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ABSTRACT 

An isolated perfused preparation was developed for the study of 

several aspects of the oculomotor system of the blue crab, Callinectes sapidus. 

The system for eyestalk rotation was investigated on an extracellular level. 

Two antagonistic pairs of muscles under visual and statocyst control were found 

to be responsible for stabilization and rotation of the eyestalk. The primary 

sensory input to the muscles appears to be from the statocysts, with both static 

position sense and d;ynamic acceleration components influencing the motor response. 

Two sensory feedback systems from mechanoreceptive hairs were found which in

fluence the response of the eye stalks to statocyst input. The function of one 

system appears to be to allow· the animal to differentiate between statocyst 

stimulation caused by whole body movement and that caused by movement of the 

basal segment of the antennule in which the statocyst is lodged. The second 

negative feedback system appears to have a multiple function. It is believed 

to function to null out the tonic excitatory position sense input from the stato

cysts when it is necessary for the eye to make a movement which is contrary to 

the position sense input as, for example, when the animal is following a visual 

target whose direction is opposite to that of the statocyst drive. It also 

produces reciprocal inhibition of the antagonist muscle. In addition, this 

system may be responsible for the incomplete compensation seen in compensatory 

eye movements made in response to pitch of the body. 

A preliminary survey of the oculomotor neurons and interneurons in the 

cerebral ganglion established the potential of this ganglion for intracellular 

recording from components of the oculomotor system. Recordings vJere made from 

both motorneurons and interneurons. The recording from interneurone of the 

VIII 



oculomotor system was particu.larly good. Eye movements could be elicted in 

response to visual and tactile stimuli while recording from the ganglion. The 

preparation appears ·to be an excellent system in which to undertake an extensive 

analysis of intracellular events in the neuronal net1-vork underlying stereotyped 

eye movements and could lead to an understanding of the neuronal basis for such 

movements. 

In the course of the above work on the oculomotor system, same obser

vations were made on the cor frontale which controls the blood pressure to the 

cerebral system. The cor frontale had been thought to function as a heart regu

lating blood flow to the cerebral ganglion. It appears from this work that the 

cor frontale may not function as a heart but rather as a resistive mechanism for 

regulation of the blood pressure, more like the vertebrate arteriole. Further

more, the function of this organ may not be to protect the flow to the cerebral 

ganglion but rather to insure the constancy of the pressure in the peripheral 

sensor.y, integrative and oculomotor apparatus of the eyecup. 
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GENERAL INTRODUCTION: 

The oculomotor control system mediates the most highly 

coordinated, finely controlled movements of the body. The characteristics of 

this system have been the subject of intensive research using many different 

animals and approaches in different laboratories. In a recent comprehensive 

review of the subject, the eye movements are divided into four major subdi

visions: the saccadic, the smooth pursuit, the vergence and the vestibular 

systems (Robinson, 1968). Most animals with finely controlled motile eyes 

possess at least three of these systems, (with vergence being found only in 

animals with binocular vision). The study of the neural mechanisms underlying 

these movements is being approached by several paths. From a recent symposium 

conducted by the Smith-Kettlewell Institute and the resultant book, The Con

trol of ;Eye Movements (Bach-y-Rita, Collins and Hyde, 1971) a limitation of 

the present approaches to the study of the neural mechanisms controlling eye 

movement is seen. From the approach using psychophysical data and electro

physiological recording from motor and sensory elements of the system in the 

periphery, inferences can be drawn as to the central neural mechanisms respon

sible for the observed input-output relations. However, this data does not 

yield information on the specific cellular mechanisms responsible for the gener

ation of eye movements. There is also a growing school of researchers approach

ing the central genesis of eye movements by electrophysiological recording from 

the central neurons of the oculomotor system of vertebrates, primarily in fish 

cats and monkeys. This approach is limited by the technical difficulties of 

recording from the neurons in the oculomotor system in higher animals, parti

cularly when the recording is on the intracellular level. Not only are the 

neurons located in the less accessible sub-cortical areas of the brain but the 
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location of the interneuronal levels of the control system is spread through

out the subcortical area and largely unknown. 

In order to have access to all the neuronal elements of the oculomotor 

system, the author chose to work with an animal with a very simple nervous sys

tem which possessed the range of eye movements found in higher forms. This 

approach is a common one which has been used successfully in many areas of 

neurophysiology. In vision, the most notable example of this is the work on 

lateral inhibition (Hartline, 1956) which was first discovered in the very 

primitive horseshoe crab, Limulus, and has proved to be a universal principle 

of sensory systems in higher animals. Since the decapod crab had been shown to 

exhibit a wide range of eye movements and extensive work had been done on the 

peripheral characteristics of the oculomotor control system, this animal was 

chosen for study. The following thesis is an investigation of several aspects 

of eye movements in a decapod preparation which has been developed for the study 

of the oculomotor control system on a neuronal level. 

The presence of complex eye movements in decapod crustacea has been 

known for some time and the characterization of these movements investigated 

(Bethe, 1897, 1903 ; Von Buddenbrock, 1930, Von Buddenbrock and Friedrich, 

1933; Dijkgraaf, 1955, 1956 a, b, c; Kunze, 1961, 1963). Most recently, the 

laboratory of G. A. Horridge has carried out an extensive study of the anatomy 

and movement capabilities of the eye and the peripheral electrophysiological 

correlates of movement of the eye in the decapod crab, Carcinu~-m~e~. (Barnes 

and Herridge, 1969; Burrows and Horridge, 1968, a, b, d; Herridge, 1966, 1968; 

Herridge and Burrows, 1968, c, e, f; Herridge and Sandeman, 1964). The follow

ing will sum up some of this work, particularly as related to the study of the 

central mechanisms controlling eye movement. 



ANATOMY OF THE PERIPHERAL OCULOMOTOR SYSTEM 

The oculomotor system of Carcinus ma.enus, a common European and American 

shore crab used by the laboratories of G. A. Horridge for study of the oculomotor 

system, follows a pattern common to decapods. The morphological terminology used 

for Carcinus was taken from that for Callinectes sapidus, the American blue crab, 

(Cockran, 1935) in which the most extensive dissection of the system had been 

done. The oculomotor apparatus consists of an eyecup connected to an eyestalk 

by a flexible arthrodial joint. The eyestalks of each side are united in the 

midline by a middle cylinder. The eyecup contains the ommitidia and the first 

four levels of neural integration of visual information. Nine muscles support 

the eyecup in a flexible joint with the eyestalk. In addition two pairs of 

muscles control rotation and stabilization of the eyestalk. The control of eye 

movement is a function of the activity of fast and slow fiber systems of these 

eleven pairs of muscles. The motor supply to the nine eyecup muscles is carried 

in the optic and oculomotor nerves. The former contains only two motor axone 

and a large number of sensory, primarily visual, fibers. The latter contains 

approximately thirty motor axons and a small unknown number of mechanoreceptive 

fibers. The two motor neurons in the optic nerve mediate the withdrawal reflex 

(Sandeman, 1967). Those of the oculomotor nerve are primarily optokinetic and 

geotatic in function. The origons of the two nerves, the optic and oculomotor, 

in the central ganglia are separate. (Hanstrom, 192B)). 

MOVEMENT CAPABILITIES OF THE EYE 

Movement of the eyecup upon the eyestalk consists of a total excursion 

of 30ddegrees in the horizontal plane, 70 degrees in the vertical plane and 

50 degrees rotation about the longitudinal axis. The joint is formed by a 
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flexible arthrodial membrane which joins the eyecup to the eyestalk and the 

relative position of the eyecup on this stalk is controlled by the balance of 

activity in the nine muscles. This balance is the result of a central program 

since interference with the action of one muscle does not change the impulse 

pattern to any of the other muscles. There is no evidence of a proprioceptive 

interaction between the muscles. 

The movements of the decapod eye consist of three reflex movements in 

response to specific stimuli and four small amplitude movements which require 

no sensory input. The reflex movements are: 

1. an optokinetic nystagmus in the horizontal plane 

2. statocyst controlled movements to maintain an absolute 
position of the eye in space 

3. withdrawal movements of the eyecup into the socket in 
response to mechanical stimulation 

The small amplitude movements which are superimposed on the above reilex move-

menta are:· 

1. 

2. 

3. 

4. 

a tremor of 2 - 5 cps and o.o5 - 0.2° amplitude 
,I 

a flick or saccade with o.o5 - 0.2° amplitude and 
an initial fast phase and slow return phase 

scanning movements of o.5 - 1° amplitude 

a slow drift in the absence of light or visual contrasts 

MUSCLE ELECTROPHYSIOLOGY AND EYE MOVEMENT 

Two general classes of activity, tonic and phasic, can be recorded from 

the eye muscles and correlate with the presence of fast and slow muscle fiber 

structure and innervation. Within these general classifications, fibers of 

intermediate type are found. The situation is similar to that in vertebrate 

eye muscle fibers (Hess and Pilar, 1963, Bach-y-Rita and Ito, 1966) although 
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the absolute values differ. 

Structurally, the fast and slow muscle fiber systems in the cvab differ 

in sarcomere length, fibrillar organization, endplate organization and arrange

men of sarcoplasmic reticulum. Physiologically, the fibers differ in contrac

tion speed, and in degree of excitability of the membrane, ranging from a totally 

electrically inexcitable membrane to one with the production of spikes upon 

depolarization. The intracellular recording from phasic muscle fibers shows 

resting potentials from 65-80 mv., junction potentials of 20-30 mv., short rise 

time and decay times and show facilitation. Tonic activity is recorded as a 

steady discharge which increases during certain movements. Tonic muscle fibers 

have resting potentials of 50-60 mv., junction potentials of 5-15 mv., slower 

rise and decay times and no facilitation. One muscle may show both types of 

activity and intermediate values between the two general types, recorded from 

different fibers in the same muscle. An interesting aspect of the fast and 

slow fiber system is that the fast fiber system is active only during movement 

of the eye and only in definite phases of that movement. This seen most 

clearly in optokinetic mystagmus where the fast fiber system does not come in 

until near the end of the slow phase, is then inhibited centrally, and the fast 

fiber system of the opposing direction then comes in for the fast phase of 

optokinetic nystagmus in the opposite direction. 

OPTOKINETIC N'YSTAGMUS IN DECAPODS 

Optokinetic nystagmus in decapods consists of the typical slow forward 

phase and a rapid return phase. In the slow phase, the eyecups follow the 

rotation of the environment (most effectively, the rotation of a striped drum). 

The eyes are then rapidly flicked back in the opposite direction during the fast 



phase. The extent of the movement in Carcinus ranges from 2 to 20 degrees and 

varies with the drum speed. The effective drum speeds for evoling movement 

are from o.oo48 degrees to 5 degrees per second. The velocity gain is around 

unity at high drum speeds, (1- 5° /sec) increases to 15 for lo1~r speeds(.Ol0 / 

sec) ~d decreases again at the lowest speeds. (Horridge and Sandeman, 196:h). 

THE SLOW PHASE OF OPTOKINETIC NYSTAGMUS 

The slmr phase of optokinetic nystagmus is controlled by the interaction 

of the central mechanisms with the parameters of the effective visual stimulus. 

(The effective visual stimulus is the slip speed which is the difference between 

the velocity of the moving drum and the velocity of the resultant eye movement). 

The efferent impulse pattern to the muscles is characteristic for the slip speed 

and consists of a tonic firing rate which increases in frequency with the duration 

of the slow phase and. a phasic firing which comes in at high frequency only near 

the end of the slow phase. By clamping one eye and blinding the otl:).er, the blind 

eye is driven by the immobile seeing eye to make the optokinetic movements appro

priate for the visual stimulus with no interference due to the lack of movement 

in the clamped seeing eye. 

The appropriate impulse pattern in response to the slip speed is generated 

by the central ganglia irrespective of whether or not the eye is allowed to move. 

Peripheral movement thus has no control over the efferent response pattern to the 

visual stimulus. 

If spontaneous withdrawal of the eye interrupts the slow phase, upon 

extension the eye returns to the position at which it was interrupted and firing 

resumes at the frequency characteristic of that point. 
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THE FAST PHA.SE OF OPTOKINETIC NYSTAGMUS 

A set of experiments were devised to demonstrate that the onset of the 

fast phase of optokinetic mystagmus is part of a centrally determined program 

without the influence of proprioception. It can be shown by the following experi

ment that the onset of the fast phase depends on a central program and is not 

dependent upon the position reached by the eye in the slow phase or dependent 

upon muscle tension generated by the position of the eye. The oculomotor nerve 

is cut on one side and the optic nerve is cut on the opposite side. In this way, 

the seeing eye cannot move and the moving eye cannot see. The efferent impulse 

pattern to the muscles of the moving ~e and the cut oculomotor nerve in response 

to a moving striped drum is normal and equal in both eyes. The same appropriate 

impulse pattern is put out by the brain regardless of whether the driven eye is 

intact, removed or clamped. The impulse pattern determining the onset of the fast 

phase is determined only by the effective visual stimulus to the seeing eye. 

FUrther evidence that the pattern of nystagmus is centrally determined 

is seen in the following experiment, in which both eyecups of the crab are 

cemented into their sockets and one e.ye is blinded. A striped drum is moved a 

few degrees and stopped. If the seeing eye were not clamped, its movement would 

evoke a relative movement ~n the opposite direction which would cut off the 

nystagmus. When the eyes are clamped, the patterned output for nystagmus con

tinues for up to one minute after the drum is stopped. The onset of the fast 

phase occurs with the same frequency as seen in the nystagmus evoked by the 

presence of the moving drum. It appears to be the ttrun down" of a pattern 

generator which is normally cut off by the relative movement in the opposite 

direction of a moving eye across a stationary drum. 

7 



The central nervous system is capable of some degree of plasticity 

by which the position in the slow phase at which the fast phase occurs can be 

altered. The discharge to one muscle, number 21, is primarily responsible for 

the slmr phase to"torard the midline. The fast phase has been shown to occur when 

the discharge to this muscle reaches a certain frequency. By applying an elec-

trical shock to the eye just before the discharge to muscle 21 reaches the fre
begin 

quency for the onset of the fast phase, the subsequent fast phases will earlier 

at a lovrer discharge frequency than before. The animal has modified the central 

program to make the fast phase occur earlier at the lower discharge frequency 

and thus avoids the shocks. It will continue to show this earlier onset of the 

fast phase for up to an hour after the shock procedure is eliminated. 

TONIC AND PHASIC SYSTEHS IN PARALLEL 

The eye muscles of most animals are composed of a spectrum of muscle 

types ranging from extremely fast to very slow (Hess and Pilar, 1963; 

Bach-y-Rita and Ito, 1966; Burrovrs and Horl"idge, 1968, a ) • The movement 

detection system is liket~se composed of elements of differing time constants, 

ranging from those which register very fast movements to those registering 

extremely slow movement (Wiersma, Bush and vJaterman, 1964) • The motor system 

and the movement detection system must interact to produce several types of 

eye movements. The interaction of these two systems could take place in three 

ways. One could have slow muscle fibers directly driven by the sensory elements 

which register slow movement and the fast muscle fibers directly driven Qy the 

sensory elements monitoring fast movement. This is the "in parallel" theory. 

Alternatively, there could exist a common inten1euronal pool in which the input 

from movement detection units of all time constants is fed. The out-
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put of this pool could then be used in either of two ways. When the control 

system dictated the need for fast or slow movement, the interneuronal pool 

would send out activation onlY to the necessary fast or slow muscle fibers. 

Alternatively, the interneuronal output could be issued en masse to all moto

neurone and the thresholds of the individual motoneurone would be set to deter

mine which elements fired. The latter idea is ver.y popularly known as the 

"size principle" of motoneurone (Henneman, 196.5, Davis, 1971). This question 

can only be settled b,y stimulating and recording from specific units on the 

sensory and motor side of the system. The oculomotor system of the decapod is 

suited for analysis of this question because the sensory units of difrering time 

constants can be isolated in the optic nerve (Wiersma, Bush and Waterman, 196.5) 

and, as will be shown in the following work, the tonic and phasic oculomotor 

neurons can be separated for recording centrallY• 

There is some evidence favoring an "in parallel" system in Carcinus. 

Using optokinetic nystagmus, a means o£ adapting out the fast components of the 

visual response by initially habituating the eye to the rapid oscillations o£ 

the drum. In optokinetic nystagmus, there exists a period at the very beginning 

of the <response when the eye is stationary while the drum is moving. The response 

of the eye is a spurt of movement until the eye catches up with the drum. This 

response may be more than 100% of the stiimllus amplitude. By recording from the 

motor axons, it can be shown that this fast spurt of movement is carried out by 

the fast muscle fiber system. This initial spurt can be removed from the response, 

hm~ever, by first habituating the eye to a rapid oscillation of the drum. The 

response to movement of the drum then begins with the steady state response of 

the tonic muscle system, without the usual initial phasic response, and reaches 

ultimately the same eye drum relation of the normal response. (Horridge and 

Burrows 1 1968, e ) • 
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This would seem to indicate that there are two separate systems, as in the 

"in parallel't theory, with one driven by slow and one by fast movement detection 

systems. There is one problem with this conclusion, however. The phasic system 

is active during large displacements of the eye even when the velocity of move

ment is slow. 

The preceding material is an introduction to the work which has been 

done using the oculomotor system of decapods. The sophistication of the ocu

lomotor system in this animal which has been demonstrated by psychophysical 

methods and analysis in the periphery encourages a central analysis of events 

in the cerebral ganglion which are responsible for observations in the periphery. 

The following thesis has been aimed at the development of this preparation for 

central analysis. An isolated perfused preparation was developed to work with 

the cerebral ganglion. This is necessary since the cerebral ganglion, unlike 

the peripheral parts of the nervous system, must be constantly perfused to main

tain function of the neural tissue. The work with this preparation then falls 

into three divisions. The first section deals with the system which controls 

eyestalk rotation. The response to this system to visual and geotatic control 

was explored and the presence of two negative feedback systems involved in regu

lation of eyestalk rotation discovered. The second section is aimed at the 

development of intracellular analysis of the central neurons involved in ocu

lomotor control in the cerebral ganglion. The final section is an example of 

scientific fallout. A pair of muscles which had been classified as oculomotor 

(Cockran, 1935) were observed to be part of a cerebral blood pressure regulating 

system. Because the regulation of the cerebral blood pressure is of vital 

importance to the functioning of the optic and oculomotor system, the work on 

the pressure regulating system is included here. 

10 



II.. THE NEURAL AND MUSCUUR SYSTEM FOR EYESTALK ROTATION 

INTRODUCTION: 

The complete structure for movement of the eye in the 

blue crab is a complex arrangement consisting of an eyecup, an eyestalk and 

a middle cylinder. The eyecup, containing the ommitidia and the first four 

levels of sensory integration, projects from the eyestalk on a flexible joint. 

The eyestalks are connected to each other in the anterior central portion of 

the anixnal by a middle cylinder. The major part of eye movement control is 

carried out by nine pairs of muscles of the eyecup - eyestalk joint. There are, 

in addition, two pairs of muscles which control the movement of the eye stalk 

and, by stabilization or counter rotation of the eyestalk, keep the eyecup in a 

position in which it is able to maintain the largest array of ommitidia hori-

zontal in space. These muscles, the musculus oculi basalis anterior, or muscle 

l5 and the musculus oculi basalis posterior, or muscle 17, are the subject of the 

following work. Muscle 15 arises from the posterior lateral surface of the ~1ddle 

cylinder and extends back over the cerebral ganglion to insert on an apodeme 

which attaches to an epistome under the cerebral ganglion. Muscle 17 attaches to 

the ventral carapace and to the ventral part of the middle cylinder. It is 

muscle 15 which is the primary subject of the following work although some obser

vations on muscle 17 as the antagonist to muscle 15 are included. 

There is no published report on the muscles of the eyestalk of Callin

ectes, with the exception of their anatomical description (Cockran, 1935). In -
another decapod, the Hawaiian SW'inurd.ng crab, ~ophthalmus viS:\1, an extensive 

study of the electrophysiological and ultrastructural characteristics of the 

levator of the eyestalk, the analogy of Huscle 15 in Callinecte!_, was done in 

an in vitro preparation. (Hoyle and 11cNe111, 1968 a). 

11 

i 
f 

I 
r 
[ 
i 
I 
i 



The levator in !:<>9-ophthalmus .. i·ras shown to contain two general categories of 

muscle fibers, slow, pink fibers and fast, white fibers which were found within 

separate bundles in the muscle. Fbur axons, two large and two smaller ones, 

supply the muscle. Although extensive analysis of the anatomical and electro

physiological charact~istics of the muscle was done, no exact correlations of 

muscle fiber type with muscle function could be made because the work was done 

in an in vitro preparation. Speculations of functional correlations are made 

solely on the basis of visual following movements. In the following work on 

Callinectes1 the muscle is left intact in ·~e animal and its function investi-
4 .... ...... 

gated with the use of natural stimuli to use the sensory channels of the animal 

rather than electrical stimulation. In a.ddi tion to the visually oriented functions 

of the eyestalk considered in Podophth!~!.' it will be shown that in Callinectes 

the muscle is also used in statocyst mediated compensatory movements of the eyes. 

