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THE INFLUENCE GF THE RELTABILITY OF THE DEPENDENT
VARIABLE Gi STATISTICAL POWER

Abstract of Dissertation

PROBLEM: In the planning phase of developing quality educational research
there are several critical decision peints. Some of these decisions are
made to ensure that the research wiil have adequate statistical power,

that is, the capability to detect meaningful differences, if they do exist.
In an unpublished article, K. D. Hopkins from the Laboratory of Educational
Research, University of Colorado and B. R. Hopkins from the University of
the Pacific commented that ail theoretical and empirical options for
increasing statistical power had been investigated except for the reli-
ability of the dependent variable. In this article, they derived a method
for estimating the statistical power of the analysis of variance (ANOVA)
and the analysis of covariance (ANCOVA) which factored out the influence
of the reliability of the dependent variable. This method involved
modifying the non-centrality parameters used in estimating the power of
the ANOVA and ANCOVA tests. This modification required some untested
mathematical assumptions and therefore needed to be empirically verified.
PURPOSE:  The purpose of this study was to empirically verify the method
for estimating the statistical power of the ANOVA and tne ANCOVA tests
developed by Hopkins and Hopkins., An additicnal purpose was to investigate
the infiuence of the raliabiiity of the dependent variable on the statis-
tical power of the ANCVA and ANCOVA tests.

PROCEDURES: A Monte Carlo computer simulation mathod was used to estimate
the actual power values of the ANOVA and ANCOVA tests. A comparison was
then made to the power values derived by using the Hopkins and Hopkins
method. By using the power values required for this comparison, it was
also possible to detevrmine the influence of the reliability of the
depencent variable on statistical power for the ANOVA and ANCOVA tests.
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FINDINGS: it was found that the method developed by Hopkins and Hopkins
to estimate the statistical power of the ANOVA and ANCOVA tests provides
a good estimate of power. It was also found that as test reliability
increases by .1, the statisticai power of ANOVA increases by about .06 or
.07 and the statistical power of the ANCOVA increases by approximately
10 or .12 when using the pretest as a covariate.

RECOMMENDATICNS:

For Researchers

1. Greater cuphasis should be placed on developing and using
highly reliable dependent variables in educational research.

2. It a covariate with an anticipatad correlation with the



variate of .5 or more is available, the ANCOVA test rather than the
ANOVA test should be considered whenever apprepriate.

3. Statistical power should be estimated routinely in the
planning phase of behavicral research.

For Future Studies

1. Computer programs to estimate the statistical power of the
ANOVA and ANCOVA tests should be included in the commonly used computer
software packages.

2. Power charts for .10 level of significance need to be developed
and included in research textbooks along with .05 and .01 Tlevels of
significance.
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Chapter 1
INTRODUCTION TO THE STUDY

In 1923, W. A. McCall published How to Experiment in Education.

Two years later, R. A. Fisher published his classic, Statistical Methods

for Research WOrkers.2 These Tandmark works established the foundation

for current behavioral research and its methodology. About forty years
later, Donald T. Campbell and Julian C. Stanley wrote a chapter for the

Handbook of Research on Teaching. That chapter, "Experimental and

Quasi-experimental Designs for Research on Teaching," quickly became the
guidebook for those involved in behavioral research and specifically
educational research. They stated that the experiment is
. the only means for settling disputes regarding educational
practice, as the only way of verifying educational improvements, and
as the only way of establishing a cumulative tradition in which
improvements can be introduced without the danger of a faddish dis-
card of old wisdom in favor of inferior novelties.3
Furthermore, Isaac and Michael stated that "in educational assessment and

decision-making, it [research] is the only way to make rational choices

Ty, A, McCall, How to Experiment in Education (New York:
Macmillan, 1923).

2R. A. Fisher, Statistical Methods for Research Workers (1st
ed.; London: Oliver & Boyd, 1925).

3Dona]d T. Campbell and Julian C. Stanley, "Experimental and
Quasi-Experimental Designs for Research on Teaching," Handbook of Research

on Teaching, ed. N. L. Gage (Chicago: Rand McNally, 1963), p. 172.
1



_ 2
between alternative practices, to validate educational improvements . . v
Educational experiments, therefore, potentially play a significant
role in educational decision making. Because of this role, the quality
of these experiments becomes crucial. High quality experiments may lead

to better educational decisions and a more effective educational process.
RATIONALE FOR THE STUDY

In the planning phase of developing quality educational research
there are several critical decision points. Some of these decisions are
made to ensure that the research will have adequate statistical power,
that is, the ability to detect meaningful differences, if they do exist.
J. K. Brewer stated, "It ﬁs almost universally accepted by educational
researchers that the power of a statistical test is important and should
be substantial."® However, according to Brewer, the power of the sta-
tistical tests used in research studies published in the American

Educational Research Journal as well as other journals in the behavioral

sciences tends to be dangerously Tow.® This criticism identified a need
for more attention to the power of statistical tests used in educational

research.

In 1973, Kenneth D. Hopkins outlined several methods of increasing

statistical power. One method was to increase the reliability of the

4Steven Isaac and William B. Michael, Handbook in Research and
Evaluation (San Diego: Robert R. Knapp, 1972), p. iii.

5J. K. Brewer, "On the Power of Statistical Tests in the American
Educational Research Journal," American Education Research Journal, IX,
No. 3 (1972), p. 391.

6

Ibid., pp. 394-95.



criteria or dependent variable. He commented that:
Although methods for quantifying the precise effects on power

of changes in the reliability of the dependent variable are not

readily available, it is certain that power is increased by a gain

in reliability of the dependent variable.’
In an unpublished article, K. D. Hopkins and B. R. Hopkins commented that
all theoretical and empirical options for increasing statistical power
had been investigated except for the reliability of the dependent
variable. In this article they derived a method for estimating the power
of statistical tests (specifically for the analysis of variance [ANOVA]
and the analysis of covariance [ANCOVA]) which included the reliability

of the dependent variable.8

THE PROBLEM AND ITS SIGNIFICANCE

The interaction between the reliability of the dependent variable
and power was expressed in theoretical terms by Hopkins and Hopkins.
This theoretical relationship was based on several mathematical assump-
tions and because of these assumptions, an empirical verification of the
derived relationship was required.9 The purpose of this study was to
empirically verify the hypothesized relationship between the reliability

of the dependent variable and statistical power. Other factors considered

Tkenneth D. Hopkins, "Research Design and Analysis Clinic:
Preventing the Number-One Misinterpretation of Behavioral Research, or
How to Increase Statistical Power," The Journal of Special Education,
VII, No. 1 (1973), p. 106.

8. D. Hopkins and B. R. Hopkins, "The Effect of the Reliability
of the Dependent Variable on the Power of the Analysis of Variance"
(unpublished paper, University of Colorado, Boulder; and University of
the Pacific, Stockton, 1974), pp. 1-12.

%Ibid., pp. 5-12.




were the sample size, number of groups, the level of significance, and
the magnitude of the treatment effect.

Frequently, the educational researcher has either ignored the
issue of statistical power when conducting research or has been poorly

armed to deal with the pr‘oblem.]0

Several authors have specified tech-
niques for increasing statistical power; however, as previously noted,
the influence of the reliability of the dependent variable had generally
not been considered.

It was hoped that this study would provide adequate information
so that a researcher could easily identify and maximize the statistical
power of his ANOVA and ANCOVA tests. If statistical power were estimated
routinely during the planning phase of research, studies without adequate
statistical power could be identified. Also, unnecessarily large and
elaborate studies could be reduced with substantial financial savings and
still maintain the ability to reject the null hypothesis when it is false,

that is, adequate statistical power.]]

Specifically, researchers want
their statistical tests to have high statistical power. They alsc want
to know the minimum effort required to achieve this level of statistical
powev'.]2 This study focused on the effects on statistical power of

increasing or decreasing the reliability of the dependent variable and of

varying other relevant parameters concurrently (see Table 1, page 5).
METHOD

The method used to accomplish this study involved "Monte Carlo”

10
12

11

Brewer, loc. cit. Hopkins and Hopkins, op. cit., p. 1.

Ibid., p. 12.



techniques. 'Sémples of random numbers were generated by the‘Burroughs
B-6700 computer, manipulated, and analyzed by both ANOVA and ANCOVA
procedures. This process was repeated one thousand times for each unique
combination of parameters and the results were accumulated. Systemati-
cally, the relevant parameters were manipulated and the resulting
statistical power estimated. In Table 1, the parameters that were »

varied and their respective minimums, maximums and increment levels are

identified.
Table 1
Parameters of the Study and Their Minimums,
Maximums and Increment Levels
Minimum  Maximum  Increment

level
1. Reliability of the dependent variable ‘5 .9 “h
2. Sample size 6 100 varies
3. Noncentrality parameter 1.0 varies varies
4. Level of significance .01 .10 varies
5. Number of groups 2 5 varies

DELIMITATIONS OF THE STUDY

This study was delimited by the number of cases examined. Since
it was impractical to vary every parameter infinitely, the following
cases were selected because they represented the majority of practical
applications: the reliability of the dependent variable varied from 0.3
to 0.9; the sample size varied from 6 to 100; the non-centrality parameter

increased upward from 1.0; the level of significance varied from 0.01 to



0.05; and the number of groups varied from 2 to 5.
DEFINITIONS

The following operational definitions are provided for this
study. Other definitions will be given in the text as required.

The "degrees of freedom" is the number of independent observa-
tions. That is, the total number_of observations minus the number of
restrictions on the observations.

The "level of significance" is the probability of obtaining a
test statistic that_falls within the critical region when the null
hypothesis is true.

The "Monte Carlo" technique consists of simulating an experiment
to determine some probabilistic property of a population of objects or
events by the use of random sampling applied to the components of the
objects of events.1d

where n = group sample size,
By = Mean of group i and 1 varies
from 1 to J,

The "non-centrality parameter" (¢)16 is: b =Jﬁuq (ui-p)z/d

2
O

p = grand mean,
J = number of groups, and
o3 = within group variance.

The ”nu}} hypothesis" (H ) is the hypothesis of "no relationship
or difference. It is the one actua11j tested statistically.

The "power" of a statistical test is the probability of rejecting
the null hypothesis when it is false. It is mathematically, a function
of the degrees of freedom, the level of significance and the

13Jerome L. Myers, Fundamentals of Exper1menta1 Design (2d ed.;
Boston: Allyn and Bacon, Inc., 1972), p. 82.

14

Ibid., p. 48.

15¢. West Churchman, Russel L. Ackoff, and E. Leonard Arnoff,
Introduction to Operations Research (New York: John Wiley & Sons, Inc.,
1957), p. 175.

16

Myers, op. cit., p. 89.

]7Isaac and Michael, op. cit., p. 142.



non-centrality parameter.]8
"Reliability" is an index of the consistency between measurements

in a series. The reliability coeffigient tells what proportion of the
test variance is nonerror variance.

OVERVIEW

The purpose of this study was to empirically investigate the
interaction between the reliability of the dependent variable and the
statistical power of the analysis of variance and the analysis of
covariance. The influence of other relevant parameters, namely, sample
size, non-centrality parameter, level of significance and number of groups
were considered. This purpose was accomplished by using "Monte Carlo"
methods and the Burroughs.B-67OO computer. Systematically, the relevant
parameters were manipu]atgd, and the resulting statistical power of the

ANOVA and ANCOVA procedures estimated.

18
19

Myers, op. cit., p. 49.

