University of the Pacific

Scholarly Commons

University of the Pacific Theses and

Dissertations Graduate School

1977

Group theoretical studies of the periodic chart and of
configuration mixing in the ground state of helium

Yutaka Kitagawara
University of the Pacific

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds

6‘ Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Kitagawara, Yutaka. (1977). Group theoretical studies of the periodic chart and of configuration mixing in
the ground state of helium. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/
uop_etds/1954

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been
accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of
Scholarly Commons. For more information, please contact mgibney@pacific.edu.


https://scholarlycommons.pacific.edu/
https://scholarlycommons.pacific.edu/uop_etds
https://scholarlycommons.pacific.edu/uop_etds
https://scholarlycommons.pacific.edu/graduate-school
https://scholarlycommons.pacific.edu/uop_etds?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds/1954?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds/1954?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F1954&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mgibney@pacific.edu

GrROUP THEORETICAL STUDIES OF THE PERIODIC
CHART AND COF CONFIGURATICN MIXING IN
THE GROUND STATE OF HELIUM

A Thesis
Presented to
the Faculty of the Department of Physics
College ¢f the Pacific

University of the Pacific

In Partial Fulfillment of
the Requirements for the Degree of Master

of Science in Physics

by
Yutaka Kitagawara
June, 1977



This thesis, written and submitted by

Yutaka Kitagawara

is approved for recommendation to the Committee

on Graduate Studies, University of the Pacific.

Department Chairman or Dean:

A gﬂ&/ﬁ
A LD

Thesis Committee:

4} W Ve %M__,»
L7 o /

ated_ )yt 4P, SF72




ACKNOWLEDGMENT

I would like to express my deep appreciation to
Professor Carl E. Wulfman for giving me a chance to study
at the University of the Pacific, for his guidance, advice
and ceaseless encouragement during the.course of this research.

To Mr. Sukeyuki Kumei, I extend my sincere appreciatioﬁ
for his advice, suggestions and encouragement.

I wish to acknowledge a stimulating remark of Dr. Bruce
Shore, which led to a reexamination of the results I had
obtained in the final secticn of the first draft of the thesis
and the realization that they could be much improved.

To Professor Robert Anderson, Professor Patrick Jones
and Protfesscr Andres Rodriguez, I also wish to extend my
thanks for examining this thesis.

To Professor Tai-ichi Shibuya, goes my sincere appreci-
ation for his advice and encouragement.

I wish to express my extreme gratitude to Mrs. Carl E.
Wulfmern for her generous hospitality during my stay at the
University of the Pacific.

Finally I am deeply indebted to Miss Teang Tan and

Miss Quang Huynh for typing this thesis.



TABLE OF CONTENTS

is Introduction i
IT. Effective Nuclear Charges of Electrons in Atoms and
Group Theoretical Studies of the Pericdic Classifica-
tion of Chemical Elements 10
2-1. General Considerations 10

2-2. Approximate Expressions for Screening Constants
of Inner and Outer Electrons in Atoms 14

2-3. Empirical Expressions for Effective Nuclear
Charges of Outer Electrons in Atoms 25

2~4. Group Theoretical Implicaticns of the Effective
Nuclear Charge and an Idea for the Classification

of Chemical Elements : 34
5 0 A Group Theoretical Study of Configuration Mixing
for the Ground State of Helium 47
3-1. A Physical Realization of the S0(4,2) Algebra 48
3-2. On an Approcximate Dvnamical Symmetry of the
Helium Atom 57
3-3. The Configuration Mixing due to several possible
Twe-Particle S0(4,1) Symmetries and the Ground
State Wave Function of the Helium Atom 64
Appendixes 77

References 82



I. Introduction

In the investigation of atomic structures, the
central-field model long ago proved quite successful. In this
model one assumes that‘each electron moves in a central, or
spherically symmetrical, force field, produced by the nucleus
and the other electrons. Using this approximation, it was found
that the Hartree-Fock method provides quite good results for
atomic ground and low-excited statesf 1)

Historically the central-field model for atomic struc-
ture was established as a result of the study of the periodic
chart of the elementsf 1) Mendelyeev's discovery( 21 of the
periodic system of chemical élements led him to the concept
of the periodic chart.

Actually the regularity of the chart can be well
understcod by studying the structures of inert gas atoms,
which really form the key to the periodic system. During

3) (4)

the period from 1916 to 1919, Kossel, Lewis, and

5 )

Langmuir( speculated a great deal about the probable mean-
ing cf these stable inert gas structures. Langmuir particu-
lariy noted the way in which the addition of eight electrons
to a helium-like ion produces neon and addition of eight tc

a neon-like ion produces argon. This led him to postulate

particularly stable structure of eight electrons, which

m



he called an octet. It was natural to think of these groups
of electrons as shells of some sort and to think that one
shell was completed at helium, consisting of two electrons;
a second shell of eight, one of Langmuir's octets, would be
completed at neon, a third shell (second octet) at argon,
and so on.

With these simple ideas and fundamental facts about
the pericdic system in mind, Bohr(6 ) gave the explanation of
the periodic chart in 1922, in terms of a central-field model
of the atoms, coupled with a restriction on the number of
electrons accommodated in a completed group. He introduced the
“Aufbau” principle for elements based upon the quantum numbers

“AP AP W~

th

his atomic mcdel. For small atciis (2%13), the
orbital energy increases with increasing n, and within a given
n, it increases with increasing /. Bohr's explanation was
supplemented by the discovery of the electron spin by Uhlenbeck
and Goudsmit(7 ) and of the exclusion principle by Paulife_)
both in 1925.

However, the order in which the electron shells are
successively filled for the case of neutral atcms, as Z is
increased, is governed by increasing n+{, and for fixed n+{,
by increasing n. This rule was first proposed by Madelung(9 )

as early as 1926, according to a statement published by

GoudsmitflO) In terms of Meadelung's rule, the Aufbau princi-



ple mentioned above can be described by the inequalities

1525 2p<K35{3pL4<3d€4p<55<4d<5pC65£4£fL5d<6psTs. (1)
Spectroscopic evidence for the central-field model

and Aufbau principle was first obtained during the years

1921 to 1224 from analyses of the optical spectra and X-ray

spectra of sodium Vaporfll) and it is now universally accepted.
Simple approximate expressions for orbital energies

in the central-field model can be realized by introducing the

concept of the effective guantum number n* and effective nucle-

ar charge §. Especially for the outermost electrons in alkali

metal atoms, the optical energy levels are well expressed by
i : :
‘“z(*jwatomlc units). (2)

The n is given by n*=n-d, where n is the principal guantum
number of an electron and d is the guantum defect which is

a constant characterized by each element. This approximate
behavior of sodium spectra is called Rydberg's law.

Using the effective nuclear chargef  the energy of an X-ray

term value is approximately given by
PAY
E=“‘;.": (7,{“) (atcmic units), (3)

- & 1 >
where ! 1is related to the actual nuclear charge Z and the

screening constant -, by T=2Z-0¢ . This approximation
12 :
correspoads to Moselev's 1aw$ ) wiiich says that the square

roots of characteristic frequencies cf X-ray spectra vary



approximately lirnearly with atomic number.

Once wave mechanics came along, and Hartree fcrmulated
the method of the self-consistent field (SCF)$13) one could
find a centrai-field approximation for the energy of sodium
by direct application of Hartree's method, rather than by work-
ing backward from the cbserved spectrum. By the improved
Hartree-Fock SCF methodfl4) verifications of the central-field
model were made for many’atoms, with results as good as those
obtained for sodium.

The SCF methods provide quite good results for atomic
ground and low-excited statesf 1) However, sometimes it is
more convenient to have simple expressions for energies and
wave functions of one-eléctron states in terms of the n* and

I mentioned before, even if the approximations are not as
good as those obtained by the SCF methods. For example,

(15) (16)

Zener and Slater used orbitals of the form

r
(1) (Z-0)g ]
N r e f,’Y(nw) ’ {(5)

* 3 . 3 -
where n and ¢ are adjustable constants and N 1s a normalizing
factor. These eigenfunctions are solutions of the central-
field problem where the potential V(r) is given by the relation

¥ (n*=1)
ir . (6)

(Z-07)
2

Vi) = — .



For large values cof r this approaches

i (Z-7)
v(”N By r ’ (1)

corresponding to a screening of the nucleus equivalent to ¢ .
By varying n*and g° so as to minimize the energy, Slater gave
a rule for determining n* and U . This is called Slater's
rule. It is well known that the orbitalvfunction of Bq.(5 )
is frequentiy used for the basis for configuration interaction
calculations.

(17) that a satisfactory

In 1959, Layzer pcinted out
theory of atomic spectra should account for the simple regula-
rities exhibited by the experimental phenomena. He mentioned
that Moseley's law in X-ray speclrOScopy is a sulprisingly
accurate approximation and a satisfactory theory should explain
the Z dependence of term energies which is stated in Moseley's
law. He noticed that the solution of Hartree-Fock equations
for fixed values of Z already presents great difficulty for
the explanation cf the Z-dependence of term energies. Using a
1/2~expansion methodflg) he developed a modern screening
theory of atomic spectra. His formulations are basic to the
explanation of the experimental laws in X-ray spectroscopy,
and he determined screening parameters ( by the variation -

principle. As he mentioned in his paper, the formulation



based on the concept of the effective nuclear charge can shift
the focus of attention from individual atoms with fixed 7, to
sequences of atoms. This idea may be useful for the investi-
gation of the periodic chart.

Very recently Sternheimer(lg)

examined a wide range
of experimental data for one-electron excited states for the
valence electron of the alkali-metal atoms. He showed that
in these states the orbital energy level increases with in-
creasing Madelung's n+l! except for lithium. However, for
fixed n+§ , the energy ordering pattern is not the Madelung's
Aufbau ordering except for sodium, and the pattern is charac-
teristic of each atom.

As we have seen above, the successful central-field
model for atomic structure was established as a result of
the study of the periodic chart of the elements. However,
it might still be considered that the basid periodic chart
itself is lacking a fully satisfactory theoretical expla-
nation and that the Aufbau principle has not been persuasive-
ly explained. Lately, some attempts at a group theoretical
derivation of the Aufbau scheme have been carried out by

(20) f52l)

Barut and independently by Navaro, Wol and Berrondo,

Navarofzz)
Barut proposed that "the different elements ... (be)

regarded as different states of atomic matter", and asked



"are there global gquantum numbers which would characterize

the elements as different states of a single system?" Con-
sidering two limiting cases, the neutral atoms and the highly
ionized ones, he concluded that in both cases the one-electron
orbitals of such a single system could be considered to provide
a basis for a single unitary irreducible representation of the
group S0{4,2).

Navaro et al. proposed a geometrical realization of
the Aufbau scheme, applying Fock's idea of the stereographic
mapping of the Schré&dinger equation in momentum space onto a
four-dimensional hypersphere. They showed that the Aufbau
ordering can be derived from the Hamiltonian of an asymmetric
votor with -an S0(3) symmetry arcund the 4-axis on the 4-dimen-
sional hypersphere.

Though the work of Barut and of Navaro et al. is most
suggestive, it has not been given a dynamical foundation, and
so is unsatisfying to the atomic physicist.