The sensory physiology of the statocyst system has been investigated in 

some detail (Cohen, 1955, 1960; Dij'kgraar, 1955, 1956, a, b ;; Cohen and Dijk

graar, 1960). The statocyst in crustacea has been shown to function as the 

geotatic or gravitational receptor in much the same manner as the vestibular 

system in higher forms. In the statocyst, the static position sense is mediated 

by the statocyst hairs in contact with a calcarous statolith. Angular acceler

ation about the three major body axis is mediated by a second type of thread hair. 

The influence of' these two receptor types will be analyzed in relation to com

pensatory movements of the eyestalk of Callinectes. In addition, two systems 

of mechanoreceptive sensory hairs on the eyestalk and antennule basal segment 

have been described which appear to mediate three and possibly four, negative 

feedback systems whose function is to null statocyst input. 
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MATERIALS AND NETHODS 

The animal preparation consisted of an isolated perfused portion of 

the anterior carapace containing the eyes, the cerebral ganglion, the stato

cysts and variaple portions of the muscular and neural tissue of the esophageal 

region (see fig. 2). The dorsal artery was cannulated and the preparation per

fused wi·hh a solution of ionic content similar to the blood of Callinectes 

sa;eidu! (Perkins and Wright, 1969). The solution was buffered with Tes (Sigma Co.) 

and adjusted to a pH. of 7.5. Approximately 100 mg% glucose was added and 

oxygen bubbled through the solution before use. The perfusion pressure was kept 

at an experimental~ deter.mined optimal value by suspending the perfusion bottle 

three feet above the preparation. All experiments were done at room temperature. 

Under these conditions, the preparation could be maintained in good condition 

for 5 to 6 hours. During this time, reflex movements of the eyes could be 

repeatedly elicited, using visual, tactile or statocyst stimulation. 

For intracellular recording, KCl filled microelectrodes were used with 

tip resistances ranging from 5 to 60 Mohms, depending upon the recording aims. 

A unity gain capacity compensating electrometer (Bak, 1958) idth a variable 

gain Dana preamplifier was used for intracellular Hork. For extracellular re

cording, suction electrodes were used. The extracellular amplification was 

initially done with a Tektronic 122 amplifier and in later stages of the 'tvork, 

a 4 channel differential a.c. amplifier with a fixed gain of 1500 was used. 

Permanent records were initially made from a Tektronix storage oscilloscope 

with a Po~oid oscilloscope camera. In later stages a Grass c-4 camera was 

used for continuous records. 



A movement detection device and tilt table were constructed for use 

in experiments on pitch compensation. The movement of the crab's eyestalk was 

measured by use of a capacitative movement transducer which did not impede eye 

movement (Sandeman, 1968). The transducer is capable of measurement of angular 

displacement of o.Ol degree over a 25 degree range and is linear for displace

ments up to 15mm. Ca.llbration was done several times in each experiment by 

moving the wand a known distance between the sensors manually and the data was 

calculated trigonometricaJ.ly to obtain angular excursion. 

A tilt table was used from which the degree of tilt could be read out 

on the oscilloscope. A voltage proportional to the degree of tilt was obtained 

by the use of a potentiometer and 1.5 volt batteey linked mechanically with the 

axis of the table. Pitch and roll was obtained in sine wave, step and ramp form 

by manual rotation of the axis of the table. The crab was placed on the table 

in the pitch or roll axis and held in place lv.ith modeling clay at the tips of 

the carapace. 

A modification of the whole nerve technique (Iles and Mullaney, 1971) 

lvas developed to fill the axons to :muscle 15. In the original method, a pool of 

procion yellow dye is formed with vaseline on a glass slide. The cut end of the 

nerve to be filled is placed in the pool of dye. The cathode is placed in the 

pool of dye and the anode placed in the solution containing the animal tissue. 

When current in the y amp range is passed across the electrodes, the dye can 

be observed to pass up the axons toward the ganglion to fill the cell bodies. 

This method was modified to fill the shorter axons of muscle 15 where it was 

necessary to have the dye closer to the ganglion. A small glass bowl was blawn 

in the end of a heated piece of glass capillary tubing, - 1 mm. in diameter, and 

the edges of the bat-rl covered with silicone gel, which will form a water-tight 
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Fig. 1 Callinectes sapidus, the Blue Crab 





Fig. 2 Cerebral System of Callinectes sapidus illustrating relation of 
cerebral ganglion (j) to muscles of the eyestalk (b and d), cor 
frontale (c, g, h, i) and sensory hairs of eyestalk (f). Common 
apodeme (a) is the point of attachment for muscles 15 and 16. 



a.- common apodeme 

b.- muscle 15 and nerve 

c.- cor frontale muscles 16 

d.- nerve to muscle 17 

e.- dorsal artery 

f.- sensory hairs on eye
stalk 

g.- ventricular ganglion 

h.- ventricular nerve 

i .- sinus wall of cor frontale 

j .- cerebral ganglion 



did not permit this to be tested (see discussion). The fourth axon, of inter

mediate size, was considered by Hoyle and McNeill to be a peripheral inhibitor 

on the basis of scanty anatomical evidence. This axon was never seen to fire 

nor was any evidence of peripheral inhibition seen. It is possible that the 

two intermediate axons were actually branches from the same motor neuron in the 

cen·liral ganglion. The nerve to muscle 1.5 is very short, between 3 to .5 rnrn. in 

length and the splitting usually associated with the periphery could have taken 

place in the ganglion. The spikes from the two axons woJ;Ild then appear as one 

in the peripheral recording since the distance was not great enough for small 

differences in conduction velocity to be seen as separate spikes. An attempt 

was made to test this by filling the axons with procion yellow by the whole nerve 

technique. Although the axons filled by this method, it was not possible to get 

the somata to fill. The axons could be seen extending into the cerebral ganglion 

to an area containing large somata but no definite assignment of axons to somata 

could be made. 

TWO DIFFERENT EXCITATORY JUNCTIONAL POTENTIALS FROM THE SAME AXION 

In the course of .frequent extracellular recording from the intermediate 

size axon and the muscle fibers corresponding. to this axon, it was noticed that 

the amplitude and time course of the excitatory junction potential differed with 

the location of the suction electrode on the muscle. In an intracellular inves

tigation, this was shown to be the case. The ejps from different muscle fibers, 

supplied by the same motor axonJdiffered greatly in amplitude, time course, facili

tation and sl.Ulllllation. This shown in figs. 4 and .5 where the intracellular elec

trode is sampling the muscle fibers while the extracellular suction electrode 

continuously monitors the firing of the axon. 
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F.i..g, 4 Di.fferences in excitatory junctional potentials of two muscle fibers 
supplied by the same axon. Upper traces, intracellularly recorded 
junctional potential; lower traces, extracellular record of axon 
discharge. Same time and voltage scales in both traces. Calibration 
marker is for intracellular records, 100 msec. horizontal, 10 mv 
vertical marker. 



RESPONSE OF MUSCLE 15 TO VISUAL STIMULI 

Several types of stimuli were used to assess the response of muscle 

15 to visual stimuli (fig. 7). The records are taken tram different preparations 

so the baseline frequency differs. What is illustrated is the difference in 

firing frequency with the onset of the stimulus. In a is seen the unpattemed 

discharge recorded extracellularly from the nerve, typical of the preparation in 

the resting state. The movement of a small black rectangular object across the 

visual field in any direction and at any speed, with the exception of extremely 

slow or fast movement, will evoke the patterned discharge seen in b. In c and d 

is illustrated the response of the nerve and muscle to the turning on and off of 

a light above the preparation. In e, an unexpected response of the muscle is 

seen. When t~e carapace of the animal is touched, the eye normally retracts into 

the socket. During this retraction, muscle 15 fires vigorously. In f, retraction 

is further investigated. The eye has been caused to retract prior to the begin

ning of this record. A small rectangular black object was then passed in front 

of the retracted eye. The patterning and the increased firing rate is still seen 

when the eye is retracted. 

THE ROLE OF MUSCLE 15 IN COMPENSATION FOR PITCH AND ROLL 

a. RESPONSE RECORDED FROM THE MUSCLE IN THE PERFUSED PREPARATION: 

Contraction of muscle 15 results in the rotation of the eystalk in 

a counter-clockwise motion causing a movement of the eyes in an outward and up

ward direction. This is the response which would be expected as a com~ensatory 

movemement to pitch and, perhaps, roll, of the animal. The following set of 

experiments were designed to ascertain the function of the muscle in pitch and 
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Fig. 7 Response of muscle 15 in isolated perfused preparation to visual 
and tactile stimuli. (a) control, extracellular recording from 
muscle, note unpatterned firing rate typical of unstimulated 
animal. (b) patterning of activity in response to movement of 
dark rectangular object, extracellular recording from left nerve, 
upper trace and right muscle, lower trace. (c) response to onset 
of light, upper trace, light sensor, up signals light on; middle 
trace~ extracellular from muscle • lower trace, intracellular 
record from the same muscle. (d) response to light off. Traces 

. same as in c, dmm on light sensor signals light off. · (e) re
sponse to tactile stimulus t~o carapace resulting in retraction of 
the e~ upper trace, extracellular from muscle; lower trace, intra
cellular from the same muscle. (f) response to movement of object 
of a above, while eye is retracted; upper trace, intracellular 
record from muscle, lower trace, record of movement stimulus, move
ment sensor lags behind response because the eye perceives the 
stimulus before the stimulus object pases before the sensor. 

time scale as shown by marker in lower trace of b is.400 msec per 
interval. 



Fig. 8 Ganglionic inputs controlling response of muscle 15 to pitch. Extra
cellular recording from the nerve and/or muscle of the right and left 
sides. Experiment done in the isolated perfused preparation. Time 
scale, lower trace marker intervals equals 400 msec. between markers. 

a. control record, animal horizontal with ganglionic 
inputs intact. 

b. control pitch 30° downward in animal with ganglionic 
inputs intact. 

c. optic nerves cut, animal horizontal 

d. optic nerves cut, 30° pitch downward 

e. statocysts nerves cut, animal horizontal 

f. statocysts nerves cut, 30° pitch downward 

Note response to pitch in b of intact animal is still seen in d after section 
~f optic nerves but all response is destroyed after section of statocysts. 
Change in time course of response in middle trace of d is due to slippage of 
electrode away from muscle and closer to nerve. Note difference in time course 
of muscle ejps of right and left sides, see fig.ffor fUrther illustration. 
Loose coupling between the right and left sides is also apparent. 



b. RESPONSE TO PITCH RECORDED FROM MUSCLE J5 IN THE INTACT PREPARATION: 

The response of muscle 15 to 45 degree pitch and roll as ascer

tained in the intact animal using a tilt table and small tungsten electrodes 

placed in the muscle. The results are illustrated in fig. 9. The muscle was 

active in response to pitch downward, inhibited in pitch upward and unrespon

sive to roll to either side. These results confirm those obtained in the experi-

ments of the preceding section using the isolated, perfused preparation. 

ROLE OF MUSCtE 17 AS ANTAGONIST TO MUSCLE 15 IN PITCH 

It has been shown that muscle 15 is responsible for compensation for 

pitch fo~rard and inhibited in pitch backward. Since the animal exhibits compen

sation for pitch backward, the muscle responsible for this was sought. On the 

. ventral side of the eyestalk is a muscle pair, muscle 17, (terminology, Cockran, 

1935) which is in a position to act as antagonist to muscle J5 in rotation of the 

eyestalk. That t~s is the case is shown in fig. 10 where the increase in firing 

rate to pitch backward parallels that of :muscle 15 to pitch forward. The inhibition 

or cessation of firing seen in muscle 15 when the animal is pitched in the null 

direction (backwards for muscle 15) is not as strongly seen in muscle 17. This is 

also illustrated in fig. l11 when the animal is pitched forward and backward while 

recording simultaneously from both muscles. 

The nerve containing the axons to muscle 17 exits from. the ganglion 

anterior to the nerve to muscle 15. A cross section of this nerve taken at 3 

points is seen in fig. 12. It is difficult to de.terrnine the number of motoneurone 

supplying muscle 17 by looking at the cross sections of the axons. There is 

considerable splitting of the axons during the entire course of the nerve. In 
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Fig. 9 Response o.f muscle 15 to pitch and roll. Extracellular record
ing .from right muscle in intact animal. (a) animal horizontal. 
(b) 450 :pitch downward. (c) 45° pitch upward. (d) 45° roll to 
le.ft. (e) 45° roll to right. Time scale 100 msec. per division. 



Fig. 10 Function o:f muscle 17 in pitch. F.i.ring of' muscle 17 recorded 
extracellularly .from the muscle at varying degrees o:f pit~h. 
(a) 15 degrees pitch upward.· (b) level or resting position. 
(c) 10 degrees pitch :fonrard. (d) l5 degrees pitch :forward. 

time scaler o.5 sec. 



Fig. 11 Simultaneous firing frequency of Muscle 17 and 15 to different 
degrees of pitch. 

Pitch Muscle 17 Firing Frequency Muscle 15 F.iring Frequency 

level 7 1 

5° forward 5 3 

10° forward 4 7 

15° forward It 1,1-

20° forwa~.rd 31 11 

level 11 1 

5° backward 10 0 

10° backward 12 0 

15° backward 15 0 

20° backward 21 0 

4° forward 5 4 



B 
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extracellular recording from the muscle one large and one s~all amplitude 

response with different frequencies of firing can be seen (fig. 13) indicating 

at least tt-ro motoneurone contr.olling the muscle response. The small ampli

tude e j p shows a regular tonic firing rate and superimposed on this at 

irregular intervals is a response of approximate~ 20 times greater amplitude 

and time course. 

MF.ASUREMEN'l' OF THEOOMPENSATION OF THE EYESTALK FOrt PITCH OF.THE ANIMAL 

Using the intact crab and a capacitative movement detection device 

(see Methods) the compensation of the eyestalk.in response to pitch of the 

animal was measured. Pitch was restricted to values between 5 and 30°. Sine 

waves, ramp and step movements in the pitch plane were generated manually using 

the pitch table. The percentage compensation of mo~ment of the eyestalk for 

movement of the body was typically under 1~. This is illustrated ·in fig. 14 in 

which the sine wave movement of the eyestalk, upper trace, varies between 0.9 

degrees and 1.0 degrees in response to pitch of 10 degrees. The response to a 

step pitch shows an initial fast phase and a slower movement to a maintained 

value (fig. 15). The majorit;r of the compensatory movement of the eyestalk to 

pitch showed between 8 and 10 percent compensation. There 'tvere a rew exceptions 

to this however. In two preparations th~ responses showed 75 and 8Q% compensation. 

The response was consistent throughout the experiment showing the high compensation 

for all degrees of pitch. In addition, one preparation showed a high degree of 

tremor and instability. The eyestalk rotation is usually' a smooth well-controlled 

movement. In this preparation, however, (see fig. 16) the response 1oras larger 

than 10%, varied with each pitch of the animal and showed the illustrated tremor 

for the duration of tlle experiment (3-4 ho11rs). These two exceptions to the 
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Fig. 13 The two types of excitatory junction potentials recorded extra
cellularly from muscle 17. The small response, seen as a notch, 
particularly prominent on the third large spike, is present as 
a tonic discharge in this muscle and probably corresponds to the 
small axons seen in fig. 12. The large signal is a phasic dis
charge which must correspond to the larger axon of the nerve to 
muscle 17. 





Fig. 14 
quasi 

Compensatory response of the eyes·t.alk to.sine wave movements in 
forward pitch of the animal. Upper trace of each pair is the 
compensatory movement of the eystalk in response to forward pitch 
of the whole animal seen· in the lower trace. Upper response in A 
is the normal response of approximately 10% compensation. 
B illustrates an infrequent recording of much greater compensation, 
in this case, approximately 70%. Scale: A, 1 degree, upper trace, 
for 10 degrees pitch in lower trace; lower set, 7 degrees upper 
trace and 10 degrees pitch in lower record 1time 1 sec. 
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Fig. 15 Compensatory Response of the eyestalk to step movement in forward 
pitch of the animal. Response of eyestalk, upper trace; step 
movement of animal, lower trace. Scale: upper trace, 0.5 degrees; 
lower trace, 5 degrees; time, 1 second. 
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Fig. 16 Tremor and high compensation of eyestalk (upper trace) seen in 
response to pitch (lower trace) in one preparation. Scale: upper 
trace, 1.5 degrees; lower trace, 10° degrees, time, 1 sec. 





usual compensatory response are believed to be due to interference with a 

feedback mechanism (see discussion). 

MECHANORECEPTIVE SENSORY HAIRS REGULATING }lliSCLE 15 AND 17: 

a. NEGATIVE FEEDBACK FROM ANTENNULA.R SENSORY HAIR SYSTEM: Callinectes 

has a pair of small antennules which are constantly in motion. The statocysts 

are lodged in the basal segment of the antennules and move in conunon with an~ 

tennule movement. On the dorsal surface of the basal segment are many sensory 

hairs (figs. 17 and 18). These hairs are long and thread-like and cover most of 

the surface of the basal segment, being especially numerous around the edges of the 

basal segment. The hairs extend upward to the under surface of the carapace over 

the antennule basal segment. The under surface of the carapace above the basal 

segment also has a number of these sensory hairs. When the animal moves the 

antennule, the sensory hairs are stimulated by the she~ring movement of the hairs 

against the opposite surface. When the sensory hairs are displaced with a glass 

needle, an inhibition of activity is seen in both muscle 15 and 17 (fig. 19). 

The inhibition does not appear to show adaptation, being reproducible for repeated 

trials over a period of time. The same inhibition can be produced by stimulation 

of the hairs of the contralateral basal segment. If the sensory hairs are dis

placed by natural movements of the antennule which the animal is constantly making, 

this inhibition is not seen. Repeated stimulation of the sensory hairs evoked a 

movement response of the antennules, 'ivhich did not cause inhibition of the muscles. 

The results of attempts to record the same inhibition seen in the eyestalk muscles 

from the nerves to the leg muscles were equivocal. Inhibition of certain fibers 

v1as sometimes seen but this result was not an invariable finding. 
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Fig. 17 Sensory hairs on eyestalk, (arrow foreground) and antennular 
basal segment, (arrmi, background). Eyestalk has been pulled 
away from the posterior aspect of the antennule against which 
it normally rotates. Note projection of antennular hairs 
toward overhanging carapace and basal segment of the antennule 
against which the eyestalk hairs rotate (horizontal arrmr). 
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Fig. I~ • Antennule and Eyes talk of Callinectes sapidus illustrating 
sensory hair systems. Rotation of the eyestalk deflects eyestalk hairs 
against posterior portion of the antennule basal segment. Movement of 
the antennule deflects antennule hairs against the overlaying carapace~. 



Fig. 19 Inhibition of firing of muscle 15 and 17 following stimulati0n 
of antennular basal segment hairs. Upper traces in a and b, 
control level of firing: lower traces show inhibition following 
deflection of sensory hairs. a, muscle 15 ; b, muscle 17 • 
scale o.5 sec. 
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To ascertain the behavioral function of the antennular hairs, the 

animal was tested behaviorally for several functions before and after removal 

of the hairs by cautery. The following functions were checked: 

1. Compensatory eye movements 

2. Movement of swimming appendages 

3. Righting movements when the animal is inverted 

The functions were tested with movement of the entire body and with movement of 

the antennules alone, since it was suspected that the hairs function to allow 

the animal to differentiate between the two means of stimulation of the stato

cysts. 

After removal of the antennular hairs, compensatory eye movements to 

pitch were normal until the animal was completely turned over (180°). The normal 

animal in this position maintains the eyes approximately level with the carapace. 

The operated animal extends the eyes out and downward in exactly the same position 

(reversed by 180°) they would be extended if the animal were right side up. It 

appears that the animal is unable to tell whether it is upside down or right side 

up. 

If the antennules were moved with forceps with sensory hairs intact, no 

eye movement was observed. After removal of the hairs, small movE;:ments of the 

eyes were seen in response to movement of the antennules. The movements were 

jerky and irregular and appeared to be opposite in direction to movement of the 

antennules. 