J. C. Stanley and K. D. Hopkins, Educational and Psychological




Chapter 2
REVIEW OF THE LITERATURE

A purpose of this study, as noted in Chapter 1, was to empirically
verify the hypothesized relationship between the reliability of the
dependent variable and statistical power. Statistical power is not a
well understood phenomena, and consequently, there is a scarcity of pub-
lished research on the topic. The intention of the review of Titerature
in this chapter, therefore, was to acquaint the reader with existing
studies of statistical power, as well as to establish the major opera-
tional concepts required by the study. The sources consulted in this
review are summarized in Appendix A.

The first portion of this chapter deals with statistical power
and its relation to the purpose of the study. An overview of statistical
power, beginning with the Pearson-Hartley power charts of 1951,1 is
presented which emphasizes the concept of statistical power, followed by
attention to research on how reliability (errors of measurement) relates
to power. The second portion of the chapter addressed two major research
tools, reliability and Monte Carlo methods. These two concepts are

fundamental to the methodology of the study.

]E. S. Pearson and H. 0. Hartley, "Charts of the Power Function

for Analysis of Variance Tests, Derived from the Non-Central F-
Distribution," Biometrika, XXXVIII, No. T (1951), 112-30.

8



STATISTICAL POWER

The first major contribution to the field of statistical power
was made by E. S. Pearson and H. 0. Hartley in 1951 when they published
the analysis of variance power charts.® From this point on, statistical
power was expressed as a function of sample size, number of groups, level
of significance, and magnitude of the treatment effect (the non-centrality
parameter). VYarious applications and implications of this approach were

later expressed in publications about power by J. K. Brewer,3 J. Cohen,4

5 as well as others.

K. D. Hopkins,
Since a major purpose in conducting educational research is to
detect differences between sample groups when a difference does exist,
high statisticai power is¢ important to educators. J. Cohen, a leading
statistical power theorist, proposed that .80 should be the minimum level
of power of statistical tests for research in the behavioral sciences.6
Unfortunately, most research in the behavioral science, has been con-

ducted with power estimates far below the .80 level. For example, Brewer

surveyed all articles published in the American Educational Research

2Ibid.

3J. K. Brewer, "On the Power of Statistical Tests in the American
Educational Research Journal," American FEducational Research Journal, IX,
No. 3 (1972), 391-401.

4J. Cohen, "Approximate Power and Sample Size Determination for
Common Cne-Sample and Two-Sample Hypothesis Tests," Educational and
Psychological Measurement, XXX, No. 4 (1970), 811-31.

5K. D. Hopkins, "Research Design and Analysis Clinic: Preventing
the Number-One Misinterpretation of Behavioral Research, or How to
Increase Statistical Power," The Journal of Special Education, VII,
Ne. 1 (1973), 105-6.

6

Cohen, op. cit., p. 825.



10
Journal from November 1969 to May 1971. He studied the power of the 373

statistical tests which were reported as statistically significant and
found that the average power values for 205 F and t tests were .13, .47,
and .73 for small, medium, and large effect sizes.7 Although these
studies did report significant differences, the probability of discovering

these differences was low and below Cohen's .80 level of adequate power.

An Overview of Statistical Power

Statistical power is a complex phenomenon to understand. Con-
ceptually, statistical power is "the probability of detecting a
[specified] difference in sample values when indeed the difference exists

at some level in the popu]ation,"8

that is, the probability of rejecting
the null hypothesis, when there is a difference. Power can be represented
graphically as the shaded area in Figure 1, page 11.

Computationally, power can be estimated by a two step process.
First the non-centrality parameter (¢) is computed and then the power
value is read from the Pearson-Hartley power charts using the appropriate
degrees of freedom and level of significance.

Methods to increase statistical power have been ocutlined by

various authors. K. D. Hopkins presented several ways to increase power

such as, increasing the total n, relaxing the level of significance,

7Brewer, op. cit., pp. 394-95; see also J. Cohen, "The Statistical
Power of Abnormal Social Psychological Research," Journal of Abnormal and
Social Psychology, LXV, No. 1 (1962), 145-53; see also R. F. Haase, "Power
Analysis in Research in Counselor Education," Counselor Education and
Supervision, XIV, No. 2 (1974), 124-32; see also B. J. Jones and J. K.

Brewer, "An Analysis of the Power of Statistical Tests Reported in the
'Research Quarterly'," The Research Quarterly, XLIII, No. 1 (1972), 7-15.

8Haase, op. ¢it.s po 126,
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9Hopkins, op. cit., p. 104.
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making a difectiona] hypothesis (use a one-tailed test), using a more
efficient.experimental design, increasing the potency of the treatment,
and increasing the reliability of the dependent variable. He also
indicated that all theoretical and empirical options for increasing sta-
tistical power had been investigated except for the reliability of the

dependent variable.10

The Influence of Test Reliability
on Power

Traditionally, statistical procedures were developed for models
where the variables were assumed to be free from the errors of measure-

ment.]]

Specifically, discussions of statistical power implicitly assumed
that the observations were errorless or "true" measures.12 Unfortunately,
most educational research involves the measurement of variables with con-
siaerable error. In 1958, J. P. Sutcliffe indicated that measurement
error does in fact decrease statistical power.]3 However, he gave no way

to assess this loss of power. The reliability of the dependent variable

is inversely related to the errors of measurement. 14 Consequently, the

]OHopkins, op. cit., pp. 105-6.

1]A. C. Porter, How Error of Measurement Affect ANOVA,
Regression Analysis, ANCOVA and Factor Analysis. U.S. Educational
Resources Information Center, ERIC Document ED 050 172, January, 1971,
Pe 23,

]ZT. A. Cleary and R. L. Linn, "Error of Measurement and the
Power of a Statistical Test," British Journal of Mathematical and
Statistical Psychology, XXII, No. T (1969), 49.

135, p. Sutc]iffe, "Error of Measurement and the Sensitivity of
a Test of Significance," Psychometrika, XXIII, No. 1 (1958), 9.

145, C. Stanley and K. D. Hopkins, Educational and Psychological
Measurement and Evaluation (Englewood Cliffs, New Jersey: Prentice Hall,
1972), p. 118.
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reliability of the dependent variable must also affect power.

Various approaches have been used to augment power by increasing
the reliability of the dependent variable. In 1969, T. A. Cleary and
R. L. Linn developed a cost model for the F-test and provided a procedure
to optimize power by varying the number of subjects and the test 1ength.]5
Since the length of a test directly influenced the test's reliabi]ity,
this was one of the first studies to hint at the influence of the
reliability of the dependent variable on power. In 1973, K. D. Hopkins
indicateé that ﬁeﬁhods-for quantifying the precise effects of changes in
the reliability of the dependent variable on statistical power were not

readily avaﬂab]e.]6

In an unpublished article written in 1974, Hopkins
and Hopkins addressed this problem. In this article they derived formulas
for estimating the non—ceptra]ity parameters and, consequently, the power
of the ANOVA and ANCOVA statistical tests which were a function of test

reliability. !’

Hopkins and Hopkins Methods

The methods developed by Hopkins and Hopkins to estimate the
power of the ANOVA and ANCOVA tests as a function of reliability required
a reformulation of the computation of the non-centrality parameter. For
the ANOVA, a nen-centrality parameter (¢A) is computed as a function of

the reliability of the depencent variable (ryy) and the non-centrality

I5C1ear‘y and Linn, op. cit., pp. 49-50.

]6Hopkins, op. cit., p. 106.

17¢. b. Hopkins and B. R. Hopkins, "The Effect of the Reliability
of the Dependent Yariable on the Power of the Analysis of Variance"
(unpublished paper, University of Colorado, Boulder; and University of
the Pacific, Stockton, 1974), pp. 1-12.
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parameter for perfect test reliability (¢7 o). Specifically, the formula
for Op is:

*A %10 erx

where ryy the reliability of the dependent variable,

J

ne (“1‘“)2 (That is, the non-centrality parameter
91.0 © i=1 assuming perfect reliability of the
5 dependent variable.),
Jo
t
n = group sample size,
2 o o2 2 2.
0, = 0,5 0a%s where Ta =0,

J = number of groups,

uj = mean of group i, and

arand mean. 18

=
1]

After the non-centrality parameter (¢A) is computed, the regular procedures

for estimating power are applied. That is, the derived non-centrality

parameter is used with the Pearson-Hartley power charts to estimate power.
The non-centrality parameter for the ANCOVA test was based on the

following computational formula:

1-rxy2

where rxy = the correlation between the variate and covariate (frequently
the covariate is the pretest and the variate is the posttest),

and
¢p = the non—centfa]ity parameter for the ANOVA test at a specific

reliability Tevel.19

181hid., p. 6. 191bid., p. 11.
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During the derivation of the formulas for the non-centrality
parameters for the ANOVA and ANCOVA, several assumptions were necessary.
Most of these assumptions were the common assumptions required for the
ANOVA and ANCOVA tests such as, normally and independently distributed
observations, and homogeneity of variance. However, in order to make the
non-centrality parameter a function of the reliability of the dependent
variable, an additional assumption was required. | |

One of the complex formulas required in order to derive ¢, and

d 2
nz (u;-u)
3 (n=1) 14 i
R 4F) = [ ] ok (0-1)

¢C was:

This formula was then viewed as two factors,

nt -
J (n—]) .i=](u'l U)
factor A = 3—7——73-2?— , and factor B = 1 + —
Like i ot (J-1)

As nJ (where n is the number of observations per group and J is the
number of groups) became larger, factor A approéched one (factor B was
not similarly affected). The additional assumption Hopkins and Hopkins
invoked was that as nJ approached infinity, factor A approached one.
Consequently, the formula for E (F) approximated factor B only as

reflected in the formula:

n % (uj-n)?

sl

E{F)= 1=

N —eMC

g, (J-1)
Hopkins and Hopkins indicated that this approximation was at most a 2 per-
cent underestimate for nd greater than 100. But when n and J were not
large, the error in the formula was greater. For exampie, if n=11 and
J=4, factor A would be 1.05 which is a 5 percent error from the assumed

value of 1.00.
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Consequently, because of this assumption which was required to
make the non-centrality parameters for ANOVA and ANCOVA functions of the
reliability of the dependent variable, the va1idity of the formulas was
in question for small n and J. Therefore, an empirical investigation of
the power of the ANOVA and ANCOVA test for small n and J became desirable.
Since the reason for deriving the new non-centrality parameters wasAto
account for the influence of test reliability on power, varying relia-

bility values needed to‘be investigated concurrently.
RESEARCH TOOLS

There are two major research tools which the reader needs to
understand in order to adequately visualize the methodology of the study.
They are reliability and the Monte Carlo method. This portion of the
review of the Titerature was developed to introduce these basic concepts
and, consequent1y, does not purport to represent a review of the gamut of
literature available on these research topics.

A concise definition of the reliability of a measure offered by

Stanley and Hopkins is, "reliability . . . is that proportion of the
total variance which is true variance." Symbolically, reliability (rxx)
éqda]s the ratio of true variance (otz) and total variance (owz).20
2
g
T
XX 5
OLU

This definition of reliability is standard among textbooks and periodical

Titerature and will be used in this study.