A different kind of apprcach to the group thoretical
study of the periodic chart was attempted recently by Byakov
et a1523) They proposed SU(2)xS0(4,2) as a dynamical group
for the periodic chart. Their idea is based on the fact that
the system of chemical elements can be classified by an S0(4,2)

orbital labeling scheme using the hydrogenic quantum numbers



n, £, m and an SU(2) gquantum number. However, here again no

dynamical foundation has been provided for the group proposed.
Recently Wulfman found great merit in Barut's idea on

atomic super-multiplets, and he introduced the concept of the

generalized Hamiltonian that is the Hamiltonian of all atoms$24)

Investigating the Schr8dinger equation with this generalized
Hamiltonian, it should be possible to relate the properties

of different atoms and find the structure of the periodic chart
from fundamental principles of dynamics and group theory. One
can use the same kinds of methods for relating the properties
of different states of a single hydrogen atom with the aid of
the ‘degeneracy group SO0(4) and dynamical group S0Q(4,2). These
gfoups represent the symmetries of the time~-independent and

25.26)

; . y . : : X
time-dependent Schrddinger equations with ordinary Hamiltonian.-

The idea then is to apply these methods to the system defined
by a generalized Hamiltonian.

In chapter II of this thesis, we will consider the
classification of chemical elements, in the light of the con-
cept of the generalized Hamiltonian. We will make a group
theoretical classification based on the characteristics of
the outermost electrons in the central-field model of atomic
ground states. We conclude that the classification group

may be SO{(p,q) with p+g27, p24.



Iin the problems of atomic physics, we may find a
number of unsolved problems in addition to the prcblem of the
periodic chart Just discussed. One of the problems is
to establish, from first principles, simpler approximétion
methods for many-electron problems. It is well known that
configuration interaction calculations fér the atomic ground
states of small atoms have been quite successfu1527) However,
we would like to predict these configuration mixings in simpler

(28) examined the matrix

ways. Recently Wulfman and Kumei
elements of the y&_electron repulsion potential expressed in
terms of the generators of the dynamical group SO(4,2). From
this investigation Wulfman found an approximate dynamical symme-
try of doubly excited states of the helium atomfzg) More exten-
sive calculations by Sinanogiu and Herrick showed the idea was
even more successful than at first realizedﬁ30h0wever this method
cannot be applied to the states in which one or more electrons
have principal gquantum number n=l.(30)

In chapter III of this thesis, we will review Wulfman's
work briefly and consider an application of his idea to the
ground state of helium making use of the group SO0{4,1)x50(4,1).
We arrive at the conclusion that we can obtain physically
significant configuration mixing using SO(4,1)xS0(4,1) or
SO (4,2)x80(4,2) in a manner analogous to the way in which

SO(4)xS0(4) is used to determine configuration mixing in doubly

excited states of helium-like systems,



IT. Effective Nuclear Charges of Electrons in Atoms
and Group Theoretical Studies of the Periodic

Classification of Chemical Elements
2=1. General Considerations

We know the periodic chart hasla very beautiful
structure, and it would be quite significant to have a
simple explanation of the classification it provides.

In order to study the structure of the chart, we should
have a simple mathematical expression which well charac-
terizes the electronic energy of ground and low lying
excited states of all the chemical elements. It may be
proper to obtain this from simple SCF one-electron

vave functions which can be approximated by hydrogenic
wave functions with effective nuclear charges [ which
will be a function of the actual nuclear charge Z.

The expression for { should be common for all the ele-
ments. Studying such a simple approximate expression

of one—eleétron states, we may find clues to the dynamical
and group theoretical origins of the chart.

Recently Wulfman introduced a quite unique
group theoretical methodology(24)to investigate systems
whose Hamiltcnians are related to one another by varying

a parameter. In the context here his idea is the following.

10



1l

First he defines a "third quantized" Hamiltonian that is
the Hamiltonian of all atoms, in a sense analogous to

the sense in which the ordinary Hamiltonian is the Hamil-
tonian of all states of a single atom. Given such a third
guantized Hamiltonian one can bring to bear upon the
problem of relating the properties of different atoms all
those techniques which are currently available for relating
the properties of different states of the same atom. For
the simple SCF one-electron state such a Hamiltonian can

be realized as

2,
H—':g "‘%p " (1)

with a new type of "third quantized" one-electron wave

funétion\+}which satisfies

K,PY:I\//" (2)

Here gmis an effective nuclear charge operator which
produces a proper effective nuclear charge when operating
)
on its eigenfunction \I/ For example let TO?: L5‘§ y
ST A . 3
‘*}”-—C ¢)(f’,t) . then we have Lgs‘{’_. S?U a
For the investigation of the chart, it will be

. *
most important to think about outer (shell) electrons,

* The definition of outer electrons is given in section
2=3s ps 25,




é . 12

because the characteristics of each chemical element
strongly depend on the behaviour of these electrons. Further-

more we may say the group structure of the periodic chart is

determined by the group properties of outer electrons in
atomic ground states. Therefore we should think about a simple
SCF one-electron state for the outer electron for which Egs.

(1) and (2) are written as the third quantized forms.

2
Ho‘t 5 TZB,- gl (I;-E)OP

(Ioc)ap \110@ X ‘{o.e \h.e

o

(4)

In principle then we would obtain a basic group theo-
retical structure of the periodic chart by studying the invar-

iance group of the differential equation

" gﬁ 0 i o
{z“(re)P ““‘5‘5}%.&‘0

2 (5)

-t oct
where -F (S)f(F) C 3 (6)
E. (356) <one electron energy of)
&= Nee the outer electron 3

(7)

Lo O=To k| (£-50=E40

(8)

The invariance group of Eg. (5) generated by operators

2 2

_—1 ) - >
Q(r's’t’ar’EE’SE"' ) can be obtained by studying the equation
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2 (Joedor _ ;2 "
{_/v;_,( eP“"S—E}Q\h-e—O’ (9)

2 r

using the method given by Anderson, Kumei and Wulfman.(3l'32’25)

States labeled by _L£,7L£ will be degenerate if (Img/nmé) =
constant. The group that interconverts such states is the
degeneracy group of the third quantized'system. We suppose

it to be a subgroup of the dynamical group which interconverts
all states of the third quantized system.

Therefore our first task is to obtain common expres-
sion of the effective nuclear charge { as simply as possible.
We will obtain some of them in section 2-2 and 2-3. However
we will f£ind that it is unhelpful to carry out the problem in
the way menticned above, because the expression for { can not
be simple enough to investigate Eqg. (9 ). Nevertheless the |
expression of [ will still give us some useful group theo-
retical information that will give us an idea for the classi-
fication of chemical elements. This will be discussed in

section 2~4.



2-2. Approximate Expressions for Screening Constants of

Inner and Outer Electrons in Atoms

In this section we try to obtain some simple approx-
imate expressions for screening constants of electrons in
atoms. Screening constants can be obtained by minimizing
the energy expectation value by variation of the screening
parameters. However the expression so obtained is always
guite complicated. 1In order to be useful the expression
obtained should be quite simple. To this end we shall ignore
the antisymmetry of the wave function and make a special sim-
plification for the electron repulsion term.

~In a nonrelativistic approximation the Hamiltonian
for an N-electron atom of nuclear charge Z is given by

e & L |
H=2{%- 2} + 5w ao)
J=t

94k .
We assume the following wave function:

$= \// (daﬁ/m)\/b(etbﬁ/m) oy \]b Re T/
NRa

£ara, Redytmy, PpLprp

= (R R - UGB
u e W U LFe) 13

U AF) are ordirnary hydrogenic wave functions defined by
1 ¢ }

14
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(‘*I-ﬁ/ﬂ\t)

Z(r") = Nyl My

. J(wﬁz (et b)) s s o) Fonettets 24tz 2 ) Y(w,)

@) A\ ) 2k

(12)

The O(t are variation parameters. For the minimum of the ex-
pectation value of the Hamiltonian, ¢ become suitable effec-

tive nuclear charges {t. Eq.(10) can be rewritten as

H=(Hre Hyd )
)

~{Ep et et ) 45

J<t ik ’. (13)

o L3 0
where HT(J) = (_;i - -(-)‘FI) .
i

Using the wave function(1l)r the expectation value of the

Hamiltonian is expressed as the following.
“HE-LF L7,
£ = [[3*H-CE L%
== { ju’;zf.) HolFy oLF, -+ j WEdy H@ PO AR + -+ j UpEIH W u@d’?,}

= {(HJJUE%M FHz-onularugodh + 4 ju,smkugﬁ.»d’r}

& ﬁ iyt - @A O
+2'l;§ e i ' (14)

(ﬂ)§==&,b,c)~wp)
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The one-particle integrations are easily carried out.

kS
X, = . gy 3" N, i“_’_(‘
JulaH gy d'h = =332

j(,( (r‘ I(F) 0(,3 e %%-

In order to have a simple expression for the electron repul-

sion integral, we will use a special technique of Wulfman and

Kumei.(ZS) Let us introduce the following operator and func-

tion.
- 3
JZ:: (a +I))

(}’ - (’n:c'Ht (W)
X ”‘- (z(+:) (Rt _nte “en F (Retleth, 2442 ;28) ir”':c

&

(15)

~ *
The hydrogenic wave function can be expressed as

2 (B ) % 56 (T) y ”
ut(n)‘-\k\tlfb\: = ﬂ.t e Nyl My , 9-::’@"-(”52).

The repulsion integral can be written as

ey - l S - =
e = H (f,l(h) Ct*g('d ‘;;'(: W) WT) - dF, 4—3;;

i

J[ Wi gt = f'a o) U ) - b do; - Fod b deog

il

 w® UG = L |u<r>ugm>

* See p.52-53,



B %

! 0‘10‘3 < (r) (Ti), ,_E?E_\/‘( (E') (rg3n§>
J

(qung) Nqlq™y nflsmg gLyt
e WL IIAACAY
mq“g\f <7(El J k( 0‘.) ll}(§> , i
cA qd ; v [V < T
where ’F - 6‘09'1( T")e‘bes("m r Cteq( 7;)61»95( 7:)

Wulfman and Kumei showed(zg) \4; can be expanded as

\/ng (nm@ﬂ B TR LR+ FRF ) |as)

AN [1 2 s @B i J
(”H'TLI:) {<n3| % +rﬁlﬂ§>}‘4 8 g4 [y

a7)
where K= (.2-6 . }’&)(

If we only consider the first dominant term in (17), we can get

‘a quite simple expression of \43

v K (IR RIS 1
S R CHE I

l

“E[( ){sm-m +O ){371 ”’Qs(£3+’)}]
_ (18)

The approximation given by (18) is not so good because Eqg. (17)

does not converge rapidly, but for our purpose the simplicity

of the expression is quite important. Using the result of

(18) we write the energy expectation value as
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Oy

%

T2 [( ){3% LA ){3n =4 (xno}]
' (p*b) (19)
| /au:a,&,c,-—‘,p
Q:(n«lm%am:o,) ete.