Movement of the antennules with hairs intact has no influence on leg 

movement. After removal of the hairs, movement of the antennule resulted in a 

circular swimming motion by the periopod, the last leg of the (}rab, which is 
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adapted as a swimming paddle and also used in righting movements. 'VJhen the 

operated animals were placed back in their retaining tank, swimming movements 

appeared normal. Howevei1r, if the animal was turned over by 180° onto its back, 

it either did not attempt to right itself or attempted to right by pitch in the 

opposite direction than that seen in the normal animal. The normal animal rights 

itself by pitch in the anterior posterior direction, raising the frontal end up 

over the caudal end. The inverted operated anDnals which attempted to right did 

so by attempting pitch in the opposite direction using the rear periopod to raise 

the caudal end up to pitch over the frontal end. 



b. NEGATIVE FEEDBACK FROM EYESTALK SENSORY HAIRS: 

On the anterior surface of the eyestalk which abuts the posterior 

surface of the basal segment of the antennule1 there is a dense round patch of 

short bristle like sensory hairs (figs. 17 and 18). These hairs continue in a 

thin line down the eyestalk for about 1 em. toward the eyecup, becoming more 

thread like. The hairs are so placed that a shearing force will be exerted on 

them as they pass the posterior surface of the basal segment of the antennule 

during rotation of the eyestalk. The influence of these hairs on the muscles 
from 

which rotate the eyestalk was ascertained by recording muscle 1.5 and 1 7 while 

displacing the hairs in several directions. A shearing force applied across the 

hairs, perpendicular to the direction of displacement by rotation of the eyestalk, 

was without effect. The tonic firing rate of the muscle, which has been shown 

above to be due t.o position sense input from. the statocyst, continues w.i. thout 

change. A displacement of the hairs in both direction of the dorso-ventral axis 

of the animal, the axis of displacement in rotation of the eyestalk, resulted in 

inhibition on the tonic discharge of muscle 1.5 (fig. 20). (The same effect seemed 

to be true for muscle 17 although, because of the inaccessibility of this muscle, 

the results were not as easily obtained.) The latency and duration of the inhibi-

tion is short. It was necessary to sweep past a row of hairs for the inhibition 

to be produced. No effect was seen to the stimulation of less than five hairs. 

The effect was, as for the antennule basal segment hairs, contralateral. Stimu-

lation of the hairs of the opposite eyestalk produced inhibition of the same 

characteristics as stimulation of the ip~i~ateral hairs. With repeated stimu

lation of the hairs, the response was not as reproducible as for the antennular 

hairs. This was not adaptation or fatigue since the response decrement could 

still be seen an hour later when the response to : antennular hairs was still 
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strong. The decrement may be due to damage to the sensory hairs. The hairs 

of the eyestalk are short, stiff and bristle like and strong displacement could 

result in damage to the base. Those of the antennule are thin threads which, 

being more pliable, are less liable to damage. 

Using the whole animal on the tilt table, the effect of removal of the 

sensory hairs on the compensatory movements of the eyestalk was tested. A small 

hole was made in the carapace and the hairs on the eyestalk bumed off with a 

small cautery. Movement of the eye stalk in response to pitch was tested as in 

previous experiments. The response to 10, 20 and 30 degree pitch of sine wave 

and step form was tested before and after removal of sensory hairs. There does 

not appear to be a significant difference in response after removal of the sensory 

hairs. The response is · only slightly sluggish and more irregular, but the per

cent compensation does not appear to differ. 
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Fig. 20 Bidirectional sensitivity in the horizontal axis of eyestalk 
sensory hairs resulting in inhibition of firing of muscle 15. 
Upper traces, control firing level: lower traces, a. deflec
tion of sensory hairs by passage of glass needle in an upward 
direction. b. deflection of sensory hairs by passage of glass 
needle down across the hairs. time scale: o.5 sec. 
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DISCUSSION 

MUSCLE FUNCTION·AND FIBER COMPOSITION: 

The movement of the eyestalk is under the control of two 

antagonistic pairs of muscles, muscle 15 and 17. Acting cooperatively, the 

2 muscle pairs stabilize the eyestalk in a fixed position in space; acting 

antagonistically, rouscle 15 rotates the eyestalk counter-clockwise around the 

eyestalk axis while muscle 17 controls rotation clockwise around the same axis. 

The majority of the data above was collected from work with muscle l5 but muscle 

17 appears to operate in an analogous manner. 

Muscle 15 is to be a complex muscle mediating movements originating 

from several sensory systems. The sensory drive appears to be differentially 

distributed to the motor axons to modulate the muscle output. The best example 

of this is seen in the characteristics of the intermediate axon wb4oh is part of 

a sensory to motor transduction of position sense input from the statocyst to the 

oculomotor system for unidirectional pitch responses. This one axon is respon

sible for maintaining the eyestalk in a constant position in space, probably by 

the influence of t~e I non-adapting position sense :receptors in the statocyst. 

In addition, the same axon is under visual control although this does not appear 

to be a strong synaptic input as evidenced by the inability of the visual input 

to fire the muscle when the statocyst input is removed. In Callinectes, the 

non-adapting position sense receptors in the statocyst appear to keep the muscle 

at a constant low level of tension and the visual and acceleration input is 

superimposed on this. 

Although four axons supply muscle l5, only two of them, the intermediate 

and the slow one, fired with consistancy. It is not likely that the silence of 
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the additional fibers was due to the dissected perfused preparation since, 

when the recording was done in a few preparations of the whole animal, these 

fibers were not seen. A more likely explanation is that the silent fibers 

fire only for specific situations which could not be duplicated under these 

experimental conditions. In the case of the fastest fiber, this is most easily 

seen. Callineotes is an extremely fast swimming crab. The movements on the 

tilt table used to induce responses in the intermediate axon may not have been 

of sufficient acceleration to excite the fast axon. If electrical stimulation 

of the statocyst nerve had been used, it may have evoked the firing of the 

larger axon. Among the optomotor fibers found in Carcinus ~~iersma and Fiore, 

1971) there was a class of large fibers which could only be made to fire by fast 

rotation about the pitch axis, with an optimal speed of 90 degrees per second. 

Callinectes is a much faster swimming crab than Carcinus and it is to be expected 

that the acceleration factors in the oculomotor control would be corresponding 

greater. It is doubtful that the acceleration or velocity of movement used in 

these experiments would excite a fiber which was used in the maximum swimming 

activity of the animal. 

The lack of firing of one of the two intermediate axons is not as easily 

explained. This fiber was labeled as a peripheral inhibitor in Podophtpalmus on 

scanty evidence (Hoyle and McNeill, 1968). There was no evidence of peripheral 

inhibition seen in Callinectes. A more likely explanation is that what is seen 

anatomically as two axons peripherally is, in fact, branches of the same moto

neuron which have split immediately after leaving the ganglion. This splitting 

is a common occurrence in axons as they near the muscle. Since the nerve is 

very short and the axons are of the same size, if they belong to the same moto

neuron they may be recorded as one spike when the cell fired since the distance 
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traveled is not sufficient for differences in conduction velocity to register 

as two spikes. The splitting of the large axon to muscle 17 (fig. 12) is a 

good illustration of the danger of using peripheral axon counts in short nerves 

as indicative of the number of motoneurone centrally. 

EXCITATORY JUNCTIONAL POTENTIAL DIFFERENCES: 

The presence of ejps of t~iO distinctly different amplitudes, time 

e.ourse and faciliation properties in response to the firing of one motoneuron 

has been described previously in other systems (Bittner, 1968, Atwood, Hoyle 

and Smyth, 1965, Wiersma, 1951). The ejp differences are attributed to differ

entiation in the nerve terminals rather than differences in the characteristic 

o£ themuscle membrane, e.g., the input resistance, properities of transmitter 

quanta, etc. (Bittner, 1968). Bittner was able to show, by recording the tension 

produced qy a single muscle fiber, that equal depolarization of the two types of 

muscle fibers produced equal amounts of tension. The size of the ejp was shown 

to depend on the frequency of firing. As the firing frequency increased, the 

smaller ejp shows a greater facilitation and hence a greater tension is produced 

by the mu.sole. By this frequency control, one motoneuron is able to grade tension 

over a larger range than with a single type of ejp. In Callinectes, there are 

two distinctly diffe:rent classes of ejps in separate muscle ;fibers :in the firing 

of a single motoneuron (see figs. 4 & 5). It is possible to see, even at the 

limited frequency range in these experiments, that there is more facilitation in 

the smaller ejp than in the larger. One would expect, under conditions evoking 

high frequency discharge, that the smaller ejp would show a far greater increase 

in amplitude by facilitation than 1-rould be seen in the large ejp. By this means, 

it is possible by a peripheral mechanism at the level of the muscle to achieve, 

with frequency modulation, a greater tension range with use of a single motoneuron. 
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VISUAL CONTROL OF EYESTALK ROTATION: 

The action of the eyestalk muscles is a forward and outward (or down

ward and outward in the case of muscle 17) extension and rotation of the eye

cups. Optic input to the eyestalk muscles could serve two visual functions; 

to rotate the eyestalks in following movements in the pitch axis and to provide 

a stable base for the complex movemen'b3 of the eyecup muscles in any axis. The 

response of muscle 15 to the variety of visual inputs (fig. 7) may indicate 

that the eyestalk is functioning as a stabilizer for the action of the nine 

eyecup muscles •. 'l'he fact that visual input alone, when the statocyst input is 

cut, is not Sufficient to cause firing of the muscle is an indication of the 

subsidiary function of visual control over eyestalk movements. Tonic input 

from the statocysts appears to be necessary to keep the motoneuron at a firing 

threshold and the visual input then results in an increase in the basal firing 

rate. 

STATOCYST CONTROL OF EYESTALK MUSCLFS: 

The statocyst input to muscle l5 appears to have two components, a 

static position sense drive and a dynamic acceleration response. The static 

function is evidenced by a steady latv firing frequency which is seen when the 

animal is in a resting position after all the inputs to the ganglion have been 

cut 1-rith the exception of those !rom the statoc:rst. If the animal is pitched 

forward and left in the new position, the steady firing continues but at a 

high.er frequenc:v, proportional to the degree of pitch (figs. 9 & 10). The 

dynamic response to acceleration is seen in an initial increase in firing rate 

which soon adapts to a maintained level. This division of position and acceler

ation responses is seen more clearlY' in the compensatory response of the eyestalk 
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to a step movement on the tilt table (fig. 15). The initial response is a 

rapid compensatory movement of the eyestalk bringing it close to the final 

position. A slower movement then brings the eyestalk to a final position which 

is maintained, The division of static and dynamic components of a compensatory 

response in the movement of the whole eye has been shown to be the result of 

activation of t1o types of receptors in the statocysts (Cohen and Dijkgraaf, 1960), 

Elimination of the thread hairs of the statocyst eliminates the response of the 

eye to acceleration, resulting in a compensatory movement vthich is composed of a 

slow approach to the final position. The slow compensatory response is controlled 

by the shorter statocyst hairs in contact with the statolith which mediate position 

sense. 

There does not appear to be an appreciable contribution of the eyestalk 

in compensation for roll. This is consistent with the fusion of the middle 

cylinder idth the eyestalks resulting in a rigid structure TrThich does not allOl-1 

movement of one eyestalk alone. Since the eyestalks appear to act as a unit, 

roll compensation must be carried out solely at the eyecup..eyestalk joint. 

NEGATIVE FEEDBACK SYSTEMS INFLUENCING EYESTALK ROrATION: 

a. Antennular basal segment system: All animals with geotatio recap.. 

tor located in a moveable part of the body must be able to differentiate between 

stimulation of the receptor caused by movement of the whole body and that re

sulting from movement of the appendage in which the geotatic receptor is located. 

In man, this is a question of differentiating between stimulation of the vestibular 

system produced b,ymovement of the whole body and that resulting £rom movement of 

the head alone. In crustaceans, the geotatic receptor is located in the basal 

segment of the antennule, which moves frequently. The central nervous system 

must have some knowledge of this movement of the antennule. This could be 

achieved by either efference copy or reafference. In efference copy, the central 
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nervous system would receive information about movement of the antennule by 

a signal which duplicated the motor impulses to the antennular muscles. In 

rea£ference, the feedback would consist of information from sensor,v receptors 

which signalled movement after it had been initiated. 

An example of reafference which differentiates bet-vreen body movement 

and movement of the appendage containing the geotatio receptor is the elastic 

strand found in the lobster, Pan~lirus ar~s (Schone and Schone, 1969, Schone, 

1971). An elastic strand runs between the antennule and the muscle which raises 

the antennule so that when the antermule is lifted, the receptor is stretched. 

The function of the elastic strand was confirmed by recording eye movements to 

body and antennule movements before and after cutting the strand. The differ

entiation bet't\Teen the two movements is lost after cutting the elastic strand. 

Rea.:fference also appears to be used by Callineetes for the same differ

entiation. The sensory hairs which are found on the basal segment of the antennule 

in Callineotes feed back to the eyestalk system to null statocyst input to the 

eyestalk muscles. If the antennule alone moves stimulating the basal segment 

hairs and the statocyst, no change in the firing rate of the eyestalk muscles 

should be seen since the positive sign of the statocyst input and the negative 

sign of the antennule hairs will cancel. If the antennule hairs alone are 

stimulated, the negative sign of the input should result in an inhibition of the 

fixing of the muscles. The latter is seen when recording from muscle 15 and 17 

of the eyestalk. Inhibition of the tonic position sense statocyst input to the 

muscles is an invariable result of stimulation of the a.ntennular hairs without 

concomittent movement of the statocysts. 
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The behavioral results of removing the antennular hairs agrees with 

the electrophysiological recording. After the antennular hairs are removed, the 

animal makes eye and periopod responses to antennular movement which could be the 

normal response to stimulation of the statocysts by body movement. T~e antennular 

sensory hair system thus appears to function to differentiate between stimulation 

of the statocyst by movement of the antennule and stimulation of the statocyst 

by body mov~ment. 

The response of the eyes when the animal is inverted does not appear 

to be related to the above differentiation mechanism. Rather, it may be the 

result of interference with a sensory mechanism which allows the animal to dis

tinguish an upright from an inverted position. The statocyst is unable to signal 

inversion of the body because of the geometry of the receptors. However, the 

hairs on the under surface of the carapace above the antennular basal segment 

may be able to signal inversion of the body since they will be maximally stimu

lated by the weight of the antennular basal segment upon inversion. When the 

intact animal is inverted, the eyes are extended out and up, in~ne with the 

horizontal axis of the carapace. After the antennular and carapace hairs are 

removed and the animal is inverted, the animal extends the eyes outward and down

ward. This is exactly the same position to which the intact animal would extend 

the eyes if it were upright by 180 degrees. It appears from this that the animal 

is unable to tell that it is inverted by 180 degrees; it cannot tell up from 

down in its own body position. For this hypothesis to be so, it is necessary 

that the statocyst give the same response when the animal is upright or inverted. 

This is not impossible since the statolith position sense hairs are cemented 

into the statolith (Cohen, 1965) and the same hairs which are stimulated by a 

shearing movement in the upright position will be stimulated by the weight of the 
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statolith when the animal is inverted. 

b. EYESTALK SENSORY HAIR SYSTEM: 

The eyestalk in Callinectes rotates around the dorso-ventral 

axis by the action of two antagonistic pairs of muscles. In the course of this 

rotation, a group of serisory hairs on the eyestalk are stimulated and feed back 

onto the muscles as inhibition. The eyestallt muscles are under the influence of 

a tonic excitatory position sense input from the statocysts and the inhibition 
.Of 

from the sensory hairs is modultaing this tonic excitatory drive. The two most 

obvious functions of the inhibition would be the production of compensatory eye 

movements or the reciprocal inhibition of antagonistic pairs of muscles. To 

produce compensatory eye movements, the inhibition must act upon the agonist 

muscle; to produce reciprocal inhibition, the inhibition must act upon the 

antagonist muscle. 

From th~ experimental results it appears that the deflection of the hairs 

by movement of the eyestalk in either direction produces inhibition of both antag-

onist and agonist muscle. This appears to be paradoxical; the eyestalk should 

then be unable to move since its movement is inhibiting further movement. However, 

it is a question of the balance of excitatory and inhibitory inputs to each muscle 

to obtain the desired functional use of the eyestalk. It is then possible to 

produce both compensatory eye movements concomitantly with inhibition of the antag

onist. This is achieved by the addition of an increased excitatory drive from 

the statocysts to one muscle. The sequency of events may be as follows. The 

animal is pitched forward, the statocysts send an excitatory drive to the agonist 

muscle to rotate the eyestalk in compensation for pitch. The eyestalk begins to 

rotate. This rotation deflects the sensory hairs on the eyestalk. The output of 
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the sensory hairs feeds back onto the agonist muscle and reduces its output 

thus producing the 10% compensation of the eyestalk instead of the 100% compen

sation seen in the legs in response to the same statocyst stimulation. At the 

same time, the output of the sensory hairs is being fed to the antagonist muscle 

as inhibition. This inhibition of the antagonist in rotation of the eyestalk 

may appear strange since it facilitates the action of theagonist at the same 

time that the action of the agonist is being limited by the same sensory receptor. 

However, the inhibition of the antagonist may function simply to make the movement 

of the agonist more efficient and smooth. As seen in fig. 9, 10 and 11, there is 

still some tonic excitatory drive to the antagonist muscle when the animal is in 

a stationary position of pitch. The reciprocal inhibition would function to 

decrease this excitation to the antagonist when the eyestalk began to move, making 

more efficient use of the agonist. If both agonist and antagonist receive equal 

amounts of inhibition from deflection of the sensory hairs, the increased stato

cyst drive to the agonist will produce the 10% compensatory movement. 

The production of compensatory eye movements by this mechanism requires 

only that 10% of the statocyst drive in the 11on 11 direction escape inhibition. 

The inhibitory circuit limited to the eye answers the long standing question of 

how the same sensory receptor, the statocysts, could drive one reaction, the -
righting responses of the animal, to complete compensation and another reaction, 

eye movements, to such a small compensation. The second question asked of com-

pensatory eye movements concerns their function. Why does the animal show 

incomplete compensation for pitch? This can be answered logically by considering 

the visual and statocyst information coming to the central nervous system about 

the animal's position in space. If the eyes were to compensate completely to the 

same degree as the body, the eyes, which can: respond more quickly than the body, 
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would constantly be signalling information to the central nervous system that 

the body 1-ras in equilibrium while the statocysts would be signalling a disequili

brium. Having the eyes lag behind the body avoids conflict of visual and stato

cyst information as to body position. 

There is an adm.tional situation where the inhibition produced by the 

eyestalk sensory hairs may be used to null statocyst input. Such a situation 

occurs when the animal is pitched in one direction and may need to make a visually 

directed movement in the opposite direction. This w·ould be the case when the 

animal is swimming in one direction of pitch and sees prey moving in the opposite 

direction of pitch. If the animal is able to make follow·ing movements with the 

eyes before it has changed the direction of pitch, the following movement of the 

eyes is opposite to the direction of pitch. Also, even in the resting position 

of the animal, in which the anterior end of the carapace is pitched 15 degrees 

above the horizontal, the visual input must overrule the tonic statocyst input 

in order for the animal to make a visual inspection of anyth~ at a lower level 

than the eyes. Any visual guidance of the claws to prey on the sea floor must 

require some downward rotation of the eyestalk and this rotation is counter to 

the statocyst input. It is possible that the animal does not make use of the 

eyes for such movement but relies on the chemoreceptors on the claws and mouth 

parts. Hm-rever, a model (fig. 20) can be devised whereby the animal is able to 

make visually directed movements 1-lhich can both oppose the statocyst movement 

and escape the eyestalk inhibitory system. This can be done by inserting an 

interneuron between the statocyst and the motoneuron. The eyestalk inhibitory 

hairs feed into this interneuron. This interneuron accomplishes one purpose; 

it prevents the inhibitory input from the eyestalk hairs from feeding onto the 
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Model of the eyestalk feedback control system. The model can operate 
with or without the summing interneuron, depending upon the inclusion 
of the visual input. In the production of compensatory eye movements 
and reciprocal inhibition, the summing interneuron is not necessary 
and inhibition would act either directly upon the motoneuron or upon 
an interneuron. The interneuron is added to allow visually directed 
movements to escape the eye stalk sensory hair inhibition and to 
oppose statocyst directed movements. Plus and minus signs indicate 
excitation and inhibition, respectively. Scale of sign indicates 
the magnitude of the outputs. For further explanation see text. 
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motoneuron directly. Since the interneuron can signal only degrees o£ exci

tation, the excitatory visual input can drive the motoneuron and the inhibition 

from eyestalk rotation does not cancel the visual input but is felt only as a 

lessened excitation from statocyst drive. Since when the visual input is 

attempting to act antagonistically to the statocyst drive, the visually driven 

motoneuron is receiving less positive drive £rom the statocyst and will see only 

a decreased positivity from the interneuron, not inhibition. The opposing moto

neuron ivhich is the agonist for statocyst input wi 11 be under a decreased drive 

from the interneuron, due to inhibition from the eyestalk hairs and will also 

lack the excitatory drive from the visual input. In this way, the visual input 

may predominate and the eyes will be able. to execute visually directed movements 

free from the inhibatory system and in opposition to statocyst drive. 

The above oculomotor model can be tested in future experimental work by 

intracellular recording from the motoneurons of the eyestalk rotation system. 

