. Accelerated molecular dynamics is a class of enhanced MD methods that 
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attempt to improve the conformational sampling space by either reducing energy barriers 

or using non-Boltzmann weighting factors to cross any barriers encountered32–34.

1.3.1 Steered Molecular Dynamics (SMD)

Steered Molecular dynamics was inspired by atomic force microscopy experiments, 

which was initially developed in 1990s35,36, and has been successfully applied to protein 

unfolding and other biochemical system including ions or molecule transport37–40. The 

major difference between SMD and regular MD is the constraints on atoms. In regular 

MD, all atoms are dynamically evolved without constraints or harmonically constrained 

to a reference point in all three spatial directions. In SMD, tagged atoms have their 

centers of mass constrained along an outside constraint direction to a reference point 

which moves with constant velocity. As shown in Fig.1, the atoms aren’t pulled directly, 

but instead move through a dummy atom. The interaction between the dummy atom and 

the atom of interest is determined through a spring with a corresponding spring constant.
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1.3.2 Replica Exchange Molecular Dynamics

Replica Exchange Molecular Dynamics (REMD)11,41,42 is a parallel simulation technique, 

which combines the concepts of a multicanonical algorithm simulation, simulated 

annealing and Monte Carlo methods to attempt to sample a random walk in the energy 

space, which allows the more efficient sampling of more conformational space. Thus 

REMD is also refered to as replica Monte Carlo method43,44 or parallel tempering45,46.

The motivation for REMD is that storage has become cheap, but CPU time remains 

expensive, so simulation time (statistics) may be improved through replication with the 

fast development of multithreading techniques.

In REMD simulations, a set of parallel independent simulations are conducted over a 

range of conditions of a single molecular system. The variable here may be any factor 

that affect the Boltzmann distribution. The most popular condition is temperature, but it 

Fig. 1: Schematic of SMD method. From Phys4500 Lecuture, 

MU(University of Missouri)
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could also be a reaction coordinate such as angle or distance. It may also be physical 

conditions such as pH or the ionic strength of the system. Here we illustrate the method 

with a temperature replica exchange simulation (Fig. 2).

A number of systems at different temperatures are allowed to exchange configurations at 

fixed time intervals with a transition probability following Metropolis criterion:

                                         (1.3)    

where U(Xi) is the total potential energy of replica i at temperature Ti; k is Boltzmann’s 

constant.

Paccept=1 when Ti < Tj , and U(Xi) < U(Xj).

Fig. 2: Work flow of replica exchange molecular dynamics. From Wikimedia Commons.
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Each vertical column represents one of the M replicas of the system. The replicas are 

distributed in a Boltzmann manner from low to high temperature, and after a certain 

amount of simulation to time tix, exchanges are attempted between two neighboring 

replicas. If accepted, the temperatures will be exchanged, and the simulation continues 

with the updated temperatures assigned to different replicas.

1.3.3 Dissertation Outline

This dissertation includes two major parts. First is the study of the water-protein 

interaction through an analysis of water bridges. Second the development of a constant-

pH simulation of the MORC16 lipid. We first studied some properties of hydrogen bond 

network in water including degree of hydrogen bonding and lifetime of hydrogen bonds 

(Chapter 2.5.1), then studied the influence of solutes in water to these properties (Chapter

2.5.3). We analyzed hydrogen bond network through community detection through R 

(Chapter 2.5.2). Water bridge information was determined through the development of a 

tcl script and VMD (Chapter 2.5.4),  then analyzed. The role of water bridge in folded, 

unfolded (through SMD) and misfolded (through REMD) proteins were investigated. The

full development and constant-pH simulation of BPTI, from folded to unfolded states, in 

order to study the pKa shift take up the entirety of Chapter 3.

Constant-pH simulation of MORC16 lipid were performed through CHARMM (Chapter 

4.2.1). The development and execution of lipid aggregation simulations through 

MARTINI coarse-grained model (Chapter 4.2.2) and bilayer stability through AMBER 

(Chapter 4.2.3) are presented.  
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Chapter 2: The Role of Water Bridges on Protein Folding and Stability

2.1 Protein Folding Problem

In order to celebrate the journal’s 125th anniversary in 2005,  Science Magazine published

a special collection of articles about 125 “big questions” 47 that face scientific inquiry 

over the next quarter-century. On the list there are two questions regarding protein 

structures:  “Can we predict how proteins will fold?” and “How do proteins find their 

partners?”.

Most of the presented research focused on globular proteins, which can fold directly in 

solution. However, fibrous proteins and membrane proteins remain a challenge due to the

difficulty in determining their conformation in an isolated formation.

The famous experiment of renaturing of RNase A by Anfinsen48 in 1961 clearly 

demonstrated the capability of folding of protein sequence without help from other bio-

activity factors using solvent only.

There are various competing models proposed for protein folding process:
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The hydrophobic-collapse model 49,50 hypothesizes that a protein collapses rapidly due to 

the sequestration of the hydrophobic side chains from the surrounding water. This 

collapsed intermediate is also referred to as a molten globule. This hydrophobic collapse 

is a relatively early event, occurring before the formation of secondary structure. 

The nucleation condensation model states that first a local nucleus of folding is formed, 

then this core acts as scaffold for rapid tertiary structure organization51.

The diffusion-collision model proposes that local microdomains (secondary structure or 

hydrophobic clusters) form independently of tertiary structure52. These elements diffuse 

until they collide, successfully adhering and coalescing to give the tertiary structure53 . 

Proteins are synthesized by ribosomes inside cells and the process takes minutes (single 

domain) to hours (multidomain). The folding of the N-terminal part of the protein 

Fig. 3: Protein folding models.(127)
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happens before the completeness of assembly of whole protein sequence. Experiments 

show the folding unit of a protein is single domain, which is a relatively independent, 

conserved part of the protein sequence, the assembly process does not move smoothly, 

and some delay54 might occur to signal the finishing of one domain to facilitate the 

maturing of folding for sequence that has already assembled. Since parts of the protein 

start folding while the assembly still continues elsewhere, the hydrophobic-collapse 

model might not be the initial process, in which case the protein won’t wait until the 

ending of one assembly to start to fold elsewhere. It is highly likely that some secondary 

structure forms when the sequence is long enough to form these motifs, and 

rearrangements through the hydrophobic effect has been happening all the time while the 

protein is synthesized. As for the nucleation condensation model, it can be seen as a 

special case of the diffusion-collision model, if there is only one strong microdomain 

existing, and this domain acts as a nucleus to dominate the rest of folding process.

The chemical synthesis of proteins is one way to acquire small proteins. A similar 

environment can be cautiously chosen to assure the correct folding of the protein, even 

though the speed of folding might be hampered without the help from native cell 

machinery, because all information needed have been already embedded in sequence 

codes.

Protein folding and stability must be favored by some environmental factors: 

temperature, pressure and composition of solvent. Water molecules acting as solvent 

molecules that are directly in contact with proteins are thought to play a dominant role in 

determining protein structure and stability. Any other factors have to exert their influence 
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through water molecules. This triggered our focus on the relationship between water 

molecules and proteins. 

2.2 Water Bridges and Water Networks

Water plays an important role in biochemical systems, from DNA and proteins55 to 

organic polymers56. However, the mechanism of how water molecules affect the folding 

of proteins or the binding of ligands to proteins is not well understood. Two opinions are 

actively discussed regarding which of the two dominant protein folding factors matters 

most: hydrophobic (HФO) or hydrophilic (HФI) effect. 

The hydrophobic effect was first introduced by Kauzmann57 who pointed out that 

‘hydrophobic bonds’ (hydrophobic solvation of non-polar solutes) play a key role in 

stabilizing protein structure. The source of this interaction comes from a small increase of

ΔH (through the breaking of old clathrate cages and formation of one big clathrate cage) 

and a large increase of ΔS (closer proximity of two hydrophobes). Fig.4 illustrates the 

thermodynamics of the hydration process for non-polar hydrophobes. The mixing of 

hydrophobes and water molecules is not spontaneous, as water hydrogen bonds are 

broken to make room for the hydrophobes and heat is put into the system makes small 

increase of enthalpy, while the newly formed ice-like clathrate cage makes the system 

more structured with an decrease of the total entropy of the system. The coherence of two

hydrophobes is a spontaneous process of hydrophobic interaction. When hydrophobes 

interact with each other, the enthalpy increases as more hydrogen bonds form between 
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water molecules. Tearing down two structured clathrate cages to form one bigger cage 

causes the entropy to increase (as it becomes less structured). The clustering of 

hydrophobic groups results in a negative contribution to the change in entropy of the 

system, however we must not forget the role of solvent.

Fig. 4: Thermodynamics of hydrophobic solvation. From LibreTexts.
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 This idea was challenged by Arieh Ben-Naim58 who is an advocate of the hydrophilic 

effect regarding protein folding and protein association. He pointed out that the 

conditional solvation Gibbs energy, rather than Gibbs energy of solvation is the driving 

force of protein folding, and this varies over one or two orders of magnitude. It is water 

bridges (-11kJ/mol, per one water bridge) that bring two large globular proteins together 

(Fig. 5), rather than any hydrophobic effects, since ~70% of the interfacial residues of 

protein complexes are hydrophilic.          

Before investigating the interaction between a water network and its solutes, we need to 

know the characteristics of a pure water network cluster.  Many recent studies have been 

carried out to investigate the shapes and dynamics of water clusters59–61 experimentally 

and computationally.