We now minimize Eq.(19) by requiring -%—L-:‘:—Q;Q‘

Setting ™, =7 —0, = Z(l——ﬁ) we have
(1-8) | x
S - " aZ““&) (i é)MaHl &)M
(F#a)
(20)
a 03
where Mz = 712 {SHL‘"A(,@I'H)} , @t:. —ZL . (21)
O} is a screening constant for the electron whose.
quantum state is - 'Z'—'Z(n.zf.z mt 'm~5t ) We rewrite (20) as
A 7-0; M %
OZ%‘E“aMa;-{M“H‘Z—-@)l' /*} (22)
()

In order to calculate O;,we have to know the screening con-

stants for all the electrons in atoms. Tentatively let us

use the screening constants obtained by Slater's rules(lG)

to calculate (Z-*Vl
Z"(];A

2,
) , that is, let us see whether

& . =g M, Z{Mq + g_:)z M }_%; (23)

(/‘%—%
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sé ) {]
where (3% are Slater's screening constants. The O; ,
obtained for outer electrons are plotted in Fig.l, being

Y} ex ex
compared with O; and Ok . The 0; are defined by

' (Z__G,_cx)z
Ta:*-z—‘,}a‘"—“ qfx:Z"‘ﬂg,’—Z'T; ;

(24)

(33)

where 7: are experimentally determined one-electron en-

ergies of (M, La M, Ms,). Looking at Fig.l we may say the
O;Sl approximately satisfy Eqg.(22) for small atoms (z=1~18).
Even i1if the Cﬂfl take closer values to the (Ifx than the
Oﬁ” do, in a sense the solutions of Eq.(22) have better
characteristics than Slater's screening constants, because
the n&’la dependencies are taken into account in Eq. (22)

but not in Slater's rule. For larger atoms (Z»>18) Eg.(22)
is not reasonable at all.

From the graph it appears'however that it may be

possible to get a good approximate equation by introducing

two parameters €, and €out + With
¥ ¥
2 1 2
O;zﬁona[;{MQTéth/n} +;{MA+ éoutM/“} J ) '(25)
(B Dp2) (D 4,700 t)
Dﬂzlt is defined by D"\th: —'5—1%.2:')- + L+ and takes

the follcwing vaiues:

Ne Hl1 2 2 S 13 513

2I 0 5 S § 0

D.

[
N

efo |1 2|13 4 5




13
nF :
.(—-o‘ex
L 4
15 :
: o*""_‘(gp—
L e X
13 )
Jaf— )
= . < 0y
®
/0 - SHangi
O,QX ® B X o (o] 307
9l 3 —> e % .
a'3§i——’ x 0 ¢
3 g ©
® —— ex
1+ 2
[ ]
6 = L
Y v
y - X *'—'q'ls;
® b 3 6 ¥ e—a.zg)
3 5 °
G, |
® -
1 L ™ o . W)
.:Z".su . U’a. [ Eq‘ (23 ) ]
sy 11
0 2% 4% 6 8 l I
; {0 1 W /6 8 20
HH LiBeB---
(N=)=(Z-])

Fig. 1
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For 6;,{"—-"0 > Eort=€= 0.13 » Eq. (25) becomes

e RN PRI "')M +MaZ{M +6Mf“} ] (26)
(QMQR 1kL)

where N' is the number of electrons whose [L?g“ are smaller

than or equal to C&«A » ' In Fig.2 the result of Eq.(26)

is given, being compared with (fo . Looking at Fig.2

we may say Eq.(20) well characterizes the na,ﬁﬂ dependency
of the screening constants, but the approximation is not so
good especially for electrons whose principal gquantum num-
bers N, are large. For the improvement of Eq. (26) we will

introduce a correction term as

qeol= RN OM SN T +eM :[H\,\u_‘)

27
" ey PD &

where €, ¥,§ should be determined so that (27) might give a
good approximation. If we set €=0.166, X=0.247 §==l.924,
we will have the result in Fig.3. We may say Eg.(27) well
characterizes the 71%£a dependency of the screening constants
especially for outer shell electrons of atoms whose atomic
numbers are l1l~-36.

Let us summarize our discussion up to this point in
group theoretical language. As I showed in page 14-15, we have
used the hydrogenic wavefunctions with scale parameters ui'

W O<Rims) (R ®)

t ef
Ak My 3 fdem (28)
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i k *
where JT; is one of the generators of jSO(4,2) and

e L 91_(4‘ Ta.)

are dilation transformation operators. Starting
from the Jso(4,2) basis functions ;t“églt , we have
used the dilation transformations of JSO(4,2) to deter-

mine effective nuclear charges by minimizing the expectation

value E with respect to variations in the dilation para-

meters B, . We also have used a simple SO(4,2) approximatioé

for the electron repulsion integrals., It is evident that
even with the simple approximation used, we have obtained
screening constants which characterize some features of the
behavior of outer shell electrons in small atoms, for in-
stance the approximate degeneracy patterm of 4s and 3d outer

shell electrons is taken into account in the expression of
12\

e g

# Y (see Fig.3.).

* In section 3-1 we display the generators of the dynamical

group S0(4,2) in the realization due to Bedné¥ et alf43’44’45)

8)



2-3. Empiridal Expressions for Effective Nuclear Charges

of Outer Electrons in Atoms.

In the previous section we obtained some approximate
equations for screening constants of ihner and outer electrons,
but they are not convenient for atoms of large atomic number.
However it is very important for the in&estigation of the
periodic chart to know the relationship between atomic numbers
and effective nuclear charges of outer electrons in a wide
range of atomic numbers. Now we are going to obtain a simple
expression for effective nuclear charges which well character-
izes the periodicity in the periodic chart. In order to ob-
tain a simple form we would rather start from experimental
data than from theoretical equations. The proper effective
nuclear charcges of outer electrons will be experimentally

determined as
~eX ST P
__L(S:.e. )Z: (I:PJ Toe\_ [2(1P)
2\ Noe 27921 or Noe| NERT.21) (29)

éx
where K;e and N, are effective nuclear charges and

principal quantum numbers of outer electrons which are most
easily ionized, (I.P.) represents first ionization potentials
expressed in ev . In this section outer electrons mean

the electrons which have thevhighest or second highest value

25
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(Mt
of Dﬂtlt:: !ELt —)~+1.1 ; e.9. 25,2p electrons for B; 34,

4s electrons for Sc, etc. Here it should be noticed that the

outer electrons are characterized by a quantum number
e et Pk
U“‘ﬂw-e + l-zo‘e J.l 2

~1
oexo ¥ (30)

=he tloe t 51
Thus ) is an outer shell labeling number which takes the
values 1,2,3,... for outer shells K,L,M,.... The data of the
first ionization potentials and the corresponding (I:f/nnﬁe)
are listed in Appendix I, and the values of (I:i //%¢C ) are
plotted in Fig.4 (page 30).

Looking at Fig.4 we may notice that a first approx-
imation may be made by making straight lines through points
which represent the (I::,/ﬂw&) for alkali metal atoms and
. rare gas atoms. These are drawn in Fig.4 by broken lines.
This simple expression does not have a.proper ﬁme dependency,
nevertheless it is desirable for the theoretical investigation
of the periodicity of the periodic chart because of ifs

simplicity. Let us try to make a simple equation which

# Pt 12 21838, 3] ves
Lo Lo 2 o 1 2| ...
D, Palis s d gl
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approximately represents the broken lines in Fig.4. Our

equation should be written as

(%ﬁ):ﬁwﬂ\l +dw |

(31)

where the slopes k(L ) and the intercepts d(L) are expressed

as functions of L . We notice that the slopes of the broken

lines are about the same for Land M shells,N and O shells,

P and Q shells. It is due to the fact that L,N,P shells
have almost the same electronic structures as M,0, QO shells.
It is reasonable to have the relations X(2)=k(3), k(4)=k(5),

k(6)=k(7),..., and the k(L ) should be well expressed using

the quantity /A(D ) defined by

Mwy = v{p+ (~l)“} : 2)

which satisfy the relations M(2)= J(3), J(4)=J(5), f(6)=
J(7y,.... Using the J(L) we will write the k(D) as

(o 44¢)
AW +0-ag2) 283

W) =

which is a good approximation for the slopes.

Now we would like to obtain intercepts d(L ). Looking

at Fig.4 we will notice that the curve throﬁgh rare gas ele-

menté can'be well approximated as

(14.0) + 1)

PN =Tae (34)
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If we know a simple approximate expression N, for the atomic

numbers of rare gas atoms, we can easily write the (zg/ﬂn¢d

{(;{o‘e) P(No) } = Aw){N “NP}

or ( nu) ﬁ;(u){N —-No} + Pm) (35)

as

Looking at the electron configuration scheme for atoms, we
know that p,d f electrons first appear at N=5,21,58(B,Sc,Ce),
and notice the atomic numbers of rare gas atoms are closely
related to these numbers. The Thomas-Fermi approximation

(34) that these numbers will be given as (mVDCLL%ﬂf

predicts
where ] is the azimuthal quantum number of the electron which
first appears in the atom. Using this fact we can construct

the following equation* which gives us a simple approximate

expression for atomic numbers of rare gas atoms.
v+
No = o7 (w+2)’ = {19 +09(-) } (36)

From Egs. (32)~ (36), we have

(}_}_): (0.49¢)
Moe/  L{D+0"} +(1.442)

[N —0.11+2) 3 {19 4 0.7(-|)“*'}

(14.0)
+OIQ(U+Z)1 {I?+07(“)u+'}+22. +( qq4)

(37)

* See Appendix II
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The results of Egs.(32)~ (36) are listed on the following

table, and the ( Soe / nee) are plotted in Fig.4.

U 1 2 3 4 5 6 7
JAL ) 0 6 20 42

x (L) || 0.344 0.0666 0.0231 0.01142
N, 2.0 9.7 18.6 |35.5 55.7 85.8

P (N,) Il 1.344] 1.209 1.115] 1.015| 0.953]| 0.903

N 1 {2 | 3| 20| 12| 18| 19|36 37| 54| 55| 86
(I,.._/n,.e) l.ovo | 1.344-10.96 1 vl‘zz& 0.600 | L.094 [0.633]1.02610.520 (0.3 | 6.5 |0.9eS

It is evident that Eqg. (37) is a much better approximation
than Eg. (27) in the previous section for outermost eletrons,
and it has important characteristics of the periodic.chart
because of the term L)&J%'tﬂY} . In the following section
we will give some discussions of the group theoretical impli-

cations of this observation.
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2-4. Group Theoretical Implications of the Effective
Nuclear Charge and an Idea for the Classification

of Chemical Elements

Both expressions of T given in sections 2-2 and 2-3
[Egs. (27) and (37)] are not simple enough to obtain a useful

(I Lr ; 3} ol

dynamical group of the differential equation{g?——iﬁ = 3%
But we will still see some group theoretical meanings in the
expression of the effective nuclear charge T . We notice the
expression given in section 2-3 [Eqg.(37)] is more convenient
than Eq. (27) for our purpose, because Eg. (37) works in a
wide range of atomic numbers and it has important character-
istics of the periodic chart. Noﬁ we will think about some
meanings of [ mainly for Eq. (37).

‘Let the third quantized Hamiltonian, and energy for

an outer electron be approximately given as*

H — Px . (Ke.e)op L T.,,e S

!
with a third quantized wavefunction \k :ﬁf)ﬁé e(_F) . Let
& 8 0.