The entire motor system appears to contain at the most seven motor neurons and 

perhaps as few as four. The resolution of the relationship between the motoneurons, 

the statocysts and the inhibitory sensory hairs may prove to have wider appli

cations for oculomotor control systems in general. It is possible that the 

inhibitory control system in Callinectes may have a correlation with the inhibitory 

stretch reflex which feeds back onto the stretched muscle in cats (Bacn-y-Rita, 

in press)~ The extraocular muscles serve much as the same function for all 

animals and it would not be surprising to find similar control mechanisms through-

out the animal world. 
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SUMMARY 

The control system for stabilization and rotation of the eyestalk in 

Callineotes has been shovm to involve two antagonistic pairs of muscles under 

visual and statocyst control. The primary sensory input to the muscles appears 

to be from the statocysts with both statio position sense and dynamic acceler

ation components. The static position sense input has been shown to be propor

tional to the degree of pitch of the animal. TWo motor axons are responsible 

for the tonic statocyst and visual control of the muscle. The larger of these 

two axons is capable of producing ejps of differing characteristics in different 

muscle fibers. This appears to be a peripheral mechanism for modulation of 

motor control by firing frequency. 

Two systems of sensory hairs were found which influence eyestalk 

responses. One set of hairs is located on the antennular basal segment and 

appears to function to allow the animal to differentiate between stimulation of 

the statocyst by movement of the whole body and stimulation of the statocyst by 

movement of the antennule, in which the statocyst is lodged. The second set of 

sensory hairs is located on the eyestalk and is believed to function to produce 

both compensatory eye movements and reciprocal inhibition of antagbnistic eye 

muscles. Both these functions are achieved b.r a negative input from eyestalk 

hairs which nulls out the tonic statocyst input. A model is proposed to allow 

visually directed movements to escape this inhibition and execute movements in 

opposition to statocyst control. 

77 



III. INTRACELLUlAR RECORDING FROM THE OCULOMOTOR SYSTEM IN THE CEREBRAL 

GANGLION OF . CALLINECTES SAPIDUS 

INTRODUCTION: 

An introduction has been given to the work which has been 

done on the decapod oculomotor system to reveal some of the basic properties of 

the movement capabilities and the central mechanisms which control them. None 

of this work, however, can provide information on the specific cellular basis 

for the observed events. To accomplish this, it is necessary to leave the peri

phe:cy- and begin intracellular recording in the cerebral ganglion where the oculo

motor integration takes place. The following section is an account of work 

with that aim. The only published work involving intracellular recording in the 

oculomotor system of the decapod is from a single motoneuron mediating the 

withdrawal reflex (Sandeman, 1967, 1969). The withdrawal reflex is a protective 

movement, much like the primate blink. There are several motoneurone responsible 

for the reflex and the largest of these was the subject of analysis of the synaptic 

link between the sensory input and the motoneuron response. The analysis involves 

the site of integration of synaptic inputs, the spike initiating zone, and the 

question of mono or poly-synaptic reflexes in one cell. The intracellular record

ings published consist of summed synaptic activity recorded at a site distant from 

the site of synaptic impingement upon the cell and do not give much indication of 

the potential of the preparation for intracellular analysis. The cell body of 

the motoneuron was not recorded from since it could not be located. Since this 

work was done prior to the use of procion yellow, the dye used as a cell marker 

was Prussian Blue and the cell soma did not fill when the axon was injected. 

Although the system studied was the simplest reflex movement of the eye and 

limited to one motoneuron in that system, it is of interest to the following 
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work as the first intracellular recording from the oculomotor system in a 

decapod preparation. 

The proposed approach of the following project is contained in two 

questions: (1) what is the location of the components of the system and 

(2) what can be recorded from them? A long range plan of approach to them is 

as follower vJhere are the somata located? What is the course of the cell 

processes? Are the somata electrically active? (In invertebrate nervous sys. 

tems, the somata (cell bodies) are often very large and electrically inactive). 

If the somata are electrically inactive, 't-hat sort of electrotonic activity can 

be recorded from them, that is, do they show electrotonic reflection of E.P.SP., 

r.P.s.P.s or spike activity from other parts of the cell? What are the sources 

of sensory input to these cells, i.e., visual, tactile, statocyst, etc.? What 

is the general visual receptive field of the motoneuron particularly with respect 

to d.irect~onal movements? What are the differences between tonic and phasic 

motoneurons in cell size and sensory input sources? Are the tonic and phasic 

systems grouped separately anatomically? There are from 25 to 20 motoneurone 

controlling each eye. It is not intended to extend the analysis to every cell 

but rather to find representive tonic and phasic motoneurone for study. All 

interneurone encountered will be investigated by essentially the same criteria 

as motoneurone. The following work is the intial step in the above project 

and succeeds in answering some of the above questions. The data is the first 

set of recordings to yield good intracellular responses from cells mediating 

optokinetic responses and establishes the decapod preparation as a system for 

central analysis of the oculomotor system on a cellular basis. 
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MATERIALS AND METHODS 

The animal preparation and recording was the sam~ as given under 

Materials and Methods, Section I. In addition, the cerebral ganglion was 

desheathed and transilluminated to allow individual tracts and nerve cells to 

be seen with the aid of a Leitz dissection microscope. 

Procion yellot-r for cell marking was used as a near saturated solution 

and cells filled either by the pressure injection method,electrophoretically 

(Stretton and Kravitz, 1968) or by the whole nerve iontophoretic t'echnique 

(Ilea and Mulloney, 1971). The latter technique, asmodified under Materials 

and Hethods, Section I, was used for the differential filling of the larger 

(and hence usually motor) axons in the optic and oculomotor nerves. The use of 

the method for the differential filling of the larger axons is possible because 

of the faster filling of the larger axons (perhaps due to their lower cytoplasmic 

resistance). If the dye passage in the large axons is observed and the current 

discontinued when the dye reaches the central ganglion, the distal portion of the 

nerve containing filled axons of all sizes can be cut off leaving only the large 

axons which have filled for a greater distance. By this means, the course· of a 

mass of motor fibers can be follo~ed in the central ganglion. 

RESUL'fS 

Upon visual inspection of the transilltiminated ganglion, cell groupings 

could be seen in close proximity to the course of the oculomotor nerve in the 

central ganglion. These cells were chosen as the most likely choice for the 

cell bodies, or somata, of the oculomotor neurons. The following procedure was 

then followed to determine if the cell was part of the oculomotor system and, if 

so, whether it was a motoneuron or interneuron. The criteria for motoneurons 
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was as follows: (1) if the soma shows spiking activity, either spontaneously 

or in response to visual stimuli, does this activity appear as an extracellular 

spike in the optic or oculomotor nerve. (The recordable activity of the ocu

lomotor nerve is composed almost entirely of motor fibers and the largest spikes 

in the optic nerve belong to the oculomotor system. Therefore, any large spike 

in either nerve is likely to be oculomotor). (2) if the cell doesn't fire as 

above, can it be made to fire by passing current through. the cell and does this 

activity appear in the oculomotor or optic ne~e. (3) is there an antidromic 

spike in the cell in response to stimulation of the optic or oculomotor nerve 

and (4) is there a one to one high frequency following between firing of the 

cell and activity recorded at the muscle. This latter criteria) rules out the 

possibility of a synapse between the central cell body and the acitivity recorded 

at the peripheral nerve since the synapse would not follow the high frequencies 

of sttmulation. If the cell was of interest by these criteria, it was marked by 

procion yellow and its location noted on a map of the ganglion. 

MOTONEURONS 

Recordings from the soma of motoneurone usually showed spike activity 

of a low leve.l, below 20 mv, indicating electrotonic conduction into the soma of 

action potentials produced in an active spike initiating zone elsewhere in the 

cell. It was possible to correlate these small spikes with spikes in the ocu~ 

lomotor nerve and, in some cases, with activity in specific muscles. In addition, 

it was often possible to drive the cell by passage of current through the bridge 

circuit and record electrotonic spikes in the soma and corresponding spiking 

activity from the nerve (fig. 21). By this means the general plan of anatom

ical organization of the ganglion was revealed. There are at least three separate 
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Fig. 21 Electrotonic spikes recorded from the soma of two oculomotor 
neurons in cluster marked • on ganglionic map. Upper traces, 
extracellular recording from the oculomotor nerve; lower 
traces;intracellular from cell soma. Intracellular activity 
in upper trace is evoked by passage of current through the 
cell. Intracellular activity in lower trace is antidromic 
spike following stimulation of the oculomotor nerve. 
Scale 10 mv, 2 msec. 
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Fig. 22 Ganglionic map of oculomotor system constructed from preliminary 
recording in the cerebral ganglion of Callinectes. 
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Fig. 23. Examples of recording from verified motoneurons. a. somas located 
in area of withdrawal motoneurons, marked ~ on ganglion map, lower 
trace is intracellular from soma, upper trace is extracellular from 
muscle 19a. b. soma located at 0 in ganglion map. Lmver trace, 
intracellular from motoneuron soma; upper trace, extracellular from 
oculomotor nerve. c. soma located as in b above. Lower trace, 
extracellular or partial intracellular penetration from soma 
located near b above; upper trace, extracellular from oculomotor 
nerve. Scale 10 mv, 10 msec. 
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Fig. 24 Two cells of urlicnown function which burst, as shown, to a flash of 
light. Cells located at a9 on ganglionic map in area just outside 
the oculomotor cluster. Scale: 5 mv, 1 sec upper trace, 10 msec 
lower trace. The cells could be phasic oculomotor neuroma due to 
their location. The upper trace is probably an axon penetration 
(because of the large spike size) and the lower is from a known 
large soma. 
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Fig. 25 Two soma recordings from the oculomotor cluster which could be 
tonic motoneurone. Verification was not made because extra
cellular channel was inoperative. Cells demonstrate prepo
tential foot seen in spontaneously active cells. Note activity 
before third and fourth spike in lower trace which, although 
greater than spike initiating level, fails to initiate spiking. 
Scales, 20 mv. upper trace, 10 mv. lower trace, 50 msec. both 
traces. 



groupings of oculomotor neuron soma which appear to be anatomical divisions of 

the motoneurone according to function. The area outlined by a line and crosses 

in fig. 22 contains a tight cluster of medium size cell soma (30-70 microns) 

and associated fibers. This will be referred to as the optokinetic cluster 

since it contains motoneurone (marked • on the map) which are believed to be 

tonic, and perhaps phasic, motoneurone of the optokinetic and geotatic system 

(see fig. 23 b, c). Included in this tight grouping are also interneurons (marked 

([]) on the map) v1hich respond to stimuli of the optokinetic and geotatic system, 

i.e., response to movement in the visual field, stimulation of the statocysts, 

etc. (fig. 26-29). Below this is a loose group of somata of varying sizes, from 

a very large one of approximately 150 microns to smaller ones of 35 microns 

(marked @ on the map). These are believed to be the somata of the eye withdrawal 

system. The cell of fig. 23 a comes from this area and is correlated with tonic 

activity in muscle 19a in the eyecup. Muscle 19 a is the major controller of 

eyecup withdrawal. The largest soma in this group is electrically silent and, 

on the basis of procion yellow injections, is believed to be the largest with

drawal motoneuron whose processes were the subject of intracellular recording by 

Sandeman (Sandeman, 1967, 1969). The procion yellow injection was seldom useful 

for more than marking cell bodies since the dye did not diffuse well into the 

processes but in the case of this large cell, it was possible to trace an axon 

leading to the optic tract where the large cell of the withdrawal motoneuron 

exits the ganglion. 

The motoneurone responsible for rotation of the eyestalk exit the 

ganglion near the middle in the nerves to muscles 15 and 17. There are 5 or 6 

large motoneurone and several small ones in this system. (MUscle 15 has been 

shown in the preceding section to have at most 3 large cells and 1 small one. The 
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supply to muscle 17 is unknown but must be about the same. On the basis of 

whole nerve filling of the nerve to muscle 1.5, it appears that the cell bodies 

of this muscle are the large ones which can be seen on the surface of the gang

lion (marked 0 on the map). 

INTERNEURONS 

In the cluster of soma containing the tonic motoneurons of the opto

kinetic system, there were frequent recordings from cells which responded to 

optokinetic stimuli but which did not show spike activity going out the optic 

or oculomotor nerve. These cells were classified as interneurons because of 

the absence of correlation of their spike activity with action potentials in 

nerves exiting the ganglion. They were placed in the oculomotor system because 

of their location in the optokinetic cluster and because of their response to 

optokinetic stimuli. The cells varied wide~ in their activity pattern and very 

little information regarding their specific functions could be gained due to 

equipment limitations at the time. The records (fig. 25 to 29) are of interest 

because they illustrate the potential information content available from the 

abundant electrical activity of these cells. 

The majority of the interneurons recorded from were located in the 

optokinetic cluster. These cells are marked on the ganglion map. There did 

not appear to be a separation of motor neurons and interneurons within this 

cluster; rather there is a tight interweaving of the cells into a compact 

sphere. An electron micrograph of a section taken through this cell cluster 

(fig. 30) shows tightly adjoining cells with very little interposing glial 

tissue and dark areas which may be nonsynaptic cell junctions. Running between 

the cell bodies can be seen cell processes, most of which are too small to be the 
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Fig. 26 Intracellular records from two cells in oculomotor cluster showing 
multiple spike heights. Second spike on upper trace is overshoot 
spike. Lower trace, similar activity of lower voltage. Time 
course of activity indicated active conduction in both cases. 

• Notched spike activity in lower cell may represent successive 
spike initiation at several trigger zones. Scales: upper trace, 
5 mv, 50 msec; lower trace 2.5 mv, 5 msec. 
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Fig. 27 An integrating interneuron found in the oculomotor cluster. Cell 
does not have spike activity in the motor nerves but shows synaptic 
input to electrical stimulation of the statocyst$ nerve in a, the 
optic nerve in b and the oculomotor nerve in c. Scale: 5 mv. 
100 msec. 
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Fig. 28 Further example of large spiking cell with prepotentialfoot. This 
cell is judged to be an interneuron with oculomotor function, since 
it was found in the oculomotor cluster, marked ~ on the map, does 
not show correlation ~dth spikes in the oculomotor nerve, upper 
trace, and showed an increase in firing rate to a moving stimulus. 
Scale: 10 mv, 5o msec. 





Fig. 29 Epsps and ipsps of an interneuron found in the oculomotor cluster. 
Upper four traces illustrate spontaneous epsps seen in cell, acti
vity in lower traces is evoked by movement of pen light in visual 
field. Electrical stimulation of esophageal connective evoked 
spiking in the cell (not shown). Scales, 2.5 mv, 20 msec. 
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Fig. 30 Electron micrograph taken from the optokinetic cluster. Note: 

a) sparce glial investment of cells and resultant tight 
adhesion of soma. 

b) interdigitating small cell processes. 
mag. 4 5,ooo X, photo - courtesty of 
Dr.- Daniel Friend. 





Fig. 31 Interneuron located with cells believed to be withdrawal motoneurone. 
The parabolic bursting form is characteristic of the cell. If burst
ing stopped, it could be evoked by the onset of a light near the 
preparation. The burst was often correlated with a spike in the ocu
lomotor nerve, as seen in the upper trace but this was not always the 
case, as seen in the lower figure. Upper traces of the two records 
are extracellular from the oculomotor nerve, lower traces intra
cellular at location(:~ on ganglion map. Scales, 10 mv both traces; 
100 msec upper trace, 200 msec. lower trace. 
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neurite-axon branch from the cell body and must represent dendritic processes 

involved in synaptic transmission in the cluster. 

There were several points of interest to basic neurophysiology which 

were seen in these interneurone. In the first cell shown in fig. 26, up to 

five different spike sizes were seen. Three are illustrated in the upper fig

ure, the second one being an o~ershoot spike. In the lower trace, on a faster 

time scale and at a lower amplitude, is another cell of the same type. The actiVity 

is probably electrotonic spread from another part of the cell, judging from the 

low amplitude response, and the notched form may represent successive spike 

initiation from different trigger zones. 

The cell in fig. 27 is an excellent example of an integrating inter

neuron which is receiving inputs from several sensory systems, in this case, the 

visual information from the optic nerve, the geotatic from the statocysts and 

mechanoreceptors from the oculomotor nerve. In fig. 28 is seen another cell type 

which displays a prepotential foot typically seen in spontaneously active cells. 

The frequency of discharge could be increased by moving an optoldnetic board in 

front of the preparation. However, even in the absence of any stimulus, this 

regular discharge with the prepotential foot is seen. The prepotential may repre

sent a pacemaker potential or could be the summed synaptic input from another 

area of the cell, or a combination of the two. A classic record of epsps and 

ipsps is seen in fig. 29. The frequency of synaptic bombardment went from the 

low level of epsps seen in the upper trace to a dense input o£ both epsps and 

ipsps in the lower record when the cell was stimulated by a combination of a 

moving light and electrical stimulation of the esophageal connective. (The 

esophageal connective is an "alerting" input to the visual system). 
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The only interneuron which was encountered outside the optokinetic 

cluster Which seemed to belong to the oculomotor system is that seen in fig. 31. 

This cell can be located repeatedly by advancing through the largest cell body 

of the withdrawal system. This form of parabolic bursting was usually seen, 

but if the bursting stopped, it could be reinstated by the onset or movement of 

a light near the prep~ratio~. It may rep~esent some form of pacemaker for the 

withdrawal system (such a pacemaker has been speculated upon but not found 

Sandeman, 1967). The bursting pattern continued on one occasion for two hours 

and seemed to be correlated with a spike in the oculomotor system (see upper 

trace, fig. 31). Although exact correlation was not an invariable finding, 

an increase in the spike frequency in the oculamotor nerve appeared to accompany 

increased frequency of bu~sting. Since both tonic motoneurons of the with

drawal system and neurons of the optokinetic group are fo~d in the oculomotor 

nerve, this cell could serve as an oscillator or pacemaker for either system if 

it is indeed linked to the spike in the oculomotor nerve. 

DISCUSSION 

The preceding records from the oculomotor system of Callinectes demon

strate the development of the cerebral ganglion into a preparation in which one 

can do intracellular recording while using the natural sensory stimuli of the 

oculomotor system. The aim was to have a preparation in which the location of 

tho cellular components of the oculomotor system would be known and the relation

ship of the sensory units and interneurone to the motor units could be mapped on 

a cellular basis as has been done in several other invertebrate systems, for 

example,(Bentley, 1970; otsuka, et al., 1967; Cohen and Jacklet, 1967). A sub

stantial beginning has been made toward this end. 
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The technical aspects of the perfusion and dissection of the ganglion have been 

developed to achieve a preparation in which intracellular recording in the ocu

lomotor system can be done while the animal is induced to make eye movements in 

response to movement in the environment or to tactile stimulation. A larger 

scale development of the work was limited by two factors. One was the equipment 

limitations in the early stage of the work. It is necessary to have numerous 

extracellular channels for investigating inputs and outputs of the cells being 

monitored intracellularly. The other is the need for a kymograph camera for 

continuous recording. After these were obtained, a limitation of the preparation 

appeared. The intracellular response of the animal decreased With the onset of 

winter. Callinectes migrates to deeper waters at this time and that may be 

involved in the phenomenon. 

Several aspects of the oculomotor system have been established b,y the 

recording in this work. The main feature is the general anatomical organization 

of the oculomotor system. within the ganglion. The functional division of the 

oculomotor system, the withdrawal system, the optokinetic-geotatic system and 

the system for eyestalk rotation appear to be separated anatomically within the 

ganglion. It is likely that each system has its own interneur<;>nal network also. 

The integration necessary for the with~awal system is quite different from that 

for eyestalk rotation or optokinetio-geotatic movements and though each system 

may receive input from the same sensory systems, the information will not be 

used in the same way. It is therefore unlikely that those interneurone grouped 

with the optokinetic group function for the other systems also. 

Recording from interneurone in the oculomotor system are one of major 

stumbling blocks in work utilizing vertebrates. Recording from these cells in 

Callinectes appears excellent and is probably the main advantage of the use of 

the decapod for study of the oculomotor system. 
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In addition, the types of interneurons seen in this preparation should prove 

to be interesting as basic studies in neurophysiology. For example, the cells 

seen with multiple spike heights may prove to have dendritic spikes representing 

sensor.y inputs from different modalities, i.e., input from the statocysts, the 

visual and the mechanoreceptive systems. Active regenerative potentials were once 

thought to be found only in the a,xon, initial segment and soma but are now 

accepted phenomena in the dendritic system (Llinas, 1968). Another possibility 

is the presence of axonal branches of one motoneuron, a phenomena which has 

been seen before (Takeda and Kennedy, 196$). Alternatively, multiple spike 

heights have been thought to be spikes Which failed to propagate past a fre

quency barrier caused by the narrowing of the axon (Mellon and Kennedy, 1964; 

Pabst and Kennedy, 1967; Sandeman, 1969) • By stimulating the sensory inputs to 

the oculomotor system, it may be possible to link specific ~pikes with specific 

sensory inputs, thus establishing the spikes as dendritic. 