Fig. 5: Schematic of one water bridge in protein

aggregation. From Arieh Ben-Naim.
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Fig.6  is a representation of some small clusters60. These small clusters, especially the 

tetrameric or pentameric rings, are the building blocks of large clusters. The existence of 

water networks are rather more in-homogeneous than they first appear. Rao62 found 

through complex network analysis that the conformation-space of a water network is 

composed of substructures, These meta-stable states are spatially correlated in two 

solvation shells, and time correlated in 200~400 ps (the transition time between these 

meta-stable states are 200~400 ps). This agrees with idea of Ben Ishai 63 who found that 

water clusters are always in dynamic fluctuation where a few units drift away to break up 

the existing cluster and leading to formation of new clusters which might contain the core

units of old ones. 

Fig. 6: Representations of the most stable 

geometries for (H2O)n clusters.(59)
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The formation of hydrogen-bonded networks in a water medium is influenced by solutes 

such as protons, ions, or proteins in solution. Tuckerman64 discovered the way H3O+ 

serves to allow ion transfer between H5O2
+ and H9O4

+, and this proton transfer is related 

to the dynamics of the second solvation shell, which is hydrogen bonded to ligand water 

molecules. The average hydrogen bond life time is about 1ps65, the life time of a water 

network should be smaller than this value, reference66 reports ~50fs. 

Ions may be classified into two categories: structure-making and structure-breaking 

species. The definition depends upon the extent of interactions that these ions make with 

the surrounding water molecues67. Some halides could form weak hydrogen bonds with 

water molecules, thus prolonging the lifetime of hydrogen bonds up to 2.6-25 ps, which 

is multiples of the lifetime in bulk water. Urbic68 further found that when monoions are 

attached to donor water molecules, the strength of hydrogen bond increases, otherwise 

when monoions are attached to acceptor water molecules, the strength of hydrogen bond 

decreases. Ions may only influence the strength of hydrogen bonds in the first solvation 

shell, but they may have influence on water molecules within a few of hydration shells 

through the influence of the cooperative effect of water molecules and the electric fields 

exerted by ions. Obrien69 pointed out that monovalent ions do not affect water structure 

beyond the first shell, and that ion-water interactions only extend beyond the first shell 

where both ion and counterion are strongly hydrated (i.e., MgSO4).

Proteins being slow, large-scale motion molecules, they not only affect vicinal water 

molecules which hinder hydrogen bond switching, but also have a long-range effect on 
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water structures through functional groups70,71. In addition to the effects of solutes on 

water structure, water molecules influence solutes as well.  

Sreerama 72 investigated a network of water molecules around an alanine octapeptide in 

water, and dicovered that water bridges help stabilize the P(II) conformation relative to 

the beta conformation, although this was challenged by Peter73. The role of water bridges 

on the propensity of left-handed polyproline conformation was discussed and 

contradictory results was found to oppose Sreerama’s results.

Ahmad74 performed extensive molecular dynamics simulations of the association of 

hydrophilic interfaces of proteins, and discovered the formation of an adhesive hydrogen-

bond network between the hydrophilic protein interfaces, which stabilized the early 

intermediate states before final native states (shown in Fig.7). The water molecules that 

belong to the hydrogen-bonded hydration shells of both proteins are colored blue.

Fig. 7: Water bridges (colored in blue) assist protein binding.(74)
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The water network acts not only as “glue” to bring protein together, but also as a media 

for electron transfer (ET) between proteins. This is a cornerstone of biological energy 

transfer. Aurelien75 discovered that certain protein surface residues organize the solvent 

structure through water bridges which enhance the ET coupling strength, and a mutation 

of these residues break this water bridges, resulting in a reduced ET coupling.

Water bridges on the surface of DNA are also reported. Yoshiteru76 calculate the lifetime 

of water bridges in the DNA minor groove. He discovered that the water bridge lifetime 

varies from 1 ~ 300 ps, and depend on two factors: i) hydrogen bond pattern and ii) DNA 

structural fluctuations.  This work also mentioned the electrostatic nature of the surface 

has no significant influence on the lifetimes of water bridges based on other groups 

research54,78.

Fig. 8: Water binding in ribonucleotide 

reductase from C. ammoniagenes.(56)
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Josefin56 found the existence of a water bridge between two functional groups in one re-

crystalized organic compound (Fig. 8), and this water bridge has the same effect on 

electron transfer as direct hydrogen bonding does.

2.3 Hypothesis

Taking all the background information into account, we speculate that as water molecules

are the predominant molecules surrounding protein, they must be involved in protein 

folding, and are related to protein stability and functionality in some fundamental way. As

to the role of the hydrophobic or hydrophilic effect in these processes, we are more prone 

to believe that the hydrophilic interaction is the driving force for protein folding. 

However, we must acknowledge the role of hydrophobic effect on protein folding and 

stability. The hydrophobic effects are over emphasized, and we believe the hydrophobic 

effect does no more than just arrange the side chain to accommodate the water network. 

Thus the specificity of 3D structure of protein must be determined by the protein side 

chains. The overall conjecture is that the hydrophilic interaction folds the protein, but the 

hydrophobic effect shapes the protein.

Though we investigated the role of water bridges on the protein folding and stability, we 

are not aiming to predict the exact process of protein folding. We are simply focusing on 

to what extent water bridges influence and direct this process. To that end we proposed a 

model which weights hydrogen bonds and water bridges in order to qualitatively account 

for the thermodynamics of protein folding.
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2.4 Material and Tools

In this research, four MD simulation packages were used for different purposes: 

CHARMM C37b2 was used for water network and constant pH simulation; AMBER14 

was used for the water bridge and constant pH simulation of proteins and lipids, 

GROMACS5 was used for the lipid aggregation simulations; and NAMD2.0 was used for

steered molecular dynamics (SMD) simulations. Details of the simulation parameters will

be given at the beginning of corresponding sections. All scripts to run and analyze the 

simulations in this thesis will be printed in italic format and double quoted, and can be 

found at: http://www.weizhang.us/toolset/.

We chose TIP3P water model for its simplicity and popularity, generally with the NPT 

ensemble, using periodic conditions. Particle Mesh Ewald (PME) was turned on for 

explicit solvent simulations. The temperature of all simulations was 300K and pressure 

was 1atm unless otherwise specified.

The visual tool to view structure and trajectory of simulations was VMD. The script to 

calculate water bridges was written in TCL, embedded in VMD.  We used R, gnuplot and 

xmgrace to analyze data and plot the results.

In order to compile water bridge information, we chose a target protein list from the 

dynameomics server (http://www.dynameomics.org/). These molecular simulations of 

explicitly-solvated proteins were performed with Amber14 using ff14SB forcefield. 

Ff14SB is a continuing evolution of ff99SB forcefield. The key improvement is 

minimization of dependence of side chain parameters on particular backbone 

http://www.weizhang.us/toolset/
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conformations. This is crucial to our research as we will look into water bridges among 

side chains.

2.5 Analysis

2.5.1 Analysis of Hydrogen Bond 

The hydrogen bond calculations for pure water simulation was performed by 

“water_bridge.tcl”. The output from this script were further processed in order to analyze

shapes and dynamics of water hydrogen bond network with the complex network analysis

tool (igraph) in the program R.

To avoid missing information during the dynamic calculations of water networks, we set 

the output frequency of coordinates to a trajectory file to be 1, in other words, all 

coordinates of water molecules were saved every step (0.002 ps).  We then extracted the 

last 10000 steps for detailed analysis. The size of the water box used for the simulation is 

60Å x 60Å x 60Å, containing 9261 TIP3 water molecules.

Degree of Hydrogen Bonding

Water consists of enormous clusters with different degrees of hydrogen bonding in 

equilibrium. We consider the degree of hydrogen bonding (for each water molecule, how 

many other water molecules are connected) as a factor in retaining the characteristics of 

hydrogen bonding network and should be verified with cautiousness. The purpose of this 



36

analysis is to tune the parameters for hydrogen bond definition. Several different 

geometric, energetic and combined definition of hydrogen bonding have been tested79. 

Here we define hydrogen bonds with the following geometric criteria (Fig. 9). ROO is the 

bond length between donor and acceptor.  The intra-molecular angle Фoo  is the obtuse 

angle of donor-hydrogen-acceptor. 

Fig. 9: Definition of hydrogen bond. 
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To determine appropriate ROO, we set ROO to be 2.5Å, 3.0Å, 3.5Å, and 150º <ФOO  < 180º, 

and calculated average degree of hydrogen bonding, and compared these with reference 

values. The pertinent script is “deg.R”.  Fig. 10 is the calculated degree of hydrogen 

bonding follows different value of ROO. The bond length of 3.5Å has highest population at

3. This is in agreement with the literature value of ~380,81 of average degree of hydrogen 

bonding. Therefore, in this research in all calculation regarding hydrogen bond, we define

ROO < 3.5Å, and 150º <ФOO  < 180º. It is worth to mention that the default value for ROO  

Fig. 10: Degree of hydrogen bonding in pure water, defined by 

CHARMM.



38

in vmd is 3.0Å which we think is too restrictive in order to study water networks. It may 

be appropriate for stronger intra-molecular hydrogen bond on proteins, however. 

To verify the agreement among the different software packages, we ran a pure water 

simulation using CHARMM, AMBER and NAMD, and choosing the same condition 

parameters, Fig. 11 shows that the calculated degree of hydrogen bonding were similar to

each other, though minor discrepancy exists. The most probable degree of hydrogen 

bonding in CHARMM is 3, but both AMBER and NAMD give a most probable of 2. 