Ime be given by Eq. (37):

* See section 2-1,
The definiticn of outer electrons is given in section
_2"3; jo 251
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(__I_e) Sk, [Z -O.l‘?(u+2_)3+{|.9+o.'1(—r)““})

Moe| L{0+E1)"}+(1.442)

1 (14.0)
0.-1(u+2) = {11407 (=)'} +22.

0.174
$‘+( W). (37)

The degeneracy group of the outer electron is generated by

generators Q(r,s,f, 2~ ,als ,9L,...) which satisfy the equation

or Bt

(Hge —Eop )Q o; =0 under the condition of (H,, -Eg, )?;c =0.%
The generators Q will in this case include the quantity E,,

in their expressions, therefore the eigenvalues of the
Casimir operators of the degeneracy group will be functions

of J and Z/ in our approximation by Eq. (37). Looking at

Eq. (37) we see the quantities 1)£U+'PU“} and ) determine
the main characteristics of the periodic chart. This suggests
the above degeneracy group has subgroups determined by these
two numbers and so does the dynamical group mentioned in sec-
tion 2-1. Consequently we may say the classification group+

of the periodic chart has subgroups determined by the labeling

numbers [_){U—H-l)“'} and L .

* The operators of this degeneracy group permit us to change
an outer electron state of any ground state atom to a de-
generate outer electron state of another ground state atom.
In other word these operators allow us to pass from a point
of the lines 6—-—.-01in Fig.4. to another point of the same
energy level on these lines. See p.12-13,

Here classification group means a group whose single UIR
(unitary irreducible representation) labels and classify
all the chemical elements well describing the character=
istics of the chart.
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Now let us construct a good group theoretical label-
ing scheme that characterizes and classifﬁsehemicél elements
using these two numbers. 7To begin with, it will be a good
idea to think ébout the well known Aufbau scheme(GB) which
giﬁes an ordering of one-electron energy levels for many-
electron atoms. Especially for outer electrons this scheme

has quite good characteristics,* and it is given as

7
A iy e
7s el T
One-electron 6p —
energy —_— 5d 4f
B e (39)
5p -
5s S
B
5 #
3p
3s
2p
2s
s

Looking at the scheme we find the following approximate
orbital degeneracy patterns: (2s,2p); (3s,3p); (4s,4p,34):;
(55,5p,44); (6s,6p,5d,4f); (7s,7p,64,5f) 5000 For the

first approximation we might think there would exist the exact

degenerécy pattern

* Cf. Fig.3 (section 2-2).,
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=t Teg THy. iea BE
L =6
6s 6p 54 4f
=5
= e (40)
U=4
4s 4p 3d
=3 .
3s 3p
=2 o es
2s 2p
U=1
1s

One finds each degenerate level can be labeled by the num-
ber U= M + L *‘éaﬁ~1 . We notice this approximation is
taken into account in Eq. (37) and is desirable for our dis-
cussion. Also notice the scheme of (40) has some similarities

to the hydrogenic orbital degeneracy pattern

= o T T if

=3 = S 3 -
= 28 2p

n=1 =

where each set of degenerate states provide a basis set of
S0(4) unitary irreducible representation (UIR). This fact
suggests each degenerate state of (40) can also provide a

basis of an SO(4) UIR. If this is true, we have to say that

each SO(4) UIR except the first appears twice because the
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same degeneracy pattern repeats twice, except in the case

of 1s. (e.g. L =2 and Y=3, =4 and J =5, J=6 and M=7;.:.)
Now let us think of the quantity /l(u r=b{u+&0“} which
satisfies the relations /.L(2)=}.L(3 ) )= J(5),  M(6)=

}1(7 )sre... Using this relation we can construct the labeling

numbers of S0O(4) for the scheme (40) as P%A/kL))—l, Q=0%

where

/V‘“F Z'r.[g +4 1+ 4u{u+(——|)”}) _ (42)

v r1t2Fk3latstetrtel o
Aol o 6 20 42 72
Noylhr | 2 3 - g i p o E

The degeneracy vattern of (40) will be characterized by

two numbers L) and /V(I)) as

* The SO(4) is isomorphic to SU(2) x SU(2), and the eigenvalues
of the Casimir operators of these SU(2)s are written as
I = Ju(Tat1) v = T T +l) The P and Q are de-
fined as P=Ja+ s , O= Ja - % In order to have the pattern

of (43), Q must be equal to zero: J;=;R %
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2=
Nw) =4 { . 7s 7p 6d 5f

IJ=6
6s - 6p 5d 4f (43)
L =5
/@Qb)=3 5s 5p 4d
IJ=4

4s dp 3d

= R
Y

28 2p -

1s

and we notice that Eq. (37) espouses this classification.

Now we would like to obtain a classification group
whose single UIR adnits every. state labeled by jJ and‘/VQL)):
therefore this representation must contain two different
S0(4) UIRs for each number /Y?L))ZZ and only one SO(4)"
UIR for./V}l-)=l. It is clear that we have to think about
larger groups than S0O(4). First we may think about SO(4)x
SO(4), s0(4,1), SO(4,2), but none of them can be our class-
ification group because of the following facts.

Since 50(4) is simply reducible, the representation
(pg)x(p'g') of S0(4)xS0(4) reduced to SO(4) contains every

UIR of SO(4) labeled by P and Q either once or not at all,(35)

therefore it cannot explain the doubling of SO(4) for each
number of,/V?L))gZ. The basis of the single UIR of SO(4,2)

that contains all the hydrogenic functions, is also a basis
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for a UIR of SO(4,l).(36)

It is known that there is no

UIR of S0O(4,1) that contains a given representation of SO (4)
more than once$37bonsequently this representation does not
allow the doubling of SO(4) representétions which seems to
appear in the Aufbau chart. That is, there exists no unitary
transformation in the space of these hydrogenic functions
which can give rise to a new set of functions which have two
subsets with the same SO(4) symmetry properties.

From other investigations being carried on here at
University of the Pacific, it appears that one of the pseudo
orthogonal groups SO(p,q) with p+g)»6 may be usable as a
dynamical group of Kepler systems whose charge Z is a dynam-
ical variable53ghence we naturally ask, is there such a group
which has UIR that contains a one—diﬁensional SO (4) UIR just-
once and contains all other SO(4) UIR just twice?

.Let us suppose that the one-electron SCF wave func-
tions appropriate to the Aufbau chért are well approximated
by finite linear combinations of hydrogenic functioﬁs with
guantum numbers Z,n,{,m. Then if SO(p,q) is a dynamical group
of the hydrogenic systems with variable 2, SO (p+g) should
érovide an approximate dynamical group whose UIR can contain
all hydrogenic functions up to some finite limiting values of

(39) We are then led to ask if there is an ortho-

Z,n,i,m.
gonal group SO(n) which has a single UIR containing the reg-

uisite SC(4) UIRs, As it may easily be shown that a single
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UIR of SO(6) can not contain the required SO(4) UIR,* we
proceed to a consideration of SO(7).
The irreducible representations of SO(7) are deter-

i s i ¥ ¥
mined by three labeling numbers Mg, Mgy and my3. The

standard generators Aij(l§i§j§7) obey the commutation

relations

- - i (44)
[A; 50 B d= Gypnyy + 6i£Ajk 6ik ) 6j2Aik g
and they are antihermitian.
N +
Ay =-Ag} (45)

The vectors in the representation space are completely labeled

in a group chain

SO(7)2 SO (6)D S0(5)D S0(4)D 80(3)D s0(2) , (46)

we denote a vector in the representation space by tmi5> ’

where m 5 is an abbreviation for a complete set of labels.

* The argument will be seen to be an obvious corollary
of the SO(7) discussion which follows.

(40)
'+ Here we use a discussion due to Gel'fand and Zetlin.
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lmij> N . y (47)

The m7j, m6j’ mSi’ m4i,

labeling numbers of the SO(7), SO(6), SO(5), SO(4), SO(3),

Moy m21(j=l,2,3; i=1,2) are the

S0(2) UIRs respectively. All labels mij are integers and

e e

ckey the conditions
lm | fn.%n. Sn._ Sm. %Sm (48 ~a)
61 71 62 N2 63 737
< <& £ < -
!m61| W51 = Bz = Mgy = Mg3, (48 -b)
£ S s : -
|mgy| = mgy & my, Hga (48-c)
< 5 =
|yl ® mgy B - : WE=a)
< =
[myq| = myq (da=e)
From the previous discussions and Eq. (48), we
should say
m,, =Q=0, (49 )
m, =P = Nw)-1, (50 )

Eg. (49) means that the eigenvalue of the second second-
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order Casimir operator is zero., If in a representation of
the 5-dimensional orthogonal.(pseudo—orthOgonal) group the
second second-order Casimir operator of any of the 5
(physically different) 4-dimensional orthogonal (pseudo-
orthogonal) subgroups is zero, then the fourth-order Casimir
operator of the 5-dimensional orthogonal (pseudo-orthogonal)

(41)

group is zero. Therefore we must have

_n (41,42)
m51~0. (51)

From Egqs. (48-b) and (51) we have to have

m,.=0. (52)

61

Hence the vector in our representation space is labeled as

71 72 73
9 gy Mg B
lmij> - ¢ M52
0 P
M31
By

Here we have to notice again that our labeling scheme must
allow the existence of just two different SO(4) UIRs for
P £ 1 and only one SO(4) UIR for P = 0. 1In order to realize

this fact by the group chain (46), we will have just two
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different labeling schemes for each case P Z 1 and only

< ]

one scheme for P = 0, For 0 < p P (P°is a fixed num-

ber) ,* we have two possible ways (54) and (55) to realize

this fact by the group chain (46) with a single UIR of

SO(7) ¢
(1) J
m71 1 (P +1)
AN ) 1 P+1
Iml;> ( ;) ) (54)
0 )
0 p
[+
a1
(-]
Mg
(2)
0 1 m73
—(2) o
. p
lm13>= 0 m62 (55)
0 p
D P
Q
M3y
°
Moy

(1)

In the scheme(54), m71 is a fixed number which is 0 or 1.

—( 1)
The m52

only take the value (P+1)=1 for P=0, because we have the

can just take values P or (P+1l) for P21, but it can

*  When we have ﬁ>33, our schemes cover all the states of
outer electrons in atomic ground states which appear in
the periodic chart.
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following relations from Egs, (48-b,c):

eEm{ ) Vspar, i (56)
155 (57)

In the scheme (55), m;i ) is a fixed number which is greéter
w2 )

than or equal to P°. The Mg, can just take wvalues 0 or 1

for Pgl, but it can only be zero for P=0, because of the re-

lation
-~ (2
< éz )<l, tesl
sl D
éz )sp, (59)

which is obvious from Egs. (48-a,b).