The spontaneous bursting cell seen near the withdrawal somata"merits 

study as a possible pacemaker for the spontaneous and regular withdrawal move

ments of the eye. It has been shown that the spontaneous firing of the large 

withdrawal neuron is not likely to be a property of the motoneuron and a separ

ate pacemaker cell for this firing has been suggested {Sandeman, 1967). There 

are withdrawal motoneurone in the oculomotor nerve and the apparent correlation 

of the bursting cell and the spike in the oculomotor nerve could represent a 

coupling of the pacemaker cell with the withdrawal cell. The resolution of this 

and similar questions brought up in the course of the work on the ganglion appear 

to be within reach in a more comprehensive experimental approach. 
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A preparation using the cerebral ganglion of the decapod, Callinectes 

sap~, has been developed for study of central mechanisms of oculomotor control. 

The recordings from oculomotor neuron somata are attenuated electrotonic poten-

tials but sufficient ·co establish the location of specific motorneurons within 

the ganglion. A variety of interneurons related to the oculomotor system have 

been recorded from and excellent cellular responses in the form of synaptic 

potentials, possible pacemaker potentials, single action potentials and cell 

bursting are obtainable. On the basis of the recording from motorneurons and 

inter.neurons, a preliminary anatomical map of the oculomotor system in the 

ganglion was begun. The preparation appears to be well suited as a model 

system in 1vhich to study central events in oculomotor control. 
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IV. COR FRONTALE 

INTRODUCTION: 

Auxilliary hearts are found throughout the arterial system 

of many invertebrates where they serve as booster pwnps to maintain the blood 

pressure of peripheral areas of the body. An auxilliary heart, the cor frontale, 

is found interposed in the blood stream anterior to the cerebral system in many 

crustaceans. Although it was first described in the crayfish in 1916 (von Bau

mann) and later in other crustacea (Debaiseux, 1944; Demal, 1953), very little 

published W>rk is available on the function of the cor frontale. It has been 

~ssumed by the above authors to be a mechanism for the regulation of blood flow 

to the cerebral ganglion. The muscles of the cor frontale in Callinectes saEidus 

were originally described with the eye musculature and termed thenusculus oculi 

basalis posterior or muscle 16 (Cockran, 1935). Although muscle 16 arises from 

a common apodeme with the eyestalk muscles, the insertion of muscle 16 is on the 

carapace, rather than on the eyestalk, and they are, therefore, not functional in 

eye movement. The following work in Callinectes shows that muscle 16 in this 

animal is analogous to the cor frontale muscles of other decapods. The function 

of the cor frontale is redefined on the basis of data in Callinectes which suggests 

that the cor frontale may function, not as a heart adding propulsive force to the 

blood, but rather as a resistive element in the regulation of flow, acting more 

like an arteriole than a heart. In addition, the data suggests that the cor 

frontale is concerned with regulation of the blood flow to the peripheral oculo

motor and visual system in the eye rather than regulation of flow to the oerebral 

ganglion. 
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MATERIAlS AND METHODS 

The animal preparation consisted of an isolated perfused section o£ 

the anterior carapace of the crab (see fig. 2). The dorsal artery was cannu

lated and perfused with a Callinectes saline (Perkins and Wright, 1969) buffered 

with Tes (Sigma Chemical Co.) adjusted to pH. 7.5. The "normal" perfusion 

pressure was that which had been previously determined to be optimal for intra

cellular recording in the cerebral ganglion. This pressure was maintained by a 

constant height oi' the perfusion bottle above the preparation. Alterations in 

the per£u,sion pressure could be made by changing the height of the bottle or by 

means of a valve in the supPly tube. AU electrophysiological· recording was done 

with glass suction electrodes on the cor trontale muscle with the thin trans

parent wall of the sinus intervening between muscle and electrode. This was 

necessary to avoid dissection of the sinus which would have interfered with main• 

tainance of the perfusion pressure. 

For electron microscopy, the mscle was clamped at rest length or in 

the contracted state and fixed in 2% paraf'ormaldehyde 3.5%· glutaraldehyde with 

o.l M Na phosphate buffer at pH'7.4. 

RESULTS 

ANATOMY: 

The blood supply to the cerebral system is carried anteri.orly from 

the main heart by the dorsal artery. This artery divides anteriorly into 2 main 

systems 1 the . cor fl'ontale sinus, £rom which the blood supply to the cerebral 

ganglion arises, and the two ophthalmic arteries, one to the right and one to the 

left side (£ig.32). The cor frontale is a large dilation with the cerebral gang-

lion artery eXiting from the noor by either one or two short stocky vessels. The 
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Fig. 32 Photograph of the cor frontale of Callinectes sapidus. 
(1) ophthalmic arteries ( 2) dorsal artery (3) cerebral 
artery (4) cor frontale sinus. The small arrows indi
cate the areas of insertion of the cor frontale muscle 
through the sinus. The majority of the musQle is located, 
when contracted1at the lower arrow. The tissue at the 
upper arrow is a tendonous extension of the cor frontale 
muscle. The system has been injected with liquid latex 
through the dorsal artery for visualization. 
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ophthalmic arteries are of approximately twice the diameter ~nd ten times the 

length of the cerebral artery since th~y must extend to the eyes in the peri

phery where they supply the neural and muscular systems of the eyecup. There 

are four levels of neural integration in the visual system immediately behind 

the ommitidia, in addition to the nine pairs of ocular muscles, and blocking of 

blood flow to this area has been observed to result in cessation of visual re

sponse, even.wben the cells in the cerebral ganglion are still responsive to 

other modes of stimulation. (Responsiveness in the eerebral ganglion likewise 

does not survive the cessation of blood supplf)• The cor frontale is situated 

in such a position that it is able to control diversion of blood flow either 

through the cor frontale to the cerebral artery or to the ophthalmic arteries 

out to the eyes. 

In Callinectes, the cor frontale consists of two thin muscle strips 

and a small ganglion and nerve running through a thin walled sinus (see fig. 1). 

The ventricular ganglion (terminology, von Baumann, 1916) arises between the two 

cor frontale muscle strips in the course of a nerve which arises from a branch 

from the right and left circumesophageal ganglion. The ganglion is from 0.5 to 

0.1S millimeters in width and contains a maximum of 18 large neurons, the largest 

being around 90 microns, arranged around a central neuropile. (fig. 33). 

Several ganglia have been fiXed, embedded in epon and sectioned for cell counts 

'tdth the liight mi9roscope. The cell counts have varied with 18 being the maximum 

number seen in a preparation in which the alignment of the sectioning was optimal 

and the count therefore most reliable. The small size and the homogeneity of 

the cor frontale muscle make it unlikezy that there are more than a few motor ... 

neurons for these muscles among the 18 cells in the ganglion. The remaining cells 

may be sensory neurons or interneurone of the cor frontale system or cell bodies 



F.ig. 33 Sections through the ventricular ganglion:note the large size 
of the somata, cell processes and neuri~s seen extending from 
the somata into the central neuropile. The large size of the 
processes in the central neuropile will facilitate intracellular 
recording here. Sections embedded in epon and stained with 
Toluidine blue. Magnification scale under figures. 





whose processes continue along the dorsal nerve to the gastric muscles. Each 
' 

muscle of the cor frontale receives a br~nch from the ganglion after 1-rhich the 

rna~ nerve. curves dorsally to follow the median artery back to the region of 

the main heart. Branches can be traced to the visceral muscles but, due to the 

fineness of the branching, it could not be ascertained whether the branches 

extend to .·the main heart. 

The muscles of the cor frontale are, in the unoontracted state, a pair 

of very compact thin strips w;i.th a glistening white appearance. At maximum 

contraction, the long thin strip reduces down to a third or less of the original 

iength into a dense white bundle. This contracted state can be maintained for 

long periods of time. The whiteness of them uscle is usually associated with 

fast muscle contraction yet the contraction of thenuscle appears to be slow 

and maintained. The electron microscopy Which was done of the muscle does not 

give a cle.ar picture in terms of the classical characteristics for dii'£eren .. 

tiation of fast and slow fibers in crustaceans (Hoyle, 1967, Hoyle and McNeill, 

1968) •. The sarcomere length varies from 3 to 6 microns and mitochondria are very 

small and sparse, characteristics which are associated with fast muscle fibers 

in crustacea. On the other hand, the endoplasmic reticulum in very poorly devel

oped and irregular. Evidence of supercontraction (shortening of the sarcomeres 

so that the thick filaments extend through the Z band and no I band can be seen 

(Hoy-ie et al., 196.5) is present in the muscle which was fixed in the contracted 

state. The Z band is very electron opaque and in the contracted state shows 

the discontinuities through which the thick filaments of adjacent sarcomeres 

in~erdigitate in supercontraction. The thick filaments appear to be in a loose 

hexagonal array but thin filaments rarely have any regulularity of arrangement. 

Fbr this re~son, it is difficult to give an exact figure for thick thin filament 

ratios although it would appear to be in excess of 1 to 10. 



F.ig. 34 Effects of decrease of perfusion pressure on the discharge of 
the muscles of the cor frontale. First trace shows extracellular 
recording from muscle when the perfusion pressure is at the 
optimally determined value. The perfusion is then cut off and 
the subsequent 3 records taken. Note facilitated muscle response 
with increased discharge. Scale: 100 msec. 





PHYSIOLOGY: 

When recording extracellularlY from the muscle when the perfusion pressure 

is 11normal11 a small muscle spike is recorded with an average .frequency of 8 to 

13 per second depeading on the preparation. \ihen the perfusion pressure is cut 

off by the valve in the perfusion supply tube, the frequency may rise to a maxi

mum of 27 per second. The interspike interval is fairly constant in the "norma.l11 

state and decreases at a regular rate with decrease in perfusion (fig. 33). There 

is no bursting seen. The contraction of the muscle is that of a slow tonic muscle 

with no evidence of beating. With increase in firing rate, the muscle contracts 

in a slow sustained contraction down to a short bundle of 1/3 to 1/4 of the orig-

inal length. Fig. 3.$ illustrates the response of the muscle firing rate to 

cessation of the perfusion. The firing rate of the muscle increases gradually 

with a very short latency, and rises, in this case, to a maximum of 20/sec. 

Activity which was recorded from nearby eyestalk muscles at the same time showed 

no change in firing rate (unless perfusion was shut off for several minutes in 

which case the activity in eyestalk muscles decreases due to deprivation of flew 

to the cerebral ganglion). In addition to an increase in firing rate a facili

tation of the muscle activity is seen (see tig. 3h). This increased muscle spike 

decreases gradually back to 11normal11 when flow is reinstated. 

When the perfusion flow was not shut off but instead pressure decreased 

by lowering the perfusion bottle by 1 foot steps, the following changes in firing 

rate were recorded: at optimal height the firing rate was 9.6/sec; lowering the 

perfusion bottle one foot the rate decreased to 146/sec; lowering the bottle 2 

.feet reduced the firing rate to lQh/sec and a final lowering of 9 inches, cutting 

off the flow entirely, resulted in a .firing rate of 180/sec. The firing rate o.f 

the muscle thus appears to be proportioned to the perfusion pressure. 



The time course of the response to cessation of perfusion is graphed 

in fig. 3$.. The absolute latency for response to cessation of perfusion could 

not be calculated by the methods used but is quite short, probably considerably 

less than one second. The response takes some time to reach the maximum value. 

In the case in fig. 3$., the firing frequency appears to be reaching maximum 

around 28 - 34 seconds after cessation of perfusion. A similar slow decline 

of firing rate occurs after reinstatement of the perfusion. 



Fig. 35 Illustration of the increase in discharge frequency of the muscles 
of the cor frontale with the cessation of perfusion through the 
cerebral system. 
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DISCUSSION 

The major features of the anatomical and electrophysiological 

observations indicate that the cor frontale muscles are tonic muscles capable 

of slow sustained contraction. The contraction is not in the form associated 

with individual beats of a heart and the "heart" has never been observed to 

beat on any occasion. Rather, the contraction of the muscle is always a slo~1 

maintained shortening of the muscle which continues contraction down to a frac-

tion of the original muscle length. This is consistent with the functioning of 

the muscle acting as a resistive element opening or narrowing the sinus at the 

entrance of the cerebral artery in much the same way that the muscular wall of' 

an arteriole serves as a resistive element regulating flow through the arteriole. 

When the muscle contracts in response to decreased blood pressure in the cerebral 

system, it decreases the size of' the sinus passage and increases resistance to 

flow to the cerebral ganglion. This is contradictory to the heart's assumed 

function of maintaining the pressure in the cerebral ganglion. It is possible 

that this may be the case; the heart is decreasing flow til· the cerebral ganglion 

in order to divert it to the vessels supplying the optic and oculomotor system 

in the periphery. These vessels are of a very large diameter and must deliver 

blood a long distance out to the eyes where there is a large oculomotor apparatus 

and four levels of neural integration of the optic input which is vital to the 

animal. A central decrease mn flmr is more likely td_ give rise to a greater 

decrease in flow at the end of the long large diameter ophthalmic arteries in the 

periphery than it will in the short eerebral artery which is closer to the pro

pulsive force of the main heart. The muscles of the cor f'rontale may then function 

~o maintain pressure in the periphery atthe expense of flow. to the cerebral ganglion. 
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Without the input to the ganglion from the peripheral optic apparatus, the 

ganglion from the peripheral optic apparatus, the ganglion would be deprived of 

its major sensory system and maintenance of the function of this sensory input 

maybe the highest priority in regulation o£ the cerebral blood flow. 

The electron microscopy of the cor frontale muscles is, for the most 

part, consistent with a slow tonic function in crustacean muscle. There are two 

characteristics however, which are more typical of fast crustacean systems. 

These are the short sarcomere length and sparcity of mitochondria. The presence 

of these two features may be explained by the function of the muscle. Short 

sarcomeres are found not only in fast muscle fibers but also in muscles which 

are capable of supercontraction down to a fraction of their original length 

Hoyle, et al., 1965). The difference between the fast and slow fibers with short 

sarcomere length lies in the ratio and arrangement of thick and thin filaments. 

While the number of thin filaments in fast fibers is small and regular in arrange-

ment, the thin filaments in the supercontracting slow fibers are more num&rou.s 

and irregular in their arrangement. This may be a reflection of a basic relation

ship between the thin filaments and muscle function. Whi~e the fast muscle must 

perform work ~uickly against large resistances or in overcoming inertia, the 

supercontracting fibers do not perform work against great resistance. On the 

contrary, the supercontracting muscle of the cor frontale is closer to smooth 

muscle in performing a large amount of shortening with little work performed. 

The cor frontale muscle shortens, not against the resistance of a fixed structure 

such as the shell, but b,y stretching a tendon to which it is attached in a loose 

relation to the carapace. The short sarcomeres in the fast muscle may function, 

in conjunction with the regular thick-thin filament arrangement, to produce 

force quickly. The same short sarcomere length in association with a different 



thick-thin filament arrangement in the supercontracting fiber maybe associated 

'With large changes in length 'With little work. The small work requirements may 

also explain the sparcity of mitochondria found in the slow supercontracting 

cor frontale muscles. 

The sensory aspects of the cor frontale regulation of the cerebral 

blood pressure has not been explored in the present work. Two possibilities 

for sensory reception of the pressure change are stretch receptors or chemo

receptors. The short latency of response is more consistent with a stretch 

receptor in which decrease in pressure is signalled by an increase in firing 

rate of the receptor. However, extremely sensitive chemoreceptors monitoring 

oxygen decrease or carbon dioxide incz•ease are also possibilities. Both recep-

tor types exist in complex mammalian blood pressure regulating systems (vJhite, 1972). 

The investigation of a pressure regulating system, from the sensory to the motor 

components, is possible in the simple system presented by the cor frontale and 

further study of this system may provide answers ,;rhich will be applicable, not 

only to crustacean blood pressure regulation, but to general principles of 

pressure regulating systems in higher forms. 
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SUMMARY 

The cor frontale is a cerebral blood pressure regulating system 

contained in an isolated unit composed of a small ganglion, two muscles 

and pressure transducing receptors. The function of this unit appears to 

be as a resistive element controlling flow in the manner of a vertebrate 

arteriole rather than as a heart. The system appears to function to protect 

not the cerbral ganglion but the peripheral neural and muscular components 

. of the visual system. 
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APPENDIX: LIST OF FIGURES 

1. Schematic overvie'tv of the oculomotor and antennular system 

2. Electron microscopy of the cor frontale muscles, longitudinal 
section 13, 200 X 

3. Electron microscopy of the cor frontale muscles, transverse 
section 16,500 X 
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Schematic overview of the oculomotor and antennular system 
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Electron microscopy of the cor frontale muscles, longitudinal 
section 13,200 X 
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Electron microscopy of the cor frontale muscles, transverse 
section 16,500 X 





Fig. 9 Response o.f muscle 15 to pitch and roll. Extracellular record
ing .from right muscle in intact animal. (a) animal horizontal. 
(b) 450 :pitch downward. (c) 45° pitch upward. (d) 45° roll to 
le.ft. (e) 45° roll to right. Time scale 100 msec. per division. 



Fig. 10 Function o:f muscle 17 in pitch. F.i.ring of' muscle 17 recorded 
extracellularly .from the muscle at varying degrees o:f pit~h. 
(a) 15 degrees pitch upward.· (b) level or resting position. 
(c) 10 degrees pitch :fonrard. (d) l5 degrees pitch :forward. 

time scaler o.5 sec. 



Fig. 11 Simultaneous firing frequency of Muscle 17 and 15 to different 
degrees of pitch. 

Pitch Muscle 17 Firing Frequency Muscle 15 F.iring Frequency 

level 7 1 

5° forward 5 3 

10° forward 4 7 

15° forward It 1,1-

20° forwa~.rd 31 11 

level 11 1 

5° backward 10 0 

10° backward 12 0 

15° backward 15 0 

20° backward 21 0 

4° forward 5 4 
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extracellular recording from the muscle one large and one s~all amplitude 

response with different frequencies of firing can be seen (fig. 13) indicating 

at least tt-ro motoneurone contr.olling the muscle response. The small ampli

tude e j p shows a regular tonic firing rate and superimposed on this at 

irregular intervals is a response of approximate~ 20 times greater amplitude 

and time course. 

MF.ASUREMEN'l' OF THEOOMPENSATION OF THE EYESTALK FOrt PITCH OF.THE ANIMAL 

Using the intact crab and a capacitative movement detection device 

(see Methods) the compensation of the eyestalk.in response to pitch of the 

animal was measured. Pitch was restricted to values between 5 and 30°. Sine 

waves, ramp and step movements in the pitch plane were generated manually using 

the pitch table. The percentage compensation of mo~ment of the eyestalk for 

movement of the body was typically under 1~. This is illustrated ·in fig. 14 in 

which the sine wave movement of the eyestalk, upper trace, varies between 0.9 

degrees and 1.0 degrees in response to pitch of 10 degrees. The response to a 

step pitch shows an initial fast phase and a slower movement to a maintained 

value (fig. 15). The majorit;r of the compensatory movement of the eyestalk to 

pitch showed between 8 and 10 percent compensation. There 'tvere a rew exceptions 

to this however. In two preparations th~ responses showed 75 and 8Q% compensation. 

The response was consistent throughout the experiment showing the high compensation 

for all degrees of pitch. In addition, one preparation showed a high degree of 

tremor and instability. The eyestalk rotation is usually' a smooth well-controlled 

movement. In this preparation, however, (see fig. 16) the response 1oras larger 

than 10%, varied with each pitch of the animal and showed the illustrated tremor 

for the duration of tlle experiment (3-4 ho11rs). These two exceptions to the 
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Fig. 13 The two types of excitatory junction potentials recorded extra
cellularly from muscle 17. The small response, seen as a notch, 
particularly prominent on the third large spike, is present as 
a tonic discharge in this muscle and probably corresponds to the 
small axons seen in fig. 12. The large signal is a phasic dis
charge which must correspond to the larger axon of the nerve to 
muscle 17. 





Fig. 14 
quasi 

Compensatory response of the eyes·t.alk to.sine wave movements in 
forward pitch of the animal. Upper trace of each pair is the 
compensatory movement of the eystalk in response to forward pitch 
of the whole animal seen· in the lower trace. Upper response in A 
is the normal response of approximately 10% compensation. 
B illustrates an infrequent recording of much greater compensation, 
in this case, approximately 70%. Scale: A, 1 degree, upper trace, 
for 10 degrees pitch in lower trace; lower set, 7 degrees upper 
trace and 10 degrees pitch in lower record 1time 1 sec. 
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Fig. 15 Compensatory Response of the eyestalk to step movement in forward 
pitch of the animal. Response of eyestalk, upper trace; step 
movement of animal, lower trace. Scale: upper trace, 0.5 degrees; 
lower trace, 5 degrees; time, 1 second. 
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Fig. 16 Tremor and high compensation of eyestalk (upper trace) seen in 
response to pitch (lower trace) in one preparation. Scale: upper 
trace, 1.5 degrees; lower trace, 10° degrees, time, 1 sec. 





usual compensatory response are believed to be due to interference with a 

feedback mechanism (see discussion). 