This means if we apply the definition of hydrogen bond to water network calculation in 

NAMD and AMBER, we might need to adjust the parameters to be more lenient. In this 

research, we maintain the same hydrogen bond definition amongst all simulation 

softwares.
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Hydrogen bond lifetime and residence time

A key factor for hydrogen bond dynamics is the hydrogen bond “lifetime”. One might see

some terms related to this time scale such as “hydrogen bond life time” or “hydrogen 

bond residence time”, with various and sometimes conflicting definitions. Here we refer 

to the hydrogen bond life time tHB as the time that the hydrogen bond remains intact at all 

Fig. 11: Degree of hydrogen bonding in pure water, defined by CHARMM, NAMD 

and AMBER.
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time up to time t, from initial time t0. In contrast we define hydrogen bond residence time 

tR  as the time that certain hydrogen bond present at time t from initial time t0  which is 

independent of any possible breaking before time t, thus tR > tHB. The relaxation time for 

the water dipole reorientation at room temperature is about 10 ps, and the average 

hydrogen bond lifetime should roughly agree with this value as reorientation is 

impossible without breaking at least one hydrogen bond. We plot the survival probability 

of hydrogen bond lifetime and residence time which calculated following equation 2.1.

P(t)=∑h(t)/∑h(t0)                                                                                                         (2.1)

∑h(t) is the frequency of hydrogen bonds from time t0 at time t. When t=t0,  P(t)=1.

Fig. 12: Survival probability of hydrogen bond lifetime. Red curve is data fitting to

Ae(-t/τ1).
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Fig. 13: Survival probability of hydrogen bond residence time. Red curve is data 

fitting to Ae(-t/τ1).
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There are two ways to express lifetime, the first is the half-life method, which is the time 

required for a given quantity decrease to half of its initial value. The ‘half-life’ life time 

of a hydrogen bond is about 0.1 ps, and the ‘half-life’ residence time is about 2 ps.  

Another way to express lifetime is by fitting decay curves to exponential functions with 

different characteristic time constants. The parameters of the fitting for various forms is 

given in Table 1.

Fig. 14: Survival probability of hydrogen bond residence time. Red curve is data fitting 

to Ae(-t/τ1)+(1-A)e(-t/τ2).
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Table. 1 Data fitting of function P(t) with exponential equations.

P(t) A τ1 τ2 Exponential function

Life time 1.07795 0.0578531 Ae(-t/τ1)

Residence time 0.743134 4.6104 Ae(-t/τ1)

Residence time 0.441324 7.44046 1.04851 Ae(-t/τ1)+(1-A)e(-t/τ2)

When both hydrogen bond life time and residence time were fitted to two parameter 

exponential function, hydrogen bond life time decay by a factor of e every ~0.06 ps (or 

decays to e-1 ≈37% of its former value every ~0.06 ps), and residence time show a decay 

by a factor of e every 4.6 ps (Fig. 12 and Fig. 13). As shown in Fig.13, there is a poor 

fitting of data points to the two parameter exponential function, but a good fit is found 

with the three parameter exponential function (Fig. 14). This implies that the compare to 

hydrogen bond life time which is only dominated by one factor, residence time is indeed 

dominated by two factors, one fast process and another slower process. The slow process 

is approximately 7 times slower than the fast one. Speculatively, τ1 can be associated with

the lifetime of diffusive translational motion and τ2 with diffusive rotational motion82.

2.5.2 Analysis of Hydrogen Bond Network

Method

As we mentioned in our hypothesis, any solutes in water will interact with water 

molecules in the form of “solute – water network”, hydrophilic solutes interact with polar
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water molecules and be part of water network, while hydophobic solutes try to avoid 

water network by wrapping around by a clathrate cage. Therefore study the property of 

hydrogen bond network in water is a key to understand the behavior of solutes in aqueous

environment. There are many network analysis tools available, some examples are: Boost

Graph Library, QuickGraph, igraph and NetworkX. We performed a water network 

clustering analysis using the igraph package in R81. To convert our data into an igraph 

network, we used the graph_from_data_frame() function, which takes two data frames: 

nodes and edges. Nodes are defined as indices of O atoms which form hydrogen bonds, 

edges are defined as hydrogen bond connection between  O atoms.

For example: “18390–22659” represents a node of oxygen atom 18390 which is 

hydrogen bonded with another node of oxygen atom 22659. The edge between these two 

nodes is their hydrogen bond connection. 

We performed a community detection calculation to study hierarchical structure of water 

network. There are many ways to cluster the hydrogen bond network. Here we chose the 

“fast greedy” method83 to find dense subgraphs. This method assign each nodes as their 

own community initially, then tries to maximize a quality function called “modularity” in 

a greedy manner from removing nodes from its community and placing it in the 

community of its neighbor. Modularity is a measurement of strength of a network into 

modules (groups, clusters or communities), modules with high modularity have dense 

connections between nodes within modules but opposite between nodes in different 
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modules. It is fast and easy to start with, since it does not require any parameters to tune. 

The script for community detection is “community.R”.

Fig. 15 is a representation of water network in one frame from simulation. Almost all 

water molecules are tangled together, but we can tell there are some isolated small water 

clusters separated from large clusters. The average degree of hydrogen bonding for small 

water clusters is lower than those in larger clusters, which indicate they have a relatively 

lower density. We consider these water molecules as “decorating” water molecules, as 

they are free from the majority of water clusters. 

Fig. 15: Topological representation of a water hydrogen

bond network of pure water box (9261 water molecules).

From igraph in R.



46

Fig.16 shows the size distribution of water communities. The first peak with very high 

value is the number of communities with least water molecules (2 to 4), these are 

considered small clusters or “debris” which do not qualify as an actual communities.  The

density increases as the size of communities increase. The community size of 500 has 

relatively high density compared to other large size communities. The occurrence of the 

communities with >800 water molecules are very rare.

Fig. 16: Community size distribution of a water hydrogen bond network. 
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Community Life Time

Fig. 17: Snap shots of four water communities (green spheres) involving one 

oxygen atom (red sphere) in four successive frames.
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After the detection of communities, they were rendered in VMD. It was found that the 

evolution time was fast, and the average lifetime of any one community was short 

(0.002ps). Fig. 17 shows an example of four successive frames from a simulation. Blue 

spheres represent neighboring groups which includes that specific oxygen atom. This 

neighboring group (within 5Å) is more conservative (~50%) and updates less frequently 

compared to the whole community (~20%). From observing the evolution of 

communities, we found that even though the lifetime of a specific community is short, the

evolution of that community might involve the reforming of a new community by 

keeping some core units of the old community. In this way, we can view the movement of

a community as a travelling wave through a medium.                                                          
                                              

2.5.3 Influence of Ions on Hydrogen Bond Network Properties

Ions in water will obviously interact with any hydrogen bond network. In order to 

investigate this interaction, we calculated the degree of hydrogen bonding, and the life 

time of hydrogen bonds in water under different ion atmospheres, including cations of 

Na+, Mg2+ and Al3+, and anion Cl-, The results are presented in Fig.18 and Fig.19.
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Fig. 18: Influence of ions on degree of hydrogen bonding. 
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The systems start with a pure water box, then successively include a single NaCl 

(~0.007M NaCl), Na20Cl20 (~0.13M NaCl), Mg20Cl40 (~0.13M MgCl2), Al20Cl60 (~0.13M 

Fig. 19: Influence of ions on hydrogen bond lifetime. Solid curves are density 

distribution of hydrogen bond life time, dashed vertical lines are calculated average

hydrogen bond life time.
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AlCl3), Na650Cl650 (~4.1M NaCl), and finally Na1300Cl1300 (~8.2M NaCl). The subscript of 

the ions represents the number of that ions in water box.

Fig.18 shows as the ionic strength increases from left to right in each group, the degree of

hydrogen bonding decreases (except for MgCl2). Ions in water act as a nucleation core 

with the neighboring water molecules, and this in turn destroys the inherent hydrogen 

bonding pattern in a bulk water network. Thus, the degree of hydrogen bonding 

decreases. Water molecules interacting with ions can be organized into different layers. 

The average hydrogen bonding in first hydration shell will surely deviate from the bulk 

pattern, but the second shell might exhibit either “positive hydrogen bonding” or 

“negative hydrogen bonding”. This means there might be more hydrogen bonding in 

second shell or less hydrogen bonding in second shell compared with the bulk. The 

results in Fig.18 were different from reference 84. That paper grouped ions as structure-

making, structure-breaking, and borderline ions. Na+ was classified to be a borderline ion,

but according to our calculation, even the most dilute Na+ solution causes a different 

hydrogen bonding pattern than pure water.  According to our results, it seems Mg2+ 

should be classified as a borderline ion, since the degree of hydrogen bonding is very 

close to neat water.

As the ionic strength increases, the distribution of the hydrogen bond lifetime shifts 

towards longer lifetimes, which means the existence of ions in solution extend the 

lifetime of hydrogen bonds. The curves in Fig.19 is the calculated hydrogen bond lifetime

of all water molecules inside the simulation box, not just hydrogen bonds close to solutes,

and that is the reason the differences of lifetime among different solutions are minor. 
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Fig.18 tells us the existence of ions at least partially destroy the hydrogen bond network. 

This should lead to freely-moving water molecules, thus less hydrogen bond lifetime. 

However Fig. 19 seems to indicate opposite results. We believe this is due to the fact that 

the existence of ions provide additional electric field in space which slows down the 

reorientation of water molecules within this space.