20gtanley and Hopkins, op. cit., p. 119.
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The Monte Cér]o method, is a scientific procedure for simuTating
an experiment and evaluating the results under prespecified conditions.2!
The increased use of computer simulations in problem solving has resulted
in the development of the Monte Carlo technique in business, social
science and education.?2

Churchman said:

In essence, the Monte Carlo technique consists of simu]atiné

an experiment to determine some probabilistic property of a

population of objects or events by the use of random _sampling

applied to the components of the objects or events.
He further noted that one of the most practical uses of the Monte Carlo
method was to obtain'approximate evaluations of mathematical expressions
which are built on probability distributions. His statement in this
regard is particularly relevant to establishing a rationale for using the
technique in the current study.

A recent Monte Carlo study by A. C. Porter investigated the
effects of sample size, the re]iabi]fty of the covariable and other
parameters upon the ANCOVA test.2% His research task was to empirically
compare Lord's U statistic with the conventional analysis of covariance
for varying levels of reliability and sample size. Porter's use of Monte

Carlo procedures further validates the appropriateness of these pro-

cedures for this study.

21C. West Churchman, Russel L. Ackoff, and E. Leonard Arnoff,
Introduction to Operations Research (New York: John Wiley & Sons, Inc.,
1867)» pe 12,

23

221h4d., p. 184. Ibid., p. 175.

_ 24A. C. Porter, "The Effects of Using Fallible Variables in the
Analysis of Covariance" (unpublished Ph.D. dissertation, University of
Wisconsin, 1967), p. 39.
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SUMMARY

A review of Tliterature revealed significant advancement in the
study of statistical power beginning with the appearance of the 1951
Pearson-Hartley power charts. Pearson and Hartley succeeded in describing
power for the analysis of variance as a function of sample sizé, number
of treatment groups, level of significance, and treatment effect (non-
centrality parameter).

The lack of use of current knowledge about statistical power to
improve educational research has been of concern to some researchers.
Jacob Cohen, an autherity on statistical power, has suggested that
behavioral research should possess power of at least .80. However, James
Brewer and others discovered that studies in the behavioral sciences
have had power far less than .80.

The literature indicated that several scholars were interested
in pursﬁing the study of statistical power beyond its traditional model
where the variables were assumed to be free of errors of measurement.
Sutcliffe, in 1958, demonstrated that measurement error does in fact
decrease statistical power. In 1969, Cleary and Linn offered a cost
model for maximizing the benefits of the F-test by consideringvthe
effects of varying test length, which, of course, is known to be directly
related to test reliability. As recently as 1974, Hopkins and Hopkins
addressed the problem of test reliability and statistical power. They
developed a method for new hon-centra]ity parameters for ANOVA and ANCOVA
which were é function of test fe]iabi]ity. However, the new method
required an additional assumption about the non-centrality parameter

which resulted in a threat to the validity of the formulas for small n
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and J. Consequently, an empirical investigation of the approach using
Monte Carlo methods became desirable. The literature review also included

the basic concepts of test reliability and Monte Carlo methods.



Chapter 3
PROCEDURES

The procedures for this study involved three major stéps. The
first step was to determine the power of ANOVA and ANCOVA from Pearson-
Hartley power charts based on the Hopkins and Hopkins formula for the
non-centrality parameters for fallible measures (The Formula Method).
The second step involved the determination of the power of ANOVA and
ANCOVA using a Monte Carlo simulation method (The Monte Carlo Method).
The final step required the comparison of the power of ANOVA and ANCOVA
derived from step_l and step 2 to determine the validity of the Hopkins

and Hopkins formula approach (Ccmparison of Methods).
THE FORMULA METHOD

A principal task of this study was to compare the power values
resulting from the Hopkins and Hopkins formula method for determining the
non-centrality parameter for fallible measures to the power values
resulting from a Mohte Carlo computer simulation method. Therefore,
estimates of statistical power for the ANOVA and ANCOVA F-tests based on
the Hopkins and Hopkins method needed to be determined.

Estimating the power of ANOVA and ANCOVA test from the 1951
Pearson-Hartley power charts required the determination of several sta-
tistical parameters. These parameters were: level of significance (a),

numerator degrees of freedom (df1), denominator degrees of freedom (df2),

20
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non-centrality parameter for infallible measures (¢7.9), re]iabilfty of

the dependent variable (r,,), non-centrality parameter for ANOVA for

xx)
fallible measures (¢A), non-centrality parameter for ANCOVA for fallible
measures (¢C), and the correlation between the covariate and the variate
(rxy). These parameters are explained further in Table 2, page 22 and
Table 3, page 23.

The following steps were used in estimating the power values for
the ANOVA test. For each unique set of parameters:

1. ¢1.0 Was computed (in this study, this value was assigned).

2. ¢p was computed from ¢ o and ryy.

3. Power was estimated from the Pearson-Hartley power charts

using ¢y, . dfy, and df for the ANOVA test.

For the ANCOVA test, the fo]]owing steps were employed in estimating the
power values:

s ¢p Was computed from ¢7 o and ry, for ANOVA.

2. o was computed from ¢p and xy (for this study,

ryy = rxx)'

3. Power was estimated from the Pearson-Hartley power charts

using bes s df], and df, fer the ANCOVA test.

2
The power values obtained through this process were subsequently used to
illustrate the relationship between reliability and statistical power for

the ANOVA and ANCOVA tests.
THE MONTE CARLO METHOD

Acéording to Kerlinger:

A Monte Carlo procedure is an empirical study of statistics
using random numbers. In the behavioral sciences, the term Monte
Carlo is usually applied to an empirical study of some method or



Table 2

Parameters Required in Order to Use the Pearson-Hartley Power Charts
to Estimate Power for the Analysis of Variance (ANOVA)

Parameter Cefinition How determined
a Level of significance Arbitrarily fixed: « = .10, o = .05, o = .0]
dfy Degrees of freedom for the df] = J - 1 where J = number of groups. For example, J = 2,
numerator of the ANOVA df1 = 1.
F-test
df, Degrees of freedom for the dfp = N - J where N = the total number of observations in
denominator of the ANOVA the ANOVA. For example, N = 12, J = 2, dfp = 10.
F-test
b3 Non-centrality parameter (If J, 0,2, and n are held constant,
1.0 i iabili Zi(ug-u)2 d is i sed, this repre-
assuming perfect reliability n Zilug-u and ¢7. g is increased, p
of the dependent variable $1.0 = sents a greater treatment effect of
(i.e.,0e2 = 0) ] \ J ot? difference between means)
where u; = treatment group mean,
u = grand mean,
ot2 = within group variance for the ANOVA when 0,2=0, and
n = number per group.
O't2
Pioxe Reliability of the dependent ryx = 2
) variable in the ANOVA Ow"
¢ Nen-centrality Parameter for

the ANOVA, as a function of

‘reliability of the dependent

variable (i.e., “ez = 0)

¢ = 1.0 /Txx
N

x4



Table 3

Parameters Required in Order to Use the Pearson-Hartley Power Charts
to Estimate Power for the Analysis of Covariance (ANCOVA)

Parameter Definition How determined

a Level of significance Arbitrarily fixed: a = .10, « = .05, a = .01.

df] Degrees of freedom for the dfy = d - 1 where J = number of groups. For example,
numerator of the ANCOVA Jd =2, dfy = 1,
F-test

dfz Degrees of freedom for the df2 = N -J - 1 where N = total number of observations in
denominator of the ANCOVA the ANCOVA. For example, N = 12, J = 2, df2 = 9.
F-test

xy Correlation between the For this study, Fxy = Fxx Where ryy is the reliability of
covariate and variate in the dependent variable.
the ANCOVA

oc Non-centrality parameter oA
for the ANCOVA as a function oc = where ¢p is the non-centrality
of the reliability of the 1 = o parameter for the ANOVA for
dependent variable. vV Xy rex = Txy:

€
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model that a scientist wishes to exp]ore.]
Since this study involved an empirical verification of a statistical
method, the Monte Carlo procedure was considered appropriate. As noted
in Chapter 2, this procedure was used in other studies which involved a
simulation of various aspects of the ANOVA and ANCOVA statistical tests.

In this study, a computer simulation model was developed using
Monte Carlo procedures. This computer program was written and partially
tested by B. R. Hopkins at the University of the Pacific. As a part of
this study, this computer program was further tested and the various com-
puter runs accomplished. The computer used for this investigation was
the Burroughs B-6700 model and the 1énguage used was FORTRAN IV. A copy
of the computer prcgram is in Appendix B.

In general terms, the computer program randomly selected ten
numbers between zero and one for small groups and four numbers between
zero and one for large groups. The arithmetic mean was taken and the
resulting value was used as an observation for a group. This process was
used so that the within group observations wouid approximate a normal
distribution by the Central Limit Theorem.2 At this point, error factors
were systematically added to each observation according to usual Monte
Carlo procedures so that after J groups of n observations each were
generated, the groups approximated the desired characteristics under
study. That is, they had, on the average, the required level of reli-

ability, and the required non-centraiity parameter value. For cases with

Te . Kerlinger, Foundations of Behayioral Research (2d ed.;
New York: Holt, Rinehart and Winston, 1973), p. 204.

2Ibid., p. 207.
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more than two groups, the distance between adjacent means was approxi-
mately the same. Next, the ANOVA and ANCOVA statistical tests were
conducted and the decisions (reject the null hypothesis or do not reject
the null) were recorded for the three levels of significance, which were
.10, .05, and .01. This process of randomly selecting numbers, adjusting
them according to Monte Carlo procedures, conducting ANOVA and ANCOVA
statistical tests, and recording the results of these tests was repeated
1,000 times for each unique set of parameters (J, n, ¢7.g> o> Py Poped
One thousand replications was determined to be adequate and an accepted
procedure based on two previously conducted Monte Carlo studies inves-
tigating the power of statistical tests.3

The number of timés the null hypothesis was rejected at the
various levels of significance for each unique set of parameters was
recorded. The proportion of rejections of the null hypothesis out of
1,000 chances for the ANOVA and ANCOVA tests were used as estimates of

statistical power.
COMPARISON OF METHODS

The strategy used in this study to compare the power values
derived from the Hopkins and Hopkins Formula Method with the power values
derived from the Monte Carlo Method involved a graphic comparison pro-

cedure. This procedure was selected primarily because it would

35, . Porter, "The Effects of Using Fallible Variables in the
Analysis of Covariance" (unpublished Ph.D. dissertation, University of
Wisconsin, 1967), p. 463 see also F. B. Baker and R. 0. Collier, dJdr.,
"Some Empirical Results on Variance Ratios Under Permutations in the
Completely Randomized Design," Journal of the American Statistical
Association, LXI, No. 5 (1966), 818.




26
demonstrate to what extent the data from the Formula Method approximated
the data derived from the Monte Carlo Method.

Graphs were created using power estimates from both Methods. In
these graphs, power was presented as a function of test reliability.

Separate graphs were created for ANOVA and for ANCOVA comparisons.
SUMMARY

A purpose of this study was to empirically verify the Methods to
estimate statistical power for the ANOVA and ANCOVA tests developed by
Hopkins and Hopkins. The procedures used to accomplish this task
involved three phases.

The first phase was to outline the steps required to estimate the
statistical power of the ANOVA and ANCOVA F-tests using the Hopkins and
Hopkins formula method. This method involved the computation of non-
centrality parameters for the ANOVA (¢A) and ANCOVA (¢C) and the
estimations of power based on the Pearson-Hartley power charts.

In the second phase, the general procedures of the Monte Carlo
method were explained. In brief, a computer program was used which
simulated the conditions and parameters of interest in this study. As
a result of this simulation, power values were generated for the ANOVA
and ANCOVA tests.

