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THE INFLUENCE OF THE RELIABILITY OF THE DEPENDENT 
VARIABLE ON STATISTICAL POWER 

Abstract of Dissertation 

PROBLEM: In the planning phase of developing quality educational res~arch 
there are several critical decision points. Some of these decisions iH'e 

made to en sure that the research wi l l have adequate statistical power, 
that is, the capability to detect meaningful differences, if they do exist. 
In an unpublished article, K. D. Hop kins from the Laboratory of Educational 
Research, Univel·s ity of Colorado and B. R. Hopkins from the Univ£-: rsity of 
the Pacific cornmentecl that a11 theoretical and empirical opt-ions for 
·increas·ing statistical po1"1er had been ·investigated ~xcept for the n~1i- · 
abiiity of the dependent variable. In this article~ they derived a method 
for· estimat-ing the statistical p01ve1~ of the analysis of variance (:~NO '/;\ ) 
and the analysis of covariance (ANCOVA) which factored out the influence 
of the reliability of the dependent variable. This method ·involved 
modifying the non-central'ity parameters used in estimating the power of 
the ANOVA and AN COVA tests. This modification required some untested 
mathemati ca l assumptions and therefore needed t o be empirically verified. 

PURPOSE: The pu1·pos e of thi s study was to err:;:rirically ver'ify the method 
for esti mat ing the s tat istical power of the ANOVA and the ANCOVA tes t s 
deV(?1optd by fk:pkins and Hopk ·i ns. !\n add"it 'ic•nal purpose '.':as to inw~st'l g ate 
the influence of the r~liabil ity of the dependent variable on the statis 
tical powe r of the ANO VA and ANCOVA tests. 

PROCEDU RES: A Monte Carlo computer si ~ulation method was used to estimate 
the actual power values of the ANOVA and ANCOVA tests. A comparison was 
then made to the power values derived by using the Hopkins and Hopkins 
method. By using the power values required for this comparison, it was 
also possible to det ermine the influence of the reliabil-ity of the 
dependent variable on statistical power for the ANOVA and ANCOVA tests. 

FINDINGS: J.t was found that the method developed by Hopkins and Hopkins 
to estimate the stati s tical power of the ANOVA Jnd ANCOVA tests provides 
a aood esti mate \) f oow2 ~·. It v~as also fo<.:nd that as test rel·iability 
in~reases by .l, th ~ statistical power of ANOVA increases by about .06 or 
.07 and the statistical power of the ANCOVA increases by approximately 
.10 or .12 when using the pretest as a covariate. 

RE COt~~~L'F.lJU IONS : 

For ~~est:•archers 

1. Greater c~nphas·is should be placed on developing and using 
highly r·el ·iable depen dent variab1es ·in educational research. 

2. If a covariate with an anticipated cor relation with the 



variate of .5 or more is available~ the ANCOVA test rather than the 
ANOVA test should be considered whenever appropriate. 

3. Statistical power should be estimated routinely in the 
planning phase of behavioral research. 

For Future Studies 

1. Computet· programs to estimate the statistical pOI'Ier of the 
ANOVA and ANCOVA tests should be included in the commonly used computer 
soft'ttal~e packages. 

2. Power charts for .10 level of significance need to be developed 
and included in research textbooks along with .05 and .01 levels of 
significance. 
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Chapter 1 

INTRODUCTION TO THE STUDY 

In 1923, W. A. McCall published How to Experiment in Education. 1 

Two years later, R. A. Fisher published his classic, Statistical Methods 

for Research Workers. 2 These landmark works established the foundation 

for current behavioral research and its methodology. About forty years 

later, Donald T. Campbell and Julian C. Stanley wrote a chapter for the 

Handbook of Research on Teaching. That chapter, 11 Experimental and 

Quasi-experimental Designs for Research on Teaching, 11 quickly became the 

guidebook for those involved in behavioral research and specifically 

educational research. Th-ey stated that the experiment is 

. the only means for settling disputes regarding educational 
pract ice, as the only way of verifying educational improvements, and 
as t he only way of establishing a cumulative tradition in which 
improvements can be introduced without the danger of a faddish dis
card of old wisdom in favor of inferior novelties.3 

Furthermore, Isaac and Michael stated that 11 in educational assessment and 

decision-making, it [research] is the only way to make rational choices 

lw. A. McCall, How~~eriment in Education (New York: 
Macrni 11 an, 1923). 

2R. A. Fisher, Stati stical Methods for Research Workers (1st 
ed.; London: Oliver & Boyd, 1925]: 

3Donald T. Campbell and Julian C. Stanley, 11 Experimental and 
Quasi-Experimental Desi gns for Res earch on Teaching, 11 H a n sJl?._~Q_~ _ _Q_f_Re se~rct!_ 
on Teaching_, ed. N. L. Gage (Chicago: Rand ~kNally, l963T, p. 172. 

1 



2 

between alternative practices, · to validate educational improvements .. , 11 4 

Educational experiments, therefor~ potentially play a significant 

role in educational decision making. Because of this role, the quality 

of these experiments becomes crucial. High quality experiments may lead 

to better educational decisions and a more effective educational process. 

RATIONALE FOR THE STUDY 

In the planning phase of developing quality educational research 

there are several critical decision points. Some of these decisions are 

made to ensure that the research will have adequate statistical power, 

that is, the ability to detect meaningful differences, if they do exist. 

J. K. Brevver stated, "It is almost universally accepted by educational 

researchers that the power of a statistical test is important and should 

be substantial."5 However, according to Brewer, the power of the sta-

tistical tests used in research studies published in the American 

Educational Research Journal as well as other journals in the behavioral 

sciences tends to be dangerously low. 6 This criticism identified a need 

for more attention to the power of statistical tests used in educational 

research. 

In 1973, Kenneth D. Hopkins outlined several methods of increasing 

statistical po·v1er. One method was to increase the reliability of the 

4steven Isaac and William B. Mi chael, Handbook in Research and 
Evaluation (San Diego: Robert R. Knapp, 1972), p. iii. 

5J. K. Brewer, "On the Power of Stati stical Tests in the American 
Educational Resea rch Journ al," American Education Research Journal, IX, 
No. 3 ( 1972), p. 391. 

6Ibid., pp. 394-95. 



criteria or dependent vari ab 1 e·. He commented that: 

Although methods for quantifying the precise effects on power 
of changes in the reliability of the dependent variable are not 
readily available, it is certain that power is increased by a gain 
in reliability of the dependent variable.? 

3 

In an unpublished article, K. D. Hopkins and B. R. Hopkins commented that 

all theoretical and empirical options for increasing statistical power 

had been investigated except for the reliability of the dependent 

variable. In this article they derived a method for estimating the power 

of statistical tests (specifically for the analysis of variance [ANOVA] 

and the analysis of covariance [ANCOVA]) which included the reliability 

of the dependent variable.a 

THE PROBLEM AND ITS SIGNIFICANCE 

The interaction bet\'leen the reliability of the dependent variable 

and power was expressed in theoretical terms by Hopkins and Hopkins. 

This theoretical relationship was based on several mathematical assump

tions and because of these assumptions, an empirical verification of the 

derived relationship was required. 9 The purpose of this study was to 

empirically verify the hypothesized relationship between the reliability 

of the dependent variable and statistical power. Other factors considered 

7Kenneth D. Hopkins, "Research Design and Analysis Clinic: 
Preventing the Number-One Misinterpretation of Behavioral Research, or 
How to Increase Statistical Po\'Jer," The Journal of Specia·l Education, 
VII, No. 1 (1973), p. 106. 

8K. D. Hopkins and B. R. Hopkins, "The Effect of the Reliability 
of the Dependent Variable on the Power of the Analysis of Variance" 
(unpubli shed paper , University of Colorado, Boulder; and University of 
the Pacific, Stockton, 1974), pp. 1-12. 

9 Ibid., pp. 5-12. 



were the sample size, number of groups, the level of significance, and 

the magnitude of the treatment effect . 

Frequently, the educational researcher has either ignored the 

issue of statistical power when conducting research or has been poorly 
. 10 armed to deal with the problem. Several authors have specified tech-

niques for increasing statistical power; however, as previously noted, 

the influence of the reliability of the dependent variable had generally 

not been considered. 

It was hoped that this study would provide adequate information 

so that a researcher could easily identify and maximize the statistical 

4 

power of his ANOVA and ANCOVA tests. If statistical power were estimated 

routinely during the planning phase of research, studies without adequate 

statistical power could be identified. Also, unnecessarily large and 

elaborate studies could be reduced with substantial financial savings and 

still maintain the ability to reject the null hypothesis when it is false, 

that is, adequate statistical power. 11 Specifically, researchers want 

their statistical tests to have high statistical povJer. They also want 

to know the minimum effort required to achieve this level of statistical 

power.l 2 This study focused on the effects on statistical povJer of 

increasing or decreasing the reliability of the dependent variable and of 

varying other relevant parameters concurrently (see Table 1, page 5). 

METHOD 

The method used to accomplish this study involved 11 Monte Carlo;' 

10Brewer, loc. cit. 
12 Ibid., p. 12. 

llu ,. dH k. •t 1 ~~op K lns an op 1ns, op. c1 . , p. . 



techniques. Samples of random numbers were generated by the Burroughs 

B-6700 computer, manipulated, and analyzed by both ANOVA and ANCOVA . 

5 

procedures. This proces~ was repeated one thousand times for each unique 

combination of parameters and the results were accumulated. Systemati-

cally, the relevant parameters were manipulated and the resulting 

statistical power estimated. In Table l, the parameters that were 

varied and their respective minimums, maximums and increment levels are 

i denti fi ed. 

l. 

2. 

3. 

4. 

5. 

Table 1 

Parameters of the Study and Their Minimums, 
Maximums and Increment Levels 

Minimum Maximum 

Reliability of the dependent variable .3 .9 

Sample size 6 100 

Noncentrality parameter 1.0 varies 

Level of significance . 01 . 10 

Number of groups 2 5 

DELIMITATIONS OF THE STUDY 

Increment 
level 

.2 

varies 

varies 

varies 

varies 

This study ~>Jas delimited by the number of cases examined. Since 

it \'JaS impractical to vary every parameter infinitely, the following 

cases were se·l ected because they represented the majority of practical 

upplications: the reliabnity of the dependent variable varied from 0.3 

to 0.9; the sample size varied from 6 to 100; the non-centrality parameter 

increased upward from 1.0; the level of significance varied from 0.01 to 



0.05; and th~ number of groups varied from 2 to 5. 

DEFINITIONS 

The following operational definitions are provided for this 

study. Other definitions will be given in the text as required. 

The 11 degrees of freedom 11 is the number of independent observa
tions. That is, the total number of observations minus the number of 
restrictions on the observations. 13 

The 11 level of significance 11 is the probability of obtaining a 
test statistic that falls within the critical region when the null 
hypothesis is true. 14 

6 

The 11 Monte Carlo 11 technique consists of simulating an experiment 
to deter'ITiine some probabilistic property of a population of objects or 
events by the use of random sampling applied to the components of the 
objects of events. 15 · 

The 11 non-centrality parameter11 ( ~) 16 is: ~ = m:i (lli-11) 2/J 
where n = group sample size, 

mean of group i and i varies 2 
f.!. = aw 

1 from 1 to J, 
)J = grand mean, 
J = number of groups, and 

a~ = within group variance. 

The 11 nuB hypothesis 11 (H 0 ) is the hypothesis of 11 no relationship 
or difference. 11 It is the one actually tested statistically. 

The 11 power 11 of a statistical test is the probability of rejecting 
the null hypothesis when it is false. It is mathematically, a function 
of the degrees of freedom, the level of significance and the 

13Jerome L. Myers, Fundament..zJ~~erirnental Design (2d ed.; 
Boston: Allyn and Bacon, Inc., 1972), p. 82. · 

14Ibid . , p. 48. 

15c. West Churchman, Russel L. Ackoff, and E. Leonard Arnoff, 
}!Lt roduction to Operat ·ions Research (Nevi York: John Wiley & Sons, Inc., 
1957) ' p. l 75. 

16M 't 89 yers, op. c1 . , p. . 

17 Isaac and ~1ichael, op. cit., p. 142. 



7 

non-centrality parameter.l8 

"Reliability" is an index of the consistency between measurements 
in a ser~es. ~he reliability.coeff~§ient tells what proportion of the 
test var1ance 1s nonerror var1ance. 

OVERVIEW 

The purpose of this study was to empirically investigate the 

interaction between the reliability of the dependent variable and the 

statistical power of the analysis of variance and the analysis of 

covariance. The influence of other relevant parameters, namely, sample 

size, non-centrality parameter, level of significance and number of groups 

were considered. This purpose was accomplished by using "Monte Carlo" 

methods and the Burroughs B-6700 computer. Systematically, the relevant 

parameters were manipulated, and the resulting statistical power of the 
' 

ANOVA and ANCOVA procedures estimated. 

---···---
18 Myers, op. cit., p. 49. 
19

J. C. Stanl ey and K. D. Hopk ·ins, Edu ca tion~_l _a nd_fsyc~q_}_Qgica_L 
Meas urement and Evaluation (Englewood Cliffs, New Jersey: Prentice Hall, 
T9 nT~·p-:- 456·~---------



Chapter 2 

REVIEW OF THE LITERATURE 

A purpose of this study, as noted in Chapter 1, was to empirically 

verify the hypothesized relationship between the reliability of the 

dependent variable and statistical power. Statistical power is not a 

well understood phenomena, and consequently, there is a scarcity of pub-

lished research on the topic. The intention of the review of literature 

in this chapter, therefore, was to acquaint the reader with existing 

studies of statistical power, as well as to establish the major opera-

tional concepts required by the study. The sources consulted in this 

review are summarized in Appendix A. 