We also calculated water hydrogen bond network community with existence of these 

solutes (Fig. 20), and found that the existence of ions influences the community size 

distribution. In general, as the ionic strength increases, the number of water molecules in 

larger community decreases (400-600) while the number of water molecules in smaller 

communities (<400) increase.  In one word, ions in solution break a larger water 

community into smaller communities, As shown in Fig.20, when the ionic strength is 

very high (Na1300Cl1300), the water network is totally destroyed.
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Fig. 20: Influence of ions on network community size. x label is community size classified into groups, y label is fraction of

water molecules in that group. 
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2.5.4 Analysis of Water Bridges

As we mentioned in our hypothesis, we want to investigate the hydrophilic role in protein

folding and stability. There are many interactions can be attributed to hydrophilic effects: 

charge-charge, charge-polar interaction and the hydrogen bond interaction. In this 

research we focus on the hydrogen bond interaction, since this interaction is fundamental 

in water solution, even though it is not as strong as charge-charge interaction. We started 

with all the hydrogen bond information that exists in a water box, and then looked for 

water bridges from one heavy atom to another heavy atom, which belongs to a different 

amino acid on one protein. We consider these water bridges as a long-distance 

hydrophilic interatction.

Method

We chose a particular target list from the Dynameomics website which contains 100 

proteins. See Appendix A for details.

In order to prepare the structures, they were processed first by pdb4amber. Options 

included taking out any crystal waters, removing TER cards, choosing MODEL 1 if 

multiple models exist in PDB file. The terminal ends of protein were capped with an 

acetyl group (ACE) and a N-methylamide group (NME) at N-terminal and C-terminal 

ends respectively. 

A steepest-descent energy minimization of the system was performed for 10,000 steps 

before switching to conjugated gradient minimization for 50,000 steps. Next, heating of 

the system was performed from 0K to 300K for 5,000 steps, and then an equilibration 
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over 5,000 to 30,000 steps. 1,000,000 steps (which equal to 2ps) of MD simulation was 

then performed at a temperature of 300K and pressure of 1atm. Intra-molecular bonds 

involving hydrogen were constrained using the SHAKE algorithm.

The minimization and heating procedures were performed by pmemd.MPI, and the MD 

simulation was performed by pmemd.cuda (The CUDA version of pmemd can not adjust 

the cell dimension automatically). The total simulation time on a server with 12-core 

Xeon E5 V3 and 3 GTX 980 graphic cards was ~1 week, and the size of data generated 

was ~700G.

The script to run simulation is “waterbridge_pipeline.sh”.

Theory and Analysis

 In order to investigate the role of water bridges, a variable called  the “bridge score” was 

defined in equation 2.2.

                                                                                                                                   (2.2)

Sbridge is the total bridge score.

Tbridge is the bridge type.

0 water bridge which means a direct hydrogen bond; 1 water bridge; 2 water bridge and 3

water bridge.

w is weighting factor for different bridge type.
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Table 2 . Weighting factors for water bridge following strategy I and II.

w0 w1 w2 w3

Strategy I 1.0 1.0 1.0 10

Strategy II 1.0 0.5 0.25 0.125

The weighting factor for different bridge type is based on general Gibbs energy 

estimation. The contribution of direct hydrogen bonds to Gibbs free energy to be around 

-10.9kJ/mol, the contribution of indirect hydrogen bond through one water molecule is 

about -11.7kJ /mol85,86. We set 1.0 to direct hydrogen bond, but different values to water 

bridge. In strategy I, we set 1.0 to all types of water bridge which will maximize the 

influence of water bridge. In strategy II, we set 0.5 to one water bridge and 0.25 to two 

water bridge and 0.125 to three water bridge to minimized the influence of water bridge. 

The reason we cut in half as water increase is due to the fact that direct hydrogen bond 

lasts longer than water bridge. In this research, we used strategy I for most calculation 

unless specified. The eventual goal is to connect this bridge score to the thermodynamics 

of protein folding process. We consider bridge as the accommodation of protein to order 

of water network.

Property of Bridge Anchor Atoms

In order to study the accommodation of protein to water network, we need to first 

investigate where these bridges located in protein. The characteristics about bridge sites 

in protein help unveil protein folding process in sense of point of action.
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We define anchor atoms as heavy atoms on the protein backbone or side-chain, which 

were bridged (hydrogen bonded) through water molecules. Statistics about these anchor 

atoms help us to understand where and how often these bridges appear.  

Fig.21 shows the frequency of direct hydrogen bonds appear on backbone-backbone is 

higher than mixed type of backbone side chain and side chain to side chain. However, 

water bridges show a significantly different pattern, water bridges happen in backbone-

Fig. 21: Fraction of direct hydrogen bond and bridge of each anchor atom

type. BB: backbone bridge to backbone; SS: side chain bridge to side 

chain. SB/BS: side chain to backbone.
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side chain more often than side chain-side chain, and least likely happen in backbone-

backbone. The ratio of frequency of hydrogen bonds to bridges is 0.46:0.54. It is more 

likely that a backbone try to “touch” another backbone with a direct hydrogen bond, 

while a side chain tries to “contact” another side chain or backbone through a water 

bridge. In determining a hydrophilic interaction, the backbone carries more weight than a 

side chain, since every residue has at least three atoms: carbonyl oxygen (strong), amide 

nitrogen (strong) and alpha carbon (weak) to be able to form hydrogen bond. 

Protein Residue Bridge Contact Map

In the field of structural proteomics, structure prediction have shown to be promising in 

solving ab initio protein structure prediction. Protein residue contacts is one of the 

methods used to study this prediction problem87–91. Inspired by Tsai92,93 , we defined a 

“bridge contact”, which is different from geometric distance based contact, in that it is a 

hydrophilic interaction contact.  

We calculated bridge scores for all amino acid pairs, divided by the highest score which 

is from glutamic acid and arginine, then plot the matrix as a map (Fig.22).  The number in

the map is actually the strength of hydrophilic interaction compared to the strongest 

GLU-ARG. 
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Arginine is positively charged, and Glutamic acid is negatively charged, and their 

interaction is the strongest among all residue pairs. The next strongest one is Arginine 

Fig. 22: Bridge contact map of 20 amino acid residues. The number is 

hydrophilic interaction strength (from bridge score) with respect to GLU-

ARG (defined as one).
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with Aspartic Acid. Essentially, the bridge score is high for oppositely charged amino 

acid residues, and lower for hydrophobic amino acid residues.

Bridge Score Along Protein Extension

We performed steered molecular dynamics simulations using NAMD on BPTI with a 

constant velocity of 10Å/ns by fixing the CA at N-terminus, and pulling CA at C-

terminus, and analyzed the bridge score along the trajectory of pulling in order to see the 

characteristics of the role of the water bridges on folded and unfolded protein. Fig.23 is 

four snapshots from the pulling of BPTI.
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Fig. 23: Snapshots of constant velocity pulling of BPTI. Snapshots from step 1 (top), 

step 250, step 500 and step 1000 (bottom). 1 step=0.002ps.
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Fig.24 shows the contribution from direct hydrogen bond and water bridge as BPTI is 

unfolded. Here we show the two scores from the different scoring strategies. As BPTI 

was pulled, the score of direct hydrogen bonding decreases from about 30 to 0. However 

the score of water bridges following strategy I (red) only slowly drops from about 30 to 

20, and the score of water bridges following strategy II (green) slowly drops from about 

10 to 5. We believe the best bridge score should be in between these two curves. If we 

look at the curve from the right side to the left side as the folding process of BPTI, the 

contribution of water bridge to folding is higher than direct hydrogen bond at early stage 

(600 - 1000 steps). At the early stage of protein folding, residues are further away from 

Fig. 24: Water bridge score along the unfolding of BPTI. Blue line is score from direct 

hydrogen bond, red line is score from water bridge following strategy I and green line is

score from water bridge following strategy II. 
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each other, and long distance water bridges help to pull the residues together. As the 

protein continues to fold, more and more direct hydrogen bonds help consolidate the 

protein, and this becomes the dominant factor for protein stability. Some amount of water

bridges still exist in folded protein. When the conformation of the protein is close to a 

completely folded state or an extended state, the bridge score show a significant decrease.

When the protein folding is accomplished, the forces from water bridges acting on the 

protein reaches a minimum level, so that protein can avoid the influence from water 

solvent. When the protein is completely extended, the forces from the water bridge are 

also at a minimum level, because the distance between hydrophilic sites are furthermost, 

but after the initial bending of peptide chain from random movement, water bridges begin

their role, and from then on are continuously acting on the folding of proteins. 

Bridge Score of Misfolded Protein

Apart from an extended protein, misfolded proteins are more important as they provide 

useful information when in comparison to native folded protein.

In order to simulate a misfolded protein, we performed a temperature replica exchange 

simulation of BPTI, the starting structures of all 30 replicas were native structures. The 

temperatures were distributed from 300K to 850K. The total number of exchange trials 

was 100 steps, and there were 1000 dynamic steps between exchanges.
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Fig. 25 shows 30 replicas (named aa1 to aa30) of final configurations after 100 

exchanges. From top-left to bottom-right is replica aa1 to aa30.  The reason initial 

replicas are all native structures rather than random coils is to achieve meta stable 

Fig. 25: 30 replicas of BPTI after 100 exchanges.
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structures that are close to native structure. About half of the replicas remained their 

native states, and the rest replicas unfolded and reached misfolded states. 