A comparison of the power estimates resulting from these two
methods was required in order to determine the accuracy of the formula
method developed by Hopkins and Hopkins. The method chosen was the

graphic comparison method.



Chapter 4
FINDINGS

This chapter is divided into four sections. The first section
contains the power estimates and non-centrality parameter values for the
ANOVA and ANCOVA tests based on the Hopkins and Hopkins Formula Method.
The second section contafns the power estimates for ANOVA and ANCOVA
based on the Monte Carlo Method. Graphs comparing the results of both
methods are presented in the third section. Conclusions and observations
based on the data presented in sections one through three are summarized

in the final section.
RESULTS OF THE FORMULA METHOD

Arithmetic procedures for the Hopkins and Hopkins Formula Method
were outlined in previous chapters. In capsule form, for the ANOVA test,

a 91.0 is assigned and o is computed for a specific r This op value

xx*
is used with the Pearson-Hartley power charts along with the appropriate
J, n, and a level to estimate power.

Power estimates for the ANCOVA test require the computation of

¢c which is a function of op and r,, (correlation between variate and

Xy
covariate). This oc value is used with the Pearson-Hartley power charts

to estimate the power of the ANCOVA for each specific J, n. and a.

ANOVA Tables .

The computed ¢ values are presented in Table 4, page 28. The

27



Table 4

Selected Non-Centrality Parameter Values (¢,) Based on the Formula*
Developed by Hopkins and Hopkins for the ANOVA Test

op Values
Reliability of
dependent variable
(ex) 81,015 41,0720 L
.3 .82 1.10 1.37
4 .95 1.26 1.58
.5 1.06 1.4 1.77
.6 1.16 1.55 - 1.94
.7 1.25 1.67 2.09
.8 1.34 1.79 2.24
.9 1.42 1.90 2.37
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%1 0 values were selected to provide a basis of comparison with the 91.0
values used by the Monte Carlo Method. Reliability values from .3 to .9
with intervals of .1 were used so that when the resulting op values were
used to estimate power, the curves created would be fairly smooth.

Estimates of the statistical power of the ANOVA test for two
groups are presented in Table 5, page 30. The ¢1.0 values of 2.0 and 2.5
were chosen because, for o=.05, the Pearson-Hartley power charts start at
1.0. The ¢7 ¢ value of 1.5 was not selected because, as can be observed
from Table 4, not all op values were above the minimum 1.0 required for
the power charts. Since a purpose of computing the ¢p values was to
Tater graph the power estimates, only ¢y o values with op values all
above 1.0 were selected, that is, ¢7 o values of 2.0 and 2.5 only. For
two groups and u=.01, the Pearson-Hartiey power charts start at 2.0.
Therefore, no power vaiues were estimated for two groups with o=.01.

Power estimates for three and five groups are offered in Tables
6 and 7, pages 31 and 32. For groups of three or more, the Pearson-
Hartley power charts begin at 1.0 for «=.05 and o=.01, therefore, power
estimates were made for ¢7,0=2.0 and ¢7 2.5 with o=.05 and o=.01. The
degrees of freedom chosen for all cases were selected to provide power
estimates to correspond to the J (number of groups) and n (number per
group) used in the Monte Carlo Method.

It can be observed from Table 5, that as test reliability
increases, so does statistical power. It can also be noted that power
increases as the number per group and‘degrees of freedom increases. How-
ever, the reader must keep in mind that these findings are for the
specific cases where n=10, 30, or 100 and where ¢y g equals either 2.0

or 2.5.



Table 5

Estimations of the Statistical Power of the ANOVA Test for Two Groups Based on the
Hopkins and Hopkins Formula for ¢p and the Pearson-Hartley Power Curves

Power for ¢ =2.0 Power for ¢7 g=2.5
df=(1,10) df=(1,30) df=(1,198) df=(1,10) df=(1,30) df=(1,198)
n=6 n=16 n=100 n=6 n=16 n=100
Reliability of
dependent variable

(rxx) a=.05 a=.05 a=.05 a=.05 a=.05 a=.05

-3 +30 531 «33 .42 .47 .49

4 .38 .41 .43 «53 .58 .61

-5 .43 .49 .51 .62 .68 .70

B .50 8.7 « 54 .70 .76 19

of .56 .63 .65 .76 .82 .84

.8 .63 .69 .12 .82 «B7 .89

9 .68 .74 77 -85 .90 .92

0€



Table 6

Estimations of the Statistical Power of the ANOVA Test for Three Groups Based on
the Hopkins and Hopkins Formula for ¢5 and the Pearson-Hartley Power Curves

Power for ¢y =2.0 Power for ¢].0=2.5
df=(2,9) df=(2,30) df=(2,9) df=(2, 30)
n=4 n=11 n=4 n=11
Reliability of
dependent variable
(P 0=.05  0=.0] 0=.05  a=.01 0=.05  a=.01 0=.05  a=.01
3 29 .10 .34 .13 .41 «17 .50 .26
.4 .38 12 .45 Bl .52 25 .63 .38
5 .43 .19 .54 <29 .62 wal .73 .50
B 52 23 63 - 37 s 1 .40 .82 .60
ol B .29 .68 .43 <10 47 .88 .68
.8 .64 + 32 18 51 .84 55 33 76
.9 .70 .38 .81 «B7 .88 .60 .95 .82

L€
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Table 7
Estimations of the Statistical Power of the ANOVA Test for

Five Groups Based on the Hopkins and Hopkins Formula
for op and the Pearson-Hartley Power Curves

Power for ¢].0=2.0 Power for ¢].0=2.5
df=(4,10) df=(4,10)
n=3 n=3
Reliability of
dependent variable
(rxx) a=.05 a=,01 a=.05 a=.01
- .30 .10 .47 .19
4 .40 .15 .60 .29
.5 .50 21 .70 .38
.6 .58 .25 .80 .48
7 65 + L 86 56
oy s .40 91 .65
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As test reliability increases from .3 to .9, the average increase
in power for the data provided in Table 5, is .42. It can also be
observed from Table 5, that with high test reliability, small samples can
provide the basis for experiments with adequate power. An example of
this is ¢7,0%2.5, n=6, a=.05, ryy >.8 where the resulting power is
greater than .80. Another observation is the increase in power as ¢7 ¢
increases from 2.0 to 2.5 (when J, n, a, ryx are held constant and 47,9
is increased, ¢1 o reflects an increase in treatment effect, that is, a
greater difference between treatment group means). For example, for J=2,
n=16, o=.05 and ryy=.6, power changes from .57 to .76 as ¢7 g increases
from 2.0 tg 2.5.

In Tabie 6, page 31, the power estimates for three groups with
two sample sizes, 4 and 11 are presented. It can be observed that the
level of significance {a) influences power. That is, as a increases from
.01 to .05, power increases. For the samples provided, power increases
an average of .zZ5 as o goes from .01 to .05. It can also be observed that
test reliability influences power. As test reliability increases from .3
to .9, pawer increases an average of .45 for «=.05, and an average of .43
for «=.01 for the samples provided in Table 6. It should be noted,
however, that these observations are restricted to a=.05 and «=.01,
and for n=4 and n=11.

Power estimates based on the Formula Method for five groups are
presented in Table 7, page 32. To correspond with the Monte Carlo data
for five groups, the power for n=3 with ¢; §=2.0 and ¢].0=2.5 was esti-
matad. As was observed in Tables 5 and 6, as a« increases from .01 to .05,
povier is augmented. Also, as reliability varies from .3 to .9 power

increases. For example, as reliability gones from .3 to .9, for ¢]‘0=2.5,
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n=3, and o=.01, power increases from .19 to .72.

ANCOVA Tables

The non-centrality parameters for ANCOVA, ¢c, are presented in
Table 8, page 35, for varying ¢j g values. For this study, Fyy=rxx» that
is, the correlation between the variate and the covariate was set equal
to test reliabiiity. For Tables 9, 10, and 11, pages 36, 37, and 38
respectively, 91.0 values of 2.0 and 2.5 are used because the correspend-
ing ¢ values from Table 8 were not all above 1.0 for 1.0 values less
than 2.0.

In Table 9, page 36, the power estimates for ANCOVA for two groups
with sample sizes varying from 6 to 100 are presented. Power estimates
for a=.05 are provided. It can be noted that power increases as sample
size (n) increasss. Tnis finding is consistent with known relation-
ships between sample size and power. It can also be noted that power
increases as the correlation between the variate and the covariate

increases. For example, as xy and ry, vary from .3 to .9, power

X
increases from .30 to .90 for o=.05, n=6, and ¢1_=2.0. As was pre-
viously indicated, power of .80 or greater is desirable in the behavioral
sciences. From Table 9 it can be observed that even for n=6, power of

.83 is obtained with rxy=.7 for o=.05 and ¢].0=2.O. When 9.0 is increased

to 2.5, r,, of only .6 is required to cbtain a power value of .87.

Xy

Estimations of the statistical power of the ANCOVA test for three
aroups are presented in Table 10, page 37. As has been noted previously,
power inCreases as n, o, Py and ¢7,0 increase. Increasing one or more

parameters can change the power estimate from below .8 to above the

desived minimun .8 value. For example, for n=4, ¢1 ¢=2.0, ry,=.7, the



Table 8

Selected Non-Centrality Parameter Values (¢c) Based
on the Formula* Developed by Hopkins and
Hopkins for the ANCOVA Test

Correlation between ¢c Values
variate and covariate
where T LI . h
(ryy) Bty el - o PR
.3 .86 1.15 1.44
4 1.04 1.37 el
5 1.22 1.63 2.04
.6 1.45 1.94 2.43
= - T B 2.34 2,93
8 2. 33 2.98 3.73
g 3.26 4.36 5.44
*¢ = ¢A2 > where r,, = r
c y XX~ XY



Tabie 9

Estimations of the Statisticai Power of the ANCOVA Test for Two Groups Based on the
Hopkins and Hopkins Formula for oc and the Pearson-Hartley Power Charts

Power for ? o=2.0 Power for ¢q 4=2.5
df=(1,9) df=(1,29) «f=(1,197) df=(1,9) df=(1,29) df=(1,197)
Correlation between n=6 n=16 n=100 n=6 n=16 n=100
variate and covariate ‘
where rxy=xx
(ryy) a=.05 a=.05 a=.05 a=.05 a=.05 a=.05
.3 .30 33 .38 .44 51 .53
4 .40 .48 .50 .57 .66 .68
B .53 .62 .64 71 .78 .81
BT « 19 I8 87 .91 93
. ' .83 .89 .91 : +95 .98 »98
.8 .96 98 .99 .99 .99 .99
.9 .99 .99 .99 .99 .99 -99

9¢



Table 10

Estimations of the Statistical Power of the ANCOVA Test for Three Groups Based on
the Hopkins and Hopkins Formula for ¢c and the Pearson-Hartley Power Charts

Power for ¢]_0=2.O

Power for ¢1.0=2.5

df=(2,8) df=(2,29) df=(2,8) df=(2,29)
Correlation between n=4 n=11 n=4 n=11
variate and covariate
where ryy=ryy
a=.05 a=.01 a=.05 a=.01 a=.05 a=.01 a=.05 a=.01
(ryy) .