The first portion of this chapter deals with statistical power 

and its relation to the purpose of the study. An overviev1 of statistical 

power, beginning with the Pearson-Hartley power charts of 1951, 1 is 

presented which emphasizes the concept of statistical power, followed by 

attention to research on ho~t/ reliability (errors of measurement) relates 

to power. The second port·i on of the chapter addressed two major research 

tools, reliability and Monte Carlo methods. These two concepts are 

fundamental to the methodology of the study. 

----------
1 E. S. Peal'son and H. 0. Hartley, "Charts of the Power Function 

for Analysis of Variance Tests, Derived from the Non - Central F
Distribution," Biometrik_5!_, XXXVIII, No. 1 ('1951), 112:-30. 

8 



STATISTICAL POWER 

The first major contribution to the field of statistical power 

was made by E. S. Pearson and H. 0. Har·tley in 1951 when they published 

the analysis of variance power charts.2 From this point on, statistical 

9 

power \vas expressed as a function of sample size, number of groups, level 

of significance, and magnitude of the treatment effect (the non-central-ity 

parameter). Various applications and implications of this approach were 

later expressed in publications about power by J. K. Brewer, 3 J. Cohen, 4 

K. D. Hopki11s, 5 as well as others. 

Since a major purpose in conducting educational research is to 

detect differences betvJeen s<1mpl e groups when a difference does exist, 

high stat~stical power is important to educators. J. Cohen, a leading 

stat1stical power theorist, proposed that .80 should be the minimum level 

of power of statistical tests for research in the behavioral sciences.6 

Unfo r tunately, most research in the behavioral S(ience, has been con-

ducted with power estimates far below the .80 level. For example, Brewer 

surveyed all articles published in the American Educational Research 

2Jbid. 
3a. K. Br·ewer, 11 0n the Power of Statistical Tests in the American 

Educational Research Journal," American f::ducational Research Journar:-U. 
~3(T9nJ,391=-iro~---- ----·----------·--------

4J. Cohen, 11 Approxirnate PO'der and Sample Size Determination for 
Common One-Sample and Two-Sample Hypothesis Tests, 11 Educati~nal an<!_ 

.Psyd::SJlO_?l_f~al_j'~easurement, XXX, No.4 (1970), 811-31. 

\. D. Hopkins, 11 Research Design and Analysis Clinic: Pn:venting 
the Number-One Misinterpretation of Behavioral Research, or How to 
Increase Statistical PO\'Jer," The Journal of Soecial Education, VII, 
No. 1 (1973), 105-6. ------~ 

6cohen, op. cit., p. 825. 
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Journal froni November 1969 to May 1971. He studied the power of the 373 

statistical tests which were reported as statistically significant and 

found that the average power values for 205 F and t tests were .13, .47, 

and .73 for small, medium, and large effect sizes. 7 Although these 

studies did report significant differences, the probability of discovering 

these differences was low and below Cohen's .80 level of adequate power. 

An Overview of Statistical Power 

Statistical power is a complex phenomenon to understand. Con-

ceptually, statistical power is "the probability of detecting a 

[specified] difference in sample values when indeed the difference exists 

at some level in the population," 8 that is, the probability of rejecting 

the null hypothesis, when there is a difference. Power can be represented 

graphical1y as the shaded area in Figure 1, page 11. 

Computationally) power can be estimated by a two step process. 

First the non-centrality parameter (cJ>) is computed and then the po\'1er 

value is read from the Pearson-Hartley power charts using the appropriate 

degrees of freedom and level of significance. 

Methods to increase statistical pm'ler have been outlined by 

various authors. K. D. Hopkins presented several ways to increase power 

such as, increasing the total n, relaxing the level of significance, 

7Brewer, op. cit., pp. 394-95; see also J. Cohen, "The Statistical 
Power of Abnormal Socia.l Psychological Re search," Journal of Abnormal and 
So cial Psycholo_gt_, LXV, No. 1 (1962), 145-53; see also R. F. Haase, "Power 
J\n alys·is in Research in Coun selor Education, 11 Coun se l or Education and 
Supe-rvi s ion, XIV, No. 2 (1974), 124-32; see also B-:---J. Jones and J. K. 
Brewer.-''An /\nalvsis of the Power of Sta tistical Tests Reported in the 
'Research Qua r t erly','' The Resear·ch Quarterly, XLIII, No. 1 (1972), 7-15. 

8Haase, op. cit., p. 126. 
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treatment effect, yet the probabi 1 ity that 
H0 will be rejected is only .5. 

9Hopk i ns , op. cit., p. 104. 
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making a directional hypothesis (use a one-tailed test), using a more 

efficient experimental design, increasing the potency of the treatment, 

and increasing the reliability of the dependent variable. He also 

indicated that all theoretical and empirical options for increasing sta

tistical power had been investigated except for the reliability of the 

dependent variable. 10 

The Influence of Test Reliability 
on Power 

Traditionally, statistical procedures were developed for models 

where the variables were assumed to be free from the errors of measure

ment.11 Specifically, discussions of statistical power implicitly assumed 

that the observations were errorless or 11 true 11 measures. 12 Unfortunately, 

most educational research involves the measurement of variables with con-

siderable error. In 1958, J. P. Sutcliffe indicated that measurement 

error does in fact decrease statistical power.l3 However, he gave no way 

to assess this loss of pm'ler. The reliability of the dependent variable 

is inversely related to the errors of measurement. 14 Consequently, the 

lOHopkins, op. cit., pp. 105-6. 

11 A. C. Porter, How Error of Measurement Affect ANOVA, 
Regression AQalysis, ANCCfVA an~ __ Faq_oJ:_Anal~is. U.S. Educational 
Resources Info rmation Center, ERIC Document ED 050 172, ,January, 1971, 
p. 23. 

12T. A. Cleary and R. L. Linn, 11 Error of t~easurement and the 
Pm·1er of a Statistical Test, 11 British Journal of Mathematical and 
Statistical _p~vchology, XXII, No. l TEf69)-:-49. 

13J. P. Sutcliffe, 11 Error of Measurement and the Sensitivity of 
a Test of Significance, 11 _Psychometrika, XXIII, No. 1 (1958), 9. 

14J. C. Stanley and K. D. Hopk·ins, Educatj_~nal~I_1j_PsychoJQg_ica]_ 
Measurement and Evaluation (Englewood Cliffs, New Jersey: Prentice Hall, 
1972")~-ilS-.-
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reliability of the dependent variable must also affect power. 

Various approaches have been used to augment power by increasing 

the reliability of the dependent variable. In 1969, T. A. Cleary and 

R. L. Linn developed a cost model for the F-test and provided a procedure 

to optimize power by varying the number of subjects and the test length.l5 

Since the length of a test directly influenced the test•s reliability, 

this was one of the first studies to hint at the influence of the 

reliability of the dependent variable on power. In 1973, K. D. Hopkins 

indica ted that methods for quantifying the precise effects of changes in 

the reliability of the dependent variable on statistical power were not 

readily available. 16 In an unpublished article written in 1974, Hopkins 

and Hopkins addressed this problem . In this article they derived formulas 

for estimating the non-centrality parameters and, consequently, the power 
\ 

of the ANOVA and ANCOVA statistical tests which were a function of test 

re 1 i ab il ity. 1 7 

Hopkins and Hopkins Methods 

The methods developed by Hopkins and Hopkins to estimate the 

power of the ANOVA and ANCOVA tests as a function of reliability required 

a reformulation of the computation of the non-centrality parameter. For 

the ANOVA , a non-centrality parameter ( .:pA) is computed as a function of 

the reliability of the depencent variable (rxx) and the non-centrality 

----- --- -----
15cleary and Linn, op. cit., pp. 49 - 50. 

16Hopkins~ op. cit., p. 106 . . 

17K. D. Hopkin s and B. R. Hopkins, 11 The Effect of the Reliabi"lity 
of th e De pendent 1/ari abl e on th e Power of the Analysis of Variance 11 

(unpublished paper , University of Colorado, Boulder; and University of 
the Pacif ic , Stockton, 19/4), pp. l ·-12. 
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parameter for perfect test reliability (~ 1 . 0 ). Specifically, the formula 

for cpA is: 

where rxx = the reliability of the dependent variable, 

2 
J at 

n = group sample size, 

(That is, the non-centrality parameter 
assuming perfect reliability of the 
dependent variable.), 

a 2 = a .2_ a 2 where a 2=0 
t w e ' e · ' 

J = number of groups, 

~i =mean of group i, and 

~ = grand mean. 18 

After the non-centra 1 ity parameter (~A) is computed, the regular procedures 

for estimating power are applied. That is, the derived non-centrality 

parameter is used with the Pearson-Hartley power charts to estimate power. 

The non-centrality parameter for the ANCOVA test was based on the 

follovling computational formula: 

~c{l; 
where rxy =the correlation behveen the variate and covariate (frequently 

the covariate is the pretest and the variate is the posttest), 

and 

<i>A = the non-centrality parameter for the ANOVA test at a specific 

reliability level.l9 

18Ibid., p. 6. 19 Ibid., p. 11. 
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During the derivation of the formulas for the non-centrality 

parameters for the ANOVA and ANCOVA, several assumptions were necessary. 

Most of these assumptions were the common assumptions required for the 

ANOVA and ANCOVA tests such as, normally and independently distributed 

observations, and homogeneity of variance. However, in order to make the 

non-centrality parameter a function of the reliability of the dependent 

variable, an additional assumption was required. 

One of the complex formulas required in order to derive *A and 

*c was: 

[ 
J ( n-1) ] 

E (F)= J (n-1)-2 

This formula was then viewed as two factors, 

J ( n-1) 
factor A= J (n-l)- 2 , and factor B = 1 + 

As nJ (where n is the number of observations per group and J is the 

number of groups) became larger, factor A approached one (factor, B was 

not similarly affected). The additional assumption Hopkins and Hopkins 

invoked was that as nJ approached infinity, factor A approached one. 

Consequently, the formula for E (F) approximated factor B only as 

reflected in the formula: 

E (F) = 1 + 
aw2 (J-1} 

Hopkins and Hopkins indicated that this approximation was at most a 2 per-

cent underestimate for nJ greater than 100. But when n and J were not 

large, the error in the formula was greater. For example, if n=ll and 

J=4s factor A would be 1.05 which is a 5 percent error from the assumed 

Vil.iue of 1.00. 
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Consequently, because of this assumption which was required to 

make the non-centrality parameters for ANOVA and ANCOVA functions of the 

reliability of the dependent variable, the validity of the formulas was 

in question for small n and J. Therefore, an empirical investigation of 

the power of th~ ANOVA and ANCOVA test for small n and J became desirable. 

Since the reason for deriving the new non-centrality parameters was to 

account for the influence of test reliability on power, varying relia-

bility values needed to be investigated concurrently. 

RESEARCH TOOLS 

There ate two major research tools which the reader needs to 

understand in order to adequately visualize the methodology of the study. 

They are reliability and the Monte Carlo method. This portion of the 

review of the litetature was developed to introduce these basic concepts 

and, consequently, does not purport to represent a review of the gamut of 

literature available on these research topics. 

A concise definition of the reliability of a measure offered by 

Stanley and Hopkins is, 11 reliability ... is that proportion of the 

total variance which is true variance. 11 Symbolically, reliability (rxx) 

equals the ratio of true variance (a/) and total variance (a}). 20 

This definition of reliability is standard among textbooks and periodical 

literature and will be used in this study. 

20stenley and Hopkins$ op. cit., p. 119. 
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The Monte Carlo method , is a scientific procedure for simulating 

an experiment a~d evaluating the results under prespecified conditions.21 

The increased use of computer simulations in problem solving has resulted 

in the development of the Monte Carlo technique in business, social 

science and education.22 

Churchman sa1d: 

In essence, the Monte Carlo technique consists of simulating 
an experiment to determine some probabilistic property of a 
population of objects or events by the use of random sampling 
applied to the components of the objects or events.23 

He further noted that one of the most practical uses of the Monte Carlo 

method was to obtain approximate evaluations of mathematical expressions 

which are built on probab_ility distributions. His statement in this 

regard is particularly relevant to establishing a rationale for using the 

technique in the current study. 

A recent Monte Carlo study by A. C. Porter investigated the 

effects of sample size, the reliability of the covariable and other 

parameters upon the ANCOVA test.24 His research task was to empirically 

compare Lord's U statistic with the conventional analysis of covariance 

for varying levels of reliability and sample size. Porter's use of Monte 

Carlo procedures further validates the appropriateness of these pro

cedures for this study. 

2lc. West Churchman, Russel L. Ackoff, and E. Leonard Arnoff, 
l'l~2.iuction to Operations Res_~arch (New York: John \•Iiley & Sons, Inc., 
1957), p. 12. 

2 2 I b i d . , p . 1 84 . 23 Ibid., p. 175. 