Here we notice the Eég‘) and'ﬁég ) are written by

using the numbers L and /VQL)):

o )= v - N, 60)

Tl )= 2 ey p-1. 61)
Ny 1w il oyt g o
7 SEEEE 1l2l3lalslelrls V

(1)~y “N o+ 1223|3445 .n. |62)

m 2 =2 fwy-p-1fo1fofa]of1]o]1]of ...
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In both schemes the mgl and m{l are some fixed numbers which
will be determined by the further classification within a
state designated by )V .
As we mentioned in section 2-1, the group structure
of the periodic éhart is determined by the group structure
of the outer electron levels in atomicvground states, there-
fore chemical elements should be classified by a labeling
scheme for an Aufbau chart. Remembering that in the periodic
chart the s,p,d and f outer electrons appear in the series of
Ia—IIa typical elements, III~O (rare gas) typical elements,tran-

sition elements and inner transition elements respectively, we

notice that the m should rather be used for the classifica-,

v Ji
tion of this kind than for the azimuthal quantum number of

the outer electron, and in this sense we write m3l=l . Our
classification by the numbers u,,&QL/) and A\ is shown in

Fig.5. The m,, will further classify the elements in some

21
way and we call it/u . Now our labeling scheme will be

mp )1 N |
0 g '/qu) (63)
|mij> =l o [vHwt]]
0 Ay -1]
A
M
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or

. (2)
0 1 m73

0o [24@)—1»1] sl

mij> = 0 At ~1] (64)
0 Wy 1]

A
M

( A= "+ 1)

Both schemes tell us that the SO(7) will be the smallest
orthogonal group with a single UIR that contains the S0(4)
UIR that seem to be required for the periodic chart. Thus
we expect that the SO0(p,q) with p+g=7, p34 will be an
approximate subgroup of the classification group of all the
states of all the chemical elements.

We have seen from Eq. (37) and (27) that the actual
nuclear charge Z is also an important number together with
L and /WQLI) for the group theoretical classification.
Noticing that Z should be expressed as a function of U, A\,

J* and some other labeling number (s) r’ as

z= (L, N, m ) 65 )

we know that the vector in the representation space of our
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complete classification group* may be labeled by the num-
bers L, L. M andlz , and this group may have a noncompact 7-
dimensional subgroup whose répresentation space is spanned

by the vectors labeled by L, A and }L.

* Our complete classification group will be a subgroup
of a group obtained by Eq.(9 ) in section 2-1.
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IIT. A Group Theoretical Study of Configuration Mixing

for the Ground State of Helium

In this chapter we try to investigate the manner in
which symmetries of the one-electron problem are affected by
the interaction between two electrons. We will examine ‘the

configuration mixing due to the 1/r electron repulsion

12
potential by reducing_SO(4,l)xSO(4,l) to an SO0(4,1) in several
ways. In section.3~l, a physical realization of the SO(4,25
algebra and the matrix representations of the generators

will be given. We will elaborate the idea of our investi-
gation in section 3-2, and the examination of the idea will

be given in section 3-3 for the ground state of the helium

atom.
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3-1 A Physical Realization of the S0(4,2) Algebra

The generators of the dynémical_group S0(4,2)
admit many realizations. In series of papers(43l44!45)
it was shown that these generators can be réalized with
the help of differential operators in the real variables
X, r Xyr Xy For the treatment of a physical system, the
following generators provide a convenient realization,
because they are expressed by dynamical variables of the

system in a particularly simple way. Using Bedn4¥'s

. {45 2
notatlén %he generators are written as*

= ~t€y (g “1\53%5-.> , (L
Bk=—--.-2'-(>’4v 2,“"‘- e J-o:)%(:“géﬁ“ ), £3)
)= — :;:(i”v -Hf) _ (4)
T,= - (‘oaxﬁ" I) (f'f‘r 3 l); (5)
7= —--)':(yvz—r) ; (6)
ne-irk,
HgeLe v*=g‘3—®é}£j , P=%N% 0 4,0)

* Here a summation convention is used.

48
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The commutation relations of these generators are:

L A B T T
L | @ @& & m (o
A (b) (g) (k) (n)
B () (h) (1)
T (@) (1)
% ik ST
() [L;, Ly =i€ijk L (1) Iy, Ty = 4 A,
(b) [A;, 5] =1€jjx L [Ty, 51 =0
(e). IB;, Bl == i€jjk Ly [T5, r_j] = i Bj
() [Ty, T,1 =—1iT, (3) I Bj] =i eijk Bk
[y, Tel = £y (k) Ia;, ;0 ==i Ty
[Ty, T;1 = iT, [A;, T,] =-i By
[Ty, Tl =0 | [A;, Ty =0
(e) ITys Tyl =- i€ L (1) 1By, Fy) = 30, 7,
(£) [Lj, B3] =i€ . A (m) IL;, T41 =0
(9) Iay, B3] =16, T, (m) 12, Tyl =46, 7
(h) IB;, T;1 =0 (0) ILy T4 = iéijk]“k
[B,, T,] ==iA;
By, Tyl =17

‘ . =
These generators act in the space of functions f(r‘), and

the scalar product of the functions is defined by



<3C : 3>:Jf‘fﬂ 3(?)' rdV ,* , so that the generators

ﬂﬁ' jk ,&3 ,TT » [T are self-adjoint operators:(43)

<3C,A13>=<Aaf,3> i (8)

T™wo sets of operatorsﬁ( R_, ﬂ\,,EB ,T; ) and ( ﬂ_,
A&, Uﬁ, T;)_generate two différent subgroups SO(4,1), and the
~generators l_ ,ﬂx form an SO (4) subalgebra. The operators
i_ and ]r form subalgebras SO(3) and SO(2,1) respectively.

From Egs.( 1) and ( 2) we have the relation
I.-A=o0, (9)

which means that the second second-order Casimir operator of
the subgroup SO(4) wvanishes. Then the fourth-order Casimir

(41)

operator of the S0(4,1) group also vanishes. In the re-

presentation defined by (1)~ (6), the second order Casimir

cperators of two different SO(4,1) groups and their eigenvalues

are

(LF+B - -4 =2,
(Tf+r -1 ~A" =2.

(10)

(11)

"* Notice that the element of the space is YiF instead
of PF -
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Therefore the structure of the unitary irreducible representa-
tion space of the SO(4,1) group generated by (ﬂa,ﬂ\,ﬁg,T;)

or (ﬂ_,ﬂ\,ﬂ’,W}) is given by(45)
o
R:Z@Rn ) (12)
=) . -

where }Qnis the representation space of the subgroup SO (4).
The Casimir operators of this SO(4) group are in the space

/Q represented by
2 Ry R
AN FL =n-1 (13)
Al=o0 . T

Therefore the basis of the representation space‘}a can be

chosen by ,71 2 ﬂl:} '

where
n = 1)2-)3, Tt e,
1:' 0» ’ :L,'"‘,n—',,
m:—,@,—,ﬁ+l’, ,1 .

From Egs. (1), (2 ) and ( 6), we have the relation
2 2 2
D4+ A+ =(T,). (15)

Comparing (13) and (15) we have an operator identity

Ty =n,

(16)
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(V)

from which we can obtain the coordinate representation

nm
of the state hl£¢ﬂ>' as a solution of the eigenequation
(F) — (V)
T nmr? anMm . (17)

The function ‘}QJZR can be expressed in spherical coordi-

nates as

X 2 J(m+£)l e ( y\) F(—-fr\."bQH 24+2; ZY) Y(u)),

LM (Z,Q‘H)‘ n-L-)!

(18)

where]:(a ,f ;X)) is the confluent hypergeometric function.

The orthogonality relation for ;(if# are

aew 1

UX <)-)(m PPAAW= 0,0, 8k Omim . (19)

Noticing that the hydrogenic wavefunction is written as

AV
278 (M4 {22 22y
\}/(7 t4) (z£+l)\J( )Mzﬁ(m-x-—l)( £ . ) F( A+ 24425 ) \(li‘w) ,

(20)
we can easily find the relationship between ;{ézg and
\{J (2F/n)
nLM

(Z?/fn)_,‘[— ‘GT X

wdie. © R nLam [@E,Qm(z/m)],(Zl)
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because

el i 3
e ® S = L . o

The matrix representation of the SO(4) algebra is

well known in the representation space_}sz4l).

L lam = mimemd (23)
L < lngmd=J(grmy it izm) [n, 4,mEe> (24)
1F I nla>= g (4+0) lmlmy (25)
A\ nemy = o namln, b,y + o my| -1, 7> (26)

)
Al = Q?(Mm)\ln,li-i,mil) + ey 2 mE D> (27)

where

L-i: LaiCLz | Ai"A!iLAz .

14

2.
a b )= Ja»m > PO=TEE

4 (4+) =)

Q)

o (Mg M)= mx —L2

tt 70411k
0\\13('*1-“"\3 3 $JM J(z-&zi m )L+ 2m)

40041)* =)

=Lt
%Lt~

o) = £ A(QFMI(L~t o) “



The radial SO(2,1) generators are represented by

Tilmem) = nlnem) |

(28)
Talnamd = [((+1£0)(En=2) |ntt,0,m) ; (29)
(TE=Tr =T mamd= geetinemy e

where T:tle t bTZ .

Using the commutation relation [A ] == B«. , we have

)
B,lnemy= btiﬂfl"")[wf',ﬁ“m) + }ggigmw)lml,z-—l m>y

+ Bi(mm) et ety + B el 5y

)
B lngmy= b otmln, g mel byttt me

+ Bt hemfnct e med-+ B il w32

where Bi*BfLLB,. ’

(2) (}P}() 971

n O HLF2)
by (™) = 2y 4= e

s

J_..,.._. dm=L)(n=2+1)
4£*

g) o=

(£+1)
e )(m gl

Q) Mol ol
b ()= ﬁ,’m W () (mt2-1)
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[(e+2:£m)(L+12m)

b (fmﬂ%)"‘ :Fl,\[‘;funl 7 JtLt) (ntit2) |
| @) (Lxm)(LFm~1)
(nem)= £ - L L=
‘ b, ) = e Jin—D@-L+1)
|
| (&) (Lrrtom)(L+1£m)
i LYo o
b (nim) = «/‘Hiﬂ)" - (n=L-1)(n-4-2)

¥
l(j)(mlfm 1= fzzzti(ffq“ ')J(m+l)(m+,L -1) )

Using the commutation relation [A.‘,'Tl ] =-l;ri, , we obtain

[lnemy= }'fi(%lﬁn)lﬂ+l,£+|,m>+ § Oyl -1,
+ Xf?(mm) i, ga, 4 Smtmy fn-, 0, mD . (33)

g oy = Yﬁ’wm |t 41 met 0> + ‘(:t_)(mim) w2~ 1>

+ ffz(MM)\n«l,lH)miI){— Kiflm,eoh)\n~l,z~l,mtl>, (34)

where r‘:t:: 1““ 4 er

>

’(JQ'H)
y(“( l,w)__ ____ WJ( +,€+‘)(M'+-(+l) y

Pom = L “,

I;s)( o) = (=0) [+ -m®
2 Al 40+~
\)

i) e
M) = (nt) ML 1)
X-" )= 2 ’+£‘ | J )

J(m ~2)(M~L+1)

J(«-x»-u )(M—=L-2)
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1) i uuim)(uei'rn)
fH(M!;M): I

P JLM+2+‘)(M+£+2)
G(241)> -

@) (LFm)U-1Fm) m
1 (m=L)(m=-L+1)
O}J:’(m}.flfvt)---i J Py *[

](ﬂ(nxlz'h):i J(uum)(uum) Jun—g=1)(m~ 1-2)
-t 2 4+ )P~

@ ez b [WEE=FM) TGy =1
[ nam=F 3 J e JOEOHL=1)

We can also find the explicit matrix representations

of the operators F and y , because of the relations

F=B-A,

(35)

F=T,~1,

3 (36)

which are obvious from Egs. (2), (3) and (4), (6).