RMSD of 30 Replicas of BPTI

Fig. 26 is a way to quantify the degree of misfoldness.  The more exchange attempts, the 

more replicas jump out their native states and sample misfolded states. The rmsd of most 

misfolded BPTI is as high as 30Å.

Fig. 26: Heat map of 30 replicas along replica exchange cycle of 100. Legend scale 

represents RMDS from native structure.
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Energy Distribution of 30 Replicas of BPTI

Fig.27 shows the energy distribution of all replicas (The line with the same color does not

necessarily mean the same replica). In order to efficiently sample in replica exchanging, 

the energy distributions must overlap. Due to limited data points, it is difficult to fit the 

data to a gaussian function. For this reason, the curves in graph are smooth expression of 

potential energetics. All replicas cover the energy range from ~ -1800kcal/mol to ~ 0 

kcal/mol, and the acceptance ratio is ~20-50%. Since we start from native structures, the 

overlap of energetics becomes quite large for some replicas.

Fig. 27: Energy distribution of 30 replicas of BPTI.
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3D Potential Energy Landscape of 30 Replicas

To make sure misfolded proteins are close to native folded protein, we plot the potential 

energy surface in 3D space, x and y are two new calculated coordinates labeled “PC1” 

and “PC2”, the overall goal is to make PC1 has the largest variance and PC2 has the 

second largest variance. Z axis is potential energies of 30 replicas from last final step of 

each replica. See Appendix B for details of PCA analysis.  From the potential surface we 

should be able to see valleys of native proteins and misfolded proteins, separated by 

Fig. 28: Potential energy landscape of 30 replicas by Principal 

Coordinates Analysis. PC1 and PC2 are recalculated coordinates.
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energy barriers. Our results show a population of native stated proteins at left side, and 

misfolded protein on right side. 

It is difficult to depict the actual potential energy landscape of a protein folding due to the

inefficient sampling of conformation space, so this is only a landscape of these 30 

replicas. To get more accurate potential, more conformations from all trajectories should 

be included, but this will slow down the calculation of matrix eigenvalues significantly in

PCA analysis.    

To observe the role of water bridge in misfolded proteins, we calculated water bridge 

score for all 30 replicas, and compared the score from direct hydrogen bonds and from 

water bridges. Fig. 29 shows that direct hydrogen bond are more directly related to 

RMSD, in other words, misfolded protein involves significantly fewer number of direct 

hydrogen bonds than the native protein. Water bridges are less related to RMSD 

compared to direct hydrogen bond, and the contribution of water bridges in native 

structure are lower than in misfolded structures.  Misfolded proteins also have a compact 

arrangement as native structure, but their arrangement lacks of direct hydrogen bonds to 

remain its stability. In addition to this, the forces applied to a protein from water bridges 

are stronger than in native structure, which makes them even more unstable. 
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2.6 Discussion and Conclusion

In this chapter, we first investigated some properties of water network, and the influence 

of solutes on these properties. The results tells us that any solute in water solution reacts 

with the water network, and different ionic atmosphere provide different environment for 

proteins to function. Ions in solution disrupt the native water network through decreasing 

degree of hydrogen bonding, though this is mitigated by an enhanced hydrogen bond 

lifetime. The tearing effect of ions is not surprising. However, the exact picture of how 

ions interact with water network still needs to be investigated, especially the different 

roles of cations and anions. We also investigated the role that water bridges play in folded

Fig. 29: Correlation between RMSD and bridge score for 30 replicas.
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and unfolded protein through molecular dynamics simulation. The fact that there are 

more hydrophilic groups on proteins leads us to believe that the hydrophilic interaction 

must have a profound effect on protein folding or stability. We developed a scoring 

system to quantify hydrogen bond interaction which is the dominant factor of hydrophilic

interaction. We classified hydrogen bond interaction into “direct hydrogen bond” and 

“water bridge” with one to three water molecules on that bridge. In this research we tried 

two different scoring strategies, so that we did not overestimate the bridge contribution. 

From the calculation we conclude that the formation of water bridges at early stage of 

protein folding is part of driving force of folding, when intra-molecular hydrogen bonds 

have not formed yet. After the formation of a transient structure which includes some 

direct hydrogen bonds, water bridge starts to act as a subsidiary factor in protein folding. 

From the fact that misfolded protein show more water bridge than native protein, we can 

tell that the folding of a protein must be directed by the water bridges, until a minimum 

influence from water bridges are reached. 

In this research we did not consider any factor of hydrophobic interaction, which we 

believe is crucial to side chain packing, This will be studied in future research.
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Chapter 3: Effect of Protein Unfolding on pKa Shifts of BPTI 

3.1 Review of Constant pH Simulations

The folding, function and stability of proteins depends upon the solution pH. This pH 

-dependent process is largely due to the relationship between the charged nature of both 

species (protein and solution) and the conformation response. The protonated or 

deprotonated states are determined by intrinsic pKa (pK1/2) values and the electrostatic 

field exerted by the surrounding environment. Any factor influencing the electrostatic 

field will have an effect on the protonated/deprotonated  states of the side chain. Among 

these factors, the ionic strength is the most crucial one. The electrostatic field is not only 

modified by ions in solution, but also by protons binding to charged groups. The overall 

effect of mobile ions and polar water molecules on the protein is that they shield the fixed

protein charges from each other by distributing and orienting themselves.94

The favored method for pKa determination through experiment is by NMR95–99. The 

overall idea is the alteration of chemical shifts of NMR-active nuclei (1H, 13C) upon 

protonation and deprotonation varies with pH. In contrast to the experimental approach, 

some in-silico pKa prediction methods100 are available to offer fast and preliminary pKa 

values for titratable sites. These methods take experimental pKa values of model 

compounds as input, and then further improved by empirical methods or free energy 

calculation.
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No matter experimental method or predictive methods, the major drawback is structural 

correlations are less well developed. This makes MD method for pKa calculation stand 

out.

Due to the complexity of estimating the energetics of protonation/deprotonation events, 

as well as limitation on forming or breaking bonds in a simulation, it has only recently 

been possible to model pH effects through molecular dynamics simulation. In principle, 

the most rigorous way to estimate an individual pKa value for a protein side chain would 

involve a free energy simulation connecting the protonated and deprotonated forms of the

molecule:

                                                                                   (3.1)

Any thermodynamic quantity that involves entropy in free energies cannot be derived 

from one simulation, as an evaluation over all multidimensional phase space is 

impossible. It is however possible to find the difference in free energy between two 

systems with slightly different potentials V1 and V2:

                                                  (3.2)

The fundamental theory of constant pH simulation defines V1 and V2 as the potential of 

protonated and deprotoanted states respectively. Within this definition, there are two 

common models to describe the protonation states, the continuous and discrete models.  

Continuous-Protonation State Models
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Baptista101  calculates a charge distribution with a continuum electrostatics method (pH-

CE), which is dependent on the configurations of the protein. The probability of finding 

the system with this charge distribution is only a parameter of Potential of Mean Force 

(PMF), which can simultaneously treat titration and conformational freedom. 

The ‘Acidostat’ method developed by Borjesson102 defines a linear combination of the 

fraction λ of the deprotonated-state, and a fraction (1-λ) of the protonated-state. This 

fractional protonation states represents the mean influence of a specific ionizable group 

on its envrionment. The evolution of these  λ values is determined by relaxation to  λ0, the

corresponding equilibrium value, and this  λ0 is determined by pH, and the chemical 

nature of groups and the environment (the configuration and ionization states of other 

groups). Compared to pH-CE model, this approach includes structural conformations into

the free energy evaluation.

Brooks103 developed a new method based on early work by Mertz and Pettitt104, which 

also defines a coordinate λ, lying between 0 to 1 corresponds to a completely protonated 

(λ=0) and a completely unprotontated (λ=1) state. To avoid a convergence to an 

intermediate charge state, they introduced an energetic barrier to force λ towards values 

representing a fully protonated or fully deprotonated state, and this continuous titration 

coordinate represents an instantaneous microstate rather than a fractional protonation 

population as stated in the “Acidostate” method.

Discrete-Protonation State Models
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The Stochastic model developed by Baptista105 proposed Monte Carlo (MC) sampling 

after a short period (0.2-5.0 ps) of explicit solvent MD simulation. After a protonation 

state has changed, the solvent is equilibrated (~ps) and then the MD simulation is 

continued. The protonation states are clearly defined as either protonated or deprotonated,

and equilibration is necessary to avoid energy “shock”.

Another model similar to the stochastic model was developed by Dlugosz106,107. It also 

employs discrete protonation states. The solvent is represented as continuum with a 

dielectric constant, ionic strength and pH (an implicit solvent algorithm). Assignment of 

protonation states happens after parallel simulations (constant-pH simulations of 100 

initial structures each with different pH) are all done, the molecule makes a random jump 

to the defined protonation states and then moves on to the next sub-trajectory. Compared 

to the stochastic model, which only changes the partial charges of the titratable groups, 

this model explicitly adds or removes protons from molecules. Thus the number of atoms

of molecules at each beginning stage may not remain constant. Resetting and reassigning 

all the velocities of the solute atoms is needed to avoid a sudden change in energetics due 

to adding or removing the hydrogens.