24A. C. Porter, 11 The Effects of Using Fall·ible Variables in the 
Analysis of Covariance 11 (unpublished Ph.D. dissertation, University of 
Hisconsin, 1967), p. 39. 
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SUMMARY 

A review of literature revealed significant advancement in the 

study of statistical power beginning with the appearance of the 1951 

Pearson-Hartley power charts. Pearson and Hartley succeeded in describing 

power for the analysis of variance as a function of sample size, number 

of treatment groups, level of significance, and treatment effect (non

centrality parameter). 

The lack of use of current knowledge about statistical power to 

improve educational research has been of concern to some researchers. 

Jacob Cohen, an authority on statistical power, has suggested that 

behavioral research should possess power of at least .80. However, James 

Brewer and others discovered that studies in the behavioral sciences 

have had poVJer far less than .80. 

The literature indicated that several scholars were interested 

in pursuing the study of statistical power beyond its traditional model 

where the variables were assumed to be free of errors of measurement. 

Sutcliffe, in 1958, demonstrated that measurement error does in fact 

decrease statistical power. In 1969, Cleary and Linn offered a cost 

model for maximizing the benefits of the F-test by considering the 

effects of varying test length, which, of course, is known to be directly 

related to test reliability . As recently as 1974, Hopkins and Hopkins 

addressed the problem of test reliability and statistical power. They 

developed a method for new non-centrality parameters for ANOVA and ANCOVA 

v1hich v1ere a function of test reliability. However, the new method 

required an additional assumption about the non-centrality parameter 

which resulted in a threat to the validity of the formulas for small n 
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and J. Consequently, an empirical investigation of the approach using 

Monte Carlo methods became desirable. The literature review also included 

the basic concepts of test reliability and Monte Carlo methods. 



Chapter 3 

PROCEDURES 

The procedures for this study involved three major steps. The 

first step was to determine the power of ANOVA and ANCOVA from Pear~on

Hartley power charts based on the Hopkins and Hopkins formula for the 

non-centrality parameters for fallible measures (The Formula Method). 

The second step involved the determination of the power of ANOVA and 

ANCOVA using a Monte Carlo simulation method (The Monte Carlo Method). 

The final step required the comparison of the power of ANOVA and ANCOVA 

derived from step 1 and step 2 to determine the validity of the Hopkins 

and Hopkins formula approach {Comparison of Methods). 

THE FORMULA METHOD 

A principal task of this study was to compare the power values 

resulting from the Hopkins and Hopkins formula method for determining the 

non-centrality parameter for fallible measures to the po\'/er values 

resulting from a Monte Carlo computer simulation method. Therefore, 

estimates of statistical power for the ANOVA and ANCOVA F-tests based on 

the Hopkins and Hopkins method needed to be determined. 

Estimating the power of ANOVA and ANCOVA test from the 1951 

Pearson-Hartley po\'/er charts required the deterrni nat ion of severa 1 sta

tistical parameters . These parameters were: level of significance (a), 

numerator degrees of freedom (df1), denominator degrees of freedom (df2), 

20 
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non-centrality parameter for infallible measures (~ 1 ; 0 ), reliability of 

the dependent variable (rxx), non-centrality parameter for ANOVA for 

fallible measures (~A), non-centrality parameter for ANCOVA for fallible 

measures (¢c), and the correlation between the covariate and the variate 

(rxy). These parameters are explained further in Table 2, page 22 and 

Table 3, page 23. 

The following steps were used in estimating the power values for 

the ANOVA test. For each unique set of parameters: 

1. <!>1.o was computed (in this study, this value was assigned). 

2. ~A was computed from ~1.0 and rxx· 

3. Power was estimated from the Pearson-Hartley power charts 

using ~A' a, df1, and df2 for the ANOVA test. 

For the ANCOVA test, the following steps were employed in estimating the 
' 

power values: 

1. ~A was computed from <1> 1.0 and rxx for ANOVA. 

2. <~>c was computed from ¢A and rxy (for this study, 

rxy = r xx). 

3. Pow~r was estimated from the Pearson-Hartley power charts 

. using <l>c, a , df1, and df2 for the ANCOVA test. 

The power values obtained through this process were subsequently used to 

illustrate the relationship between reliability and statistical power for 

the ANOVA and ANCOVA tests. 

THE MONTE CARLO METHOD 

According to Kerlinger: 

A Monte Carlo procedure is an empirical study of statistics 
using random numbers. In the behavioral sciences, t he term Monte 
Catlo is usually applied to an elllVir·ica·l study of sorne method or 



Parameter · 

a 

dfl 

df2 

<~>i.o 

rxx 

¢'A 

Table 2 

Parameters Required in Order to Use the Pearson-Hartley Power Charts 
to Estimate Power for the Analysis of Variance (ANOVA) 

Definition 

Level of significance 

Degrees of freedom for the 
numerator of the ANOVA 
F-test 

Deg rees of freedom for the 
denominator of the ANOVA 
f-test 

Non-centrality parameter 
assuming perfect reliability 
of the dependent .variable 
(i.e. ,ae2 = 0) 

Reliability of the dependent 
variable in the ANOVA 

Non-centrality Parameter for 
the ANOVA, as a function of 
reliability of the dependent 
variable (i.e., ae2 = 0) 

How determined 

Arbitrarily fixed: a= .10, a= .05, a= .01 

df1 = J - 1 where J = number of groups. For example, J = 2, 
dfl = 1. 

df2 = N - J where N = the total number of observations in 
the ANOVA. For example, N = 12, J = 2, df2 = 10. 

. - ( n Ei ( J.li-J.l) 2 

4>1.0 -,1 J CJt2 

(If J, aL2, and n are held constant, 
and ~ 1.0 is increased, this repre
sents a greater treatment effect of 
difference between means) 

where J.l; = treatment group mean, 

J.l = grand mean, 

at2 = within group variance for the ANOVA when ae 2=0, and 

n = number per group. 

at2 
rxx - a 2 w 

4>A = 4>LO p;;: 
\j 

N 
N 
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a 

dfl 

df2 

rxy 

9c 

Table 3 

Parameters Required in Order to Use the Pearson-Hartley Power Charts 
to Estimate Power for the Analysis of Covariance (ANCOVA) 

Definition 

Level of significance 

Degrees of freedom for the 
numerator of the ANCOVA 
F-test 

Degrees of freedom for the 
denominator of the ANCOVA 
F-test 

Correlation between the 
covariate and variate in 
the ANCOVA 

Non-centrality parameter 
for the ANCOVA as a function 
of the reliability of the 
dependent variable. 

How determined 

Arbitrarily fixed: a= • 10, a= .05, a= .01. 

df1 = J - 1 where J = number of groups. For example, 
J = 2' dfl = 1. 

df2 = N - J - l where N = total number of observations in 
the ANCOVA. For example, N = 12, J = 2, df2 = 9. 

For this study, rxy = rxx where rxx is the reliability of 
the dependent variable. 

cJ>A 
cJ>c = 

j 1- 2 rxy 
where cJ>A is the non-centrality 
parameter for the ANOVA for 
rxx = rxy· 

N 
w 
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model that a scientist wishes to explore. 1 

Since this study involved an empirical verification of a statistical 

method, the Monte Carlo procedure was considered appropriate. As noted 

in Chapter 2, this procedure was used in other studies which involved a 

simulation of various aspects of the ANOVA and ANCOVA statistical tests. 

In this study, a computer simulation model was developed using 

Monte Carlo procedures. This computer program was written and partially 

tested by B. R. Hopkins at the University of the Pacific. As a part of 

this study, this computer program was further tested and the various com-

puter runs accomplished. The computer used for this investigation was 

the Burroughs B-6700 model and the language used was FORTRAN IV. A copy 

of the computer program is in Appendix B. 

In general terms, the computer program randomly selected ten 

numb ers be tween zero and one for sma 11 groups and fout numbers between 

zero and one for large groups. The arithmetic mean was taken and the 

resulting value was used as an observation for a group. This process was 

used so that the within group observations would approximate a normal 

distribution by the Central Limit Theorem. 2 At this point, error factors 

were systematically added to each observation according to usual Monte 

Carlo procedures so that after J groups of n observat ions each were 

generated, the groups approxima t ed the desired ch aracteristics under 

study. That is, they had, on the ave rage, the required level of reli

ability, and the required non-centrality parameter value. For cases with 

1F. N. Kerlinger, lOJ.!mLa..ti.Qn.s_Qf_B.JiliQyipn.LResearch. (2d ed.; 
New York: Holt, Rinehart and W·inston, 1973), p. 204. 

2Ibi d. , p. 207. 
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more than two groups, the distance between adjacent means was approxi-

mately the same. Next, the ANOVA and ANCOVA statistical tests were 

conducted and the decisions (reject the null hypothesis or do not reject 

the null) were recorded for the three levels of significance, which were 

.10, .05, and . 01. This process of randomly selecting numbers, adjusting 

them according to Monte Carlo procedures, conducting ANOVA and ANCOVA 

statistical tests, and recording the results of these tests was repeated 

1,000 times for each unique set of parameters (J, n, ~ 1.0' a , rxy' rxx). 

One thousand replications was determined to be adequate and an accepted 

procedure based on two previously conducted Monte Carlo studies inves

tigating the power of statistical tests. 3 

The number of times the null hypothesis was rejected at the 

various levels of signifi~ance for each unique set of parameters was 

recorded. The proportion of rejections of the null hypothesis out of 

1,000 chances for the ANOVA and ANCOVA tests were used as estimates of 

statistical power. 