3-2. On an Approximate Dynamical Symmetry

of the Helium Atom

It is well known that the symmetry group of the
Hamiltonian of the hydrogen atom is the four-dimensional
orthogonal group SO(4)546)

In this chapter our purpose will ke to investigafe
the manner in which symmetries of the one-electron problem
are affected by the interaction between two electrons.
Obviously a fundamental task is to study the effect on dyna-
mical symmetry of Dﬁql, the electron repulsion potential.
The matrix elements of the 94hz potential were examined by
Kumei and Wulfman in term of those of the generators of
SO{4:,2) wulfman found that the configuration wixing in
complexes of definite m; , n,=N; , which is due to the bﬁqa
term in the Hamiltonian, may be such as to nearly diagonalize

I’”ﬁ\&uﬂ\, where l%= Iﬂ\— 2/3\ i Zﬂ\being the Hamilton-Runge-Lenz

if29)

vector of particle In order to predict the form of

such a mixing, he reduced SO(4) x SO(4) to SO(4) in the

following wayfzg)

* The N and N, are the radial quantum numbers of electrons
1 and 2.

+ The Hamilton-Runge-Lenz vector has a form of Eq.(2) in a

representation space deined by section 3-1.

57
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(47)

o Con51der the pseudospln operators of particle
¢ ViZ oy M—-;_(g_'f‘ﬂ\) and N"Z(ﬂ_ A , where ‘ﬂ, is the
angular momentum operator of particle I Couplelr1with2@4
to get Jl , and couple lN withzﬂ"l to get J, . Couple J] with J
to getaﬂ‘= QL +1[ . Denote the resulting two-electron functions
](mm)P@.LM> , where P= XtJo , and Q= J, "Jb ; jo.(JcC.H)
and.LiJL+l) being eigenvalues of‘]:enuibﬁz.v These functions
are eigenfunctions of (%&f+ (mjz +1, (§&f+ CﬂJz +1,
( +(“&J (“ “ﬁ) (WJZ,CiL, with eigenvalues respectively
of NE, My, P(P2)+Q* , {a(p+)} , L(L+1) ,M. the func-
tions obtained in this way are related to those of the usual
e, L, *
basis Yqu by the recoupling transformation
T gy A
: £~0 A n 44,
Jm)PQLMYy=—~Y 1) [ateadnmradie-an] o) foen 4\
il 2(P+0) $(P-a) |, Ht

(37)

When the mixing with definite mn,=MN, is possible, Eq.(37)
"fixes the mix". For the doubly excited states of helium, this
equation gives quite good agreement with the results obtained

by diagonalizing vﬁqz using the bases of definite M;=n, .

*¥ For the detailed discussion, see Ref, (29).
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The expectation value of the Dﬁqa potential for the

state !(ﬂ%JPQ1L$1> may be given approximately by(zg)

| e
\/%WI{P(?“HQK“L(L“H W 24+ (L CL) '>} ) (38)

The eigenvalue of l%‘l%\ is P(P*‘)-HQT“‘L(L'H) . This is the
dominant factor in the Vﬁl potential, and it is the reason
why the proper mixing for the doubly excited states of He is
given by kwﬂ)PQiJﬁ>> which is the basis vector of the group
SO (4) generated by hﬂ\:fﬂ\—zﬁ and '&[L-':jﬂ__‘fiﬂ_ . Unfortunate-
ly we cannot obtain a higher approximation to the ground state
of the helium atom or to its singly excited states, because

the generators of S0O(4) do not allow us to change the radial
guantum nuﬁbers of cne-electron stateé as we saw in Egs. (23)~
(27) in the previous section.

In order to have more general configuration mixings,

it is clear that we have to think about the superposition of

numbers of different states labeled by N; and N;. We would
like to predict the proper mixing without doing the usual
diagonalization of the Hamiltonian matrix. From Egs. (23)~
(34) in the previous csection, we know that the generators of
SC(4,1) can change the radial gquantum numbers operating on
state vectors, therefore we might expect that we could get a

proper configuration mixing by the aid of the reduction of
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0(4,1) x SO(4,1) to an SO(4,1). The following sets of

*
operators generate such SO(4,1) groups :

i 1ELEL L A= D~-7 |, "B="B-"R =T+,

Cin LELEL, ASA-A L B=BYB |, "L
win L=LHL , AA-N,T=T-T , "T=T+7T,
Civ IEEL PepA, CETHT ) BT T

The basis vectors IR,SPQ_LM> of these two=-particle S0(4,1)
groups will be written as a linear combination of the twe-

particle SO(4) basis vectors km(ﬂ;)ﬂle4>

IRSFQLM> RS lnm n)PQL M> (53

In‘,"l
where K and S are labeling numbers of the S0(4,;1) group and

we can require

/A,mz d (40)

. \, 9 ;
As we see 1in Ea. (39), the state ‘KS?QIJ%/’ is described as

a superposition of the states labeled by M, and N5 .

* By the study of doubly excited states of helium, we know
e = 2L and “A='p-A are physically important.
Therefore we eliminate from considerations groups with
generators 1) "g 3] and A=A .
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Now let us think about a reasonable way to get a pro-

per configuratior mixing. When we divide the Hamiltonian of

2
the system by /. in the manner of the 1/Z-expansion method,(181
we have 2 2 2
RN 2 '“'P
ZJEE:7 M= (vi--l-)‘+~L—L
Z H 2 S Z S, (41)

Vo '
where S;,'-:Z r.; - f’;‘x-‘z("i)v,: , and Z is the nuclear charge.
X
The hydrogenic part ZU(QVz“‘V%;) has an S0(4) x SO(4) symme-
o=

‘) £ il (47)*
try and it can be written as

- )=-L AU

==
=1

~

/

-

T

~O

M

{

(42)

oy
i

Considering the previous discussion, we might ask whether.the
mixed configuration due to the V@R potential is an approxi-
mate eigenstate of |RS P@J_f4>> . We also notice that
the ratio of the hydrogenic part and the electron repulsion
part depends on Z , and the electron repulsion part must
vanish when 7 goes to infinity. Hence we might expect that
the electronic state of helium may be approximated as a linear
combination of the properly dilated states ofi@bﬁﬂﬁQLM> and

18,0 T :
éﬁ Y , acting

‘RﬁSPQiJ%> . By the dilation operator

in the manner of Eqg. (22), we may set the optimum scale

* Henceforth the realization of generators will be given in
the variables §; instead of ¥ . For instance ‘T, means

~i(si %s; +1) sHEeRd Ol —i(n%r, “) '
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parameters which correspond to the effective nuclear charges
of the electrons. Here we use the realization given in the

previous section for the group operators and bases. Let us

write

.T — (", M)

T DG.QG{BZ {b‘ TPQLM + b, ﬁam ¥

) (43-a)
and
(’"I;""'l) ( R_S
953 b"De.ele.'e; (fpaa_m + [‘72 PaLM s
(mmﬂ

where P&LM = [(m na )PQL M> ?QLM = |RSPQLM) and

D,g,e;o{e,: = 1{(_,’;9.(7;)69101') Lg'(mef'e‘(m} . We begin by letting

Bi=0,=0=06{= 0 .

Later, for the ground state of helium, we will choose

™~

’ - . v -
o= 9 -Qt-UL;:G so as to minimize the energy cof the state

QP b * . _
E%@%‘ﬂogj with respect to O , and also we will choose
©,=0,=6 and 9,~=9.' =0’ so as to minimize the energy of

(h ” , +

the state [ygp yooo With respect to 6 and

Factors E% and b will be determined by minimization
_~
of the energy expectation value, and the ratio l&/b. must

(n, 1) |
vanish when Z goes to infinity. The function \'2 is con-
g PALM

structed from the cne-electron functions an? . of Eq.(18) :
(") 2
P ) X G

,FQ.LH —Z a“‘e'm';""l'(zmz. Pa LM F AT R Ry, (44)

2m M,

* For the ground state of the helium atom, only the set of quan-
tum numbers (n;.N,,P,Q,L,M) = (1,1,0,0,0,0) 1is possible.

+ See page 71-76,
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(48)

where dw(i,m‘ﬂﬁﬁﬂl sjauM . are the S0 (4) Wigner coefficients

which satisfy the requirement

2

E'H\aﬁgh!d%'lﬂh‘anli M PQLN o l ) (45)
RS
The function f;QLM is constructed as
RS — Z C‘h (Mt2)
ﬁ?mjﬁ PQ‘
N,

= RS G) X G
>"" e C IM dm.ﬂﬁ\.)mﬁﬂﬂszQLM X”‘tﬂ"ﬁ\. X"\J:—”\;

2

.'(M\ 4, ﬁzm!_
=5 5§ X X @
HTE Mgyt Ny £ s RSPALM LYV IV R SV RN
/"H Q(’H‘a. %lgg'h‘-z ° ( 4 6 )
where fﬂ&m“nphmqﬁ&PaLH are the 50(4,1) Wigner coefficients

and satisfy the condition

2

n i‘”""l nne 'm.].

fﬂ.llm‘,ﬂtl‘ml R.SPO—L—M l
(47)



3~3 The'Configuration Mixing due to several possible

Two-Particle S0O(4,1) Symmetries and the Ground State

Wave Function of the Helium Atom

For the ground state of the helium atom, only the set
of gquantum numbers (PQLM) = (0000) is possible because of the
condition, M;=M,=1 . Furthermore the labeling Q = 0 must
require S=0, because the fourth-order Casimir operator of

S0(4,1) vanishes if 0=0 for its SO (4) subgroupf L) There-

fore Egs. (43~a,b) become

(. R0
g_s: b1 L_FOOOO + bl‘iot)ooo ’ (48)

letting - 8,=0,=6,=06,= 0 . According to Egs. (44) and
_ : (1) R’0 :
.(46) the functions B596 and 7%000 are written as
(1) = > 3 3
¢ e (,S) (5,) == (S')X(Sl)
0000 ('{Ioo,loo:oooo X"’"’ X““X X/‘°° g (49)
and
R Z G X )
{ﬁoooz ‘F"‘uf-mﬂ\z’-'m; R00000 /gy * mpt-m | (50)

mnAm

Here we chose the phase factor of the SO0(4) Wigner coefficients

so that dqw,mo:oooozzl . For a simple approximation to
Ro : .

(Poooo we try the follwing function to see if it is physi-

cally realistic.