3.2 Method - CPMD

In this research, we performed constant-pH simulation using continuous Constant PH 

Molecular Dynamics (CPMD) from Brooks. This function is implemented in C37b and 

later version of CHARMM. The basis of this method is a set of continuous titration 
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coordinates that describe transitions between protonated and deprotonated states of a 

group labeled i. In order to vary the value of λ in between 0 and 1, it is defined as a 

function of θ:

                                                                                                                 (3.3)

To restrict  λ to the endpoints at 0 or 1,  the λp is defined to occupy one of three states:

Protonated States=(0 ≤ λi ≤ λp)

Mixed States=(λp ≤ λi ≤ 1-λp)

Unprotonated States=(1-λp ≤ λi ≤ 1)

So this  λp is a empirical value that must be determined through trial and error. In our 

research we set it to 0.1 which is its default value. The fractional population of 

unprotonated states , which provides a link between calculation of pKa and 

simulation statistics about λ is defined as

                                                         (3.4)

The Potential of Mean Force (PMF) of a model compound is essentially quadratic in 

nature with respect to  λ (the derivative of PMF is linear to λ), and hence can be fit to a 

two-paramter parabolic function103. 

                                                                                     (3.5)  

The change of Gibbs free energy of protonating the model compound can be defined as:
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                     (3.6)

All parameters for titratable amino residues are stored in a charmm control file phmd.in.

In this chapter, we will calculate pKa of BPTI with residues that have already been 

parameterized. In Chapter 4 we will describe parameterization of a new compound. 

3.3 Analysis

The newly prepared input scripts to run the simulation include:

“solvate.sh”: which prepare a clean starting structure.

“add_h.inp”: this adds protons to all titratable sites. 

“solvate.inp” & “add_ions_hphmd.inp” & “minimize.inp”: these three scripts solvate 

the protein with TIP3P water molecules and ions (Na+,Cl-) in order to neutralize the 

system. This step is for the hybrid model and is not necessary for any implicit solvent 

model.

“hphmd.inp” & “hphmd_phrex.inp”: these two scripts run the constant pH simulation for

one pH value or a series of pH values through the replica exchange technique.

Constant pH simulation of monomer and dimer blocked amino acids

We calculated the pKa values of titratable amino acids monomers and dimers (Table 2). 

The C-terminal and N-terminal ends were capped with ACE and CT3.
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Table. 3 Calculated pKa values of titratable amino acid fragments.

Amino Acid Monomer Dimer Reference108

CHARMM
Implicit Explicit Implicit Explicit

ARG 13.55±0.02 13.36±0.14 13.61±0.10 13.36±0.14 12.0

ASP 2.87±0.23 3.63±0.12 3.27±0.16 3.74±0.14 4.0

GLU 3.65±0.05 3.86±0.04 3.66±0.04 3.88±0.07 4.4

HSD 6.88±0.06 6.88±0.08 6.54±0.18 6.56±0.26 6.3

LYS 10.69±0.07 10.52±0.05 12.21±0.40 10.48±0.03 10.4

TYR 10.03±0.05 10.05±0.06 9.97±0.06 9.98±0.05 9.6

 The calculated pKa’s agree with experimental measured pKa’s very well. Errors in the 

measurements are typically ±0.1-0.4 pH units. The accuracy of implicit and explicit 

solvent model are comparable. The implicit solvent model is faster than explicit solvent 

model, but it can not deal with hydrogen bonds, as it is a factor that influence pKa value.
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Constant pH simulation of native BPTI 

We calculated pKa values of titratable sites in native BPTI, the titration curve is shown in

Fig. 30, and compared the pKa values with monomer-state of those sites (Table 3).

The average unprotonated fractions S (shown as crosses) at 14 pH values were fit to the 

Hendenson-Hasselbach equation and shown as solid lines.

Fig. 30: Titration curves for titratable residues in BPTI in the explicit solvent 

model. From pH-REX simulation with 14 replicas (pH=1,2,…,14) .
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Table 4. Calculated pKa values of titratable sites in BPTI

Residue pKa(explicit) monomer reference100

(CHARMM)

ASP_3 3.45±0.96 3.63±0.12 4.0

GLU_7 3.93±0.34 3.86±0.04 4.4

LYS_15 10.41±0.64 10.52±0.05 10.4

LYS_26 10.39±1.61

LYS_41 11.02±2.24

LYS_46 10.48±0.21

GLU_49 3.86±0.86

ASP_50 3.26±1.58

The ASP and GLU residues show smaller pKa values in BPTI than the reference value. 

The average pKa values of ASP, GLU, and LYS decrease, increase, and decrease 

respectively from calculated pKa of monomer, but these changes were within the range of

standard error. 

pKa shifts Upon Unfolding Of BPTI 

The protonation behavior of titratable groups is sensitive to the environment, which 

includes the properties of solute and solvent. It is useful to know what the pKa values of 

titratable groups would be in a protein if their environment is changed. In order to 
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understand this, we performed SMD of BPTI, and calculated pKa values of 100 

snapshots from unfolding trajectories. 

 There are some factors that influence pKa values109: 1) Dehydration (through the Born 

Effect):  pKa shifts upon the environment change between hydrophilic and hydrophobic 

atmosphere; 2) Charge-Charge interaction (Coulombic): pKa shifts as the free energy of 

Coulombic interaction of charges on titratable sites goes lower; 3) Charge-Dipole 

Interaction (Hydrogen Bonding): pKa shifts so that the interactions are more favorable 

with protonated states. 

Fig. 31 shows that the pKa values of all titratable residues does not show a universal 

trend over the trajectory of unfolding. ASP and GLU residues show more fluctuation than

     

Fig. 31: pKa shifts of 8 titratable residues in BPTI during SMD.
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LYS. Fig. 32 and Fig.33 show that BPTI is a small protein, and the side chain of the 

pertinent residues (ASP3,GLU7,LYS15,LYS26,LYS42,LYS46,GLU49 and ASP50) are 

not buried inside completely. This means that the hydrophobic environment of all the 

titratable residues remains almost the same before and after pulling, the factor of 

dehydration does not affect pKa significantly. 

The energy of interaction of the ionizable group can be calculated with Coulomb’s law. 

When two opposite charges are 4.2Å apart in water, ∆G =-1kcal/mol, and this reduced to 

-0.5kcal/mol inside a cell due to electric constant change. As BPTI is pulled, the ASP and 

GLU residues (especially ASP3 and GLU7) that are close to the LYS residues (LYS26, 

LYS41) in folded BPTI become further apart. This leads to an pKa increase of ASP and 

GLU (they are more easily protonated), and a corresponding decrease in LYS (it is more 

difficult to protonate).  The loss of hydrogen bonds which do not need protons for the 

ASP and GLU residues during the extension process leads to decrease of their pKa 

values. With opposite effects from factor two and three, the apparent value of the pKa 

shift is difficult to predict. From the curve in Fig. 31, we can tell that the overall effect of 

unfolding on the pKa is negligible.
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Fig. 32: 3D representation of folded BPTI. Hydrogen bonds of ASP3, GLU7 and GLU49 

with their neighbors are labeled with a dashed line.
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3.4 Discussion and Conclusion

We measured the pKa values of titratable groups of amino acids in monomer and dimer 

states, and compared these with the pKa values of titratable sites on BPTI. The calculated

pKa values of the monomers agree with experimental values well. The calculated pKa 

values on native and unfolded BPTI deviate slightly from monomer, but this deviation is 

completely subjected to high standard error, thus it is difficult to tell the pKa shift in 

folded or unfolded protein. Some large pKa shifts were reported110. To observe pKa shift, 

we need to choose a larger protein that has significant hydrophobic environment change, 

or charge-interaction change for some residues, and continue to improve the calculation 

algorithm to get more accurate value with high precision. 

Fig. 33: 3D representation of extended BPTI.
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Chapter 4: Modeling and Simulation of pH-Sensitive Lipids

4.1 Review of Lipid Simulations and MORC16

In contrast to proteins, lipids are molecules that are able to dissolve in both organic and 

polar solvents. They are one of the most important biomolecules in cellular signaling,  

energy storage, and are building blocks of cellular membranes, and are able to form more 

complex structures, such as micelles and liposomes. The first molecular dynamics 

simulation of a realistic lipid monolayer was by Kox111. The first molecular dynamics 

simulation of bilayers was by Heller112. Even though all-atom molecular simulation can 

be successfully applied to small lipid systems, approximation methods are needed to 

simulate complex lipid system with millions of atoms. Coarse-grained models are 

currently a very popular method in simulating lipid systems, providing a good accuracy 

within an affordable time113–119. Among these methods, the Martini model is the most 

successful in lipid simulation117,120,121. Here, we report the developed of simulation 

framework for a novel designed lipid, MORC16 synthesized by Samoshin122, shown in 

Fig.34. MORC16 is a derivative of trans-2-aminocyclohexanol. The liposome formed by 

MORC16 is also referred to as “fliposome”, due to MORC16’s unique property of pH 

responsive conformation flipping. This fliposome has the potential to serve as a vessel in 

a drug delivery system.
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4.2 Modeling and Simulation of MORC16

We performed a serials of all-atom, constant pH simulations using CHARMM. Because 

CHARMM has better support for constant-pH simulations, it provides the best 

framework for these simulations. However, as the size of system increase, the efficiency 

of any simulation slows down rapidly, and other considerations take precedence. Thus 

our self-assembly simulations were performed using GROMACS along with a coarse-

grained MARTINI forcefield. MARTINI provides good results for lipid bilayer 

simulation with satisfying speed. However, GROMACS does not support pH simulation 

in its published version. We performed steered molecular simulations by AMBER to 

study stability of micelles and liposomes. Amber has good support for CUDA 

acceleration, and it also supports constant pH simulations. We used PACKMOL to assist 

in the modeling of micelles and liposomes. 