COMPARISON OF METHODS 

The strategy used in th i s study to compare the power values 

derived from t he Hopkins and Hopkins Formula Method with the power values 

deri ve d from t he Monte Carlo Method invol ved a graphic comparison pro-

cedure. This procedure was selected pri ma rily because it would 

3A. C. Porter, "The Effects of Us ing Falli bl e Vari abl es in the 
Anal ys i s of Covariance" (un pub li shed Ph.D . di ssertat ion, Univers ity of 
\IJi scons in, i 96 7) ~ p. 46 ; see also F. B. Baker and R. 0. Colli er , Jr., 
"Some Emp i ri cal Results on Vu ri ance Rat ·ios Un de r Permutati ons in the 
Comp l et ely Ra ndomi zed Des i gn, " Jo urn al of t he Ameri can Stat ·istical 
~~~-so ~J at t on , LX l , No . 5 ( 1 9 6 6) , - 81 8 .---
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demonstrate to \oJhat extent the data from the Formula Method approximated 

the data derived from the Monte Carlo Method. 

Graphs were created using power estimates from both Methods. In 

these graphs, power was presented as a function of test reliability. 

Separate graphs were created for ANOVA and for ANCOVA comparisons. 

SUMMARY 

A purpose of this study was to empirically verify the Methods to 

estimate statistical power for the ANOVA and ANCOVA tests developed by 

Hopkins and Hopkins. The procedures used to accomplish this task 

involved three phases. 

The first phase was to outline the steps required to estimate the 

statistical power of the ANOVA and ANCOVA F-tests using the Hopkins and 

Hopkins formula method. This method involved the comp~tation of non

centrality parameters for the ANOVA (¢A) and ANCOVA (¢c) and the 

estimations of power based on the Pearson-Hartley power charts. 

In the second phase, the general procedures of the Monte Carlo 

method were explained. In brief, a computer program was used which 

simulated the conditions and parameters of ·interest in this study. As 

a result of this simulation, power values were generated for the ANOVA 

and ANCOVA tests. 

A comparison of the power estimates resulting from these two 

methods v1as required in order to determine the accuracy of the formula 

method developed by Hopkins and Hopkins. The method chosen was the 

graphic comparison method. 



Chapter 4 

FINDINGS 

This chapter is divided into four sections. The first section 

contains the power estimates and non-centrality parameter values for the 

ANOVA and ANCOVA tests based on the Hopkins and Hopkins Formula Method. 

The second section contains the power estimates for ANOVA and ANCOVA 

based on the Monte Carlo Method. Graphs comparing the results of both 

methods are presented in the third section. Conclusions and observations 

based on the data presented in sections one through three are summarized 

in the final section. 

RESULTS OF THE FORMULA METHOD 

Arithmetic procedures for the Hopkins and Hopkins Formula Method 

were outlined in previous chapters. In capsule form, for the ANOVA test, 

a ~l.O is assigned and ~A is computed for a specific rxx· This ~A value 

is used with the Pearson-Hartley power charts along with the appropriate 

J, n, and a level to estimate power. 

Power estimates for the ANCOVA test require the computation of 

~C which is a function of ~A and rxy (correlation b~tween variate and 

covariate). This ~C value is used with the Pearson-Hartley power charts 

to estimate the power of the ANCOVA for each specific J, n. and a. 

ANOVA Tables . 

The computed ~A values are presented in Table 4, page 28. The 

27 



Table 4 

Selected Non-Centrality Parameter Values (~A) Based on the Formula* 
Developed by Hopkins and Hopkins for the ANOVA Test 

~A Values 

Re 1 i ability of 
dependent variable 

( r XX} ~1. o=l. s ~ 1 . 0=2.o ~1.0=2.5 

.3 . 82 1.10 l. 37 

.4 .95 1.26 1. 58 

.5 1.06 1. 41 1. 77 

.6 1.16 1.55 1. 94 

.7 1. 25 1.67 2.09 

.8 1. 34 1. 79 2.24 

.9 1. 42 l. 90 2.37 

*~A= ~l.O F 

28 
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~l.O values were selected to provide a basis of comparison with the • 1. 0 

values used by the Monte Carlo Method. Reliability values from .3 to .9 

with intervals of .1 were used so that when the resulting ¢A values were 

used to estimate powers the curves created would be fairly smooth. 

Estimates of the statistical power of the ANOVA test for two 

groups are presented in Table 5s page 30. The ¢1.0 values of 2.0 and 2.5 

were chosen because ~ for a=.05, th e Pearson- Hartley power charts start at 

1.0. The • l.O value of 1.5 was not selected because, as can be observed 

from Table 4s not all ~A values were above the minimum 1.0 required for 

the power charts. Since a purpose of comput ing the •A values was to 

later graph the power estimatess only • l.O values with ¢A values all 

above 1.0 were selected, that iss •1.0 values of 2.0 and 2.5 only. For 

b-10 groups and a=.Ol, th e Pearson-Hartley pov4 er charts start at 2.0. 

Thel'efo re, no power values were estimated for two groups with a=.Ol. 

Powe r estimates for three and five groups are offe red in Tabl es 

6 and 7s pages 31 and 32. For groups of three or more, the Pearson

Hartley power charts begin at 1.0 for a'=.05 and a=.Ol, therefores power 

estimates were made for •1.o=2.0 and • l.o=2.5 with a=.05 and a=.Ol. The 

degrees of freedom chosen for all cases were selected to provide power 

estimates to correspond to the J (number of groups) and n (number per 

group) used in the Monte Carlo Method. 

It can be obser-ved from Table 5s that as test re.liability 

increases, so does statistical power. It can also be noted that power 

increases as th e number pe~ group and degrees of freedom increases. How

ever, the reader must keep in mind that these findi ngs are for the 

specific cases wh ere n=lO, 30, or 100 and wh ere ~ l.O equJ ls either 2.0 

or 2. 5. 



Table 5 

Esti ma tions of the Statistical Power of the ANO VA Test for Two Groups Based on the 
Hopkins and Hopkins Formula for ¢A and the Pearson-Hartley Power Curves 

Power for ¢1.0=2.0 Power for ¢1.0=2.5 

df=(l,lO) df=(l,30) df=(l '198) df=(l,lO) df=(l,30) df=(l,l98) 

n=6 n=l6 n=lOO n=6 n=l6 n=lOO 
Re 1 i abi1 ity of ' 

dependent variable 
( rxx) a.=.05 a.=.05 a.=.05 a.=.05 a.=.05 a.=.05 

.3 .30 . 31 .33 .42 .47 .49 

.4 .38 . 41 .43 .53 .58 .61 

.... .43 .49 . 51 .62 .68 • 70 • o 

.6 .50 .57 .59 . 70 . 76 . 79 

. 7 .56 .63 . 65 . 76 . 82 . 84 

.8 .63 .69 .72 .82 .87 . 89 

.9 .68 . 74 .77 . 85 .90 .92 

w 
0 



Table 6 

Esti mations of the Statistical Power of the ANOVA Test for Three Groups Based on 
the Hopkins and Hopkins Formula for <PA and the Pearson-Hartley Power Curves 

Power for ~ 1 . 0=2.0 Power for ~ 1 . 0=2.5 

df=(2,9) df=(2,30) df=(2,9) df=(2,30 ) 

n=4 n=11 n=4 n=ll 
Re 1 i ability of 

dependent variable 
( r XX) a.=.05 a.=.Ol a=.05 a.=.01 a.=.05 a=.Ol a.=.05 a.=.01 

.3 .29 0 10 0 34 . 13 .41 017 .50 .26 

.4 .38 0 13 .45 .21 .52 .25 .63 0 38 

.5 .43 . 19 .54 .29 .62 0 31 .73 .50 

I" .52 .23 .63 .37 .72 .40 0 82 .60 .o 

.7 .57 .29 .68 .43 .78 .47 .88 .68 

.8 .64 0 32 .78 0 51 .84 .55 .93 0 76 

.9 0 70 .38 0 81 .57 .88 .60 .95 0 82 

w ..... 



Table 7 

Estimations of the Statistical Power of the ANOVA Test for 
Five Groups Based on the Hopkins and Hopkins Formula 

for ~A and the Pearson-Hartley Power Curves 

32 

Power for ~ 1 . 0=2.0 Power for ~ 1 . 0=2.5 

df=(4,10) df=(4, 10) 

n=3 n=3 
Re 1 i abi 1 i ty of 

dependent variable 
(rxx) a=.05 a=.01 a=.05 a=.01 

.3 . 30 .10 .47 . 19 

.4 .40 . 15 .60 .29 

.5 .50 .21 . 70 .38 

.6 .58 .25 . 80 .48 

• 7 .65 .32 .86 .56 

.8 .72 .40 .91 .65 

.9 .78 .45 .93 • 72 
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As test reliability increases from .3 to .9, the average increase 

in pmver for the data provided in Table 5, is .42. It can also be 

observed from Table 5, that with high test reliability, small samples can 

provide the basis for experiments with adequate power. An example of 

this is ~l.o=2.5, n=6, a=.05, rxx ~.8 where the resulting power is 

greater than .80. Another observation is the increase in power as ¢1.0 

increases from 2.0 to 2.5 (when J, n, a, rxx are held constant and ~1.0 

is incrensed, ¢1.0 reflects an increase in treatment effect, that is, a 

greater difference between treatment group means). For ex amp 1 e, for J=2, 

n=l6, a=.05 and rxx=.6, power changes from .57 to .76 as <Pl.O increases 

from 2.0 to 2.5. 

In Table 6, page 3ls the power estimates for three groups with 

h~o sample sizes, 4 a~1d ll are presented. It can be observed that the 

level of s ignificance (~ ) influences power. That is, as a increases from 

.01 to .05, power increases. For the samples provided, power increases 

an average of .25 as a goes from .01 to .05. It can also be observed that 

test reliability influences p01ver. As test reliability increases from .3 

to .9, power increases an average of .45 for a=.05, and an average of .43 

for a=.Ol for the samples provided in Table 6. It should be noted, 

howevet, that these observations are restricted to a=.05 and a=.Ol, 

and for n=4 and n=ll. 

Power estimates based on the Formula Method for five groups are 

presented in Table 7, page 32 . To correspond with the Monte Carlo data 

for five gro~ps, the power for n~3 with ¢1. 0=2.0 and ¢1.0=2.5 was esti

mated. As was observed in Tables 5 and 6, as a increases from .01 to .05, 

pov1c:r is a.usvn~n te d. Also, as reliability varies from .3 to .9 power 

in creas es. For· e:-:ample, as reliabi"lity goes from .3 to .9, for <P l.o=2.5, 
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n"-'3, and a=.Ol, power increases from .19 to . 72. 

ANCOVA Tables 

The non- centra 1 ity parameters for ANCOV,L\. ¢r, are presented in 
\, 

Table 8, page 35, for varying ¢l.O values. For this study, rxy=rxx' that 

is, the correlation between the variate and the covariate was set equal 

to test reliability. For Tables 9, 10, and ll, pages 36, 37, and 38 

respectively, ~ l.O values of 2.0 and 2.5 are used because the correspond

ing ¢c values from Table 8 were not all above 1.0 for ¢1.0 values less 

than 2.0. 

In Table 9, page 36, the power estimates for ANCOVA for two groups 

with sample sizes varying from 6 to 100 are presented. Power estimates 

for a=.05 are provided. It can be noted that power increases as sample 

size (n) increas es. This finding is consistent with known relation-

ships between sample s i ze and pov1er. It can also be noted that power 

inc reases as th e corrt.·h .tion betwe<~ n the variate and the covariate 

increases. For example, as rxy and rxx vary from .3 to .9, power 

increases from .30 to .90 for a~.C5, n=G, and ¢l.o=2.0. As was pre

viously indicated, power of .80 or greater is desirable in the behavioral 

sciences. From Table 9 it can be observed that even for n~6, power of 

.83 is obtained with rx/'· 7 for a.=.05 and <1>1. 0=2.0. When ¢1.0 is increased 

to 2.5, rxy of only .6 is required to obtain a power value of .87. 

Estimations of the statistical power of the ANCOVA test for three 

groups are presented in Table 10, page 37. As has been noted previously, 

pm<Jer in creases as n, a , rxy• and ¢1.0 increase. Increasing one or more 

po. rarnete rs can d iange the power estimate from below .8 to above the 

dc- :. i ~ ·ed nrinhnum .8 va.1ue . For example, for n==4, 1>1.o=2.0, rxy=.7, the 



Table 8 

Selected Non-Centrality Parameter Values (~c) Based 