.3 .30 .10 .33 « 12 .43 i8 .55 .28
L4 .40 .15 .49 .23 .60 .28 .71 .49
.5 .55 .25 .65 .40 .72 .40 .86 .63
.6 .70 .38 .82 .59 .88 .60 .96 .85
o7 .86 .55 .95 .80 .97 .79 .99 .97
.8 .97 .82 .99 .97 .99 .96 .99 .99
.9 .99 .99 .99 .99 .99 .99 .99 .99

LE
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Table 11
Estimations of the Statistical Power of the ANCOVA Test for

Five Groups Based on the Hopkins and Hopkins Formula
for ¢C and the Pearson-Hartley Power Charts

Power for ¢]_0=2.0 Power for ¢1_0=2.5
df=(4,9) df=(4,9)
Correlation between n=3 n=3
variate and covariate
where ryy=ryx

(rey) w=.05 a=.01 w=.05 w=.01

.3 | .30 .08 .48 .19

4 .42 12 .63 .30

.5 .58 .26 .78 .44

.6 .74 .40 .92 .65

o7 .89 .60 .98 .84

8 .99 .86 .99 .98

9 99 .99 .99 .99
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power for a=.01 is estimated as .55 but the power for o=.05 is an accept-
able .86. As Txy varies from .3 to .9 for ¢y 4=2.0, n=4, and «=.01,
power increases from .10 to .99. As n goes from 6 to 100, the increase
in power as shown in Table 10 is a maximum of .25. For three groups with
only 11 per group, a=.05, and ¢]_0=2.5, xy of only .5 can provide the
basis for an experiment with power estimated at .86.

In Table 11, page 38, the power estimates based on the Hopkfns
and Hopkins formula for ANCOVA for five groups with a sample size of 3
are presented. As was observed for previous cases, power becomes greater
as ¢1.0s Txys and o increase. It can be noted that even for n=3, an

experiment with adequate power can be conducted with xy of .6 or greater.
RESULTS OF THE MONTE CARLO METHOD

In order to examine and verify the formulas developed by Hopkins
and Hopkins to estimate the statistical power of the ANOVA and ANCOVA
test, a computer program using Monte Carlo procedures was used. Data
resulting from this computer program were generated for the parameters
relevant to this study and were summarized in Tables 12 through 17, pages

40 through 45.

ANOVA and ANCOVA Tables

Power values for ANOVA and ANCOVA for two groups with ¢y g varying
from 1.0 to 2.5, o varying from .01 to .10, ryy varying from .3 to .9,
and n varying from 6 to 100 are in Tables 12 and 13. Power values with
three significant digits are provided since the number represents the
nunber of times the null hypothesis was rejected out of 1000 trials.

As can be observed from Tables 12 and 13, for both the ANOYA and



Table 12

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Two Groups
Based upon the Monte Carlo Simulation for ¢y 0 Equal to 1.0 and 1.5

$7.0=1.0 ANOVA $1.0=1.0 ANCOVA 47 0=1.5 ANOVA ¢1.0=1.5 ANCOVA

Tyx=
n rxy a=.10 0=.05 «a=.01 a=.10 0=.05 @o=.0] e=.10 a=.05 «o=.01 a=.10 a=.05 «a=.01,

& 3 .170 .104 .022 .183 .103 <025 .287 .187 .051 .286 .170 .054
6 -8 «289 147 .050 .281 . 166 .045 » 379 .242 - .086 .432 .288 .098
6 ot .294 .197 .070 .437 .294 « 113 .505 .354 . 142 .693 +5b2 .280
& 9 «320 « 196 .060 .835 «123 415 .566 .418 .187 <992 370 -813
16 »3 214 .128 032 .209 .134 27 . 928 .207 .069 +333 .224 .071
16 D . 267 .160 .058 .328 .224 .069 .424 .307 .120 .524 .384 <173
16 «d . 300 .204 .061 467 + 326 147 -830 395 174 .761 .657 =370
16 9 . 364 .25¢ A97 .890 .815 .602 .623 .485 w238 «997 .991 .954
100 = .194 = 128 .040 . 185 .134 .39 . 336 216 .091 « 302 s£32 .091
100 .5 .243 « 156 .056 290 .190 075 .455 «331 .144 «531 395 « 197
100 od B39 .230 .080 491 . 388 - {87 .534 . 393 .209 .818 <123 .465
100 «9 397 »2 12 114 213 .850 .670 .644 .486 .269  1.000 .999 .983

ov



Table 13

Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Two Groups
Based upon the Monte Carlo Simulation for ¢7 g Equal to 2.0 and 2.5

$1.0=2.0 ANOVA $71.0=2.0 ANCOVA $1.02-5 ANOVA $1.072-5 ANCOVA

n xy a=.10 a=.05 a=.01 a=.10 a=.05 a=.01 a=.10 a=.056 a=.01 a=.10  0=.05 @=.01

6 i .434 .303 .108 .438 <287 .098 .536 392 - 152 .926 .388 o 19}
6 D .545 417 176 .610 .464 215 i .607 .290 <7195 .669 «353
5 7 «135 .602 274 1907 .814 012 .888 .778 471 .982 955 .741
6 5 .780 .660 -363 1.000 -359 977 .937 .885 .630 1.000 1.000 -238
16 «3 .470 <S04 .144 .479 .343 . 193 .601 .456 <233 .631 +001 257
16 5 .643 .497 .254 « 721 .608 . 360 .778 .658 .389 .876 . 183 .534
16 ot . 740 .603 . 362 +935 .878 .684 .908 . 846 «5Z1 .988 976 903
i6 9 .848 .748 .482 1.000 1.000 899 .358 .907 729 1.000 1.000 1.000
100 N L4917 «3/3 .168 .502 . 389 .182 ® ® f ® * i
100 <9 .642 +925 .289 .748 .635 .389 i f f 5 = it
100 «d .746 .634 .402 .942 907 LT s f ® ® * #
100 «2 . 845 .747 539 1.000 1.000 1.000 * * f ’ % ® x

*Values for ¢]'0=2.5 for n=100 were not computed.

87



Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Three Groups
Based upon the Monte Carlo Simulation for ¢7 g Equal to 1.0 and 1.5

Table 74

xx=

¢].0=1'0 ANOVA

87 o=1-0 ANCOVA

$7.0=1-5 ANOVA

¢'l . 0=] .5 ANCOVA

n rxy o=.10 o=.056 o=.01 0=.10 a=.05 a=.01 o=.10 a=.05 o=.01 o=.10 0=.05 a=.01
4 «3 .186 «116 .034 .206 «113 033 <270 .158 .048 .261 « 163 .046
o .5 . 258 158 051 «£62 .158 037 .404 .264 .091 .442 « 305 .103
4 5 d 281 .178 .042 .414 +255 .085 <517 « 332 «131 .702 «055 211
s «9 «332 202 .060 .858 .734 413 «893 .435 172 .994 978 . 845
11 3 205 .123 33 w207 .130 .041 .339 «227 -093 « 305 «238 .089
11 «5 213 « 171 .047 «321 .214 .064 .445 . 304 . 132 513 .383 .182
11 i . 320 203 .070 +518 .378 .163 .578 .448 .201 .832 sd LI .458
11 9 . 384 «262 .087 .960 911 «718 .677 .548 2T 1.000 999 .987

ey



Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Three Groups
Based upon the Monte Carlo Simulation for ¢1.0 Equal to 2.0 and 2.5

Table 15

6y o=2-0 ANOVA 87 g=2-0 ANCOVA $1.02.5 ANOVA 81 0=2-5 ANCOVA
n :x 0=.10 =.05 a=.01 =.10 0=.05 a=.01 @=.10 0=.05 o=.01 a=.10 a=.05 a=.01
4 .3 .413 .264  .087  .398 .25  .082  .592  .437  .181  .583  .419  .164
4 .5 612 .427 .81  .646  .475  .197  .766  .630  .324  .820  .680  .365
4 .7 .77 .568  .265  .901  .801  .498  .885  .773  .443  .978  .943  .730
& .9 .837  .6%  .362  .997 .99  .981  .956  .881  .619  1.000  .999  .998
.3 .483 .30 .16  .501  .364  .i66  .651  .521  .251  .673  .541  .279
1 .5 .675  .549  .285  .755  .637  .376  .848  .741  .475  .934  .852  .627
1M .7 .804  .694  .418  .970  .931  .789  .941  .892  .700  .997  .994  .966
11 .9 .88  .801  .554  1.000 1.000 1.000  .972 .93  .803  1.000 1.000 1.000

(X7



Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Five Groups

Table 16

Based upon the Monte Carlo Simulation for ¢7 o Equal to 1.0 and 1.5

91.0=1-0 ANOVA ¢71.0=1-0 ANCOVA $1.0=1.5 ANOVA ¢1.0=1-5 ANCOVA
n :x o=.10 a=.05 a=.01 a=.10 a=.05 a=.01 a=.10 0=.05 o=.01 a=.10 a=.05 a=.01
3 = « 1 12 .109 .025 ‘176 .099 023 .309 .202 .054 . 9 « 195 .051
3 D .259 .151 .041 .287 71 .052 .404 .263 .092 .462 « 306 .108
3 ik .304 .192 .058 .452 =303 .105 .588 413 163 .799 .647 .305
3 .9 «370 «238 .078 .930 .819 .498 .655 .486 .202 1.000 .994 37

147



Estimations of Statistical Power for the ANOVA and the ANCOVA Tests for Five Groups
Based upon the Monte Carlo Simulation for %1.0 Equal to 2.0 and 2.5

Table 17

41 =2.0  ANOVA

$1.0=2-0 ANCOVA

$71.0=2.5 ANOVA

4)] ] O=2 .5 ANCOVA

r
N ry =10 =05 o=.01 =10 0=.05 o=.01 =10 =05 o=.01 a=.10 o=.05 q=.0l
3 453 .308  .105  .463  .312  .108  .624  .476  .205  .617  .466  .196
3 .5 .65  .485 .19  .719  .565  .256  .820  .688  .378  .891  .769  .440
3 .7 .813  .667 .359 .95  .878  .614  .941  .847  .541  .993  .984  .830
3 .9 .87l .765  .432  1.000 1.000 .99  .980  .938 .73  1.000 1.000 1.000

St
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ANCOVA tests, power is augmented as n, a, ryx and ¢1.o increase. -For

the ANOVA test, as ¢7,0 varies from 1.0 to 2.0, for n=100, ry,=.9 and
o=.10, power increases from .397 to .845. The level of significance (a)
also influences power. An increase in o from .01 to .10 results in
dramatic increases in power values, especially for Yyx below .7. For
example, as o varies from .01 to .10, for $1.01-5, n=16, ry,=.5, power
is more than tripled as it increases from .120 to .424. Except for a few
cases where ryy=ry,=.3, the power of the ANCOVA is greater than the power
of the ANOVA test. For ¢7 ¢=1.5, 0=.01, and n=100, the power increases
from .269 for ANOVA to .983 for ANCOVA.

The Monte Carlo Method power estimates for three groups for ANOVA
and ANCOVA are in Tables i4 and 15, pages 42 and 43. Power values were
computed for sample sizes of 4 and 11. Similar observations about power
can be made concerning the increase in power as a, n, 91.0> xx»> and ryy
become Targer. It is possible from Tables 12 to 15 to compare what
happens to power when 3 groups of 4 each (n=12) are used instead of 2
groups of 6 each (n=12). While controlling for ¢1,0, as rxxs and ryy,
the power is éeheral]y greater when three groups are used instead of two.