Fig. 34: Formula and 3D representation of MORC16 lipid.
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4.2.1 MORC16 Constant pH Simulation using CHARMM

MORC16 is a pH-sensitive molecule with one titratable site (Samoshin122). Because it is a

newly-synthesized molecule, the parameters must be constructed for this molecule. This 

includes both the parameters for regular dynamics and for constant pH simulation. The 

flow chart of modeling of MORC16 is as follows:

The parameters for atoms SwissParam123 server uses are derived from Merck Molecular 

ForceField (MMFF)124. It is useful to know that MMFF is not optimized for one use, but 

tries to perform well over a wide range of calculation. This means it may require some 

Draw and build MORC16 in Gaussview4.1

Optimize the structure in Gaussian2009 (B3LYP/6-31g(d);
Calculate charge distribution

Submit the optimized structure to SwissParam server to get force field parameters

Create protonated patching to MORC16 (Add H+ to morpholinyl N)

Optimize the protonated structure in Gaussian2009 (B3LYP/6-31g(d);
Calculate charges distribution

phmd.in

Derive CPHMD parameters A and B, through pH scan
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improvement for specific purposes. In this research we did not require any modification 

to the parameter file, however. The compressed archive retrieved from the server includes

a parameter file, which include bond, angle, dihedral, improper and nonbonded terms and

some coordinate files in different formats.

According to Samoshin122, the driving force of this acid-triggered flip is strong 

intramolecular hydrogen bonding of hydroxyl oxygen and protonated morpholinyl 

nitrogen showed in Fig. 35. The major difference between protonated and deprotonated 

states is a change of charge distribution upon protonation. We calculated the charge 

distribution of protonated and deprotonated MORC16 by the NBO method. 

Fig. 35: Protonation of nitrogen on MORC16.
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The CPHMD method relies on the calculation of the deprotonation Gibbs free energy of a

tritratable site in reference to model compound. The parameters needed are the 

experimental pKa value, parameter A, B and λp (see section 3.2). 

Step 1. Input file preparation

create an entry in phmd.in file, the first line is defined as follows:

‘title pKa A B λp’

pKa is 5, A, B and λp are initially set to 0, so the first line looks like this:

‘MOR 5.0 0.0 0.0 0.0’

The atom names and the partial charges of protonated and deprotonated state follow.

One line that is very crucial for this entry is definition of protonated proton:

‘HD     0.46058    0.0   1.0   0.0’

HD is the name of the protonated hydrogen, (+)0.46058 is the charge of the protonated 

state, 0.0 is the charge for the deprotonated state, 1.0 is mass of the protonated state, 0.0 

is mass of the deprotonated state. In this way we can see that the deprotonated state 

effectively ionizes the proton by setting its mass and charge to zero. After running the 

scripts add_h.inp (define protonated state), solvate.inp (solvate in explicit water box), 

add_ions_hphmd.inp (neutralize the system to defined ionic strength, 0.1M) and 

minimize.inp (combine water box and ions together and equilibrate the system), the 

system looks like Fig. 36. 
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Step 2. Derivation of the Parameters for MORC16

The pipeline of the derivation of the parameters for MORC16 is as following:

Fig. 36: 3D image of protonated, solvated and 

ionized (three Cl- in cyan , two Na+ in yellow) 

MORC16 lipid.

Set θ value to 0.4(0.6,0.8,1.0,1.2,1.4) in hphmd_derive.inp

Run the simulation with hphmd_derive.inp

Calculate average dE/dθ
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hphmd_derive.inp is a script to calcualte average dE/dθ at each fixed value of θ. To 

obtain parameters A and B, we fit the values of dE/dθ to function

2*A*sin(2*θ)*(sinθ^2-B) through Grace, results shown in Fig.37. A= -188.747, 

B=0.990891.

Fig. 37: Data fitting of parameters A, B of PMF function. x is θ, y is E.

Analytically fit the data to dUmod/dθ=2*A*sin(2*θ)*(sinθ^2-B)
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The newly derived parameters were then updated in the file phmd.in, A constant pH 

replica exchange simulation by hphmd_phrex.inp was then run, where the pH was 

increased from 1 to 8 increase by 1 for each replica. The calculated pKa value is 5.05 

(shown in Fig.38). We also checked the data to ensure the ionization occurs 50% 

protonated at its experimental pK1/2.

Titration Curve for MORC16

Fig. 38: Titration curve of MORC16 by constant pH replica exchange 

simulation. pKa=5.05±0.78.
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Geometric Characteristics of MORC16 for Different pH Values

Fig. 39: 3D images of the titratable site in MORC16 at 

pH=1 (top) and pH=10 (bottom).
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To investigate the structural change of MORC16 at different pH, we show two 

representative configurations at pH=1 and pH=10, which represents the protonated and 

deprotonated states respectively in Fig. 39. When MORC16 is protonated, the distance 

between N and O1 is around 3Å, which is a typical distance to form a direct hydrogen 

bond. However, the angle of N-HD-O1 is too small for a direct hydrogen bond between 

the N and O1 atoms. The only difference between protonated and deprotonated states is 

the position of hydrogen connected to O1. When MORC16 is protonated, the proton 

connected to O1 is facing away from proton HD, while it is facing towards the N when 

MORC16 is deprotonated.  The chair conformation of the cyclohexane does not flip to 

the the other chair conformation, which would cause the two lipid tails to be in axial 

position. The distance is also smaller than 4.5 Å, which is the minimum distance needed 

to accommodate a water bridge, so there is no way to correlate these two atoms by direct 

hydrogen bond or a water bridge.
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4.2.2 The Self Assembly of MORC16 with GROMACS

The Martini Model117,121,125 is a popular coarse-grained model for molecular dynamics 

simulations of biomolecular system. This model uses a four-to-one mapping strategy to 

simplify the all-atom model. This means that on average, four heavy atoms (and any 

associated hydrogens) are represented by a single interaction center (see Fig.40). Only 

four main types of interaction centers are considered: polar(P), non-polar(N), apolar(C) 

(apolar compounds are strongly hydrophobic, while non-polar are miscible with both 

water and organic solvent) and charged(Q), thus simplifying considerably, the number of 

interactions, while maintaining important characteristics of the system.

Fig. 40: MARTINI mapping strategy for DPPC, cholesterol and benzene.117
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Coarse-grained modeling of MORC16

The script used to create a coarse-grained model simulation for MORC16 is 

martini_morc16.tcl, and the forcefield for MORC16 is contained in MOC.itp. We did not 

follow exactly the four-to-one strategy, as we were trying keep the molecule “pH 

triggerable” for future study. For this reason, the N atom was represented explicitly. Table

4. shows our mapping strategy used to represent MORC16 in coarse grained model, and 

Fig. 41 shows the representation of all beads in coarse grained model.

Fig. 41: Coarse-grained representation of 

MORC1 superimposed on its all-atom 

representation.
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Table 5. Summary of the Coarse-Grain Strategy for MORC16

name of CG model type Coordinates from all-atom MORC16

OB1 P1 the same as O

NB1 Qa the same as N

SB1 Qa geometric center of (C,C1,C2,C3,C4,C5)

GL1 Na geometric center of (C10,N2,O4)

GL2 Na geometric center of (C11,O3,O5)

C1A C1 geometric center of (C12,C13,C14,C15)

C2A C1 geometric center of (C16,C17,C18,C19)

C3A C1 geometric center of (C20,C21,C22,C23)

C4A C1 geometric center of (C24,C25,C26,C27)

C1B C1 geometric center of (C28,C29,C30,C31)

C2B C1 geometric center of (C32,C33,C34,C35)

C3B C1 geometric center of (C36,C37,C38,C39)

C4B C1 geometric center of (C40,C41,C42,C43)
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Bilayer Formation of MORC16 in Water

The first step taken was to verify that single MORC16 lipids do form bilayer assemblies. 

We started with a water box filled with 1280 randomly distributed MORC16 lipids at a 

water:lipid ratio of 100:1. There was a rapid (~5 ns) initial formation of a liquid lipid 

phase separated into water solution driven by strong thermodynamic forces that isolate 

the hydrophobic tails from the aqueous environment. This was followed by a slower 

rearrangement of the lipid phase into bilayer (5 to 30 ns). The aggregation process is 

illustrated in Fig. 42. We also calculated the thickness and lateral diffusion through this 

bilayer, the results are shown in Fig. 43 and Fig. 44.  
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Fig. 42: Snapshots of 1280 MORC16 lipids in aggregation. Waters are depicted as 

cyan dots, hydrophilic heads of MORC16 in blue and red, tails of MORC16 in cyan.
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In order to determine the bilayer thickness, we calculated the density over a number of 

different functional groups. The bilayer thickness can thus be obtained from the distance 

between the atom N peaks in the density profile, averaged over the course of a simulation

run.

Fig. 43: Determination of MORC16 bilalyer thickness from simulation.
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Lateral diffusion refers to the lateral movement of lipids and proteins within the 

membrane. In order to measure this lateral diffusion, we ran a 300 ns simulation of the 

MORC16 lipid bilayer, removing any jumps caused by the box boundaries. The lateral  

diffusion was calculated using g_msd in GROMACS. Fig. 44 shows that before 250 ns, 

the lipids move at a steady speed (~2500µm2/s), then the movement significantly 

accelerates after 250 ns. We were unable to run any longer to see the whole picture of the 

Fig. 44: Measurement of MORC16 bilayer lateral diffusion from simulation.
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movement, but we anticipate there may be some fluctuation of lateral diffusion along 

timeline.