on the Formula* Developed by Hopkins and 

Hopkins for the ANCOVA Test 

Correlation between 
variate and covariate 

where rxy=rxx 
( rxy) 

. 3 

.4 

. 5 

.6 

. 7 

.8 

.9 

.86 

1.04 

l. 22 

1.45 

2.33 

3.26 

4>C Values 

1/>1.0=2.0 

l. 15 

l. 37 

1.63 

l. 94 

2.34 

2.98 

4.36 

*Oc = ;;!;;· where rxx = rxy 

1.44 

1.72 

2.04' 

2.43 

2.93 

3.73 

5.44 

35 



Table 9 

Estimations of the Statistical Power of the ANCOVA Test for Two Groups Based on the 
Hopkins and Hopkins Formula for <Pc and the Pearson-Hartley Power Charts 

Power for <P1. 0=2.0 Power for <P 1.0=2.5 

df=(1,9) df=(l,29) elf=( 1 '197) df=(l,9) df=(l,29) df=(1,197) 

Correlation between n=6 n=16 n=lOO n=6 n=l6 n=lOO 
variate and covariate 

where rxy=rxx 
(rxy) a=.05 a=.05 a=.05 a=.05 a=.05 a=.05 

.... . 30 .33 .38 .44 . 51 .53 . ~ 
.4 .40 .48 .50 .57 .66 .68 

. 5 .53 .62 .64 . 71 .78 . 81 

.6 .67 . 75 .78 .87 .91 .93 

. 7 . 83 . 89 .91 .95 .98 .98 

.8 .96 .98 .99 .99 .99 .99 

a .99 .99 .99 .99 .99 .99 •-' 

w 
0\ 



Table 10 

Estimations of the Statistical Power of the ANCOVA Test for Three Groups Based on 
the Hopkins and Hopkins Formula for ~C and the Pearson-Hartley Power Charts 

Power for ~ 1 . 0=2.0 Power for ~ 1 . 0=2.5 

df=(2,8) df=(2,29) df=(2,8) df=(2,29) 

Correlation between 
variate and covariate 

where rxy=rxx 

(rxy) 

. 3 

.4 

.5 

.6 

.7 

.8 

• 9 

n=4 

a=.05 

. 30 

. 40 

.55 

. 70 

. 86 

. 97 

.99 

n=ll 

a=.01 a=.05 a=.Ol 

. 10 . 33 . 12 

. 15 .49 .23 

.25 .65 .40 

.38 .82 .59 

.55 .95 .80 

. 82 .99 .97 

.99 .99 .99 

n=4 n=l1 

a=.05 a=.01 a=.05 a=.01 

.43 . 18 .55 .28 

.60 .28 .71 .49 

.72 .40 . 86 .63 

.88 .60 .96 . 85 

.97 .79 .99 .97 

.99 .96 .99 .99 

.99 .99 .99 .99 

w 
""""' 



Table 11 

Estimations of the Statistical Power of the ANCOVA Test for 
Five Groups Based on the Hopkins and Hopkins Formula 

for ~C and the Pearson-Hartley Power Charts 

38 

Power for ~ 1 . 0=2.0 Power for ~ 1 . 0=2.5 

df=(4,9) df={4,9) 

Correlation between n=3 n=3 
variate and covariate 

where rx)=rxx 
(rxy a=.05 a=.01 a=.05 a=.Ol 

. 3 .30 .08 .48 . 19 

.4 .42 . 12 .63 .30 

.5 .58 .26 .78 .44 

.6 .74 .40 .92 .65 

.7 . 89 .60 .98 . 84 

.8 .99 .86 .99 . 98 

.9 .99 .99 .99 .99 
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power for a=.Ol is estimated as .55 but the power for a=.05 is an accept

able .86. As rxy varies from .3 to .9 for ~ 1 . 0=2.0, n=4, and a=.Ol, 

power increases from .10 to .99. As n goes from 6 to 100, the increase 

in power as shown in Table 10 is a maximum of .25. For three groups with 

only 11 per group, a=.05, and ~ 1 . 0=2.5, rxy of only .5 can provide the 

basis for an experiment with power estimated at .86. 

In Table 11, page 38, the power estimates based on the Hopkins 

and Hopkins formula for ANCOVA for five groups with a sample size of 3 

are presented. As was observed for previous cases, power becomes greater 

as ~l.O' rxy' and a increase. It can be noted that even for n=3, an 

experiment with adequate power can be conducted \'tith rxy of .6 or greater. 

RESULTS OF THE MONTE CARLO METHOD 

In order to examine and verify the formulas developed by Hopkins 

and Hopkins to estimate the statistical power of the ANOVA and ANCOVA 

test, a computer program using Monte Carlo procedures was used. Data 

resulting from this computer program were generated for the parameters 

relevant to this study and were summat'ized in Tables 12 through 17, pages 

40 through 45. 

ANOVA and ANCOVA Tables 

Power values for ANOVA and ANCOVA for two groups with cpl. 0 varying 

from 1.0 to 2.5, a. varying from .01 to .10, rxx varying from .3 to .9, 

and n varying from 6 to 100 are in Tables 12 and 13. Power values with 

three significant digits are provided since the number represents the 

number of times the null hypothesis was rejected out of 1000 trials. 

As can be observed from Tables 12 and 13, for both the ANOVA and 



Table 12 

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Two Groups 
Based upon the Monte Carlo Simulation for ~1.0 Equal to 1.0 and 1.5 

<~>1.o=1.o ANOVA ¢1. o=l. o !\NCOVP. <I>Lo=1.5 ANOVA ~l.o=l.5 ANCOVA 

fxx= 
n t'xy a.=. 1 0 a.=.05 a.=.01 a.=. 10 a.=.05 a.=.01 a.=. 10 a.=.05 a.=.01 a.=. 10 a.=.05 a.=.01 

6 . 3 . 170 . l 04 .022 . 183 . 103 .02.5 .287 . 187 .051 .286 . 170 .054 
,.. 

.5 .259 . 147 .050 . 281 . 166 .045 • 379 .242 . .086 .432 .288 .098 0 

6 . 7 .294 . 197 .070 .437 .294 .113 .505 .354 . 142 .693 .552 .280 

6 0 
• ;I . 320 . 196 .060 .835 .723 .l~ 15 .566 .418 . 187 .992 .970 . 813 

16 . 3 .214 . 128 .032 .209 . 134 .027 . 328 .207 .069 .333 .224 . 071 

16 . 5 .267 . 160 .058 . 328 .224 .069 .424 .307 . 120 .524 .384 . 173 

16 . 7 . 300 .204 .061 .467 . 326 . 147 .530 . 395 . 174 . 761 .657 . 370 

16 . 9 .364 .252 .097 . 890 . 815 .602 .623 .485 .238 .997 .991 .954 

100 .3 . 194 . 125 .040 . 195 . 134 . 039 .336 .216 .091 .352 .232 .091 

100 .5 .243 . 156 .056 .290 . 190 .075 .455 . 331 . 144 . 531 • 395 . 197 

100 . 7 .339 .230 .080 .491 .388 . l87 .534 . 393 .209 .818 .723 .465 

100 .9 . 397 .272 .114 . 913 .850 . 670 .644 .486 .269 1.000 .999 .983 
.... 
0 



Tab 1 e 13 

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Two Groups 
Based upon the Monte Carlo Simulation for ~ 1.0 Equal to 2.0 and 2.5 

~ 1. 0=2. o ANOVA ~ l.o=2.o ANCOV/\ ~ l.o=2.5 AN OVA ~ l.o=2.5 ANCOVA 

rxx= 
a=. 10 a=.05 a=.Ol a=. 10 a=.05 n rxy a= .01 a=.lO a=.05 a=.Ol a=.lO a=.05 a=.Ol 

6 . 3 .434 .303 .108 .438 .287 .098 .536 . 392 . 152 .526 .388 . 151 

6 .5 .545 .417 . 176 . 610 .464 .215 . 751 .607 .290 • 795 .669 .353 

6 . 7 . 735 .602 .274 .907 .814 . 512 .888 .778 .471 . 982 .955 . 741 

6 .9 . 780 .660 . 363 1. 000 . 999 .977 .937 .885 .630 1.000 1. 000 .998 

16 . 3 . 470 . 339 . 144 .479 .343 . 153 .601 .456 .233 . 631 .501 .257 

16 .5 .643 .497 .254 . 721 .608 . 360 .778 .658 . 389 .876 .783. .534 

16 .7 . 740 .603 .362 .935 .878 .684 .908 .846 . 571 .988 . 976 .903 

16 .9 ,848 .748 .482 1.000 1.000 . 999 .958 .907 .729 1.000 LOOO 1. 000 

100 .3 . 491 .373 . 168 .502 .389 . 182 * * * * * * 

100 .5 .642 .525 . 289 . 748 .635 . 389 * * * * * * 

100 . 7 . 746 .634 .402 .942 .907 .757 * * * * * * 

100 .9 .845 . 747 .539 1.000 1. 000 1.000 * * * * * * 
..,. ..... 

*Values for ~ 1 . 0=2.5 for n=100 were not computed. 



rxx= 
n rxy 

4 .3 

4 .5 

4 . 7 

4 .9 

11 .3 

11 .5 

11 . 7 

11 .9 

Table 14 

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Three Groups 
Based upon the Monte Carlo Simulation for ~1.0 Equal to 1.0 and 1.5 

<P l. o=l. o ANOVA <P,. o=l. o ANCOVA <Pl.o=l. 5 ANOVA <PL o=l. 5 

a=. 10 a=.05 a=.Ol a=. 10 a=.05 a=.01 a=.lO a=. OS a=.Ol a=. 10 a=.05 

. 186 .116 .034 .206 . 113 .033 .270 . 158 .048 .261 . 163 

.258 . 158 .051 .262 .158 .037 .404 .264 .091 .442 .305 

. 281 . 178 .042 .414 .255 .085 .517 .332 . 131 .702 .555 

. 332 .202 .060 . 858 .734 .413 .593 .435 . 172 .994 .978 

.205 . 123 .033 .207 . 130 .041 .339 .227 .093 .355 .238 

. 273 . 171 .047 .321 .214 .064 .445 • 304 . 132 .513 .383 

. 320 .203 .070 .518 .378 . 163 .578 .448 .201 . 832 . 717 

.384 .262 .087 .960 . 911 • 719 .677 .548 .277 1.000 .999 

ANCOVA 

a=.01 

.046 

• 103 

. 211 

.845 

.089 

. 182 

.458 

.987 

~ 
N 



rxx= 
n rxy 

4 . 3 

4 .5 

4 . 7 

4 .9 

11 .3 

11 .5 

11 . 7 

11 .9 

Table ·15 

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Three Groups 
Based upon the Monte Carlo Simulation for ~l.O Equal to 2.0 and 2.5 

¢1.0=2.0 ANOVA cp l. 0=2. o ANCOVA cpl. o=2. 5 ANOVA cpl. 0=2. 5 
--
a=. 10 a=.05 a=.01 a=. 10 a=.05 a=.Ol a=. 10 a=.05 a=.Ol a=. 10 a=.05 

.413 .264 .087 . 398 .256 .082 .592 .437 . 181 .583 .419 

.612 .427 . 181 .646 .475 . 197 .766 .630 .324 . 820 .680 

. 717 .568 .265 .901 . 801 .498 .885 .773 .443 .978 .943 

. 837 .690 . 362 .997 .996 . 981 .956 . 881 .619 1.000 .999 

.483 . 360 . 164 . 501 .364 . 166 . 651 .521 . 251 .673 .541 

.675 . 549 .285 . 755 .637 • 376 . 848 . 741 .475 .934 . 852 

. 804 .694 .418 .970 .931 . 789 .941 . 892 . 700 .997 .994 

• 880 . 801 .554 1.000 1.000 1. 000 .972 .936 .803 1.000 1.000 

ANCOVA 

a=.Ol 

. 164 

.365 

.730 

• 998 

. 279 

.627 

.966 

1.000 

-+::o 
w 



rxx= 
n rxy 

3 . 3 

3 . 5 

" .7 ,.) 

3 .9 

Table 16 

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Five Groups 
Based upon the Monte Carlo Simulation for ¢1. 0 Equal to 1.0 and 1.5 

¢1.o=l.O ANOVA ¢1. 0=1.0 ANCOVr, ¢1.o=1.5 AN OVA ¢1.o=1.5 

a=. l 0 u=.05 a=.Ol a=. l 0 a=.05 a=.Ol a=. l 0 a=.05 a=.Ol a=. 10 a=.05 

. 172 . 109 .025 . 176 .099 .023 . 309 .202 .054 .302 . 195 

.259 . 151 .041 .287 . 171 .052 .404 .263 .092 .462 . 305 

. 304 • 192 .058 .452 . 303 . 105 .588 .413 ~ 163 . 799 .647 

. 370 .238 .078 . 930 .819 .498 .655 .486 .202 1.000 .994 

ANCOVA 

a=.01 

.051 

. 108 

.305 

.937 

~ 
~ 



Table 17 

Estimat ions of Statistical Power for the ANOVA and the ANCOVA Tests for Five Groups 
Based upon the Monte Carlo Simulation for ~l.O Equal to 2.0 and 2.5 

q, , 0=2.0 
i • 

NWVA 4>1.o=2.o ANCOVA <Pl. 0=2. 5 ANOVA <Pl.o=2.5 

rxx= 
n rxy a=. 10 a.=.05 a=.Oi a=. 10 a=.05 a=.Ol a=. 10 a=.05 a=.Ol a=. 10 a=.05 

3 . 3 .459 .308 . 105 .463 .312 . 108 .624 .476 .205 .617 .466 

3 . 5 .656 .485 . 199 . 719 .565 .256 .820 .688 .378 .891 .769 

3 . 7 . 813 .667 . 359 .950 .878 .614 .941 • 847 .541 .993 .984 

~ .9 . 871 . 765 .432 1.000 1.000 .996 .980 .938 .713 1.000 1.000 ..., 

ANCOVA 

a=.Ol 

.196 

. 440 

. 830 

1. 000 

-+:
c.rr 

l ' 
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ANCOVA tests, power is augmented as n, a, rxx and ~l.O increase. For 

the ANOVA test, as ~1.0 varies from 1.0 to 2.0, for n=lOO, rxx=.9 and 

a=.lO, power increases from .397 to .845. The level of significance (a) 

also influences power. An increase in a from .01 to . 10 results in 

dramatic increases in power values, especially for rxx below .7. For 

example, as a varies from .01 to . 10, for ~ 1 . 0=1.5, n=l6, rxx=.5, power 

is more than tripled as it increases from .120 to .424. Except for a fe\'1 

cases where rxx=rxy=.3, the power of the ANCOVA is greater than the power 

of the ANOVA test. For ~ 1 . 0 =1.5, a=.Ol, and n=lOO, the power increases 

from .269 for ANOVA to .983 for ANCOVA. 

The Monte Carlo Method power estimates for three groups for ANOVA 

and ANCOVA are in Tables 14 and 15, pages 42 and 43. Power values were 

computed for sample sizes . of 4 and 11. Similar observations about power 

can be made concerning the increase in power as a, n, ~l.O, rxx' and rxy 

become larger. It is possible from Tables 12 to 15 to compare what 

happens to power when 3 groups of 4 each (n=l2) are used instead of 2 

groups of 6 each (n=l2). vlhile controlling for ~1.0• a, rxx• and rxy' 

the power is generally greater when three groups are used instead of two. 

The statistical power estimates for five groups with three per 

group based upon the Monte Carlo simulation are offered in Tables 16 and 

17, pages 44 and 45. It can be observed that for the ANOVA test with 

n==3, rxy=rxx=.9, a=.05 and ~l.O of 2.5 power is greater than .8. However, 

for the ANCOVA test with the same parameters, a ~l.O of only 1.0 is 

necessary to achieve a comparable level of power. 

Difference Between the Power 
-Es·firnates of ANCOVA and ANOVA - - . 

According to Kerlinger, 



Analysis of Covariance· [ANCOVA] is a form of analysis of 