The statistical power estimates for five groups with three per
group based upon the Monte Carlo simulation are offered in Tables 16 and
17, pages 44 and 45. It can be observed that for the ANOVA test with
n=3, r,,=r..,=.9, o=.05 and 1.0 of 2.5 power is greater than .8. However,
for the ANCOVA test with the same parameters, a ¢y g of only 1.0 is
necessary to achieve a comparable level of power.

Difference Between the Power
Estimates of ANCOVA and ANGOVA

According to Kerlinger,
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Analysis of Covariance: [ANCOVA] is a form of analysis of

variance [ANOVA] that tests the significance of the differences

between means of final experimental data by taking into account

the cgrre]ation be%ween the dependent variable and one or more

covariates . . . &
The objective of this section is to investigate the increase in statis-
tical power resulting from the use of the ANCOVA test rather than the
ANOVA test. As indicated by Kerlinger, the major difference between
ANOVA and ANCOVA is the influence of the correlation of the variate and
covariate which ANCOVA includes and ANOVA does not include. The data in
Tables 18, 19, and 20, pages 48, 49, and 50, represent the influence of
this correlation. The data in Table 18 are the result of subtracting the
ANCOVA power values from the ANOVA power values taken from Tables 12 and
13 while controlling for J, N, $1.0»> rxx»> and a. For example, from Table
13, for ¢y ¢=2.0, o=.01, p=]6; and ry,=.9, the ANCOVA value is .999 and
the ANOVA value is .482. The difference between these two values is .517
which is presented in Table 18 for the same parameters. This number,
.517, represents the increase in power when the ANCOVA test is used
instead of the ANOVA test when the correlation between the variate and
the covariate is .9.

Examining the data in Table 18, it can be observed that for cor-
relations .5 or below, the increase in power is at most .145 and generally
less than .100. For correlations of .7 and .9, increases in power are
more substantial and vary from .080 to .716. In gereral, smaller levels

of significance have the greatest increase in power, that is, o=.01 has

a larger increase in power than o=.05 when ANCOVA 1is used instead of

TF. N. Kerlinger, Foundations of Behavioral Research (2d ed.;
New York: Holt, Rinehart, and Winston, 1973), p. 370.




Difference in Power Values Between the ANCOVA and the ANOVA Test

Table 18

Based on the Monte Carlo Simulation Values for Two Groups

¢1.0=1.0 $1.01-5 ¢1.972-0 $1.072-9
rxy=

n rxx o=.10  a=.05 «a=.01 ar. 10 a=.06 g=.01 o=.10 o=.05 o=.01 o=.10 a=.05 o=.01

6 .3 .013  ~-.001 .003 -.001 -.017 .003 .004 -.016 -.010 -.010 -.004 -.001

6 .5 .022 .022 -.005 -053 .046 .012 .065 .047 .039 .044 .062 .063

6 ¥ .143 .097  .043 .188  .198  .138 172 .212 .238 .094 177 .270

6 .3 .55 827 - 305 .426 562 .626 .220 « 338 .614 .063 .115 . 368
16 .3 -.005 .006  -.005 .005 .017 .002 .009 .004 .009 .030 .045 .024
16 .5 .061 .064 071 . 100 .077 .053 .078 =113 . 106 .098 125 .145
16 .7 .167 <122 .086 231 .262 .196 .195 .275 R .080 .130 .332
16 .9 .526 JB63 .505 .374 .506 .716 .152 252 517 .042 .093 .27
100 .3 .001 .009 -.001 .016 .06 .000 011 .016 .014 o * ®
100 .5 .047 .034 018 .076 .064 .053 . 106 110 .100 ® . "
100 o 152 - 158 . 107 284 .330 .256 - 196 .273 . 355 5 f *
100 9 .516 .578 .556 +356 .513 .714 . 155 .253 461 * " *

*Power values for ANOVA and ANCOVA for n=100 were not computed.

8Y



Difference in Power Values Between the ANCOVA and the ANOVA Test

Table 18

Based on the Monte Carlo Simulation Values for Three Groups

¢1.01-0 $1.0°1-5 $1.0=2-0 91.0=2.5
gl kE gl ARl esEs ol -l s el el e =l
4 .3 .20 -.003 -.001 -.009 .005 -.002 -.015 -.008 -.005 -.009 -.018 .017
4 .5  .004 .000 -.014 .03 .041 .02  .044  .048 .016  .054  .050  .041
& .7 133  .077 .03  .185  .223  .080  .184  .233  .233  .093  .170  .287
4 .9 .526 .53  .353  .401  .543  .673  .160  .306  .619  .044  .118  .379
1M .3 .02 .007 .008  .016 .011 ~-.c04  .018  .004  .002  .022  .020  .028
1 .5 .048 .043 .017  .068 .079  .050  .080  .088 .09 .08 .11  .152
m .7 .198 175 .093  .254  .269  .257  .166  .237  .371 .06  .102  .266
1 .9 .57 .649  .632  .323 .451 .70  .120  .199  .446  .028  .064  .197

6v



Difference in Power Values Between the ANCOVA and the ANOVA Test

Table 20

Based on the Monte Carlo Simulation Values for Five Groups

87 =1.0 $1.051.5 81 =2-0 41,0725

Y‘xy— :
n o ryx  o=.10 o=.05 o=.01 =10 0=.05 o=.01 =10 0=.05 =.01 @=.10 @=.05 a=.0]
3 .3 .004 -.010 -.002 -.007 =-.007 ~-.003  .004  .004  .003 -.007 -.010 ~-.009
3 .5 .028 .020 .011  .058 .042  .016  .063 .08  .057  .071  .081  .062
3 7 148 M1 047 .21 .23 142 137 .21 .255  .052  .137  .289
3 .9 .560  .581  .420  .345  .508  .735  .129  .235  .564  .020  .062  .287

0§
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ANOVA. A similar résu]t occurs when the increase in power for «=.05 is
compared with the increase in power for o=.10. As ¢91.0 increases, the
difference in power between ANCOVA and ANOVA becomes greater up to the
point where both are close to 1.000. For example, from Table 18, where
n=16 and rxy=-7, the difference for ¢; o of 1.0 is .086, for 1.0 of 1.5
it is .196, for 1.0 of 2.0 it is .322, and for 1.0 of 2.5 it is .332.
It can also be observed from Table 18 that as the correlation increéses,
the difference in ANCOVA and ANOVA becomes greater. This increase con-
tinues until both values approach 1.000.

The data for the differences in power between the ANCOVA and
ANOVA for three groups are presented in Table 19. Observations similar
to those for two groups can be made. In general, the difference in power
between ANCOVA and ANOVA becomes greater as the level of significance
becomes smaller, as the correlation becomes greater, as sample size
increases, and as the treatment effect (¢1.0) becomes larger. Varia-
tions from these generalizations result from the stochasticity of power
when n, ryyx, ryy and ¢1 g are low. Also, when both ANOVA and ANCOVA
power values are close to one, the difference becomes small.

Differences in power between the ANCOVA and ANOVA tests for five
groups which are presented in Table Z0 form similar patterns to the
differences noted for two and three groups. It is interesting to note,
that with only n=3, ¢7 ¢=1.5, 0=.01, and ry,=.9, power increases .735
when ANCOVA is used instead of ANOVA.

The change ih power when ANCOVA is used instead of ANOVA for
varying correlation (rxy) and reliability (ry,) levels is presented in

Figure 2, page 52. As can be observed from the graph, for r,, and ryy

Xy
greater than .5, ANCOVA is a more powerful statistic than ANOVA except
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Figure 2

An Approximation of the Increase in Power When ANCOVA Is Used
Instead of ANOYA for Varying Levels of rxy* with a=.05

“In this study, ryy=ryy.
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when the power of the ANOVA is .8 or more. It can also be noted that
when xy and r, .
power to the ANOVA test.

are less than or equal to .3, ANCOVA is comparable in

COMPARISON OF THE HOPKINS AND HOPKINS FORMULA
METHOD TO THE MONTE CARLO METHOD

The graphic representations presented in this section summarize
selected data derived from the first two sections. The graphs are pre-
sented to facilitate the comparison of the Formula and the Monte Carlo
Methods for estimating the statistical power of the ANOVA and the ANCOVA
tests.

The graphs presented in Figures 3 through 20, pages 54 through
71, provide for the comparison of the Formula Method and the Monte Carlo
Method for J varying from 2 to 5, for n varying from 3 to 100, for o
varying from .01 to .05 for ¢j o varying from 2.0 to 2.5, and for ryy and

rxy varying from .3 to .9.

ANOVA Graphs

The graphs presented in Figures 3 through 11 provide the basis
for comparing the Formula Method to the Monte Carlo Method. Since the
Monte Cario Method simulates the actual power values, the accuracy of
the Formula Method can be assessed by this process.

By examining the graphs, it can be observed that the Monte Carlo
derived power values vary less than .05 from the formula derived power
values. In general, the variation between the two methods is less than
.02. This is an exceptionally close fit since the formula derived values
were based on estimates from the Pearson-Hartley power charts which may

contain some interpolation error.
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Figure 3

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryy) for J=2, n=6, and a=.05
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Figure 4

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(rxx) for J=2, n=16, and o=.05
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Figure 5

by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability

(rxx) for J=2, n=100, and o=.05
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Figure 6

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryy) for J=3, n=4, and o=.05

57



<
1531
-

[

|
RS EEENEEBAEEEE

Power
rxx
Legend
Formula Method
Mointe Carlo Method T et e o o
Figure 7

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(rey) for J=3, n=11, and o=.05
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Figure 8

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryx) for J=3, n=4, and a=.01
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Figure 9

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as & Function of Test Reliability
(ryx) for J=3, n=11, and o=.01
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Figure 10

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and ihe Monte Carlo Method
with Power as a Function of Test Reliability
(ryy) for J=5, n=3, and a=.05

61



Power

Txx
Legend
Formula Method
Monte Carloc Method et s m e
Figure 11

A Comparison of the Power of the ANOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(rxx) for J=5, n=3, and a=.01
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Figure 12

A Comparison of the Power of the ANCOVA &s Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryx) for J=2, n=6, and a=.05
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Figure 13

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Functicn of Test Reliability
(ryx) for J=2, n=16, and o=.05
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Figure 14

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Methecd
with Power as a Function of Test Reliability
(ryy) for J=2, n=100, and a=.05
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Figure 15

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(rey) for J=3, n=4, and «=.05
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Figure 16

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryy) for J=2, n=11, and u=.05
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Figure 17

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(rxx) for J=3, n=4, and «=.01
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Figure 18

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryx) for J=3, n=11, and a=.01

69



B
J
6
5
Power
4
xx
Legend
Formula Method
ionte Cario Method S v ——
Figure 19

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryx) for J=5, n=3, and a=.05
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Figure 20

A Comparison of the Power of the ANCOVA as Estimated
by the Formula Method and the Monte Carlo Method
with Power as a Function of Test Reliability
(ryx) for J=5, n=3, and «=.01
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It can be observed from Figures 3, 4, and 5 that forbtwo groups
with a=.05, ¢7, 0=2.0, power never reaches the desired .8 level even for
n=100. However, for two groups, when ¢y =2.5, with on]y n=6, adequate
power is achieved when r,, > .75. Figures 6 and 7 demonstrate that for
three groups with ¢1.02-5 and o=.05, adequate power can be obtained for
rxx > -75. For three groups, n=11, ¢; ¢=2.0, and ryy=.9 the desired .8
minimum level of power is also achieved. Figures 8 and 9 present the
results for three groups with o=.01 for n=4 and n=11. When «=.01, ade-
quate power is reached for n=11, and ¢7 9=2.5. Figures 10 and 11 provide
the power estimates for five groups, n=3, for «=.05 and a=.01. When
a=.05, sufficient power is obtained when ¢7 =2.5 and reliability is
greater than .6. However, for o=.01, power is less than .8 for both
¢1.072.0 and ¢7 ¢=2.5.