In an attempt to model a small vesicle, we increased the number of lipids to 12800 and 

the size of water box correspondingly. The total simulation time was 300 ns, and the 

snapshots are shown in Fig. 45. 

Periodic boundary conditions (PBC) are useful for approximating the behavior of a 

macro-scale system, however, it can also introduce correlational artifacts. Using PBC, 

one side of lipid bilayer may interact with the other side of bilayer, which creates a 

crystal-like structure, freezing the system into a local minimum. However, one solution to

this problem is to increase the size of simulation box, this will increase the calculation 

cost significantly. The second option is to apply some constrains or introduce a bias to 

avoid this artifacts. In an effort to bias the system, we added ions to the simulation box, 

and fixed the ions in the center of the box. The purpose was to see if the addition of ions 

would nucleate the formation of bilayer around the ions, thus inducing the formation of a 

micelle or liposome.
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Fig. 45: Snapshots from a simulation of aggregation of 12800 MORC16 lipids.
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Fig. 46: Snapshots from the self-assembly simulation of MORC16 with Na+(blue 

sphere).
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 We expected these ions would act as a nucleation center, gathering lipids around them 

through charge-charge interaction. However, the results show that no matter how many 

charges on the ions (1-10), it is very difficult to influence the shape of lipid bilayer. 

4.2.3 Stability of MORC16 Micelles and Liposomes by AMBER

The characterization of stable liposome is important for drug delivery. Many factors such 

as temperature, cholesterol content and pH etc. could influence liposome stability. Here 

we tested the physical stability (‘compactness’ to be more specific) of micelles and 

liposomes by pulling one lipid out from the surface and pulling ions go through the 

surface from outside to inside,  The MARTINI model is fast compared to most all-atom 

models, but still not fast enough for us to study larger system like liposomes. In order to 

Fig. 47: Snapshots from self-assembly simulation of MORC16 with Cl-(cyan 

sphere).
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break this computertime barrier, we turned our focus to AMBER, which has very good 

support of CUDA (on graphic cards) acceleration. The speed can be 10-100 times faster 

than CPU based methods. In addition to the speed up, AMBER supports pH-based 

simulation natively. Our plan was to first run non-pH simulation of liposome with all-

atom model in AMBER, then run constant-pH simulation. The flow chart to prepare 

MORC16 lipid simulation in AMBER is as following:

As an auxiliary program for MD simulation, Antechamber can generate input files 

automatically for most organic molecules. But one must always check the generated 

prmtop file for safety. In this research there was something wrong with charge 

assignment (total charge ≠ 0).  We changed partial charge of atom “O”  from  -0.417600 

to -0.421600 to make the total charge to be 0 to fix this problem.

PACKMOL is a tool to create an initial structure of variety type of ordered system, and

helps  guarantee  that  short-range  repulsive  interactions  will  not  destroy  the  created

system. The input file for PACKMOL is morc16_micelle_tleap.in. We were hoping to get

Generate topology file and force field parameter file through Antechamber  

Build micelles and liposomes through PACKMOL

Morc16.frcmod; morc16.lib; morc16.pdb

Solvate with water box, add ions to neutralize the system through tleap
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micelles and liposomes from aggregation simulation, but later found it is not feasible

from random lipids, the speed is slow and the system stuck into a tangled conformation

(Fig. 48), so we build the micelles and liposomes from PACKMOL (Fig. 49).

Fig. 48: The self assembly simulation of MORC16 lipids(250) in AMBER.
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Steered Molecular Dynamics Analysis of MORC16 Vesicles

Two types of SMD simulations were performed: first pulls one lipid out of the micelle or 

liposome surface; the second is pulls one ion from the outside to the inside of the micelle 

or liposome. We ran an average SMD of 10 lipids, the pulling speed is 50Å / 1000000 

steps = 25Å / ns (1step = 0.002ps). 

Fig. 49: Cross section of MORC16 micelle and liposome built by PACMOL.
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Pull One Lipid Out From Micelle and Liposome Surface

Fig. 50 shows that the work required to pull one lipid from liposome is slightly higher 

than micelle. The liposome has a bilayer structure, which makes each layer more stable 

than a single layer micelle. The bigger the micelle the more work is required since bigger 

micelles are more dense and tight, but this difference is not significant.  

Fig. 50: PMF of pulling one lipid from micelle and liposome surface.
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Pull Ions Through Micelle and Liposome Surface

Fig. 51 shows that even though Na+ is smaller than Cl-, the work required for Na+ to 

transport through the micelle and liposome is higher than Cl-. This may be because the 

heads of lipid carry more negative charge (through the oxygen atoms), and therefore has a

higher charge-charge interaction with Na+ , making it more difficult for Na+ to cross the 

surface. The snapshots of Na+ travelling through a liposome are shown in Fig.52. The 

SMD of Na+ through micelle failed, because the Na+ circled around the micelle rather 

than go into the core of micelle.

Fig. 51: PMF of pulling one ion through micelle (100 lipids).
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Fig. 52: Snapshots of the pulling of Na+ 

through a liposome.
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4.4 Discussion and Conclusion

In this chapter, We parameterized and  modeled a newly synthesized lipid, MORC16, and

performed constant-pH simulations on systems of MORC16 using CHARMM. We were 

able to determine the pKa from titration curve, and even though it matched experimental 

value very well, the “correct” behavior of molecule in different pH was not observed.  

One conclusion from the simulation is the protonation of N atom will not lead to 

formation of hydrogen bond between N and O1, in order for the chair conformation of the

ring to flip at least in our model. Even if the hydrogen bond does form, the energy will 

not be enough to induce the flip of the chair conformation. 

The simulation of large vesicles of micelles and liposomes are still challenging. We have 

not considered a pH based simualtion of a liposome yet, as the computing cost has 

already exceeded our capability. The promising way to simulate function of pH sensitive 

liposome is to develop a feasible method for constant pH simulation using a coarse 

grained model which is still under development126. 
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APPENDIX A. DATA SET OF 100 PROTEINS

name structure name structure name structure

1a6n 1r4v 1dyn

1enh 2adr 1vid

4icb 1uxc 1ebd

1cun 1ehe 1qau

1was 1bhd 2pth

2giw 1ihb 3chy

1hh8 1bp5 1ypi

1cok 1snb 1ris

1vap 1pma 1sac

1ier 1ifc 1ubq

1dj1 1tmc 1okt

1lbd 3grs 1arb

1hgu 1axj 3tgl

1qaz 1agi 1uu2

1bo9 2go0 1ril

1ev4 1jam 1gff

1bs2 1cvz 1f8d

1jd1 1ceq 2trc
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1ypr 1d0n 1hcc

1bfd 11as 1ezg

1eqk 1j1y 1elp

1gad 1p99 1ntn

1ab2 1cuk 1fkb

1iad 1wq4 1ixa

1b6n 1u9a 1d1n

1b5u 2lao 4wbc

1nr2 1bf0 1ep0

1l8l 1php 1mjc

1fzw 1ddg 1shf

2hnp 1g5b 1wit

1bsg 2tgi

1p9g 1d8v

1d6t 1bqg

1p88 1fzt

1esj 1byl
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APPENDIX B. PRINCIPAL COORDINATES ANALYSIS

The goal of PCA is to permit the positioning of objects in a space of reduced 
dimensionality while preserving their distance relationships as well as possible.

The value of PCA is that it permits the use of all types of variables, provided that a 
coefficient of appropriate type has been used to compute the resemblance hemi-matrix.

(1) The initial matrix needs to be a distance matrix A = [dij].

(2) Matrix D is transformed into a new matrix A by defining:

            Aij = -(1/2)dij
2

(3) Matrix A is centered so that the sum of every row and of every column of A is 0, using
equation: 

         Aij
* = Aij  - < Aij >i

 
- < Aij>j + <Aij>ij

< Aij >i  is average of ith row.  < Aij>j  is average of jth column.

(4) The eigenvalues and eigenvectors are computed and the latter are scaled to lengths 
equal to the square roots of the respective eigenvalues

(5) After scaling, if the eigenvectors are written as columns, the rows of the resulting 
table are the coordinates of the objects in PCO space.

Step 1. is accomplished by rmsd_pairwise.pl and RMSD_ener.pl

example: rmsd_pairwise.pl -dir PDB_DIR -o mix_rmsd_pairwise.txt

the directory PDB_DIR includes all ‘final.pdb’ from each replica, the file 

‘mix_rmsd_pairwise.txt’ contains data of rmsd value of all comparison of all replicas in 

matrix format. RMSD_ener.pl is basically retrieve energy value from ‘energy.log’ of all 

replicas.

Step 2-5 is accomplished by eig.pl.

This script will do all calculations and generate file ‘eigplot_mix_rmsd.txt’ for gnuplot.

The final plot of landscape is finished by following command in gnuplot.
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gnuplot>set dgrid3d 100,100

gnuplot>set pm3d

gnuplot>set hidden3d

gnuplot>set contour both

gnuplot>set xlabel "PC1"

gnuplot>set ylabel "PC2"

gnuplot>set zlabel "Potential Energy(kcal/mol)" rotate by 90

gnuplot>set cntrparam levels incr -800,50,0

gnuplot>splot "eigplot_mix_rmsd.txt" u 2:3:4 w lines notitle
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