variance [ANOVA] that tests the significance of the differences 
between means of final experimental data by taking into account 
the correlation between the dependent variable and one or more 
covariates .•.. 

The objective of this section is to investigate the increase in statis

tical power resulting from the use of the ANCOVA test rather than the 

ANOVA test. As indicated by Kerlinger, the major difference between 

ANOVA and ANCOVA is the influence of the correlation of the variate and 
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covariate which ANCOVA includes and ANOVA does not include. The data in 

Tables 18, 19, and 20, pages 48, 49, and 50, represent the influence of 

this correlation. The data in Table 18 are the result of subtracting the 

ANCOVA power values from the ANOVA power values taken from Tables 12 and 

13 while controlling for J, n, ¢1.0, rxx' and a. For example, from Table 

13, for ¢1.0=2.0, a=.Ol, ~=16, and rxx=.9, the ANCOVA value is .999 and 

the ANOVA value is .482. The difference between these two values is .517 

which is presented in Table 18 for the same parameters. This number, 

.517, represents the increase in power when the ANCOVA test is used 

instead of the ANOVA test when the correlation between the variate and 

the covariate is .9. 

Examining the data in Table 18, it can be observed that for cor

relations .5 or below, the increase in power is at most . 145 and generally 

less than .100. For correlations of . 7 and .9, increases in power are 

more substantial and vary from .080 to . 716. In general, smaller levels 

of significance have the greatest increase in power, that is, a=.Ol has 

a larger increase in power than a=.05 when ANCOVA is used instead of 

lF. N. Kerlinger, Foundations of Behavioral Research (2d ed.; 
N::w York: Holt, Rinehart, ar1d vdnston, 1973), p. 370. 



Table 18 

Difference in Power Values Bet'r<Jeen the ANCOVA and the ANOVA Test 
Based on the Monte Carlo Simulation Values for T\'IO Groups 

1/>l.o=l.o <Pl.o=1.5 <P1.o=2.o <Pl.o=2.5 

rxy= 
a=. 10 a=.05 a=.Ol a=. 10 a=.05 a=. 01 a=. 10 n rxx a=.05 a=.Ol a=.lO a=.05 a=.01 

6 .3 . 013 -.001 .003 -.001 -.017 .003 .004 -.016 -.010 -.010 -.004 -.001 

6 .... .022 .022 -.005 .053 .046 .012 .065 .047 .039 .044 .062 .063 .:l 

6 . 7 . 143 .097 .043 . 188 .198 .138 . 172 .212 .238 .094 . 177 . 270 

6 .9 .515 .527 .355 .426 .552 .626 .220 .339 .614 .063 .115 .368 

16 .3 -.005 .006 -.005 .005 .017 .002 .009 .004 .009 .030 .045 .024 

16 .5 . 061 .064 .Oil . 100 .077 .053 .078 . 111 . 106 .098 . 125 . 145 

16 . 7 . 167 . 122 .086 . 231 .262 . 196 . 195 . 275 .322 .080 • 130 .332 

16 .9 .526 . '563 .505 .374 .506 . 716 . 152 .252 .517 .042 .093 . 271 

100 . 3 .001 .009 -.001 .016 .016 .000 .011 .016 .014 * * * 

100 • 5 .047 .034 .019 .076 .064 .053 . 106 .110 . 100 * * * 

100 . 7 . 152 . 158 . i 07 .284 . 330 .256 .196 .273 .355 * * * 

100 .9 .516 .578 .556 .356 . 513 .714 . 155 .253 .461 * * * 

"""' co 

*Power values for ANOVA and ANCOVA for n=lOO were not computed. 



Table ·19 

Difference in Power Values Between the ANCOVA and the ANOVA Test 
Based on the Monte Carlo Simulation Values for Three Groups 

¢1.o=l . o ¢Lo=l.5 tP 1. 0=2. o 

rxy= 
a=.10 a=.05 a==.01 a=.10 a=.05 a=.01 a=.10 a=.05 a=.01 n rxx 

4 ? .020 -.003 -.001 -.009 .005 -.002 -:o15 -.008 -.005 •'"' 

4 .5 .004 .000 -.014 .038 .041 .012 .044 .048 .016 

4 .7 . 133 .077 .043 . 185 .223 . 080 . 184 .233 .233 

4 .9 .526 .532 .353 .401 .543 .673 . 160 . 306 .619 

11 . 3 .002 .007 .008 .016 .011 -.004 .018 .004 .002 

11 . 5 . 0Ll8 .043 .017 .068 .079 .050 .080 .088 .091 

11 .7 . 198 . 175 .093 .254 .269 .257 . 166 .237 . 371 

11 .9 .576 .649 .632 . 323 .451 .710 . 120 . 199 .446 

<1>1. 0;..2. 5 

a=. 10 a=.05 

-.009 -.018 

.054 .050 

.093 . 170 

.044 . 118 

.022 .020 

.086 .111 

.056 . 102 

.028 .064 

a= .01 · 

.017 

.041 

.287 

.379 

.028 

. 152 

.266 

. 197 

~ 
1.0 



Table 20 

Difference in Power Values Between the ANCOVA and the ANOVA Test 
Based on the Monte Carlo Simulation Values for Five Groups 

<~>1. 0=1. o <PL o=l. 5 <P1.o=2.o 

n 
rxy= 
rxx a=. 10 a=.05 a=.01 a=. 10 a=.05 a=.Ol a=.lO a=.05 a=.01 

3 .3 .004 -.010 -.002 -.007 -.007 -.003 ~004 .004 .003 

3 .5 .028 .020 .on .058 .042 .016 .063 .080 .057 

3 . 7 . 148 .111 .047 . 211 . 234 . 142 . 137 . 211 .255 

3 .9 .560 .581 .420 .345 .508 . 735 . 129 .235 .564 

<~>1. 0=2. 5 

a=. 10 a=.05 

-.007 -.010 

.071 . 081 

.052 • 137 

.020 .062 

a=.01 · 

-.009 

.062 

. 289 

.287 

<..n 
0 



51 

ANOVA. A similar result occurs when the increase in power for a=.05 is 

compared with the increase in power for a=.lO. As ~l.O increases, the 

difference in power between ANCOVA and ANOVA becomes greater up to the 

point where both are close to 1.000. For example, from Table 18, where 

n=l6 and rxy=.7, the difference for ~1.0 of 1.0 is .086, for ~l.O of 1.5 

it is .196, for ~l.O of 2.0 it is .322, and for ~l.O of 2.5 it is .332. 

It can also be observed from Table 18 that as the correlation increases, 

the difference in ANCOVA and ANOVA becomes greater. This increase con

tinues until both values approach 1.000. 

The data for the differences in power between the ANCOVA and 

ANOVA for three groups are presented in Table 19. Observations similar · 

to those for two groups can be made. In general, the difference in power 

between ANCOVA and ANOVA becomes greater as the level of significance 

becomes smaller~ as the correlation becomes greater, as sample size 

increases, and as the treatment effect (¢1.0) becomes larger. Varia

tions from these generalizations result from the stochasticity of power 

when n, rxx' rxy and ~l.O are low. Also, when both ANOVA and ANCOVA 

power values are close to one, the difference becomes small. 

Differences in power between the ANCOVA and ANOVA tests for five 

groups which are presented in Table 20 form similar patterns to the 

differences noted for two and three groups. It is interesting to note, 

that with only n=3, ~l.o==1.5, a=.Ol, and rxy=.9, power increases .735 

when ANCOVA is used instead of ANOVA. 

The change in power when ANCOVA is used instead of ANOVA for 

varying correlation (rxy) and reliability (l~xx) levels is presented in 

Figure 2, page 52. As can be observed from the graph, for rxy and rxx 

greater than .5, ANCOVA is a more powerful statistic than ANOVA except 
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Increase · 6 
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Power ,s 

,1 ,2 ,3 ,4 ,6 ,8 ,9 1,0 

Power of the ANOVA 

Figure 2 

An Approximation of the Increase in Power When ANCOVA Is Used 
Instead of ANOVA for Varying Levels of rxy* with a=.05 

*In this study, rxy=rxx· 
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when the power of the ANOVA is .8 or more. It can also be noted that 

when rxy and rxx are less than or equal to .3, ANCOVA is comparable in 

power to the ANOVA test. 

COMPARISON OF THE HOPKINS AND HOPKINS FORMULA 
METHOD TO THE MONTE CARLO METHOD 

The graphic representations presented in this section summarize 

selected data derived from the first two sections. The graphs are pre

sented to facilitate the comparison of the Formula and the Monte Carlo 
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Methods for estimating the statistical power of the ANOVA and the ANCOVA 

tests. 

The graphs presented in Figures 3 through 20, pages 54 through 

71, provide for the comparison of the Formula Method and the Monte Carlo 

Method for J varying from 2 to 5, for n varying from 3 to 100, for N 

varying from .01 to .05 for ~Jll.O varying from 2.0 to 2.5, and for rxx and 

rxy varying from .3 to .9. 

ANOVA Graphs 

The graphs presented in Figures 3 through 11 provide the basis 

for comparing the Formula Method to the Monte Carlo Method. Since the 

Monte Carlo ~lethod simulates the actual power values, the accuracy of 

the Formula Method can be assessed by this process. 

By examining the graphs, it can be observed that the Monte Carlo 

derived pov1er values vary less than .05 from the formula derived power 

values. In general, the variation betvJeen the tvJo methods is less than 

.02. This is an exceptionally close fit since the formula derived values 

were based on estimates from the Pearson-Hartley pov1er charts which may 

contain some interpolation error. 
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Figure 3 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and the ~~ante Carlo Method 

with Power as a Function of Test Reliability 
(rxx) for J=2, n=G, and a=.05 
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Figure 4 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

~tlith Power as a Funct :ion of Test Reliability 
( r ) for J=2 n=l6 and a=.05 
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Figure 5 

A Comparison of the Power of the ANOVA as Estimated 
by the Forn1ul a Method and the t·1onte Carlo t·1ethod 

Hith Power as a Funct·ion of Test Reliability 
(rxx) for J=2, n=lOO, and a=.05 
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Figure 6 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

with Power as a Function of Test Reliability 
(rxx) for J=3, n=4, and a=.05 
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Figure 7 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and th e Monte Carlo ~1ethod 

\•tith Pmver as a Function of Test Reliability 
(rxxl for J=3, n=ll, and a=.05 
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Figure 8 

A Comparison of the Power of the ANOVA as Estimated 
by th e Formula Method and th e Monte Carlo Method 

with Power ns a Function of Test Reliability 
(rxxl for J=3, n=4, and a=.Ol 
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Figure 9 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

with Pm'ler as c. Function of Test Reliability 
(rxx) for J=3, n=ll, and a=.Ol 
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Figure 10 

A Compari;on of the Power of the ANOVA as Estimated 
by th e Formula Method and the Monte Carlo Method 

with Power as a Function of Te~·.t Reliability 
(rxx) for J=5 , n=J, and a=.05 
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Figure 11 

A Comparison of the Power of the ANOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

with Pov1er as a Function of Test Reliability 
(rxx) for J=5, n=3, and a=. Ol 
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Figure 12 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

\'Jith Power as a Function of Test Rel'iab·ility 
(rxx) for J=2, n=6, and a=.05 
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Figure 13 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

with Power as a Function of Test Reliability 
(rxxl for J=2, n=l6, and a= .05 
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Figure 1·1 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formula ~1ethod and the Monte Car·l o ~1ethod 

with Power as a Function of Test Reliability 
(rxx) for J=2, n=lOO, and a=.05 · 
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Figure 15 

A Comparison of the Power of the ANCOVA as Estimated 
by the Forrnul a Method and the ~1onte ·carlo Method 

vrith Power as a Function of lest Reliabil'ity 
(rxx) for J=3, n=4, and a=.05 
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Figure 16 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formul a Method and the Monte Carl o Method 