MECHANORECEPTIVE SENSORY HAIRS REGULATING }lliSCLE 15 AND 17: 

a. NEGATIVE FEEDBACK FROM ANTENNULA.R SENSORY HAIR SYSTEM: Callinectes 

has a pair of small antennules which are constantly in motion. The statocysts 

are lodged in the basal segment of the antennules and move in conunon with an~ 

tennule movement. On the dorsal surface of the basal segment are many sensory 

hairs (figs. 17 and 18). These hairs are long and thread-like and cover most of 

the surface of the basal segment, being especially numerous around the edges of the 

basal segment. The hairs extend upward to the under surface of the carapace over 

the antennule basal segment. The under surface of the carapace above the basal 

segment also has a number of these sensory hairs. When the animal moves the 

antennule, the sensory hairs are stimulated by the she~ring movement of the hairs 

against the opposite surface. When the sensory hairs are displaced with a glass 

needle, an inhibition of activity is seen in both muscle 15 and 17 (fig. 19). 

The inhibition does not appear to show adaptation, being reproducible for repeated 

trials over a period of time. The same inhibition can be produced by stimulation 

of the hairs of the contralateral basal segment. If the sensory hairs are dis

placed by natural movements of the antennule which the animal is constantly making, 

this inhibition is not seen. Repeated stimulation of the sensory hairs evoked a 

movement response of the antennules, 'ivhich did not cause inhibition of the muscles. 

The results of attempts to record the same inhibition seen in the eyestalk muscles 

from the nerves to the leg muscles were equivocal. Inhibition of certain fibers 

v1as sometimes seen but this result was not an invariable finding. 

52 



Fig. 17 Sensory hairs on eyestalk, (arrow foreground) and antennular 
basal segment, (arrmi, background). Eyestalk has been pulled 
away from the posterior aspect of the antennule against which 
it normally rotates. Note projection of antennular hairs 
toward overhanging carapace and basal segment of the antennule 
against which the eyestalk hairs rotate (horizontal arrmr). 
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Fig. I~ • Antennule and Eyes talk of Callinectes sapidus illustrating 
sensory hair systems. Rotation of the eyestalk deflects eyestalk hairs 
against posterior portion of the antennule basal segment. Movement of 
the antennule deflects antennule hairs against the overlaying carapace~. 



Fig. 19 Inhibition of firing of muscle 15 and 17 following stimulati0n 
of antennular basal segment hairs. Upper traces in a and b, 
control level of firing: lower traces show inhibition following 
deflection of sensory hairs. a, muscle 15 ; b, muscle 17 • 
scale o.5 sec. 
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To ascertain the behavioral function of the antennular hairs, the 

animal was tested behaviorally for several functions before and after removal 

of the hairs by cautery. The following functions were checked: 

1. Compensatory eye movements 

2. Movement of swimming appendages 

3. Righting movements when the animal is inverted 

The functions were tested with movement of the entire body and with movement of 

the antennules alone, since it was suspected that the hairs function to allow 

the animal to differentiate between the two means of stimulation of the stato

cysts. 

After removal of the antennular hairs, compensatory eye movements to 

pitch were normal until the animal was completely turned over (180°). The normal 

animal in this position maintains the eyes approximately level with the carapace. 

The operated animal extends the eyes out and downward in exactly the same position 

(reversed by 180°) they would be extended if the animal were right side up. It 

appears that the animal is unable to tell whether it is upside down or right side 

up. 

If the antennules were moved with forceps with sensory hairs intact, no 

eye movement was observed. After removal of the hairs, small movE;:ments of the 

eyes were seen in response to movement of the antennules. The movements were 

jerky and irregular and appeared to be opposite in direction to movement of the 

antennules. 

Movement of the antennules with hairs intact has no influence on leg 

movement. After removal of the hairs, movement of the antennule resulted in a 

circular swimming motion by the periopod, the last leg of the (}rab, which is 
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adapted as a swimming paddle and also used in righting movements. 'VJhen the 

operated animals were placed back in their retaining tank, swimming movements 

appeared normal. Howevei1r, if the animal was turned over by 180° onto its back, 

it either did not attempt to right itself or attempted to right by pitch in the 

opposite direction than that seen in the normal animal. The normal animal rights 

itself by pitch in the anterior posterior direction, raising the frontal end up 

over the caudal end. The inverted operated anDnals which attempted to right did 

so by attempting pitch in the opposite direction using the rear periopod to raise 

the caudal end up to pitch over the frontal end. 



b. NEGATIVE FEEDBACK FROM EYESTALK SENSORY HAIRS: 

On the anterior surface of the eyestalk which abuts the posterior 

surface of the basal segment of the antennule1 there is a dense round patch of 

short bristle like sensory hairs (figs. 17 and 18). These hairs continue in a 

thin line down the eyestalk for about 1 em. toward the eyecup, becoming more 

thread like. The hairs are so placed that a shearing force will be exerted on 

them as they pass the posterior surface of the basal segment of the antennule 

during rotation of the eyestalk. The influence of these hairs on the muscles 
from 

which rotate the eyestalk was ascertained by recording muscle 1.5 and 1 7 while 

displacing the hairs in several directions. A shearing force applied across the 

hairs, perpendicular to the direction of displacement by rotation of the eyestalk, 

was without effect. The tonic firing rate of the muscle, which has been shown 

above to be due t.o position sense input from. the statocyst, continues w.i. thout 

change. A displacement of the hairs in both direction of the dorso-ventral axis 

of the animal, the axis of displacement in rotation of the eyestalk, resulted in 

inhibition on the tonic discharge of muscle 1.5 (fig. 20). (The same effect seemed 

to be true for muscle 17 although, because of the inaccessibility of this muscle, 

the results were not as easily obtained.) The latency and duration of the inhibi-

tion is short. It was necessary to sweep past a row of hairs for the inhibition 

to be produced. No effect was seen to the stimulation of less than five hairs. 

The effect was, as for the antennule basal segment hairs, contralateral. Stimu-

lation of the hairs of the opposite eyestalk produced inhibition of the same 

characteristics as stimulation of the ip~i~ateral hairs. With repeated stimu

lation of the hairs, the response was not as reproducible as for the antennular 

hairs. This was not adaptation or fatigue since the response decrement could 

still be seen an hour later when the response to : antennular hairs was still 
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strong. The decrement may be due to damage to the sensory hairs. The hairs 

of the eyestalk are short, stiff and bristle like and strong displacement could 

result in damage to the base. Those of the antennule are thin threads which, 

being more pliable, are less liable to damage. 

Using the whole animal on the tilt table, the effect of removal of the 

sensory hairs on the compensatory movements of the eyestalk was tested. A small 

hole was made in the carapace and the hairs on the eyestalk bumed off with a 

small cautery. Movement of the eye stalk in response to pitch was tested as in 

previous experiments. The response to 10, 20 and 30 degree pitch of sine wave 

and step form was tested before and after removal of sensory hairs. There does 

not appear to be a significant difference in response after removal of the sensory 

hairs. The response is · only slightly sluggish and more irregular, but the per

cent compensation does not appear to differ. 
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Fig. 20 Bidirectional sensitivity in the horizontal axis of eyestalk 
sensory hairs resulting in inhibition of firing of muscle 15. 
Upper traces, control firing level: lower traces, a. deflec
tion of sensory hairs by passage of glass needle in an upward 
direction. b. deflection of sensory hairs by passage of glass 
needle down across the hairs. time scale: o.5 sec. 
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DISCUSSION 

MUSCLE FUNCTION·AND FIBER COMPOSITION: 

The movement of the eyestalk is under the control of two 

antagonistic pairs of muscles, muscle 15 and 17. Acting cooperatively, the 

2 muscle pairs stabilize the eyestalk in a fixed position in space; acting 

antagonistically, rouscle 15 rotates the eyestalk counter-clockwise around the 

eyestalk axis while muscle 17 controls rotation clockwise around the same axis. 

The majority of the data above was collected from work with muscle l5 but muscle 

17 appears to operate in an analogous manner. 

Muscle 15 is to be a complex muscle mediating movements originating 

from several sensory systems. The sensory drive appears to be differentially 

distributed to the motor axons to modulate the muscle output. The best example 

of this is seen in the characteristics of the intermediate axon wb4oh is part of 

a sensory to motor transduction of position sense input from the statocyst to the 

oculomotor system for unidirectional pitch responses. This one axon is respon

sible for maintaining the eyestalk in a constant position in space, probably by 

the influence of t~e I non-adapting position sense :receptors in the statocyst. 

In addition, the same axon is under visual control although this does not appear 

to be a strong synaptic input as evidenced by the inability of the visual input 

to fire the muscle when the statocyst input is removed. In Callinectes, the 

non-adapting position sense receptors in the statocyst appear to keep the muscle 

at a constant low level of tension and the visual and acceleration input is 

superimposed on this. 

Although four axons supply muscle l5, only two of them, the intermediate 

and the slow one, fired with consistancy. It is not likely that the silence of 
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the additional fibers was due to the dissected perfused preparation since, 

when the recording was done in a few preparations of the whole animal, these 

fibers were not seen. A more likely explanation is that the silent fibers 

fire only for specific situations which could not be duplicated under these 

experimental conditions. In the case of the fastest fiber, this is most easily 

seen. Callineotes is an extremely fast swimming crab. The movements on the 

tilt table used to induce responses in the intermediate axon may not have been 

of sufficient acceleration to excite the fast axon. If electrical stimulation 

of the statocyst nerve had been used, it may have evoked the firing of the 

larger axon. Among the optomotor fibers found in Carcinus ~~iersma and Fiore, 

1971) there was a class of large fibers which could only be made to fire by fast 

rotation about the pitch axis, with an optimal speed of 90 degrees per second. 

Callinectes is a much faster swimming crab than Carcinus and it is to be expected 

that the acceleration factors in the oculomotor control would be corresponding 

greater. It is doubtful that the acceleration or velocity of movement used in 

these experiments would excite a fiber which was used in the maximum swimming 

activity of the animal. 

The lack of firing of one of the two intermediate axons is not as easily 

explained. This fiber was labeled as a peripheral inhibitor in Podophtpalmus on 

scanty evidence (Hoyle and McNeill, 1968). There was no evidence of peripheral 

inhibition seen in Callinectes. A more likely explanation is that what is seen 

anatomically as two axons peripherally is, in fact, branches of the same moto

neuron which have split immediately after leaving the ganglion. This splitting 

is a common occurrence in axons as they near the muscle. Since the nerve is 

very short and the axons are of the same size, if they belong to the same moto

neuron they may be recorded as one spike when the cell fired since the distance 
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traveled is not sufficient for differences in conduction velocity to register 

as two spikes. The splitting of the large axon to muscle 17 (fig. 12) is a 

good illustration of the danger of using peripheral axon counts in short nerves 

as indicative of the number of motoneurone centrally. 

EXCITATORY JUNCTIONAL POTENTIAL DIFFERENCES: 

The presence of ejps of t~iO distinctly different amplitudes, time 

e.ourse and faciliation properties in response to the firing of one motoneuron 

has been described previously in other systems (Bittner, 1968, Atwood, Hoyle 

and Smyth, 1965, Wiersma, 1951). The ejp differences are attributed to differ

entiation in the nerve terminals rather than differences in the characteristic 

o£ themuscle membrane, e.g., the input resistance, properities of transmitter 

quanta, etc. (Bittner, 1968). Bittner was able to show, by recording the tension 

produced qy a single muscle fiber, that equal depolarization of the two types of 

muscle fibers produced equal amounts of tension. The size of the ejp was shown 

to depend on the frequency of firing. As the firing frequency increased, the 

smaller ejp shows a greater facilitation and hence a greater tension is produced 

by the mu.sole. By this frequency control, one motoneuron is able to grade tension 

over a larger range than with a single type of ejp. In Callinectes, there are 

two distinctly diffe:rent classes of ejps in separate muscle ;fibers :in the firing 

of a single motoneuron (see figs. 4 & 5). It is possible to see, even at the 

limited frequency range in these experiments, that there is more facilitation in 

the smaller ejp than in the larger. One would expect, under conditions evoking 

high frequency discharge, that the smaller ejp would show a far greater increase 

in amplitude by facilitation than 1-rould be seen in the large ejp. By this means, 

it is possible by a peripheral mechanism at the level of the muscle to achieve, 

with frequency modulation, a greater tension range with use of a single motoneuron. 
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VISUAL CONTROL OF EYESTALK ROTATION: 

The action of the eyestalk muscles is a forward and outward (or down

ward and outward in the case of muscle 17) extension and rotation of the eye

cups. Optic input to the eyestalk muscles could serve two visual functions; 

to rotate the eyestalks in following movements in the pitch axis and to provide 

a stable base for the complex movemen'b3 of the eyecup muscles in any axis. The 

response of muscle 15 to the variety of visual inputs (fig. 7) may indicate 

that the eyestalk is functioning as a stabilizer for the action of the nine 

eyecup muscles •. 'l'he fact that visual input alone, when the statocyst input is 

cut, is not Sufficient to cause firing of the muscle is an indication of the 

subsidiary function of visual control over eyestalk movements. Tonic input 

from the statocysts appears to be necessary to keep the motoneuron at a firing 

threshold and the visual input then results in an increase in the basal firing 

rate. 

STATOCYST CONTROL OF EYESTALK MUSCLFS: 

The statocyst input to muscle l5 appears to have two components, a 

static position sense drive and a dynamic acceleration response. The static 

function is evidenced by a steady latv firing frequency which is seen when the 

animal is in a resting position after all the inputs to the ganglion have been 

cut 1-rith the exception of those !rom the statoc:rst. If the animal is pitched 

forward and left in the new position, the steady firing continues but at a 

high.er frequenc:v, proportional to the degree of pitch (figs. 9 & 10). The 

dynamic response to acceleration is seen in an initial increase in firing rate 

which soon adapts to a maintained level. This division of position and acceler

ation responses is seen more clearlY' in the compensatory response of the eyestalk 
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to a step movement on the tilt table (fig. 15). The initial response is a 

rapid compensatory movement of the eyestalk bringing it close to the final 

position. A slower movement then brings the eyestalk to a final position which 

is maintained, The division of static and dynamic components of a compensatory 

response in the movement of the whole eye has been shown to be the result of 

activation of t1o types of receptors in the statocysts (Cohen and Dijkgraaf, 1960), 

Elimination of the thread hairs of the statocyst eliminates the response of the 

eye to acceleration, resulting in a compensatory movement vthich is composed of a 

slow approach to the final position. The slow compensatory response is controlled 

by the shorter statocyst hairs in contact with the statolith which mediate position 

sense. 

There does not appear to be an appreciable contribution of the eyestalk 

in compensation for roll. This is consistent with the fusion of the middle 

cylinder idth the eyestalks resulting in a rigid structure TrThich does not allOl-1 

movement of one eyestalk alone. Since the eyestalks appear to act as a unit, 

roll compensation must be carried out solely at the eyecup..eyestalk joint. 

NEGATIVE FEEDBACK SYSTEMS INFLUENCING EYESTALK ROrATION: 

a. Antennular basal segment system: All animals with geotatio recap.. 

tor located in a moveable part of the body must be able to differentiate between 

stimulation of the receptor caused by movement of the whole body and that re

sulting from movement of the appendage in which the geotatic receptor is located. 

In man, this is a question of differentiating between stimulation of the vestibular 

system produced b,ymovement of the whole body and that resulting £rom movement of 

the head alone. In crustaceans, the geotatic receptor is located in the basal 

segment of the antennule, which moves frequently. The central nervous system 

must have some knowledge of this movement of the antennule. This could be 

achieved by either efference copy or reafference. In efference copy, the central 
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nervous system would receive information about movement of the antennule by 

a signal which duplicated the motor impulses to the antennular muscles. In 

rea£ference, the feedback would consist of information from sensor,v receptors 

which signalled movement after it had been initiated. 

An example of reafference which differentiates bet-vreen body movement 

and movement of the appendage containing the geotatio receptor is the elastic 

strand found in the lobster, Pan~lirus ar~s (Schone and Schone, 1969, Schone, 

1971). An elastic strand runs between the antennule and the muscle which raises 

the antennule so that when the antermule is lifted, the receptor is stretched. 

The function of the elastic strand was confirmed by recording eye movements to 

body and antennule movements before and after cutting the strand. The differ

entiation bet't\Teen the two movements is lost after cutting the elastic strand. 

Rea.:fference also appears to be used by Callineetes for the same differ

entiation. The sensory hairs which are found on the basal segment of the antennule 

in Callineotes feed back to the eyestalk system to null statocyst input to the 

eyestalk muscles. If the antennule alone moves stimulating the basal segment 

hairs and the statocyst, no change in the firing rate of the eyestalk muscles 

should be seen since the positive sign of the statocyst input and the negative 

sign of the antennule hairs will cancel. If the antennule hairs alone are 

stimulated, the negative sign of the input should result in an inhibition of the 

fixing of the muscles. The latter is seen when recording from muscle 15 and 17 

of the eyestalk. Inhibition of the tonic position sense statocyst input to the 

muscles is an invariable result of stimulation of the a.ntennular hairs without 

concomittent movement of the statocysts. 
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The behavioral results of removing the antennular hairs agrees with 

the electrophysiological recording. After the antennular hairs are removed, the 

animal makes eye and periopod responses to antennular movement which could be the 

normal response to stimulation of the statocysts by body movement. T~e antennular 

sensory hair system thus appears to function to differentiate between stimulation 

of the statocyst by movement of the antennule and stimulation of the statocyst 

by body mov~ment. 

The response of the eyes when the animal is inverted does not appear 

to be related to the above differentiation mechanism. Rather, it may be the 

result of interference with a sensory mechanism which allows the animal to dis

tinguish an upright from an inverted position. The statocyst is unable to signal 

inversion of the body because of the geometry of the receptors. However, the 

hairs on the under surface of the carapace above the antennular basal segment 

may be able to signal inversion of the body since they will be maximally stimu

lated by the weight of the antennular basal segment upon inversion. When the 

intact animal is inverted, the eyes are extended out and up, in~ne with the 

horizontal axis of the carapace. After the antennular and carapace hairs are 

removed and the animal is inverted, the animal extends the eyes outward and down

ward. This is exactly the same position to which the intact animal would extend 

the eyes if it were upright by 180 degrees. It appears from this that the animal 

is unable to tell that it is inverted by 180 degrees; it cannot tell up from 

down in its own body position. For this hypothesis to be so, it is necessary 

that the statocyst give the same response when the animal is upright or inverted. 

This is not impossible since the statolith position sense hairs are cemented 

into the statolith (Cohen, 1965) and the same hairs which are stimulated by a 

shearing movement in the upright position will be stimulated by the weight of the 
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statolith when the animal is inverted. 

b. EYESTALK SENSORY HAIR SYSTEM: 

The eyestalk in Callinectes rotates around the dorso-ventral 

axis by the action of two antagonistic pairs of muscles. In the course of this 

rotation, a group of serisory hairs on the eyestalk are stimulated and feed back 

onto the muscles as inhibition. The eyestallt muscles are under the influence of 

a tonic excitatory position sense input from the statocysts and the inhibition 
.Of 

from the sensory hairs is modultaing this tonic excitatory drive. The two most 

obvious functions of the inhibition would be the production of compensatory eye 

movements or the reciprocal inhibition of antagonistic pairs of muscles. To 

produce compensatory eye movements, the inhibition must act upon the agonist 

muscle; to produce reciprocal inhibition, the inhibition must act upon the 

antagonist muscle. 

From th~ experimental results it appears that the deflection of the hairs 

by movement of the eyestalk in either direction produces inhibition of both antag-

onist and agonist muscle. This appears to be paradoxical; the eyestalk should 

then be unable to move since its movement is inhibiting further movement. However, 

it is a question of the balance of excitatory and inhibitory inputs to each muscle 

to obtain the desired functional use of the eyestalk. It is then possible to 

produce both compensatory eye movements concomitantly with inhibition of the antag

onist. This is achieved by the addition of an increased excitatory drive from 

the statocysts to one muscle. The sequency of events may be as follows. The 

animal is pitched forward, the statocysts send an excitatory drive to the agonist 

muscle to rotate the eyestalk in compensation for pitch. The eyestalk begins to 

rotate. This rotation deflects the sensory hairs on the eyestalk. The output of 
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the sensory hairs feeds back onto the agonist muscle and reduces its output 

thus producing the 10% compensation of the eyestalk instead of the 100% compen

sation seen in the legs in response to the same statocyst stimulation. At the 

same time, the output of the sensory hairs is being fed to the antagonist muscle 

as inhibition. This inhibition of the antagonist in rotation of the eyestalk 

may appear strange since it facilitates the action of theagonist at the same 

time that the action of the agonist is being limited by the same sensory receptor. 