64
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00vo veoo

R0 (L.1) ‘o (p(2,2) ot Ro (p (2.1)
%oooN C“ 700000 t C;O()D 1_((;120700000 e llO\P )

(51)

Here

RO (b1 __ SOY &) = R’O »[J
C“ ﬁ)ooo X Xlug

100 (52)

Ckro “"‘):.—,C [ sz(fo) 1535) 4 42 F ; { X m;(m)c(sg 5/\{(5;){(&,}]

22 loooo A 201 21~ 210 21

= =5 () 4 (s:)
= L {AE + XGXR XEUR + X @)

> ' (53)

(l,Z) R 1) ’ *L
Cﬁo > LT -( el R )J.',i {)(cs.))Ctsz) 1‘)((3)){(3;)}

{oo 200 200 [00

= R0 ' -\P
“(CQ_ ;oo,zoo:ooooﬁ) - SR

(54)

We can write Eg.(51) as

P (0K + O, 1 s
== C,"'/ﬂ + Czﬁbl -+ CJ%J

(55)
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To obtain the coefficients C,, Cz and C3 , we will

make use of the following eigenequations :

Cgog; |)IRSPQLM> C (R S),RSP&.LM>

(56)
EZ)(4.;)|RSP©~LM>: C%R,s) [RSPALMD. (57)
{('ﬁ)@(“&f}l RsPaLMp={P(P+2) +ar} [RSPALMD (58)
{(% }[RSPQLM> {aen} lRsparm) (59)
("LYIRSPALM>= L(L+1)|RS PALM (60)
("L)IRsraLry= MirsPaLm> &

where C;f:1:4.|) and :4..) are the second-order and fourth-

order Casimir operators of the two-particle SO(4,1) group
mentioned in the previous section, and CgkRﬁ) and C&kﬂs)

are the eigenvalues of these operators. The generators’ﬂ[ '

“%Q ,'78 ,1ﬁfx'z G ,h]1 are given by one of the sets of oper-
ators, (i ),( ii), (iii), ( iv)in page 60 . We will determine

the coefficients Cl,sznuicg, WhiCh satisfy all the equations
(56)~(61) for our approximate eignestate E;CLVﬁ . From

Egs. (52)~(54), it is obvious that we have (60) and (61) true for

any choice of the numbers (,, (C, ,C3. If we have numbers



67

Ci ,Cy ,C; , which satisfy Eq.(58), that is

(CAT+CLIY (S cat) =

(62)

we will automatically have Eg. (59) épproximétely true, because
the condition P(?+2)t Q*=0 requires P=Q=0. This fact also
requires that in Eg. (57) we have C(‘H(R'JO):O . Now we know
that the C;, Cz and Cg can be approximately determined by
solving the eigenvalue problems of (56) and (58) simultaneous-

ly using the basis states ‘f/‘ - \l{,_ and % , that is

i(z) ;
{<’7A>Z+(“zu‘}f =o.x!, e
64

by L i , B Loy oyi

where X'=1, \Pﬂ‘ A \7bz+x? \l"s . One of the vectors %-‘-ft(rn sk th) :

. o

i=1,2,3, may correspond to the vector %02 (Ct,C;,C_g) . The
12,~12)

operator C'gom,.) can be given in four different ways

according to four different algebras (i ),( ii),(iii),( iv)

of page 60 v
Ci =( TR HB- B~ (LHL (AP, (55)
G = (=T +(B+BY~{ L) ~(A-A), e

Cm“(T i IT)l "lr (‘m'}rzﬂ—)l"('ﬂ\“%)l, (67)
Co=(T=2THT+ ) =L+ L) - (AAY, (68)
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Now we solve the elgenvalue problem of (63) using the

bases \{J,, /" and\P
C %i .+ ixi
’voL otmfu o,

We write Eq. (63) in the matrix form :

(69)

. . . . . L) * b
where the subscript ® means 1, 11, 1ii or iv and the f;

(&) ; : ;
means (R 0) for the algebra (A ). The matrix CL is written

. [” \chotkh ‘S«dsldwn'gz“ldwlj
2 (70)
o (Ea=as2.3)
x&._._.t()i‘:) ‘y":n y;u) .
obtain the matrix elements <\4)'C0~H)> ’
.(h) \C IY%@)X; 2) \

LU mton S iy /

as

Co=fchlcd )]

with the eigenvectors In order to
we need to calculate

the integrals /Y ) X Gy
nLl ¢ TN DM

—_d

tions are easily carried out using the formulation in Appendix

III and the matrix representations of the SO(4,1) generators

in section 3~1. The results obtained for the cases (i), (ii),
{iii), (iv) are :
(1) (i1) (i) (iv)
d[- 3 @ 4 -1 4 =2 . 0 4 2 0
.\‘
G 210 0 ~2 10 =2 1o 0 2 10 0
0 o § 0O o © o § o o 3
o 1@ 5 0@ |G WB - | § |8 |96 e
0.2.40 fo 151 ( 0 \\ 0,290 | }/0.951 0.210\ t o5 \ |0 ( 290\ |fo. 157
i ’ '
3’:0{ 0.457 [l{=0.2%0 0 }-ojs’l o.20 -0.957 {|[0.290 0 987 ilr-oage
k. i\ o > ] / 0 \ © o ° 1 ko 0
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3
We have shown that our eigenstate §:Cc4ﬁ must appro-
(=2
ximately satisfy Eq.(64). The matrix representation of the

1lst Casimir operator of SO(4) is

O 0 O
/ Iy “ , \1“'
50’4) [ kk'l il
o o 3 (72)
with the eigenvectors X —~(%d,z¢,éu). The vector X,= (-uCzﬁb)
must approximately satisfy the equation Cso@)xo: 0-%, s

Prom (71) and (72) it is clear that the vectors of W0,0,l)
do not satisfy this relation, and they must be eliminated from

consideration. Therefore our equation of (48) will become

one cof the following equations

cjf) {((S +o. 1?0)51/ + (o zs‘?)ﬁl‘,_}

e 3 2, B \ P w\[l/ T
(g2 Loyl — (0.2.90) ,
@"{(p ) 0 751}{)‘ (J I'{‘ @‘-}-O?’}‘)? _a. (J 1?0)4 (73 —b)

(' so. 1‘:0)"1-(0 s>, (73 -a)

1
(3% oxgo) +(o.gspz (73 ~¢)

@3:{(@3—%0.2?0)\/ —{0.95N) Y }

B*: [((Ho? )Y, +(0.290) )

6 il
N (6 +ovcfz)*+(°vzo)‘ > ‘

' ey .
where {3 are the variation parameters which correspond to
(bu//bi). These expressions clearly show that the configu-

ration mixing due to our two-particle S0(4,1) symmetry cannot
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allow us the mixing in of a -(1s) (2s) configuration which is
written as \hrff{}fﬁ%’x‘g% +X,_(§;) X}f{)} k .

If our approach is reasonable, the result obtained by
diagonalizing the Hamiltonian matrix using the bases (ls)”,
(1s) (2s) ,(28)2 , and (2p)2 must show a quite small contri-
bution of the (1ls) (2s) configuration. Also the ratio of

(zs)2 to (2p)2 in the result must be approximately that of

(2,2)
y> ) . These bases are defined as
0000 :

(18) 2~ P =YL& X

. (74-a)
~ P L{YEYE) -y &Y G
sy e~ PeplEXE HAEXE) e
2 i Qo W B K |
(202~ = X5 XL (74-c)
3oy 2 e W L L I @IXY ) Y ) YR LYE YR
(2p) Jq ’*4;‘{/\‘-/1&( erﬁ /\'.i?é)xzm)“}. 21 /(131". _(74-4)
cx H
Setting the trial wave function '7%’::Zifx&%% , we can
U=

determine the coefficients i by minimization of the energy
expectation value 6 = H'\}*ﬂﬁé’ dr.d‘%/!fg*f:{, At dt, .

Here the d?@ mean the leume elements SdeMLUJQ i Fér the

-ground state, the result is

L= (0.9790) P, ~(0.1918) F, —(0.02.80)f, +4-(e-0441) s . (75)

[ <\ll\£>"ﬂ“? L Sudsider S sudes 3 1 ]

* See Appendix IV.
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As we see here, the contribution of (1ls) (2s) is
quite important for the ground state. Hence we conclude
that the wave function =, or ~J, of Eq.(43), with b, =8,
=8, = 9; = 0 , is not a good approximation to the actual
wave function. However the term,-@m1?D4§+(a°4”U¥L 5 1
Eg. (75) is approximately the state Sﬂg:? , and again it
suggests that the two-particle S0(4) generators 'ZL='&-+%L 3
!%\:-%\-7& are physically important operators.

We consider next the waﬁe functions “%k v f%h
with 8= By= 8, = 6,

o(bi) . - .
of the function ljwmaymmo with respect to § . Starting

11

6 which minimizes the energy

-~

from the functions {?“ of Eqs.(73—a)~(73—d), we try:to
tain ‘the proper functions "}k and ~£b changing.the. gcals
‘of the wasis functions in the manner of Egs. (43-a,b). Let
us write

.A‘. . . /\(l'l‘ R“‘O
~) = N,:._i D.\{@t ‘)V : =4 Dauoﬁ‘} 2

A= 0600

(76-a)

_~ RY. (hY) A ().52,60)
'L;%' 8‘{( j 7?7000 '{ (IODOD j" _ (76-b)

Here 0n) 13 o
Dy= Dy = €5 ooinlfenll),

¢ : .
!Al ' ?d;‘ are normalization constants :

A= [y g s inet

énd A

(78)



Y, o
The functions {(3 o000 T oaoo}

@5

coefficients :

functions

...(, ‘L \Il'l KO
@O< Fj fqgooq 0000
We use the well known value(49)
21

3 QLo
which makes 7y {Dx / 0000 }:

of equations (73),

72

represent the starting

without normalization

(79)

(80)

¢
The values of ﬁ will

be determined by extremLZLng the overlap between ‘ﬁE and

o~ 3 * \T‘

aliQ _(_8 f

obtained by diagonalizing

P
W ~L

i R , where .

s

Therefore we require

2 | TV 2 K 7L
5§:<~£m-.>=;7,? fj ¥ Yo

We obtain the following results :

(0.1713) ?

1
©

(Ve

(o)

(&)

~J
Mg <

I+ 4 i

-+

~(0.9992) ,
+

.- ] E3 C ¢’ y i i

,f is the wave fuaction

the Hamiltonian matrix [ Eq.(75) ].

-5(‘(-5 dwl zdv‘ggdw,’. :::.O s
{(81-a)
(81-b)
- +
(0.0237)f, Z(0.0420)f, , (82)
- +
(83)



; 0.0601
2 _!
(@i) - =B, 1643
i )
-0.0581 (84)
‘~ 0=239J /
and

[}
= (0.9853)F, ~(0.1641)f, -(0.0236)F, +(0.0409) %, , (85-1)
¥, = ~(0.9790)f, +(0.1983)¢, +(0.0246)f, -(0.0425)f, . (85-2)
"y, = -(0.9842)§, +(0.169T)% +(0.0252)f, ~(0.0437) , , (85-3)

~&, = (0.9883), ~(0.1509)f, ~(0.0116)P, +(0.0200) %, ,(85-4)

0.9994 )
3 X
. 2. = .
3 ~1.0000
—'\T "\.Tr
4 fife’lu> = o (86)
-0.9996
0.9985 )
£ 0,0577
1
(?%fl ~0.1673
o |-0.0593 (87)
k 0.1128

Finally we consider wave functions "\}A ' ’\IB with

9, =0, =6 and B, = @" =g (6 #60) so as to minimize
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()

the energy of the state i>eeaa %2000 with  respect to -both

0 and @' . Let us write

R'e )

g g s _ .
?A--l = NA-Z.D { ‘Pooo ‘i (}ooooo] (88-a)

b g L) 4 @R
NB—Q \@ .DIS (190000 5000""} ’ (88~b)

b
2
j

H.ere . 'i & ol 5 )
o 1 peelT) 06 (CT,) O0'("%) , co(*T.)
DSI'“ Dei)'f)'G -~ l\e e— -+ e. e } ) (89)
’ /
G:ﬁm(:{;) 3 Q::,(’m(%:) )
a‘.\i; HL
and Na-z # ‘“&Q are normalization constants :
’<"{(§)~J.!j{’(§)~z> =k (90)
a LY, (1Y)
The condition {DII ()Co(ooo} = 3""{Djj (foooo} =0 is satisfied
P (50)
for T= 168 ¢ , 3”:. 21932 (91)
Requiring
(92)

93;< J:“’TE(A) 2.> 3

we obtain the following results.