By examining Figures 3 through 11, it can be observed that the
influence of test reliability is fairly consistent. Since the curves in
these graphs are somewhat linear, a generalization can be made concerning
the increase in power as test reliability increases. For each .10 increase
in test reliability, power increases by approximately .06 or .07. This

finding is for the ANOVA test and is independent of ¢1 g, n, J, o, and

rxxo

ANCOVA Graphs

The data for ANCOVA based on the Formula Methed and the Monte
Carlo Method are presented graphically in Figures 12 through 20. A com-
parison between the two methods for the ANCOVA test can be made from
these graphs. The purpose of this comparison is to determine the accu-

racy of the Formula Method for the ANCOVA test.
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As}cén.be noted from Figures 12 through 20, the Formula Method

values sometimes overestimate power but vary no more than .07 from the
Monte Carlo derived values. In most cases, the differences are less than
03,

For all cases examined in this study where ¢7 ¢=2.0 and ¢].0=2.5,
adequate power was achieved for ANCOVA with moderate (.5 to .7) to high
(above .7) correlation and reliability levels. This finding further
supports the superiority of the ANCOVA test over the ANOVA test. For yy
and ry, less than .9, the curves presented in Figures 12 through 20 pro-
vide the basis for a generalization about the influence of ryy and ryy on
statistical power. For each .10 increase in the correlation between the
variate and the covariate and test reliability, statistical power increases
by approximately .10 to .12. This finding is for the ANCOVA test and is

independent of ¢7 g, n, d, a, rxxband Fxy
SUMMARY

The purpose of Chapter 4 was to present the findings of this
study. These findings were presented in the form of tables, figures and
narrative interpretation. The Formula Method was compared to the Monte
Carlo Method; also the ANCOVA test was compared to the ANOVA test. The
influence of other parameters were also examined. They were number of
groups (J), number per group (n), level of significance (o), test reli-
ability (ryy), correlation between the variate and the covariate (rxy),
and treatment effect (¢ q)-

As a result of this study, it was found that as test reliability
increases by .1, the statistical power of the ANOVA increases approximately

.06 or .07. For ANCOVA, it was found that as the correlation between the
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variate and the covariate and test reliability increase by .1, the sta-
tistical power is increased by about .10 or .12. Another finding was
that for correlations greater than or equal to .5, ANCOVA is considerably
more powerful than ANOVA.

The graphs illustrated that the Formula Method provides a good
estimate of statistical power even for small J and n. Various levels of
significance and reliability were examined and it was observed that the
Formula Method maintained its stability. It was cencluded that the
assumption referfed to in Chapter 2 made by Hopkins and Hopkins during
the derivation of the Formula for op and ¢c did not seriously invalidate

the resulting power estimates.



Chapter 5
SUMMARY, IMPLICATIONS AND RECOMMENDATIONS

In this chapter, an overview of the study is presented along with
a summary of the findings. Implications and recommendations of these
findings are also discussed. Specifically, recohmendations are made con-
cerning areas for future study and general recommendations to those

interested in the administration of educational research and evaluation.
OVERVIEW

In the planning phase of developing quality educational research
there are several critical decision points. Some of these decisions are
made to ensure that the research will have adequate statistical power,
that is, the ability to detect meaningful differences, if they do exist.
In an unpublished article, K. D. Hopkins and B. R. Hopkins commented that
all theoretical and empirical options for increasing statistical power
had been investigated except for the reliability of the dependent variable.
In this article they derived a method for estimating the power of sta-
tistical tests (specifically ANOVA and ANCOVA) which included the
reliability of the dependent variable. However, thjs method was based
on some untested mathematical assumptions and therefore needed to be
empirically verified.

The purpose of this study was to empirically verify the method

developed and to investigate the interaction between the reliability of
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the dependent variable and the statistical power of the enalysis of
variance and the analysis of covariance. The influence of other relevant
parameters, namely, sample size, non-centrality parameter, level of sig-
nificance, and number of groups were considered.

This purpose was accomplished by using Monte Carlo methods and
the Burroughs B-6700 computer. Systematically, the relevant parameters
were manipulated, and the resulting statistical power of the ANOVA and

ANCOVA procedures estimated.
FINDINGS

It was found that the formula developed by Hopkins and Hopkins
to estimate statistical power, which included as a factor the reliability
of the dependent variable, provides a stable estimate of power even for
small valuss J and n (J=number of groups and n=number in each group). As
test reliabiiity increases by .1, the statistical power of the ANOVA
increases by abcut .06 or .07. It was also found that, for ANCOVA, as the
correlation Tevel and reliability Tevel increase by .1, the resulting
statistical power is increased by approximately .10 or .12. It was also
observed that for ccrrelations greater than or equal to .5, the ANCOVA
test is more powerful than the ANOVA test. When the correlation was .9,
the increase in power when ANCOVA was used rather than ANOVA was greatest
when the original power of ANOVA was between .2 and .8. It was also
observed that when the correlation was low, for example, .3, 1little or no
gain in pcwer was achieved by using ANCOVA instead of ANOVA.

In general it was observed that when the reliability of the
dependent variable was high, the ANCOVA test had high power even for

groups with small sample size (n). It was also observed that when the
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reliability was Tow, power was consistently low. Even with large sample
sizes, experiments with dependent variables having low reliability had

Tow power.
IMPLICATIONS AND RECOMMENDATIONS

The power of a statistical test should be estimated during the
planning stage of a research study. There are three major implications
of doing this. First, if the derived power is low, the researcher may
decide not to conduct the study or may decide to change some of the
parameters (that is, increase n, o, or ry,). Second, whether the null
hypothesis is rejected or is not rejected, the researcher needs to know
how much confidence can be given to this result. If the study had power
of .90 and the null hypothesis was not rejected, the researcher could
- feel fairly confident with the results. However, if the power was .30,
and the null hypothesis was not rejected, the researcher would be less
sure of the result. There may have been no difference or there may have
been a difference, but the statistical procedures used may not have had
enough power to detect the difference. Another reason for computing
power during the planning phase of an experiment is to identify
unnecessarily large and elaborate studies. For example, if an n of 20
will provide high power, it would be costly and unreasonably cumbersome

to use an n of 100.

Recommendations for Future Studies

The following recommendations for future study are made. Since
test reliability strongly influences the power of the ANOVA and ANCOVA

test, the influence of reliability on other statistical tests should be
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investigated. >I£ would be helpful to the researcher who wanfs to con-
sider .10 Tevel of significance in studies if power charts were created
for .10 level of significance. Currently, charts for only .01 and .05
are available. Another aid to researchers would be to include computer
programs to compute statistical power in the commonly used computer
software packages such as SPSS (Statistical Package for the Social

Sciences).

Recommendations for Researchers

As a result of this study, a few recommendations are made for
researchers and evaluators. Because of the influence of test re]iability
on power, more emphasis should be placed on developing and using highly
reliable dependent variables. Also, whenever defensible, a .10 level of
significance should be considered since it is a convenient way to increase
the power of the ANOVA and ANCOVA tests. If a covariate with an antici-

pated correlation with the variate of .5 or greater is available, the

" ANCOVA test rather than the ANOVA test should be considered whenever

appropriate.

As previously indicated, statistical power should be estimated
routinely in the planning phase of research. If this was done, high
power couid be achieved by varying the relevant parameters to optimize
power. Parameters of studies without adequate power could be altered

and unnecessarily large and elaborate studies could be reduced.
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A Summary of the Literature Search
Conducted for this Study

Source V.I.--to date included

Current Index to Journals
in Education X

Current Index to Statistics:
Applications, Methodology

and Theory X
Business Periodicals Index X
Psychological Abstracts X
Research in Education (ERIC) X

DATRIX II Computer Search

Current Statistical Textbooks
and their Bibliographies

Bibliographies of related
periodical literature
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Compﬁter Program Using Monte Carlo Procedures to Estimate
the Statistical Power of the ANOVA and ANCOVA F-Tests
for Varying J, n, Py 9., and ryy

B&700/B7700 FORTRANMN COMPILATTION M AR K
FILE S=JINy UNIT-5-READFR o o

FILE 6= JOUT, UNIT = FRINTER

C THE 1ST CARD=NO+OF-GFROUPS,— N, NREPS, IwAKTR, IWANTF, NRANOR,NCOPY
C IN THIS FORMAT I2, I3, 14, 211, 1012)

C 2ND= XSTART,NO, OF PHI VALUES , INTTTAL RXX, RXXTNC, RXXMAX, FG90Q,

C F95, F99, FCOVQQ,-FLOVOS-FCOVO9 -IN THE FORMAT = FS5, 0015, 14FS,2

c IRD= THE SD OF THE UNIFORM RANDOM NUMEFR PAPULATION, FOLLOWED RY T
C DESIRED PHI VALUES IN THIS FORMAT= 16F5,0

DIMENSION - -XZ2COFF ¢1000)— —-
DIMENSTON PHIC(10)
DIMENSION X(10,100), FY(1000), FZ(1000), FYZ(1000), Y(10,100)
DIMENSTON -Z (10+,106),-ALPHAS(I0,10), YZCOQFF(1000), XYCOEF (1000
JIN = §
JOUT = 6
READCJTN,SB00) NGRUPS,~ N, -NPEPS —, TWANTK, IWANTF,NKANQR ,NCORY
500 FORMAT(I?, T3, I4, 271,912)
QANORM = NRANOR
READCIIN, SO )XSTART, NALFST, RXX ,RXXINC,RXXMAX,FQ0,F05,F99,
2 FCOV9n, FCOVYS, FCOV9IQ, COVRYZ
501 FORMAT(FS,0,15, 14F%,2)
) READCJIN,S06) STGMA,—~(PHI(T), T=1,NALFST)
504 FORMAT(16FS,0)
SIGMA = SIGMA/SQRT(RANNRM)
XGRUPS = NGRUPS
XN=N
PO 37 T = 1,NALFST
XK = XGRUPS* (PHI(I)*SIGMA)*%x2/XN
GO T0 (37,23,24,2%,26,27),NGRUPS
23 D= SRRT{XK/2,0)
_ALDHAS(I,I) - -1.0*17» e
ALPHAS(1,2) =D
GO Y0 37
2u D= SAORT(XK/2,0)
ALPHAG(T,1) = =1,0%D
ALPHAS(T,2)= 0
ALPHASCI,3) = D
GO T0 37
25 D=SART(XK/20,0)
ALPHAS(T, 1) = =3, 0D
ALPHAS(T,2)= ~1,0%D
ALPHAS(T,3)= D
ALPHAS(T,4)= 3,04D
GO TO 37



26

27

37

10

52

33

34

D=SQRT(XK/10,0)