However, the inhibition of the antagonist may function simply to make the movement 

of the agonist more efficient and smooth. As seen in fig. 9, 10 and 11, there is 

still some tonic excitatory drive to the antagonist muscle when the animal is in 

a stationary position of pitch. The reciprocal inhibition would function to 

decrease this excitation to the antagonist when the eyestalk began to move, making 

more efficient use of the agonist. If both agonist and antagonist receive equal 

amounts of inhibition from deflection of the sensory hairs, the increased stato

cyst drive to the agonist will produce the 10% compensatory movement. 

The production of compensatory eye movements by this mechanism requires 

only that 10% of the statocyst drive in the 11on 11 direction escape inhibition. 

The inhibitory circuit limited to the eye answers the long standing question of 

how the same sensory receptor, the statocysts, could drive one reaction, the -
righting responses of the animal, to complete compensation and another reaction, 

eye movements, to such a small compensation. The second question asked of com-

pensatory eye movements concerns their function. Why does the animal show 

incomplete compensation for pitch? This can be answered logically by considering 

the visual and statocyst information coming to the central nervous system about 

the animal's position in space. If the eyes were to compensate completely to the 

same degree as the body, the eyes, which can: respond more quickly than the body, 
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would constantly be signalling information to the central nervous system that 

the body 1-ras in equilibrium while the statocysts would be signalling a disequili

brium. Having the eyes lag behind the body avoids conflict of visual and stato

cyst information as to body position. 

There is an adm.tional situation where the inhibition produced by the 

eyestalk sensory hairs may be used to null statocyst input. Such a situation 

occurs when the animal is pitched in one direction and may need to make a visually 

directed movement in the opposite direction. This w·ould be the case when the 

animal is swimming in one direction of pitch and sees prey moving in the opposite 

direction of pitch. If the animal is able to make follow·ing movements with the 

eyes before it has changed the direction of pitch, the following movement of the 

eyes is opposite to the direction of pitch. Also, even in the resting position 

of the animal, in which the anterior end of the carapace is pitched 15 degrees 

above the horizontal, the visual input must overrule the tonic statocyst input 

in order for the animal to make a visual inspection of anyth~ at a lower level 

than the eyes. Any visual guidance of the claws to prey on the sea floor must 

require some downward rotation of the eyestalk and this rotation is counter to 

the statocyst input. It is possible that the animal does not make use of the 

eyes for such movement but relies on the chemoreceptors on the claws and mouth 

parts. Hm-rever, a model (fig. 20) can be devised whereby the animal is able to 

make visually directed movements 1-lhich can both oppose the statocyst movement 

and escape the eyestalk inhibitory system. This can be done by inserting an 

interneuron between the statocyst and the motoneuron. The eyestalk inhibitory 

hairs feed into this interneuron. This interneuron accomplishes one purpose; 

it prevents the inhibitory input from the eyestalk hairs from feeding onto the 
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Model of the eyestalk feedback control system. The model can operate 
with or without the summing interneuron, depending upon the inclusion 
of the visual input. In the production of compensatory eye movements 
and reciprocal inhibition, the summing interneuron is not necessary 
and inhibition would act either directly upon the motoneuron or upon 
an interneuron. The interneuron is added to allow visually directed 
movements to escape the eye stalk sensory hair inhibition and to 
oppose statocyst directed movements. Plus and minus signs indicate 
excitation and inhibition, respectively. Scale of sign indicates 
the magnitude of the outputs. For further explanation see text. 
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motoneuron directly. Since the interneuron can signal only degrees o£ exci

tation, the excitatory visual input can drive the motoneuron and the inhibition 

from eyestalk rotation does not cancel the visual input but is felt only as a 

lessened excitation from statocyst drive. Since when the visual input is 

attempting to act antagonistically to the statocyst drive, the visually driven 

motoneuron is receiving less positive drive £rom the statocyst and will see only 

a decreased positivity from the interneuron, not inhibition. The opposing moto

neuron ivhich is the agonist for statocyst input wi 11 be under a decreased drive 

from the interneuron, due to inhibition from the eyestalk hairs and will also 

lack the excitatory drive from the visual input. In this way, the visual input 

may predominate and the eyes will be able. to execute visually directed movements 

free from the inhibatory system and in opposition to statocyst drive. 

The above oculomotor model can be tested in future experimental work by 

intracellular recording from the motoneurons of the eyestalk rotation system. 

The entire motor system appears to contain at the most seven motor neurons and 

perhaps as few as four. The resolution of the relationship between the motoneurons, 

the statocysts and the inhibitory sensory hairs may prove to have wider appli

cations for oculomotor control systems in general. It is possible that the 

inhibitory control system in Callinectes may have a correlation with the inhibitory 

stretch reflex which feeds back onto the stretched muscle in cats (Bacn-y-Rita, 

in press)~ The extraocular muscles serve much as the same function for all 

animals and it would not be surprising to find similar control mechanisms through-

out the animal world. 
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SUMMARY 

The control system for stabilization and rotation of the eyestalk in 

Callineotes has been shovm to involve two antagonistic pairs of muscles under 

visual and statocyst control. The primary sensory input to the muscles appears 

to be from the statocysts with both statio position sense and dynamic acceler

ation components. The static position sense input has been shown to be propor

tional to the degree of pitch of the animal. TWo motor axons are responsible 

for the tonic statocyst and visual control of the muscle. The larger of these 

two axons is capable of producing ejps of differing characteristics in different 

muscle fibers. This appears to be a peripheral mechanism for modulation of 

motor control by firing frequency. 

Two systems of sensory hairs were found which influence eyestalk 

responses. One set of hairs is located on the antennular basal segment and 

appears to function to allow the animal to differentiate between stimulation of 

the statocyst by movement of the whole body and stimulation of the statocyst by 

movement of the antennule, in which the statocyst is lodged. The second set of 

sensory hairs is located on the eyestalk and is believed to function to produce 

both compensatory eye movements and reciprocal inhibition of antagbnistic eye 

muscles. Both these functions are achieved b.r a negative input from eyestalk 

hairs which nulls out the tonic statocyst input. A model is proposed to allow 

visually directed movements to escape this inhibition and execute movements in 

opposition to statocyst control. 
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III. INTRACELLUlAR RECORDING FROM THE OCULOMOTOR SYSTEM IN THE CEREBRAL 

GANGLION OF . CALLINECTES SAPIDUS 

INTRODUCTION: 

An introduction has been given to the work which has been 

done on the decapod oculomotor system to reveal some of the basic properties of 

the movement capabilities and the central mechanisms which control them. None 

of this work, however, can provide information on the specific cellular basis 

for the observed events. To accomplish this, it is necessary to leave the peri

phe:cy- and begin intracellular recording in the cerebral ganglion where the oculo

motor integration takes place. The following section is an account of work 

with that aim. The only published work involving intracellular recording in the 

oculomotor system of the decapod is from a single motoneuron mediating the 

withdrawal reflex (Sandeman, 1967, 1969). The withdrawal reflex is a protective 

movement, much like the primate blink. There are several motoneurone responsible 

for the reflex and the largest of these was the subject of analysis of the synaptic 

link between the sensory input and the motoneuron response. The analysis involves 

the site of integration of synaptic inputs, the spike initiating zone, and the 

question of mono or poly-synaptic reflexes in one cell. The intracellular record

ings published consist of summed synaptic activity recorded at a site distant from 

the site of synaptic impingement upon the cell and do not give much indication of 

the potential of the preparation for intracellular analysis. The cell body of 

the motoneuron was not recorded from since it could not be located. Since this 

work was done prior to the use of procion yellow, the dye used as a cell marker 

was Prussian Blue and the cell soma did not fill when the axon was injected. 

Although the system studied was the simplest reflex movement of the eye and 

limited to one motoneuron in that system, it is of interest to the following 
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work as the first intracellular recording from the oculomotor system in a 

decapod preparation. 

The proposed approach of the following project is contained in two 

questions: (1) what is the location of the components of the system and 

(2) what can be recorded from them? A long range plan of approach to them is 

as follower vJhere are the somata located? What is the course of the cell 

processes? Are the somata electrically active? (In invertebrate nervous sys. 

tems, the somata (cell bodies) are often very large and electrically inactive). 

If the somata are electrically inactive, 't-hat sort of electrotonic activity can 

be recorded from them, that is, do they show electrotonic reflection of E.P.SP., 

r.P.s.P.s or spike activity from other parts of the cell? What are the sources 

of sensory input to these cells, i.e., visual, tactile, statocyst, etc.? What 

is the general visual receptive field of the motoneuron particularly with respect 

to d.irect~onal movements? What are the differences between tonic and phasic 

motoneurons in cell size and sensory input sources? Are the tonic and phasic 

systems grouped separately anatomically? There are from 25 to 20 motoneurone 

controlling each eye. It is not intended to extend the analysis to every cell 

but rather to find representive tonic and phasic motoneurone for study. All 

interneurone encountered will be investigated by essentially the same criteria 

as motoneurone. The following work is the intial step in the above project 

and succeeds in answering some of the above questions. The data is the first 

set of recordings to yield good intracellular responses from cells mediating 

optokinetic responses and establishes the decapod preparation as a system for 

central analysis of the oculomotor system on a cellular basis. 
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MATERIALS AND METHODS 

The animal preparation and recording was the sam~ as given under 

Materials and Methods, Section I. In addition, the cerebral ganglion was 

desheathed and transilluminated to allow individual tracts and nerve cells to 

be seen with the aid of a Leitz dissection microscope. 

Procion yellot-r for cell marking was used as a near saturated solution 

and cells filled either by the pressure injection method,electrophoretically 

(Stretton and Kravitz, 1968) or by the whole nerve iontophoretic t'echnique 

(Ilea and Mulloney, 1971). The latter technique, asmodified under Materials 

and Hethods, Section I, was used for the differential filling of the larger 

(and hence usually motor) axons in the optic and oculomotor nerves. The use of 

the method for the differential filling of the larger axons is possible because 

of the faster filling of the larger axons (perhaps due to their lower cytoplasmic 

resistance). If the dye passage in the large axons is observed and the current 

discontinued when the dye reaches the central ganglion, the distal portion of the 

nerve containing filled axons of all sizes can be cut off leaving only the large 

axons which have filled for a greater distance. By this means, the course· of a 

mass of motor fibers can be follo~ed in the central ganglion. 

RESUL'fS 

Upon visual inspection of the transilltiminated ganglion, cell groupings 

could be seen in close proximity to the course of the oculomotor nerve in the 

central ganglion. These cells were chosen as the most likely choice for the 

cell bodies, or somata, of the oculomotor neurons. The following procedure was 

then followed to determine if the cell was part of the oculomotor system and, if 

so, whether it was a motoneuron or interneuron. The criteria for motoneurons 
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was as follows: (1) if the soma shows spiking activity, either spontaneously 

or in response to visual stimuli, does this activity appear as an extracellular 

spike in the optic or oculomotor nerve. (The recordable activity of the ocu

lomotor nerve is composed almost entirely of motor fibers and the largest spikes 

in the optic nerve belong to the oculomotor system. Therefore, any large spike 

in either nerve is likely to be oculomotor). (2) if the cell doesn't fire as 

above, can it be made to fire by passing current through. the cell and does this 

activity appear in the oculomotor or optic ne~e. (3) is there an antidromic 

spike in the cell in response to stimulation of the optic or oculomotor nerve 

and (4) is there a one to one high frequency following between firing of the 

cell and activity recorded at the muscle. This latter criteria) rules out the 

possibility of a synapse between the central cell body and the acitivity recorded 

at the peripheral nerve since the synapse would not follow the high frequencies 

of sttmulation. If the cell was of interest by these criteria, it was marked by 

procion yellow and its location noted on a map of the ganglion. 

MOTONEURONS 

Recordings from the soma of motoneurone usually showed spike activity 

of a low leve.l, below 20 mv, indicating electrotonic conduction into the soma of 

action potentials produced in an active spike initiating zone elsewhere in the 

cell. It was possible to correlate these small spikes with spikes in the ocu~ 

lomotor nerve and, in some cases, with activity in specific muscles. In addition, 

it was often possible to drive the cell by passage of current through the bridge 

circuit and record electrotonic spikes in the soma and corresponding spiking 

activity from the nerve (fig. 21). By this means the general plan of anatom

ical organization of the ganglion was revealed. There are at least three separate 
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Fig. 21 Electrotonic spikes recorded from the soma of two oculomotor 
neurons in cluster marked • on ganglionic map. Upper traces, 
extracellular recording from the oculomotor nerve; lower 
traces;intracellular from cell soma. Intracellular activity 
in upper trace is evoked by passage of current through the 
cell. Intracellular activity in lower trace is antidromic 
spike following stimulation of the oculomotor nerve. 
Scale 10 mv, 2 msec. 
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Fig. 22 Ganglionic map of oculomotor system constructed from preliminary 
recording in the cerebral ganglion of Callinectes. 
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Fig. 23. Examples of recording from verified motoneurons. a. somas located 
in area of withdrawal motoneurons, marked ~ on ganglion map, lower 
trace is intracellular from soma, upper trace is extracellular from 
muscle 19a. b. soma located at 0 in ganglion map. Lmver trace, 
intracellular from motoneuron soma; upper trace, extracellular from 
oculomotor nerve. c. soma located as in b above. Lower trace, 
extracellular or partial intracellular penetration from soma 
located near b above; upper trace, extracellular from oculomotor 
nerve. Scale 10 mv, 10 msec. 
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Fig. 24 Two cells of urlicnown function which burst, as shown, to a flash of 
light. Cells located at a9 on ganglionic map in area just outside 
the oculomotor cluster. Scale: 5 mv, 1 sec upper trace, 10 msec 
lower trace. The cells could be phasic oculomotor neuroma due to 
their location. The upper trace is probably an axon penetration 
(because of the large spike size) and the lower is from a known 
large soma. 
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Fig. 25 Two soma recordings from the oculomotor cluster which could be 
tonic motoneurone. Verification was not made because extra
cellular channel was inoperative. Cells demonstrate prepo
tential foot seen in spontaneously active cells. Note activity 
before third and fourth spike in lower trace which, although 
greater than spike initiating level, fails to initiate spiking. 
Scales, 20 mv. upper trace, 10 mv. lower trace, 50 msec. both 
traces. 



groupings of oculomotor neuron soma which appear to be anatomical divisions of 

the motoneurone according to function. The area outlined by a line and crosses 

in fig. 22 contains a tight cluster of medium size cell soma (30-70 microns) 

and associated fibers. This will be referred to as the optokinetic cluster 

since it contains motoneurone (marked • on the map) which are believed to be 

tonic, and perhaps phasic, motoneurone of the optokinetic and geotatic system 

(see fig. 23 b, c). Included in this tight grouping are also interneurons (marked 

([]) on the map) v1hich respond to stimuli of the optokinetic and geotatic system, 

i.e., response to movement in the visual field, stimulation of the statocysts, 

etc. (fig. 26-29). Below this is a loose group of somata of varying sizes, from 

a very large one of approximately 150 microns to smaller ones of 35 microns 

(marked @ on the map). These are believed to be the somata of the eye withdrawal 

system. The cell of fig. 23 a comes from this area and is correlated with tonic 

activity in muscle 19a in the eyecup. Muscle 19 a is the major controller of 

eyecup withdrawal. The largest soma in this group is electrically silent and, 

on the basis of procion yellow injections, is believed to be the largest with

drawal motoneuron whose processes were the subject of intracellular recording by 

Sandeman (Sandeman, 1967, 1969). The procion yellow injection was seldom useful 

for more than marking cell bodies since the dye did not diffuse well into the 

processes but in the case of this large cell, it was possible to trace an axon 

leading to the optic tract where the large cell of the withdrawal motoneuron 

exits the ganglion. 

The motoneurone responsible for rotation of the eyestalk exit the 

ganglion near the middle in the nerves to muscles 15 and 17. There are 5 or 6 

large motoneurone and several small ones in this system. (MUscle 15 has been 

shown in the preceding section to have at most 3 large cells and 1 small one. The 
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supply to muscle 17 is unknown but must be about the same. On the basis of 

whole nerve filling of the nerve to muscle 1.5, it appears that the cell bodies 

of this muscle are the large ones which can be seen on the surface of the gang

lion (marked 0 on the map). 

INTERNEURONS 

In the cluster of soma containing the tonic motoneurons of the opto

kinetic system, there were frequent recordings from cells which responded to 

optokinetic stimuli but which did not show spike activity going out the optic 

or oculomotor nerve. These cells were classified as interneurons because of 

the absence of correlation of their spike activity with action potentials in 

nerves exiting the ganglion. They were placed in the oculomotor system because 

of their location in the optokinetic cluster and because of their response to 

optokinetic stimuli. The cells varied wide~ in their activity pattern and very 

little information regarding their specific functions could be gained due to 

equipment limitations at the time. The records (fig. 25 to 29) are of interest 

because they illustrate the potential information content available from the 

abundant electrical activity of these cells. 

The majority of the interneurons recorded from were located in the 

optokinetic cluster. These cells are marked on the ganglion map. There did 

not appear to be a separation of motor neurons and interneurons within this 

cluster; rather there is a tight interweaving of the cells into a compact 

sphere. An electron micrograph of a section taken through this cell cluster 

(fig. 30) shows tightly adjoining cells with very little interposing glial 

tissue and dark areas which may be nonsynaptic cell junctions. Running between 

the cell bodies can be seen cell processes, most of which are too small to be the 
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Fig. 26 Intracellular records from two cells in oculomotor cluster showing 
multiple spike heights. Second spike on upper trace is overshoot 
spike. Lower trace, similar activity of lower voltage. Time 
course of activity indicated active conduction in both cases. 

• Notched spike activity in lower cell may represent successive 
spike initiation at several trigger zones. Scales: upper trace, 
5 mv, 50 msec; lower trace 2.5 mv, 5 msec. 
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Fig. 27 An integrating interneuron found in the oculomotor cluster. Cell 
does not have spike activity in the motor nerves but shows synaptic 
input to electrical stimulation of the statocyst$ nerve in a, the 
optic nerve in b and the oculomotor nerve in c. Scale: 5 mv. 
100 msec. 
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Fig. 28 Further example of large spiking cell with prepotentialfoot. This 
cell is judged to be an interneuron with oculomotor function, since 
it was found in the oculomotor cluster, marked ~ on the map, does 
not show correlation ~dth spikes in the oculomotor nerve, upper 
trace, and showed an increase in firing rate to a moving stimulus. 
Scale: 10 mv, 5o msec. 





Fig. 29 Epsps and ipsps of an interneuron found in the oculomotor cluster. 
Upper four traces illustrate spontaneous epsps seen in cell, acti
vity in lower traces is evoked by movement of pen light in visual 
field. Electrical stimulation of esophageal connective evoked 
spiking in the cell (not shown). Scales, 2.5 mv, 20 msec. 
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Fig. 30 Electron micrograph taken from the optokinetic cluster. Note: 

a) sparce glial investment of cells and resultant tight 
adhesion of soma. 

b) interdigitating small cell processes. 
mag. 4 5,ooo X, photo - courtesty of 
Dr.- Daniel Friend. 





Fig. 31 Interneuron located with cells believed to be withdrawal motoneurone. 
The parabolic bursting form is characteristic of the cell. If burst
ing stopped, it could be evoked by the onset of a light near the 
preparation. The burst was often correlated with a spike in the ocu
lomotor nerve, as seen in the upper trace but this was not always the 
case, as seen in the lower figure. Upper traces of the two records 
are extracellular from the oculomotor nerve, lower traces intra
cellular at location(:~ on ganglion map. Scales, 10 mv both traces; 
100 msec upper trace, 200 msec. lower trace. 
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neurite-axon branch from the cell body and must represent dendritic processes 

involved in synaptic transmission in the cluster. 

There were several points of interest to basic neurophysiology which 

were seen in these interneurone. In the first cell shown in fig. 26, up to 

five different spike sizes were seen. Three are illustrated in the upper fig

ure, the second one being an o~ershoot spike. In the lower trace, on a faster 

time scale and at a lower amplitude, is another cell of the same type. The actiVity 

is probably electrotonic spread from another part of the cell, judging from the 

low amplitude response, and the notched form may represent successive spike 

initiation from different trigger zones. 

The cell in fig. 27 is an excellent example of an integrating inter

neuron which is receiving inputs from several sensory systems, in this case, the 

visual information from the optic nerve, the geotatic from the statocysts and 

mechanoreceptors from the oculomotor nerve. In fig. 28 is seen another cell type 

which displays a prepotential foot typically seen in spontaneously active cells. 

The frequency of discharge could be increased by moving an optoldnetic board in 

front of the preparation. However, even in the absence of any stimulus, this 

regular discharge with the prepotential foot is seen. The prepotential may repre

sent a pacemaker potential or could be the summed synaptic input from another 

area of the cell, or a combination of the two. A classic record of epsps and 

ipsps is seen in fig. 29. The frequency of synaptic bombardment went from the 

low level of epsps seen in the upper trace to a dense input o£ both epsps and 

ipsps in the lower record when the cell was stimulated by a combination of a 

moving light and electrical stimulation of the esophageal connective. (The 

esophageal connective is an "alerting" input to the visual system). 
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The only interneuron which was encountered outside the optokinetic 

cluster Which seemed to belong to the oculomotor system is that seen in fig. 31. 