15

W -

i = = 4
A oo ‘ S
f%;ﬂ = Z(0.9761), T(0.2124)%, T(0.0236)f, ~(0.0408)F; ,(93)
+ - - +
3 2
-t =3
N33 g |
<<“f}7fAﬂj> = 7(0.9999) (94)
+
( 0.0444)
)
ot ]-0.1271
3 o L.
(63)= ¢ , £25)
~0.0433
L 0.1679

~ga = (0.9778)% - (0.2057)%, - (0.0248)%, +(0.0429)% , (96-1)
Fpp = - (0.9770)9, +(0.2220)f, +(0.0161)%, -(0.0278) % , (96-2)

r%ﬁizz ~(0.9764)Y, +<o.2105)ﬁ +(o.oz41)g —(0.0417&& , (96-3)

i, = (0.9816)F, ~(0.1867)%, ~(0.0206)Y, +(0.0356)p , (96-4)
1.0000 )
)
2
P 3 -0.9995
C~Bl~F & s } ’ 97
‘\§£‘ Y52 ;> ~0.9999 o
0.9999
0.0398 |
L
2 5 -0.0651
(6% = : (98)
-0.0373
0.1170 J

We have found that the wave functions obtained by

using approximate Hartree-Fock ground state functions
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Dg.ez(u).’ez’ 500000 , together with a dilated or undilated con-

figuration ?&go , can be very good approximations to the
ground state wave function obtained by a variational treat-
ment with a Bednég (15)2, (1s) (2s), (25)2, (2p)2 basis.
We have been able to obtain quite excellent overlaps with
this ground state function, using %ﬁﬁ; obtained from each
of the four S0(4,1) groups we considered.

Purther, and extensive, calculations will be required

if one is to determine which of these groups is most valuable.



Appvendix I

51)
E:E\: (E.P) (}f:’;lne] (I.P) (I::/”“) (LP.) tﬁ/"‘“)
2P| (en)sER ) 2 g
1H| 1s|13.595]1.000|31 Ga| 4p | 6.00 |0.644 j61 Pm| 6s|(5.55) [(0.639)
2 He| 1s{24.580|1.344 132 Ge| 4p | 7.88 {0.761 (62 Sm| 65 [(5.63)[(0.643)
3 Li| 2s| 5.390/0.629 |33 As| 4p | 9.81 [0.849 [63 Eu| 6s [(5.68)|(0.646)
4 Be| 2s| 9.320[0.828|34 Se| 4p | 9.75 |0.847 64 Gd (6.16)
58 | 2p| 8.296(0.781(35 Br| 4p [11.84 [0.933 155 Tb| 6s{(5.85)[(0.656)
6 C | 2p|11.264[0.910(36 Kr| 4p |13.996|1.014 |66 Dy| 6s|(5.93)|(0.660)
7 N | 2p|14.54 [1.034|37 Rb| 5s | 4.176[0.554 67 Ho| 6s|(6.02)|(0.665)
8 0 | 2p|13.614(1.000(38 Sr| 5s| 5.692[0.647 {68 Er| 6s|(6.10)[(0.670)
9 F | 2p|17.42 [1.132039 Y | 4d| 6.5 [0.69169 Tm| 6s|(6.18)|(0.674)
10 Ne| 2p [21.559{1.259 40 zr| 5s| 6.95 |0.71570 Yb| 6s[(6.25)|(0.678)
11 Na| 3s| 5.138[0.615[41 Nb| 5s| 6.77 10.705 |71 Lu - -
12 Mg!| 3s| 7.6440,750/42 Mo| 5s| 7.10 [0.722 {72 Hf - -
13 Al{ 3p| 5.984 [0.663[43 Te| 5s| 7.28 [0.731{73 Ta| 6s| 7.838 | 0.761
14 Sil 2p} 8.14910.774 44 Ru| Ss{ 7.36%]0.736 74 W | 65.7.98 | 0.766
15 P | 3p|11.0 {0.899]45 Rh| 5s| 7.46 |0.740 |75 Re| 6s| 7.87 | 0.761
16 S | 3p {10.357|0.872 46 Pd| 4d | 8.33 |0.782 {76 Os| 6s| 8.7 | 0.800
17 c1| 3p [13.01 [0.97847 Ag_fiff T4l s NIT TE %S{? 9 -
18 Ar| 3p {15.755[1.076 (48 cd| 5s | 8.991]0.813 {78 Pt| 6s| 2.0 | 0.813
19 R | 4s | 4.339]0.56549 Tu| 5p | 5.785[0.652 79 Au| 6s| 9.22 | 0.823
20 Ca| 4s | 6.111[0.670(50 Sn| 5p | 7.342(0.735 {80 Hg| 6s [10.43 | 0.876
21 Sc | 4s | 6.56 {0.694(51 Sb| 5p| 8.639{0.797 |81 T1| 6p| 6.106] 0.670
22 Ti| 4s | 6.83 [0.709(52 Te| 5p | 9.01 |0.814 82 Pb| 6p| 7.415| 0.738
23 vV 3;‘:;5 6.74 | - |53 T | 5p [10.45410.877 83 Bi| 6p| 7.287| 0.732
24 Cr | 4s | 6.763[0.70554 Xe| 5p [12.127]0.944 84 Po gg?) 8.43 -
25 Mn | 4s | 7.432|0.739155 Cs| 6s | 3.893/0.535 |85 At - -
26 Fe | 4s | 7.90 [0.762]56 Ba| 6s | 5.210/0.619 86 Rn| 6p [10.746] 0.889
27 co 055 | 7.86 | - [57 Lalth [5.61 | - [87 - -
28 Ni §§§? 7.633| - |58 Ce| 6s |(5.65)[0.644)[88 Ra| 7s| 5.277| 0.623
29 Cu | 4s | 7.724 {0.75359 Pr| 6s [(5.42)|0.63D[89 Ac -
30 Zn | 4s | 9.39110.831[60 Nd| 6s [(5.49)(0.635[90 Th - -

17
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Appendix II

In the electron configuratiocn scheme for atoms, the

1,58 (B,Sc,Ce). We

9]

"zj

,d,f electrons first appear at N=5,
may notice the atomic numbers of He, Ar, Xe (rare gas atoms
oflJ=l,3,5)* are very close to these numbers. Using this
fact we will obtain a simple approximate expression N, for
the atomic numbers of rare gas atoms. The Thomas-Fermi
approximation predicts(34) that the electrons of azimuthal
quantum numbexr L first appear in the atoms of nuclear charge
0.155( 24+1)3. If We use a coefficient 0.17 instead of 0.155;
we have more accurate .equation :
Z =0.17(24+1)°

(AII-1)
This gives correctly the numbers 5, 21, 58 for 1=l, 2: 3 Af
we take the nearest integer 7.
The atemic numbers of rare gas atoms for P=1,3,5,7,.¢4

are roughly given by Eg. (AIIX-1) for ,i=l,2,3,4,,,,, and these

L/ and }7 have a relation ,in'—)——::!- . Then we may write
Atomic number e |’:: 453 ‘
(of a rare gas atom)'\'hm'“'OJq(LJ+l) . (AII-2)

* See page 26. The outer shells K,L;M,... correspond to
P=1:2,3;¢s
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ing

The

results of Eq. (AII-2) are listed on Tab. AII.

718

Introduc-

a correction term into this equation, we have the follow-

simple expression for N, .

NOEEOJW(U+lf~¥{L7-%OW(“UUH}.

results are also listed on Tab. AII.

Quter Atorile Numbers

Shell g;f?éms N, N,
K 2 4.6 2.0
L 10 10.9 .7
M 18 21.2 8.6
N 34 6.7 o 150
0 54 58.3 55.7
P 86 87.0 85. 8
Q 118

Tab. AII

(ATI-3)



Appendix III

. S
The intergrals <X,\(“)n Xﬂfz&%‘;

Cd X8 X &

owing way for the case (i)

4

)
H
[¢]
R
ct
ct
m
3
=

1 the foll
<X"‘ (is ’)M« ”‘z(fj)mz ! C lX ﬂ‘(ﬂsov)\. 2 ‘nilz'm1>'

=T AT BB = (L) = (A—AR D
IR CAR 2 { T~ BB = L+ A D

li

J.'i\"N

= - &>X(f:tagi!£,<§‘rn o, 0 o é\ v-i,.ﬁ.,_

-
_— < lolel B+,m 1,0 ><%’\>ﬁ;’” ‘ R_ l/Alf' ;;\z>,
e \.”"'vi"'«\.\ B Im 4, )('n; 2Ly “’"BJM /ilm>
P ,'2;<')"-';.f..,"%’d: l'B;’; !""‘*\L%\\){\/\fﬁ;ﬁ; ] ‘ 21y ‘,,1 fo /M.z>

<d\. s n.f‘ ‘.,. ‘T_lf‘t,f }*L,)gr/l 1 n,. T_}'r\ b ”M,

— ikl L | mon > St | Pt
— <ﬂ./2'fm'| ‘L I, X."“><’V\iﬂ ™, 2L+ \’n ! 7"\:\)

3. \f‘m."‘l L lﬂ'\jm>/q\ Qm,‘ L lm,?zy,\>

Y <~\’A./}.‘.’l Ag [ d,am ><m£a ml | A by ;/
<4’\,,(. iy ' A.. \’ﬂ,ﬂﬁf‘ﬂ‘><’)’hﬁz_mz ‘l A h"’-kt}/\t)

2 Gt s s oty s

where (”’\ Kt ‘mal p‘fn. Jé.,'ﬂ>-—f . (5‘ ( ‘S) S;.ASedwc'

4
'Q b t N
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Appendix IV

Examining the equation in Appendix III and the matrix

representations of SO0{4,1) generators in section 3-1, we

understand the reason why the (1s) (2s) configuration does

not mix with (2s)”, (2p)2 and (1s)2 configurations. For this
kind of mixing, the matrix elements of the Casimir operator

Y(q.;X<sn> and <X‘S XE|Cd X (S)Xl(f}) |

are given by '/1<$) XE)C

300 jeqQ 200
As we see in Appendix III, these elements consist of the terms
7 3 l‘:\ < (291
OO .: /00 joo B La() 9 J 2.0 J."7.,?> ’
{1 »oo*Plaey  q ool Plzamdleod Pt D (a)

where %3 are the one-particle S0(4,1) generators. These %’
in (A) produce i”ﬂ, ﬁ.’,m’> or rnil, ﬁ,",’m"> operating on ]am,am}
but thy can not produce the linear combination of ivaCWU>
and !ﬂii,ﬁr,%ﬁ' . Conseguently all the terms of (A) vénish;

We also notice that the same kind of situation occurs
for the two-particle SO0(4,2) symmetry based on the reali-

zation given in section 3-~1.
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