with Power as a Function of Test Reliability 
(rxxl for J=3, n=ll, and a= .05 · 
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Figure 17 

A (omparison of the Power of the ANCOVA as Estimated 
by the Formula Method and the Mont e Carlo Me t hod 

with Pov·ter as a Function of Test Reliability 
(rxx) for J=3, n=4, and a=.Ol 
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Figure 18 

A Compar ison of the Power of the ANCOVA as Estimated 
by the Formula Method and the Monte Carlo Method 

with Power as a Function of Test Re'liability 
(rxx) for J=3, n=ll, and a~.O l 
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Figure 19 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formula Method and the Monte Ca1~ 1o Method 

\'lith Power as a Fun ction of Te st Reli ab·ilHy 
(rxx) for J=5, n=3, and a=.05 
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Figure 20 

A Comparison of the Power of the ANCOVA as Estimated 
by the Formula Method and the r·ionte Carlo Method 

with Power as a Function of Test Reliability 
(rxx) for J=5, n~ 3, and a=.Ol 
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It can be observed from Figures 3, 4, and 5 that for two groups 

with a=.05, ~l.o=2.0, power never reaches the desired .8 level even for 

n=lOO. However, for two groups, when ~l.o=2.5, with only n=6, adequate 

power is achieved when rxx ~ .75. Figures 6 and 7 demonstrate that for 

three groups with ~ 1 . 0=2.5 and a=.05, adequate power can be obtained for 

rxx ~ .75. For three groups, n=ll, ¢1.0=2.0, and rxx=.9 the desired .8 

minimum level of power is also achieved. Figures 8 and 9 present the 

results for three groups with a=.Ol for n=4 and n=ll. When a=.Ol, ade

quate power is reached for n=ll, and ~ 1 . 0=2.5. Figures 10 and 11 provide 

the power estimates for five groups, n=3, for a=.05 and a=.Ol. When 

a=.05, sufficient power is obtained when ~ 1 . 0=2.5 and reliability is 

greater than .6. However, for a=.Ol, power is less than .8 for both 

¢1•0=2.0 and ~ 1 . 0=2.5. 

By examining Figures 3 through 11, it can be observed that the 

influence of test reliability is fairly consistent. Since the curves in 

_ these graphs are somewhat linear, a generalization can be made concerning 

the increase in power as test reliability increases. For each .10 increase 

in test reliability, power increases by approximately .06 or .07. This 

finding is for the ANOVA test and is independent of ¢1.0, n, J, a, and 

rxx· 

ANC_Q_vA Graphs 

The data for ANCOVA based on the Formula Method and the Monte 

Carlo Method are presented graphically in Figures 12 through 20. A com

pari son between the two methods for the ANCOVA test can be made from 

these graphs. The purpose of this comparison is to determine the accu

racy of the Formula Method for the ANCOVA test. 



73 

As can be noted from Figures 12 through 20, the Formula Method 

values sometimes overestimate power but vary no more than .07 from the 

Monte Carlo derived values. In most cases, the differences are less than 

. 03. 

For all cases examined in this study where ~1.0=2.0 and ~ 1 _ 0=2.5, 
adequate power was achieved for ANCOVA with moderate (.5 to .7) to high 

(above .7) correlation and reliability levels. This finding further 

supports the superiority of the ANCOVA test over the ANOVA test. For rxy 

and rxx less than .9, the curves presented in Figures 12 through 20 pro

vide the basis for a generalization about the influence of rxy and rxx on 

statistical power. For each .10 increase in the correlation between the 

variate and the covariate and test reliability, statistical power increases 

by approximately .10 to. 12. This finding is for the ANCOVA test and is 

independent of ~ 1 . 0 , n, J, a, rxx and rxy· 

SUMMARY 

The purpose of Chapter 4 was to present the findings of this 

study. These findings \'Jere presented in the form of tables, figures and 

narrative interpretation. The Formula Method was compared to the Monte 

Carlo Method; also the ANCOVA test was compared to the ANOVA test. The 

influence of other parameters were also examined. They were number of 

groups (J), number per group (n), level of significcince (a ), test reli

ability (rxx), correlation bet\'Jeen the variate and the covariate (rxy), 

and treatment effect (~1.0). 

As a result of this study, it was found that as test reliability 

increases by .1, the statistical power of the ANOVA increases approximately 

. 06 or .07. For ANCOVA, it was found that as the correlation between the 
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variate and the covariate and test r·eliabil"ity increase by .1, the sta

tistical power is increased by about . 10 or . 12. Another finding was 

that for correlations greater than or equal to .5, ANCOVA is considerably 

more powerful than ANOVA. 

The graphs illustrated that the Formula Method provides a good 

estimat e of statistical power even for small J and n. Various levels of 

significance and reliability were examined and it was observed that the 

Fo rmula Method maintained its stability. It was concluded that the 

assumption referred to in Chapter 2 made by Hopkins and Hopkins during 

the der·ivation of the Formula for <PA and <Pc did not seriously invalidate 

the resulting power estimates. 



Chapter 5 

SUMMARY, IMPLICATIONS AND RECOMMENDATIONS 

In this chapter, an overview of the study is presented along with 

a summary of the findings. Implications and recommendations of these 

findings are also discussed. Specifically, recommendations are made con

cerning areas for future study and general recommendations to those 

interested in the administration of educational research and evaluation. 

OVERVIEW 

In the planning phase of developing quality educational research 

there are several critical decision points. Some of these decisions are 

made to ensure that the research will have adequate statistical power, 

that is, the ability to detect meaningful differences, if they do exist. 

In an unpublished article, K. D. Hopkins and B. R. Hopkins commented that 

all theoretical and empirical options for increasing statistical power 

had been investigated except for the reliability of the dependent variable. 

In this article they derived a method for estimating the power of sta

tistical tests (specifically ANOVA and ANCOVA) which included the 

reliability of the dependent variable. However, this method was based 

on some untested mathematical assumptions and therefore needed to be 

empirically verified. 

The purpose of this study was to empirically verify the method 

devr~loped and to investigate the interaction between the reliability of 
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the dependent variable and the statistical power of the analysis of 

variance and the analysis of covariance. The influence of other relevant 

parameters~ namely~ sample size, non-centrality parameter, level of sig

ni fi co.nce, and number of groups were considered. 

This purpose was accomplished by using Monte Carlo methods and 

the Burroughs B-6700 computer. Systematically, the relevant parameters 

were manipulated, and the resulting statistical pm'ler of the ANOVA and 

ANCOVA procedures estimated. 

FINDINGS 

It was found that the formula developed by Hopkins and Hopkins 

to estimate statistical pov1er~ which included as a factor the reliability 

of the dept.-.ncl~nt va :-iable, provides a stable estimate of power even for 

srna i l va 1 ues J and n (\] =n umber of groups c:nd n:::number in each group). As 

test reliab ·i1it.y ·increr.ses by .1, the statis tical power of the ANOVA 

increases by about .06 or .07. It was also found that, for ANCOVA~ as the 

correlation level and reliability level increase by .1, the resulting 

statistical power is increased by approximately .10 or .12. It was also 

observed that for correlations greater than or equal to .5, the ANCOVA 

test is more powerful than the ANOVA test. When the correlation was .9, 

the increase in po\'Jer \'lhen ANCOVA was used t'a.ther than ANOVA \vas greatest 

when the original povJer of ANOVA was between .2 and .8. It was also 

observed that when the correlation was low, for example, .3, little or no 

gain in power was achieved by using ANCOVA instead of ANOVA. 

In general it was observed that when the reliability of the 

dependent variable was high, the ANCOVA test had high power even for 

groups with small sample size (n). It was also observed that when the 
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reliability was low, power was consistently low. Even with large sample 

sizes, experiments with dependent variables having low reliability had 

1 ow power. 

IMPLICATIONS AND RECOMMENDATIONS 

The power of a statistical test should be estimated during the 

planning stage of a research study. There are three major implications 

of doing this. First, if the derived power is low, the researcher may 

decide not to conduct the study or may decide to change some of the 

parameters (that is, increase n, a, or rxx). Second, whether the null 

hypothesis is rejected or is not rejected, the researcher needs to know 

how much confidence can be given to this result. If the study had power 

of .90 and the null hypothesis was not rejected, the researcher could 

feel fairly confident with the results. Hm'lever, if the power vtas .30, 

and the null hypothesis was not rejected, the researcher would be less 

sure of the result. There may have been no difference or there may have 

been a difference, but the statistical procedures used may not have had 

enough power to detect the difference. Another reason for computing 

po\'Jer during the planning phase of an experiment is to identify 

unnecessarily large and elaborate studies. For example, if an n of 20 

will provide high power, it would be costly and unreasonably cumbersome 

to use an n of 100. 

Recomme ndations for Future Studies 

The following recomme ndations for future study are made. Since 

test reli Gbi1ity strongly influences the power of the ANOVA and ANCOVA 

test, the influence of rel i ability on other statisti cal tests should be 



investigated: It would be helpful to the researcher who wants to con

sider .10 level of significance in studies if power charts were created 

for . 10 level of significance. Currently, charts for only .01 and .05 

are available. Another aid to researchers would be to include computer 

programs to compute statistical power in the commonly used computer 

software packages such as SPSS (Statistical Package for the Social 

Sciences). 

Recommendations for Researchers 
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As a result of this study, a few recommendations are made for 

researchers and evaluators. Because of the influence of test reliability 

on power, more emphasis should be placed on developing and using highly 

reliable dependent variables. Also, whenever defensible, a .10 level of 

significance should be considered since it is a convenient way to increase 

the power of the ANOVA and ANCOVA tests. If a covariate with an antici 

pated correlation with the variate of .5 or greater is available, the 

ANCOVA test rather than the ANOVA test should be considered whenever 

appropriate. 

As previously indicated, statistical power should be estimated 

routinely in the planning phase of research. If this was done, high 