This cell can be located repeatedly by advancing through the largest cell body 

of the withdrawal system. This form of parabolic bursting was usually seen, 

but if the bursting stopped, it could be reinstated by the onset or movement of 

a light near the prep~ratio~. It may rep~esent some form of pacemaker for the 

withdrawal system (such a pacemaker has been speculated upon but not found 

Sandeman, 1967). The bursting pattern continued on one occasion for two hours 

and seemed to be correlated with a spike in the oculomotor system (see upper 

trace, fig. 31). Although exact correlation was not an invariable finding, 

an increase in the spike frequency in the oculamotor nerve appeared to accompany 

increased frequency of bu~sting. Since both tonic motoneurons of the with

drawal system and neurons of the optokinetic group are fo~d in the oculomotor 

nerve, this cell could serve as an oscillator or pacemaker for either system if 

it is indeed linked to the spike in the oculomotor nerve. 

DISCUSSION 

The preceding records from the oculomotor system of Callinectes demon

strate the development of the cerebral ganglion into a preparation in which one 

can do intracellular recording while using the natural sensory stimuli of the 

oculomotor system. The aim was to have a preparation in which the location of 

tho cellular components of the oculomotor system would be known and the relation

ship of the sensory units and interneurone to the motor units could be mapped on 

a cellular basis as has been done in several other invertebrate systems, for 

example,(Bentley, 1970; otsuka, et al., 1967; Cohen and Jacklet, 1967). A sub

stantial beginning has been made toward this end. 
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The technical aspects of the perfusion and dissection of the ganglion have been 

developed to achieve a preparation in which intracellular recording in the ocu

lomotor system can be done while the animal is induced to make eye movements in 

response to movement in the environment or to tactile stimulation. A larger 

scale development of the work was limited by two factors. One was the equipment 

limitations in the early stage of the work. It is necessary to have numerous 

extracellular channels for investigating inputs and outputs of the cells being 

monitored intracellularly. The other is the need for a kymograph camera for 

continuous recording. After these were obtained, a limitation of the preparation 

appeared. The intracellular response of the animal decreased With the onset of 

winter. Callinectes migrates to deeper waters at this time and that may be 

involved in the phenomenon. 

Several aspects of the oculomotor system have been established b,y the 

recording in this work. The main feature is the general anatomical organization 

of the oculomotor system. within the ganglion. The functional division of the 

oculomotor system, the withdrawal system, the optokinetic-geotatic system and 

the system for eyestalk rotation appear to be separated anatomically within the 

ganglion. It is likely that each system has its own interneur<;>nal network also. 

The integration necessary for the with~awal system is quite different from that 

for eyestalk rotation or optokinetio-geotatic movements and though each system 

may receive input from the same sensory systems, the information will not be 

used in the same way. It is therefore unlikely that those interneurone grouped 

with the optokinetic group function for the other systems also. 

Recording from interneurone in the oculomotor system are one of major 

stumbling blocks in work utilizing vertebrates. Recording from these cells in 

Callinectes appears excellent and is probably the main advantage of the use of 

the decapod for study of the oculomotor system. 
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In addition, the types of interneurons seen in this preparation should prove 

to be interesting as basic studies in neurophysiology. For example, the cells 

seen with multiple spike heights may prove to have dendritic spikes representing 

sensor.y inputs from different modalities, i.e., input from the statocysts, the 

visual and the mechanoreceptive systems. Active regenerative potentials were once 

thought to be found only in the a,xon, initial segment and soma but are now 

accepted phenomena in the dendritic system (Llinas, 1968). Another possibility 

is the presence of axonal branches of one motoneuron, a phenomena which has 

been seen before (Takeda and Kennedy, 196$). Alternatively, multiple spike 

heights have been thought to be spikes Which failed to propagate past a fre

quency barrier caused by the narrowing of the axon (Mellon and Kennedy, 1964; 

Pabst and Kennedy, 1967; Sandeman, 1969) • By stimulating the sensory inputs to 

the oculomotor system, it may be possible to link specific ~pikes with specific 

sensory inputs, thus establishing the spikes as dendritic. 

The spontaneous bursting cell seen near the withdrawal somata"merits 

study as a possible pacemaker for the spontaneous and regular withdrawal move

ments of the eye. It has been shown that the spontaneous firing of the large 

withdrawal neuron is not likely to be a property of the motoneuron and a separ

ate pacemaker cell for this firing has been suggested {Sandeman, 1967). There 

are withdrawal motoneurone in the oculomotor nerve and the apparent correlation 

of the bursting cell and the spike in the oculomotor nerve could represent a 

coupling of the pacemaker cell with the withdrawal cell. The resolution of this 

and similar questions brought up in the course of the work on the ganglion appear 

to be within reach in a more comprehensive experimental approach. 
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A preparation using the cerebral ganglion of the decapod, Callinectes 

sap~, has been developed for study of central mechanisms of oculomotor control. 

The recordings from oculomotor neuron somata are attenuated electrotonic poten-

tials but sufficient ·co establish the location of specific motorneurons within 

the ganglion. A variety of interneurons related to the oculomotor system have 

been recorded from and excellent cellular responses in the form of synaptic 

potentials, possible pacemaker potentials, single action potentials and cell 

bursting are obtainable. On the basis of the recording from motorneurons and 

inter.neurons, a preliminary anatomical map of the oculomotor system in the 

ganglion was begun. The preparation appears to be well suited as a model 

system in 1vhich to study central events in oculomotor control. 
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IV. COR FRONTALE 

INTRODUCTION: 

Auxilliary hearts are found throughout the arterial system 

of many invertebrates where they serve as booster pwnps to maintain the blood 

pressure of peripheral areas of the body. An auxilliary heart, the cor frontale, 

is found interposed in the blood stream anterior to the cerebral system in many 

crustaceans. Although it was first described in the crayfish in 1916 (von Bau

mann) and later in other crustacea (Debaiseux, 1944; Demal, 1953), very little 

published W>rk is available on the function of the cor frontale. It has been 

~ssumed by the above authors to be a mechanism for the regulation of blood flow 

to the cerebral ganglion. The muscles of the cor frontale in Callinectes saEidus 

were originally described with the eye musculature and termed thenusculus oculi 

basalis posterior or muscle 16 (Cockran, 1935). Although muscle 16 arises from 

a common apodeme with the eyestalk muscles, the insertion of muscle 16 is on the 

carapace, rather than on the eyestalk, and they are, therefore, not functional in 

eye movement. The following work in Callinectes shows that muscle 16 in this 

animal is analogous to the cor frontale muscles of other decapods. The function 

of the cor frontale is redefined on the basis of data in Callinectes which suggests 

that the cor frontale may function, not as a heart adding propulsive force to the 

blood, but rather as a resistive element in the regulation of flow, acting more 

like an arteriole than a heart. In addition, the data suggests that the cor 

frontale is concerned with regulation of the blood flow to the peripheral oculo

motor and visual system in the eye rather than regulation of flow to the oerebral 

ganglion. 

111 



MATERIAlS AND METHODS 

The animal preparation consisted of an isolated perfused section o£ 

the anterior carapace of the crab (see fig. 2). The dorsal artery was cannu

lated and perfused with a Callinectes saline (Perkins and Wright, 1969) buffered 

with Tes (Sigma Chemical Co.) adjusted to pH. 7.5. The "normal" perfusion 

pressure was that which had been previously determined to be optimal for intra

cellular recording in the cerebral ganglion. This pressure was maintained by a 

constant height oi' the perfusion bottle above the preparation. Alterations in 

the per£u,sion pressure could be made by changing the height of the bottle or by 

means of a valve in the supPly tube. AU electrophysiological· recording was done 

with glass suction electrodes on the cor trontale muscle with the thin trans

parent wall of the sinus intervening between muscle and electrode. This was 

necessary to avoid dissection of the sinus which would have interfered with main• 

tainance of the perfusion pressure. 

For electron microscopy, the mscle was clamped at rest length or in 

the contracted state and fixed in 2% paraf'ormaldehyde 3.5%· glutaraldehyde with 

o.l M Na phosphate buffer at pH'7.4. 

RESULTS 

ANATOMY: 

The blood supply to the cerebral system is carried anteri.orly from 

the main heart by the dorsal artery. This artery divides anteriorly into 2 main 

systems 1 the . cor fl'ontale sinus, £rom which the blood supply to the cerebral 

ganglion arises, and the two ophthalmic arteries, one to the right and one to the 

left side (£ig.32). The cor frontale is a large dilation with the cerebral gang-

lion artery eXiting from the noor by either one or two short stocky vessels. The 
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Fig. 32 Photograph of the cor frontale of Callinectes sapidus. 
(1) ophthalmic arteries ( 2) dorsal artery (3) cerebral 
artery (4) cor frontale sinus. The small arrows indi
cate the areas of insertion of the cor frontale muscle 
through the sinus. The majority of the musQle is located, 
when contracted1at the lower arrow. The tissue at the 
upper arrow is a tendonous extension of the cor frontale 
muscle. The system has been injected with liquid latex 
through the dorsal artery for visualization. 
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ophthalmic arteries are of approximately twice the diameter ~nd ten times the 

length of the cerebral artery since th~y must extend to the eyes in the peri

phery where they supply the neural and muscular systems of the eyecup. There 

are four levels of neural integration in the visual system immediately behind 

the ommitidia, in addition to the nine pairs of ocular muscles, and blocking of 

blood flow to this area has been observed to result in cessation of visual re

sponse, even.wben the cells in the cerebral ganglion are still responsive to 

other modes of stimulation. (Responsiveness in the eerebral ganglion likewise 

does not survive the cessation of blood supplf)• The cor frontale is situated 

in such a position that it is able to control diversion of blood flow either 

through the cor frontale to the cerebral artery or to the ophthalmic arteries 

out to the eyes. 

In Callinectes, the cor frontale consists of two thin muscle strips 

and a small ganglion and nerve running through a thin walled sinus (see fig. 1). 

The ventricular ganglion (terminology, von Baumann, 1916) arises between the two 

cor frontale muscle strips in the course of a nerve which arises from a branch 

from the right and left circumesophageal ganglion. The ganglion is from 0.5 to 

0.1S millimeters in width and contains a maximum of 18 large neurons, the largest 

being around 90 microns, arranged around a central neuropile. (fig. 33). 

Several ganglia have been fiXed, embedded in epon and sectioned for cell counts 

'tdth the liight mi9roscope. The cell counts have varied with 18 being the maximum 

number seen in a preparation in which the alignment of the sectioning was optimal 

and the count therefore most reliable. The small size and the homogeneity of 

the cor frontale muscle make it unlikezy that there are more than a few motor ... 

neurons for these muscles among the 18 cells in the ganglion. The remaining cells 

may be sensory neurons or interneurone of the cor frontale system or cell bodies 



F.ig. 33 Sections through the ventricular ganglion:note the large size 
of the somata, cell processes and neuri~s seen extending from 
the somata into the central neuropile. The large size of the 
processes in the central neuropile will facilitate intracellular 
recording here. Sections embedded in epon and stained with 
Toluidine blue. Magnification scale under figures. 





whose processes continue along the dorsal nerve to the gastric muscles. Each 
' 

muscle of the cor frontale receives a br~nch from the ganglion after 1-rhich the 

rna~ nerve. curves dorsally to follow the median artery back to the region of 

the main heart. Branches can be traced to the visceral muscles but, due to the 

fineness of the branching, it could not be ascertained whether the branches 

extend to .·the main heart. 

The muscles of the cor frontale are, in the unoontracted state, a pair 

of very compact thin strips w;i.th a glistening white appearance. At maximum 

contraction, the long thin strip reduces down to a third or less of the original 

iength into a dense white bundle. This contracted state can be maintained for 

long periods of time. The whiteness of them uscle is usually associated with 

fast muscle contraction yet the contraction of thenuscle appears to be slow 

and maintained. The electron microscopy Which was done of the muscle does not 

give a cle.ar picture in terms of the classical characteristics for dii'£eren .. 

tiation of fast and slow fibers in crustaceans (Hoyle, 1967, Hoyle and McNeill, 

1968) •. The sarcomere length varies from 3 to 6 microns and mitochondria are very 

small and sparse, characteristics which are associated with fast muscle fibers 

in crustacea. On the other hand, the endoplasmic reticulum in very poorly devel

oped and irregular. Evidence of supercontraction (shortening of the sarcomeres 

so that the thick filaments extend through the Z band and no I band can be seen 

(Hoy-ie et al., 196.5) is present in the muscle which was fixed in the contracted 

state. The Z band is very electron opaque and in the contracted state shows 

the discontinuities through which the thick filaments of adjacent sarcomeres 

in~erdigitate in supercontraction. The thick filaments appear to be in a loose 

hexagonal array but thin filaments rarely have any regulularity of arrangement. 

Fbr this re~son, it is difficult to give an exact figure for thick thin filament 

ratios although it would appear to be in excess of 1 to 10. 



F.ig. 34 Effects of decrease of perfusion pressure on the discharge of 
the muscles of the cor frontale. First trace shows extracellular 
recording from muscle when the perfusion pressure is at the 
optimally determined value. The perfusion is then cut off and 
the subsequent 3 records taken. Note facilitated muscle response 
with increased discharge. Scale: 100 msec. 





PHYSIOLOGY: 

When recording extracellularlY from the muscle when the perfusion pressure 

is 11normal11 a small muscle spike is recorded with an average .frequency of 8 to 

13 per second depeading on the preparation. \ihen the perfusion pressure is cut 

off by the valve in the perfusion supply tube, the frequency may rise to a maxi

mum of 27 per second. The interspike interval is fairly constant in the "norma.l11 

state and decreases at a regular rate with decrease in perfusion (fig. 33). There 

is no bursting seen. The contraction of the muscle is that of a slow tonic muscle 

with no evidence of beating. With increase in firing rate, the muscle contracts 

in a slow sustained contraction down to a short bundle of 1/3 to 1/4 of the orig-

inal length. Fig. 3.$ illustrates the response of the muscle firing rate to 

cessation of the perfusion. The firing rate of the muscle increases gradually 

with a very short latency, and rises, in this case, to a maximum of 20/sec. 

Activity which was recorded from nearby eyestalk muscles at the same time showed 

no change in firing rate (unless perfusion was shut off for several minutes in 

which case the activity in eyestalk muscles decreases due to deprivation of flew 

to the cerebral ganglion). In addition to an increase in firing rate a facili

tation of the muscle activity is seen (see tig. 3h). This increased muscle spike 

decreases gradually back to 11normal11 when flow is reinstated. 

When the perfusion flow was not shut off but instead pressure decreased 

by lowering the perfusion bottle by 1 foot steps, the following changes in firing 

rate were recorded: at optimal height the firing rate was 9.6/sec; lowering the 

perfusion bottle one foot the rate decreased to 146/sec; lowering the bottle 2 

.feet reduced the firing rate to lQh/sec and a final lowering of 9 inches, cutting 

off the flow entirely, resulted in a .firing rate of 180/sec. The firing rate o.f 

the muscle thus appears to be proportioned to the perfusion pressure. 



The time course of the response to cessation of perfusion is graphed 

in fig. 3$.. The absolute latency for response to cessation of perfusion could 

not be calculated by the methods used but is quite short, probably considerably 

less than one second. The response takes some time to reach the maximum value. 

In the case in fig. 3$., the firing frequency appears to be reaching maximum 

around 28 - 34 seconds after cessation of perfusion. A similar slow decline 

of firing rate occurs after reinstatement of the perfusion. 



Fig. 35 Illustration of the increase in discharge frequency of the muscles 
of the cor frontale with the cessation of perfusion through the 
cerebral system. 
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DISCUSSION 

The major features of the anatomical and electrophysiological 

observations indicate that the cor frontale muscles are tonic muscles capable 

of slow sustained contraction. The contraction is not in the form associated 

with individual beats of a heart and the "heart" has never been observed to 

beat on any occasion. Rather, the contraction of the muscle is always a slo~1 

maintained shortening of the muscle which continues contraction down to a frac-

tion of the original muscle length. This is consistent with the functioning of 

the muscle acting as a resistive element opening or narrowing the sinus at the 

entrance of the cerebral artery in much the same way that the muscular wall of' 

an arteriole serves as a resistive element regulating flow through the arteriole. 

When the muscle contracts in response to decreased blood pressure in the cerebral 

system, it decreases the size of' the sinus passage and increases resistance to 

flow to the cerebral ganglion. This is contradictory to the heart's assumed 

function of maintaining the pressure in the cerebral ganglion. It is possible 

that this may be the case; the heart is decreasing flow til· the cerebral ganglion 

in order to divert it to the vessels supplying the optic and oculomotor system 

in the periphery. These vessels are of a very large diameter and must deliver 

blood a long distance out to the eyes where there is a large oculomotor apparatus 

and four levels of neural integration of the optic input which is vital to the 

animal. A central decrease mn flmr is more likely td_ give rise to a greater 

decrease in flow at the end of the long large diameter ophthalmic arteries in the 

periphery than it will in the short eerebral artery which is closer to the pro

pulsive force of the main heart. The muscles of the cor f'rontale may then function 

~o maintain pressure in the periphery atthe expense of flow. to the cerebral ganglion. 
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Without the input to the ganglion from the peripheral optic apparatus, the 

ganglion from the peripheral optic apparatus, the ganglion would be deprived of 

its major sensory system and maintenance of the function of this sensory input 

maybe the highest priority in regulation o£ the cerebral blood flow. 

The electron microscopy of the cor frontale muscles is, for the most 

part, consistent with a slow tonic function in crustacean muscle. There are two 

characteristics however, which are more typical of fast crustacean systems. 

These are the short sarcomere length and sparcity of mitochondria. The presence 

of these two features may be explained by the function of the muscle. Short 

sarcomeres are found not only in fast muscle fibers but also in muscles which 

are capable of supercontraction down to a fraction of their original length 

Hoyle, et al., 1965). The difference between the fast and slow fibers with short 

sarcomere length lies in the ratio and arrangement of thick and thin filaments. 

While the number of thin filaments in fast fibers is small and regular in arrange-

ment, the thin filaments in the supercontracting slow fibers are more num&rou.s 

and irregular in their arrangement. This may be a reflection of a basic relation

ship between the thin filaments and muscle function. Whi~e the fast muscle must 

perform work ~uickly against large resistances or in overcoming inertia, the 

supercontracting fibers do not perform work against great resistance. On the 

contrary, the supercontracting muscle of the cor frontale is closer to smooth 

muscle in performing a large amount of shortening with little work performed. 

The cor frontale muscle shortens, not against the resistance of a fixed structure 

such as the shell, but b,y stretching a tendon to which it is attached in a loose 

relation to the carapace. The short sarcomeres in the fast muscle may function, 

in conjunction with the regular thick-thin filament arrangement, to produce 

force quickly. The same short sarcomere length in association with a different 



thick-thin filament arrangement in the supercontracting fiber maybe associated 

'With large changes in length 'With little work. The small work requirements may 

also explain the sparcity of mitochondria found in the slow supercontracting 

cor frontale muscles. 

The sensory aspects of the cor frontale regulation of the cerebral 

blood pressure has not been explored in the present work. Two possibilities 

for sensory reception of the pressure change are stretch receptors or chemo

receptors. The short latency of response is more consistent with a stretch 

receptor in which decrease in pressure is signalled by an increase in firing 

rate of the receptor. However, extremely sensitive chemoreceptors monitoring 

oxygen decrease or carbon dioxide incz•ease are also possibilities. Both recep-

tor types exist in complex mammalian blood pressure regulating systems (vJhite, 1972). 

The investigation of a pressure regulating system, from the sensory to the motor 

components, is possible in the simple system presented by the cor frontale and 

further study of this system may provide answers ,;rhich will be applicable, not 

only to crustacean blood pressure regulation, but to general principles of 

pressure regulating systems in higher forms. 
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SUMMARY 

The cor frontale is a cerebral blood pressure regulating system 

contained in an isolated unit composed of a small ganglion, two muscles 

and pressure transducing receptors. The function of this unit appears to 

be as a resistive element controlling flow in the manner of a vertebrate 

arteriole rather than as a heart. The system appears to function to protect 

not the cerbral ganglion but the peripheral neural and muscular components 

. of the visual system. 
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APPENDIX: LIST OF FIGURES 

1. Schematic overvie'tv of the oculomotor and antennular system 

2. Electron microscopy of the cor frontale muscles, longitudinal 
section 13, 200 X 

3. Electron microscopy of the cor frontale muscles, transverse 
section 16,500 X 
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Schematic overview of the oculomotor and antennular system 
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Electron microscopy of the cor frontale muscles, longitudinal 
section 13,200 X 
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Electron microscopy of the cor frontale muscles, transverse 
section 16,500 X 
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