ALPHAS(I,1) = «2,0%D - . .
ALPHAS(I,2) = ={,0%D
ALPHAS(I,3) = 0

ALPHAS(I,4) =D - y
ALPHAS(1,5) = 2,0%D

GO T0 37 '
D=SORT(XK/T70,0)—
ALPHAS(I,1) = =5,0#D
ALPHAS(I,2) = ~3,0%D
BLPHASLL s 3} -8 =] DB i
ALPHAS(T,d) =D

ALPHAS(I,S5) = 3,0+*D
ALPHAS(I,e) = 5.0%D

CONTINUE—— S

DO 20 L = 1,NALFST

RXXA = RXX » RXXINC

CONTINUE

RXXA = RXXA + RXXINC

IF(RXXA BT  RXXMAXI—GO-TO 20— -
SEFAC = SORT(RXXA/(1.,0=RXXA))

RYZ = COVRY!Z

RXY = COVRYZ**P/RUNA oo
IF(RXY GT,0,999999) RXY = ,999999
SEFACY = SQRT(RXY/(1,0~RXY))
TF(COVRYZ.EQ,0,0)-SEFRACY = SFFAC
IF(COVRYZ ,EQ,0,0) RYZ=PXXA
NYFQO=N

NYFG5=0 - - e

NYF99=(

NYLTGO = 0

40 o T S
NZFas=0

NZF99=z=0

M ZL T9D S it
NYZFQ0=0

NYZFA9S5=(

NY ZFG e e,
NYZLT9=0
DO 101 K
ne 103 J
DC 103 1
TEMP = 0
DO 32 NRANZI,NRANGR- —— o= st

TEMP = TEMP ¢ RANDOM(XSTART)

CONTINUF

X(J,T) = TEMP/RANORM 4 ALRPHASC(L ,J)
YTEMPzZO

DO 33 NRAN = {,NRAN0OR

YTEMP = YTEMP 4 RANDOM(XSTART)
CONTINIE

YTEMP = YTFMP/RANNRM

YCJeI) = X(JpI) 4(YTFMR w &) / SEFACY
JTFEFMP =0
DO 34 NRAN = {,MNRANOR

2TEME = 7TEMP 4+ RAMDOMEXSTAKT)
COMTTIMIIE

ITFMP = 7TEMP/RANOR

ZCTeTY = X(Js1) (7TEMP W ,4%) / SEFALC

1/, NREPS
1y NGRUPS —
1N

LR S ]
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ALPHAS (L, J)
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11

101

30

601

6500

Ab

602
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CONTINLIIE
IF(IWANTR,EN,O0) GO TO 11
CALL CORREL(X,Y,NGRUPS,N,CNEFF)
XYCOEF(K) = COEFF
CALL CORREL(Y,Z,NGRUPS,N,COEFF)
YZCOQEF(K) = COFEFF =
CALL CORREL(X,7Z,NGRUPS,N,COEFF)
XZCOEF(K) = COEFF
CONTINUF_ - e
CALL ANQVA(Y,Z,NGRUPS,N,FYVAL,FZVAL,FYZVAL)
FY(K) = FYVAL
FZ(K) = FZVAL .
FYZ(K) = FYZVAL
CONTINUE
DO 30 M = {,NREPS . . _.

NYFQQ

IF(FY(M),GT,F90) NYFQQ = + 1
IF(FY(M),GT,.F95) NYF95 = NYF95 ¢ 1
JEF(FY(M) ,GT,.F99) _NYFQQ = NYFQQ 4+ |
IF(FY(M)LTLFQ0) NYLTOA=NYLTOO0 + 1
IF(FZ(M),GT.FQQ9) N7FQQ = NZFQ9 + |
IF(FZ(M),GT ,F98) N7FQS = NZFQS5 4+ 1
IF(FZ M) 56T F90)—M2E8 08— RERGI-Fprme

IF(FZ(M),LT.F90) NZLT90 = NZLT90+1
IF(FYZ(M),GT,FCOV99) NYZF99 = NYZFQO + |

IF(FYZ (M) ,GT,FCOVOR) NYZF95 = NYZF95 + |
IF(FYZ(M),GT,FCQVeN) NYZFQN = NYZFQ0D +1{
IFEFYZIMY LT FCOVEN) MYZLTO = NYZLT9 +1

DO 35 NCOP = 1,NCOPY
WRITE(JOUT,501) PHTI (L)Y, RXXA, RYZ, (ALPHAS(L+J), J = 1,NGRUPS)
FORMAT (PIPHI =', F7,2/-1'0R77-(FELIABILTTY) =', F6,3/ 10X, 'RYZ

CRRELATION BETWFEN COVARIATF AND VARIATE) = ', Fe,3/ '"OTKRT FFFE(
3ARRAY =t', 10F10,5)

WRTTE(JOUT,600) NGRIIRS, N,--HREPRS
FORMAT ('ONO, OF GRNAUPS(JI='y T10, 10X, 'NO, OF SCORES/GROUP(N)

2 0+ 10X "REPLTE, OFJ-GROUPS—OF Nty F10)

TE(TWANTR,EQ,0) GO -TU -2 -
SUMRXY=0
SUMRXZ=0
SUMRYZ = 0 oo
PO 40 T = 1,NRFPR

SUMRXY = SUMRXY + YYCOFF({1)
SUMRXZ = SUMRX7 -+ XZICOFF(]I)
SUMRYZ = SUMKYZ7 + Y7COFF(I)
CONTINUE

XNREPS = NREPS :
RXYRAR = SUMRXY/XNEEFPRS
RXZBAR = SUMRX7 / xnEEDPS
RYZBAR = SUMRYZ/XNREPS

WRTITE(JNUT, 602) RYYRAK, RXZHAER, RYZHAR
FORMAT ('O MFAN RXY =', F10,3, 10X, 'MEAN RY2 =', F10,3, 10x, '

2 kyZ =%, F10.,73)

WRTTECJINUT,A03) (XYCOFEF(K), K = 1,NRFPS)



603
700
604
12

606
616
626
13

608

605
609
610
39

20
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FORMAT('OCOMPUTED RXY COEFFICIENTS'/Z ( ' ', 20F6,2))

WRTITE (JOUT,700) (XZICOFEF(K)Y, K = 1,NREPS)

FORMAT ('OCOMPUTED RXZ COFFF', /7 ('0', 20F6,2))

WRITF(JOUT,604) (YZCOFF(R), K = {,NREPS)

FORMAT('OCOMPUTED—RY-Z COEFFICIENTS Y/ (' ', 20F6,2))

CONTINUE

IF(IWANTF,EQ.,0) GO TO 13

WRITF(JOUT,606) (FY(Ky, -K = {,NKFPS)

FORMAT('0 F=RATINS FOR ANOVA OF Y SCORES'/('0', 10F12,3))

FORMAT('0 F=RATIONS FOR ANQVA QF 7 SCORES'/('0', t0F12,3))

WRITE(JOUT,616) —(FZ(K), K .= {,NREPS)

WRITE(JOUT,626) (FYZ(K), K = {,NREPS)

FORMAT('0 F-RATIOS FOR ANCOVA OF 7Z SCORES WITH Y AS COVARIATE'/
@ (107 JOR 123 ) i e

CONTINUE

WRITE (JOUT,608) F90, FQ0, F95, F99

FORMAT (5(/)p-5XptF1I§ | Ty FOO0-('y FS,2, ') FY1S G,
ZFO0 (Y EB.2: ") F''S G.T. FOS (', F5,2, ") F

5 6.Ts F99 (', F5.,2, )Y 7 1X%; 110(¢'='))
WRTITE(JOUT,605) NYLTQO0, NYFQ0O, NYF9S, NYF99
FORMAT('0OY', I16, 3130)

WRITE(JOUT,609) NZLLT90, NZF90, NZFO5, NZF99
FORMAT(L0ZY, 116, -3L30) e

WRITE(JOUT,608) FCOven, FCOVOn, FCOvos, FCOVIQ
WRTTE(JOUT,010) NYZLTO, MYZFQO, MNYZF9S, NYZF99
FORMAT('OYZ', - T15,.3130) .

COMTINUE

GO TO 10

CONTINUE . L RN, o b N LR -

STOPRP

END

SURROUTINE CORREL (X,Y,NGRUPS,™N,COEFF)
NIMENSTON X(10,100)+ Y(10,100)
SUMX=0

SUMY =0

SUMXX=0 e
SUMYY=0

SUMXY=0

DN 1 J = 1,NGRUPS

NDCY I=1,N

SUMX = SUMX + X(J,1)

SUMY = SUMY + Y(J,1)

SUMXX = SUMXX ¢ X(J,T)xx?2
SUMYY = SUMYY + Y(J,T)#*x?
SUMXY = SUMXY 4 X(J,T1) = Y(J,1)

CONTTNLUF

XN = N % NGRUPS

XNIJM = SHUMXY = SUMYEIUMY /XN
SSX = SUMXX = SUMX#SUIMYX/XN

SSY = SUMYY = SUMYR&IIMY /XN
COFFF = XNUM/SOKT(SSY%x88Y)
RETURN

[SENED)



SURROUTINE ANQVA(Y,Z,NGRUPS,N,FYVAIl ,FZVAL,FYZVAL)
REAL MSBY, MSwY, MSR7,MSWZ,MSkYZ,MSWwYZ
DIMENSION Y(10,100), Z(¢10,100)

XN=N

TSUMZ=0 - —me— - e
TSUMZZ=0

TN = N*NGRUPS

TSUIMY=0 e e e
TSUMYY=0

TSUMYZ=0

ol 4 e ——— L. e
SSWZ=0

SSWYZ =90

DOY1 J=1 ,NGRUPS — e
SUMZ=0

SUMZZ=0

SUMY=0-- B Bl =
SUMYY=0

SUMYZ=0

DO 2131, N e

SUMZ SUMZ + 72(J, 1Y

SUMY = SUMY + Y(J,T1)

SUM7Z SUMZZ +-7(Jp ) wrd
SUMYY SUMYY ¢ Y(J,T)x%x2

SLiMYZ SUMYZ + Y(I,1)+7(J,1)

TSMZ TSUMZ 4 - 7()+s 1)

TSHIMY TSUMY = ¥({J:zT1)

TSUMYY TSUMYY 4+ Y(J,T)x*2

TSUMZ7 TSUMZZ 4 7 (J,T)*x%2 -

TSUMYZ TSUMYZ + YCI,1)*2(J, 1)
CONTINUE

SSWY = SUMYY = SUMY£SUMY/XN..+ SSWY -
SSWZ = SSWZ + SUMZ7 =SUMZ*SUIMZ/XN
SSWYZ = SSWYZ + SUMYZ = SUMY*SUMZ/XN
CONTINLF . -

TSSY = TSUMYY = TSUMY*TSLIMY/TN

TSSZ = TSUMZZ = TSUHZ*TSLMZ/TN

TSSY7 = TSUMYZ = TSIMYSTSUMZ/TN

i n
LT LI I |

iHoinu

TSSZAD = TSSZ = TSSYZ*TSSYZ/T1S8S8Y
SSUZAD = SSWZ = SSKYZ*#2/SSwY
SSRZAD = TSSZAD. = SSWZAD ...

S8RY = TSSY = SSWY
SSBRZ = TS8SZ = SSWZ
DFR = NGRIUPS =1

DFW = NGRUPS *x (Me1)
MSRY SSBY/DFE
MSWYZSSHWY/DF W

MGR7 = SSKZ/DFR

MSWZ = SSwZ/DFW

H

MSKYZ7 = SSByAD/DFR _
MSUWYZ = SSWZAL/ (DFw=1,0)
FYVAL = MSKY/MSWY
FZVAL = MSBRZ/MSW7

FYZVAL = MSBYZ/MSwnY?
RFETURMN
END
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