pm"'er could be achieved by varying the relevant parameters to optimize 

power. Parameters of studies without adequate power could be a1tered 

and unnecessarily large and elaborate studies could be reduced. 
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Source V.I.--to date included 

Current Index to Journals 
in Education 

Current Index to Statistics: 
Applications, Methodology 
and Theory 

Business Periodicals Index 

Psychological Abstracts 

Research in Education (ERIC) 

DATRIX II Computer Search 

Curren t Statistical Textbooks 
and their Bibliographies 

Bibliographies of related 
periodical literature 

X 

X 

X 

X 

X 
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Computer Program Using Monte Carlo Procedures to Estimate 
the Statistical Power of t~ ANOVA and ANCOVA F-Tests 

for Varying J, n, v;1 , 0 ,~, and rxx 

66700/87700 F 0 R T R A t--1 COMPILATION 

F I L E 5: J 1 N , lJ N l T -- ~ - ·-RE-A 8 F,P-·-·----- ---·· ·-·--·-----·---

FILE 6= JOUT, UNIT : PRINTER 
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~~ A R K 

C THF 1ST CARD• NO .----OF--- P ' OUP-S,-- N-,---NPF PS, · lri At, TR, lwAr-,1 TF, NR ANOR ,NCOPY 
C IN THIS FORMAT 12, J3, Ja, 2J1, 10!2) 
C 2ND- XSTART,Nn. OF PHI VALUES , lNTTJAL RXX , RXXT~C, RXXMAX , FQO, 
C F9'1, FQQ, --FCQV-QO-r -F-f- OVOS- FG0\199 ---J N THE · ff.)kMf,T .. FS,0•l5, 1 t.JF S,2 
C 3 rw ... T HE S D 0 F T HE UN l F 0 Q t-1 R A t-.; D (H·I N U f-A I~ F R P n P U l A T I 0 N , F 0 L L 0 :>J t f) f3Y T I 
C DESIRED PHI VALUFS IN THIS FORMAT- 16F5.0 

fJ I M f N S I ON -- X 7 COE F H -0-0 0 -)- - - - ------- --· · --- ·- -· · ·-· · 

OIMENSTON PH!(IO) 
DIMENSION X(lO,lOO), FY(1 000 ), FZ(1 000 ), FYZCIOOO), Y(lO,!Oh) 
D I ~1 ENS T 0 N -z (.1-{1--, - l- f1-0-}-r--A L-P H-AS -( -1-n .- 1-0 ) , Y l C 0 F F ( 1 0 0 0 ) , X Y C 0 H ( t \l 0 0 ) 
,JIN :: 5 
Jour = o 
Rf f> f) ( ..1 T i'J 1 ~10 fl) - r--:GRl iP S,--N, - NPI:" P S -· 1 -I wANT H , -- I \'I ANT F, NR MJOR , NC OPY 

500 FORMATCI?, I3. JU, 2 TI .,91?) 
qt,NORH :: NRANOP 

P F. AD ( J T N r 50 l ) X-S T-AP T -, t-.! A L-F S l ,-RX X ,-R X X T 1\1 C , ~U X lA A X , r q 0 , F Q 5 , F q 9, 
2 FC OV90 , FCOV9 S , FC OV9q, COVRYZ 

501 FOP MAT(FS.O,IS, taF5.2) 
PFAD(JIN,~}Oli) - SlGMA , -- - lPHl(I), -l=l,NALFST) 

~OU FOQMAT(16FS.O) 
SIGMA : SJGMA/SQRT(RANnRM) 
X b R UPS :: N G R UPS ------ -- --· ·----·-·- ··- ·----·-·· - · ·
XN::N 
no 37 J = t,NALFST 
X K :: X G f( I JP S * (PH I--( I ) * S I G ~~A ) * * 2 I X N 
GO TO (37,23,2 U, 25 , 26,?7 l, NGRUPS 

23 D= SQ~T(XK/2,0) 

.Al_Pf.if.S(I,l) :: - -1,0•D - 
Al_PHi\S(I,2) ::D 
Gl) TO 37 

24 D:: SQRT~XK/?,0) 
ALPHIIS(J,t):: .. 1,0* 0 
ALPHAS(t,2):: 0 
ALPHAS(!,)) :: [) 
r,n TO ~7 

25 O:SQRT(XK/20.0) 
AL.PH .6S(J,t) :: ... :~.O• il -·· 

ALPHAS(J,2):: ~1 ,0*0 
ALPHAS(I,3l= D 
ALPHA S(l ,4):: 3,0*0 -
GO TO 1,7 



26 

27 

37 

1 0 

32 

D=S~RT<XKilO.O) 

ALPHAS(l, 1) -= •2.-0•D -- -----------·-- -
ALPH,S(J,2) : -t.O•D 
ALPHAS(J,3):: 0 

AlPHAS (I, 4) -=. D ------- ------ ---- -----· .. ------ .. _ _ . 
ALPHAS(lr5) :: ?.O*D 
GO TO 37 
[):: S Q R T ( X K I 7 0 . -0 ) _____ ---- -- ----------·· ------
ALPHAS(I,l) : ·S.O•D 
ALPHAS(!,?) : ·3.0*D 
AlPHAS ( I , 3 )_ .. : --"'·-1--.-0-*0.'------ . - ---- ·-· · --- -
ALPHAS(l,Ll) : D 
ALPHAS(l,5) :: ~.O*D 

"-LPHAS(l,b) :: S.O•I) 
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C 0 NT I N U E· ·-------- - - ------- --
DO 20 l = l,NALFST 
RXVA : RXX • RXXINC 
CONTINUE 
RXXA = RXXA t RXX{NC 
I F ( R X X A -. r; T • R )( X+' A-V--}--f,-0--T 0- -· 2 0- - - ---
SEFAC:: SQRT(RXXA/(1.0-RXXA)) 
RYZ :: COVfHZ 
R X Y :: C () V R Y Z * * ?-l-R X-X-A-- ----- -------- 
IF(RXY.GT.0.999999) RXY:: .qqqqqq 
SfFACY: SQRT(RXY/(1.0-RXY)) 
IF(COVRYZ.EQ~O.O)-SEF~CY - = SFFAC 
IF(COVRYZ.ER.O.Ol RYZ=PXXA 
t.l y F q 0 : 0 

t-.JYF9S:O · -- --- --·--------------------··--- --
NYF0,9:0 
NYL.T90 = 0 
NZF90:0 --- ------ --------- - --------- - --
NZFQS:O 
NZF99::0 
t>J Z L T 90 = 0 -··----- - --- - ----------- -- ----- - - --- - 
NYZF90=0 
~J Y 7 F 95::0 
NY 7 F q 9: 0 - - -------- ------ - - -- ·· - --- ----- · 
NY7LT9::0 
DO 101 K : 

nc to~ J = 
DO l03 1 : 
T E ~~p : 0 

t,NREPS 
1 , N G R UPS---- - -·-· --------- ·-- - -
l , N 

00 32 NRAI>J::t -,NRANUR---· - ----- ------ ----

T E t-1 P :: T f: M P + RAN r, n ~' ( :X S T A ~ T ) 
CONTI r-JUr 

X ( .J, I ) : -T F M PI RAN 0 R '-!-- + AL-PHAS ( l , J ) 
YTFr~P::O 

DO 33 NRAN:: t,NPHJ(J~ 

YTFI'"IP:: YTf.MP-+ PAI.Jf) () M(XSTA~T) 

CON T U~l JE 
YTEMP :: YTFMP/RA N n~M 

Y(J,I) : X(J,J) •CYTFMP- ,S) I SEFACY 
ZTFfv1P ::0 
D 0 s II I,J R H .l :: 1 , t·HH 1\li_W 

Z T L M P ·= 7. T E 11 P + R /1 1i i'• (l ~· \ ( X S 1 A i--( T ) 

- hi.PHAS(l,J) 

3 ll C P tJ T T ~ I I ! f 
Z r F ~1 P = l. T F M P /~A f'i 0 P •·' 

1 ( ,J t I ) :: X ( ,) I ! ) + ( 7_ T F tv~ p - • () ) I .s F F ,, r: 



103 

11 

1 0 1 

30 

601 

600 

ao 

602 

CONT!NUE 
IF(JWANTR.E n .O) r,Q TO t1 
CALL CORRELCX,Y,fiJGR liPS,N,COE.Ff-) 
XYrOEFCK) : COEFF 
CALL CORR ELCY,?,NGRUPS,N,COEFF) 
YZCOfF (K) : COEFF -- -
CALL CnRR f L(X,?,NGRUPS,N,COEFF) 
XZCOEFCK) : COFFF 

CON T 1 NUE - --------- -- -----------------
C A L L A ~J 0 V A ( Y , Z , N G R lJ P S , N , F Y V A L , F Z V A l , F Y Z v h L ) 
FY(K) : FYVAL 
F Z ( K) : F Z VAL --------------- ______ ______ _ 
FY7(K) : FYZVAL 
CONTINUE 
DO 30 H : 1, NREPS ------- ---------- - -
IFCFY(M).GT.F90) NYFQO : NYFQO + 1 
IFCFY(M).GT.FQ5) NYF95 = N Y~95 + 1 
IF(FYCMl.Gr •. F.99J---NXF.99 . = ---N¥FQq + 1 -
I F ( F Y ( r-1 ) • L r • F q 0 ) N Y L T q n :: "' Y l T q 0 + 1 
IFCFZ(M).GT.FOQ) ~7FQQ : NZFQ9 t 1 
JF(FZ(M)~GT.FQS) ~ZF 9S : N7F9S + t 
I F ( F Z ( M ) ,; G- T -.- F--9 -0-:}~r--7-F-9 f:\--=---N--Z+9 O--++---- ------ -
1F(FZ(M).LT.F90) ~ ZLTQO = NZL190+1 
IFCFYZCM).GT.FCOVQq) ~Y?F99 : NYZF99 + 1 
JF(FYZ(M).GT.FCOV9~) NYZF9S = NY7F95 t 1 
!F(FYZ(M).GT.FCQVQO) NYZF90: NY?F90 +1 
I i- ( r Y l ( M ) , L T • F C () V 9 A ) f\ - Y Z I_ i Q :: 1>-J Y l l T q + 1 
DO 3S NCO P = !, NrOPY 
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riR ITE(.JOUT,601) PHJ(l.), I~XXA, P yz, ( .Al_Pf-iAS(LrJ), J = 1, f\iGRUPS ) 
FOfHiAl(' 1PHI ::1, -f- -7 -,2/--'-CIP77 - (r:;f:LIA f:3 ILTTy) =', Ff-.3/ lOX, ' RYZ 

2RRFLATJON HETwFFN COVARIATF ANG VARI~TE) = ', F6.3/ 'OT~T F~Ff( 
3ARRAY ='r lOFlO.S) 

W R T T f ( cl Q I I T , h 0 0 ) - t-.t G Pit >J.S-,--- N , --N R E P S 
F 0 P t-1 A T ( 1 0 1\! 0 • 0 F G R n U P S ( J ) ::: 1 

, I l 0 , I 0 X , 1 ~; 0 • 0 F S C 0 R E S I G I~ 0 lJ P ( N ) : 
2 I10, lO X, 'REP L TC. OF J GRf'lJPS OF~..; :', T10) 

T F ( T W A N T R • t. (~ • 0 ) - G 0 - T 0 - - 1: ? -- ·· 
SUMRXY:O 
SUt1RXZ::O 
S U t-.1 R Y Z · : 0·- ---- ----·- -- --· ---------------- -- ·· -- -- ---- -- -
DO ao I : l, NRFP~ 

SU~RXY = SU~RXY + VYCOFF(l) 
SU~RXl ::: SUMRY7 -• - XZfOFF(l l 
SUMRY7 ::: SUMRY7 • YlCOFF(!) 
cor·HINUE 
XNPEPS : 1-JREPS -- ----- ~ ---- ------ - -·-
RXYAAR - SUMRXY/X ~Q fPS 

RXZ F3 AR: SIJHRXZ I X h:I-<~ PS 

RYlRAR : SU~RYZ/V~~ fPS 

WRTTE(JO!.JT,6 0?) RYYi--' .1:..1-<, RX7k6~< , RY 7 h ~ P 

F o P ~ A r c ' o M F A N R x v = ' , F 1 o • 3 , 1 o x , • t'. F ;, t.; P. x z 
2 RY?. ::', F10.3) ,. 

WRI TE(J OIJT , i-.,03 ) (XYr.n!-F(K), It::: l, Ni-< FPS) 

-' - , Ft o .3, tnx, · ~· 



&03 FORMAT('OCOMPUTED RXY COtFFICIENTS 1 1 ( ' 1 , 20Fo,2)) 
WRTTE(JOU1,700) -- (XZCDfF{K), K:: 1,"-JREPS) 

700 FQ!(MAT('OCO~!JLJTEn RXZ COFFF', I ( 1 0 1 , ?OFo,?)) 
WRITFCJOUT,60Q) (YZCOFF{~), K : 1, NRE PS) 

6 o 4 FoR r<~ A T c 1 o co ft, PuT E-n- R--'¥-l-- Go E F F I C-I f N T s 1
· 1 - c • • , 2 oF 6 • 2 > > 

12 CO~TTNliF 

!f(IWANTF,EQ.O) GO TO 13 
W R I T F CJ 0 lJ T , 6 0 6-} -- - -( F v ( K h -- K- : - \ , N J.\ F P S ) 

88 

hOb FORMAT{ 1 0 F•RATinS FOR ANOVA OF Y SCORfS 1 1( 1 0 1 , !OF12,3)) 
616 FOPMAT{ 1 0 F-RATIOS FOR ANOVA OF Z SCORES 1 /{ 1 0 1 , tOF12,3)) 

W R I T E ( J 0 U T , 6 1 ~- ) - { F Z ( K ) -, - K-- : - 1 , N R E P ~ ) 
WR ITf(JOUT,626) (FYZCK), K : 1,NREPS) 

626 FORMAT( 1 0 F•RATIOS FOR ANCOV~ OF Z SCORES WITHY AS COVARIATE'/ 
? ( I 0 I , 1 0 F 1 ?. .-3 )-l ------- - -· -- --------

13 CO~IT!NlJF.: 

WR!Tf(JOUT,608) F90, FQO, FQS, F99 
6 0 8 F 0 R MAT ( 5 (I ) -1------5-X-1 -

1 - F--'- -1-S - 1.: ---T-,---F-Q 0--· ( 1 
1 - F S 0 ? 1 

1 
} - - --

2F90 (', F5.2, 1
) F 1 1 S G.T. F95 ( 1 , F~,2, 1 ) 

3 G.T. F99 ( 1 , FS.2, 1 ) 1 I ! X, 110( 1 • 1 )) 

WRJTE(JOUT,&OS) - ~Y~T~O, . NYFQO, NYFQS, NYF9Q 
605 FOPMAT( 1 0Y 1

, I!b, ~I30) 

\oiRITE(JOUT,t>09) NlL roo, NZF90, NZFos, NZF99 
609 FORt--1AT( 1 0Z 1 •-- I-16 1--- \130) - --------

WRITE(JOUT,hOH) FCOVQn, FCOVQ a , FCnvgs, FCOVQ9 
i'i R T T E ( J 0 U i , b 1 0 ) ~J Y Z L T q , ~-1 Y 7 F 9 0 , ~ : Y l F q S , Ill Y 7 1-' 9 9 

b 1 0 F 0 F. ~HI T ( I 0 y z I , - - T 1 s , -- ~ I 3 () ) --- -- ---- -
35 CO~:TI NI IF. 

GO TO 1. 0 
20 CO ~~ TJNUE - -··--- - ---- ---------- ------ - 

STOP 
END 

--- - ------------ - --·---·· - ---

SU AROU TlNE CORREL(Y,Y,NGRUPS,~,COEFF) 

f) i MENS J 0 N ·X ( 1 0, t 0 0 ) r -Y ( 1 0, I 0 0 ) · 
SUMX::O 
su~1v ::o 
Sll~XX::O ---------------------·----- --- -- - -
SLJI-.1YY::O 
SUMXY:O 

DO 1 ,I :: 1 ,NGf<I!JPS - -
1) 0 1 I=t,N 
Stlr-~x:: SUMX + X(J,J) 
S U M Y ::: S I _ _HI Y t - Y ( .J r f )--
SUMXX :: SUMXX • X(J,I)•*2 
SIJ~1YY:: SUMYY + Y(J,J)•*? 
S LJ M X Y :: S U t-1 X Y · + -X ( ,J , T. ) * · Y ( J , I ) 
f.OIIJl P~ l lf 

XN :: q * NGI-<'UPS 
XI·HIM : S I IMXY .. SU~XkSIJW(/)(~~ 

S S X :: S U ~ X X p S ll t-1 '- t> ~ 11 r-• X I X N 
S S Y : S IH Y '( - S I J f" Y 1< S II!-. Y I it.; 

COFFF = XNU ~ /S04T(~ S /* S S YJ 

RFTUPN 
F i\!D 

F 11 S G.T 
fl 



SURROUTINE -ANOVA(Y,Z,Nr.RUPS,N,FYVAI..,FZVAL,FYZVAL) 
REAL MSHY, r-1SwY, - ,v,Sr:\ 7,1-'S WZ ,I"ShYZrl''tSW YZ 
DIMENSION ¥(10,100), Zrtn,tOO) 
XN:N 
T S I J M l: 0 - ---- ------·------------- ---------· ----
TSlJMZZ=O 
TN : N•NGRlJPS 
T S II MY: 0 - - - --------- -- -- - --- --·-----·· - - ---
TSUMYY:O 
TSLJ ~1YZ=O 
ssw y::: 0 - - --. -- --- ------------------- ·----- -------- - .. 
sswz:o 
SSWYZ :0 
DO 1 J:: 1, NGRiJPS -- -- ---- ---- ---- ·------ --- ·-------
SUMZ=O 
SUMZZ=O 

-- -- ·- - s u ~ y = 0-
SUMYY=O 
SUMYZ=O 
DO 2 I= 1, N --· --------------- ------------·------- -
S l.W Z = S lJ ro~ Z + l ( '-1, t )· 
SUMY = SUMY + Y(J,J) 
S U ~'<1 Z Z :: SUM Z Z + --7 -( J-rH * * '?-------- --
SU MYV = St JMY Y + Y(J,J)**2 
S l ! ~- ~ Y Z = S U ~-.~ Y Z + Y C . T , I ) * 7. ( J , I ) 
TSIP1Z:: TSU~>· Z - + - Z(.J-,. -1- ) - - - -·-- ---- -
T 3 'Y 1 Y - T S l W Y + Y C J , U 
T S U 1vl Y Y - T S I J I~ Y Y + Y ( ._1 , I ) * * 2 
i S U M Z 7 :: T S I) to-. Z 7 - + -· 7 ( J , J ) * * ? - -
TSUMYZ: TS UMYZ + Y( J ,J)tl(J,I) 

2 CON Tlt-iUt 
SSI-JY = SUMYY- ---•----Sl.Jl~ Y. -*- SUM-Y /XN -- + SS\IJY 
S S ~J Z :: S S Vi l + S lJ "' l 7 - S I I M 7. * S I _I M Z I X N 
SSW YZ : SS~YZ + SUMYZ - SUMY•SUMZIXN 
CO~JT I NUF 
T S S Y :: T S U 1·1 Y Y - T S II ,, Y * T S t! t.< Y I T N 
T S S Z = T S 1.!1'1 Z Z - T S I Jl· : l * T S l P~ ZIT N 
TSSYZ::: TSU t·1YZ .. TSIII"'Y•TSlJf.'Z/TN 
TSSZ AD = TSSZ ,.,. TSSYZ*TSSYZ/1SSY 
SSW/AD : SS~Z - SS~Yl*t2/SSwY 

-S S n Z h 0 :: T S S l A 0 . "" - S S io'J l A 0 ---- ------ ---
SSKY = TSSY - SSWY 
SSBZ = TSSZ - SSW7 
0 F ~~ : t.i G R I J P S - 1 
I)F\<J = ~;(;~(IPS * U !-1) 
~SHY :: SSBYIDFB 
MSwY=SSI'! 'UOF Vi 

MSfiZ = SSkZIDFH 
M S 1<1 Z = S ~. ~: ll D F w 
MSRYZ : SSB7AD /OF H 
~ S vJ Y l = S S w I A U I ( () F ;, - I • 0 ) 
FYVAl.:: t~SRYI M SW Y 

FZVJ\L : MSHZIMSW7 
FYZVhl = HS HYZIMSI-\YZ 
R F T IJ R ~ . J 
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