University of the Pacific Scholarly Commons

A 68000-based produce sorting microcomputer : graduate clinical research master's report

Ramzi Albert Haidamus
University of the Pacific

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Haidamus, Ramzi Albert. (1989). A 68000-based produce sorting microcomputer : graduate clinical research master's report. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/ uop_etds/2172

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

Graduate Clinical Research Master's Report

A 68000-Based Produce Sorting Microcomputer

by
Ramzi Haidamus

Presented to the Graduate Faculty of the University of the Pacific

Department of Electrical and
Computer Engineering

April 3, 1989

Preface

This report discusses in great detail the various research, design, and development stages of the Produce Sorting Microcomputer developed for HAGAN ENGINEERING Inc. The two-semester Clinical Research project has been approved by the graduate committee at the School of Engineering at the University of the Pacific and fulfills the requirements towards a Master Degree in Electrical Engineering.

The project was selected based on its complexity, feasibility, the time span it required to complete, and its relevance to the area of real-timemicrocomputer design. In addition, the design constraints and specifications were to be dictated solely by HAGAN ENGINEERING Inc. and all further modifications were to be discussed and approved by HAGAN. These limitations created a professional industry-like atmosphere, which is one of the goals of the Clinical Research Program.

A brief User's Manual will accompany the MC68000 board; it will contain all the vital information about the system that a programmer or a technician might need to understand the system. The manual will contain the complete circuit schematic, a parts list, general design features, and all the software properties of the system (memory map, interrupt tables, register map).

Table of Contents

Section Subject Page
1.1 Introduction 1
1.2 Design Features 1
1.3 General Description 2
2.0 System Memory 6
2.1 The MC68000 Read Cycle 6
2.2 Timing Relationship8
23 Peripheral Compatibility9
24MC68000 Board Memory Configuration.11
25 Memory Map 11
2.6 Battery Backup 13
13 MC68901 Multifunction Peripheral
3.0
3.0 14 14
3.1 The M.F.P. in the MC68000 Board 15
32 Addressing the MC6890117
4.0 I/O Connectors 17
4.1 Connector J1 17
4.2 Connectors J2 and J3 18
4.3 Connector J4 19
4.4 Connector J5 194.5
4.6Connector J619Connector J7
19
5.0 Power Requirements20
6.0 Board Prototyping
21
7.0 21
Printed Circuit Board ${ }^{\text {TM }}$ Schematic Program.7.17.27.37.4
8.0
9.0

The D.P.S. CAD/CAM ${ }^{\text {TM }}$ Layout Program 22 23
The D.P.S. CAD/CAM ${ }^{T M}$ Autorouter
The D.P.S. CAD/CAM ${ }^{T M}$ Autorouter
The D.P.S. CA De PCB Manufacturing 25Photoplotting and PCB Manufacturing25PC Board Cost26PC Board Testing

1.1 Introduction

The objective behind the design of the MC68000 project was to provide HAGAN ENGINEERING Inc. with a controller board that is able to monitor and control several produce sorting lanes simultaneously, with the MC68000 C.P.U. being the only processor available in the entire system. One of the specifications of the project is to design an open system that is not bound by any specific I/O device or transducer. Consequently, the terms 'monitor and control' above will not be defined' in terms of external monitoring or controlling circuits. The MC68000 board was designed to serve as a general purpose controller that could communicate with several types of I/O devices. This was made possible by the various combinations of signals made available through the connectors on the board. Finally, the design was to be laid out on a printed circuit board for commercial use.

Note: A copy of the complete circuit diagram is included in appendix \mathbf{A} (a reduced copy and a real size one). It should be referred to throughout the following design discussions.

12 Design Features

Full speed operation at 8 MHz
8K Words of Battery-Backed RAM for User Code Development or data storage.

8K Words of ROM for Monitor storage.
Full data bus, 8 address lines, and control circuitry available in EIA Standard RS-485 via two separate 26 pin dual-in-line connectors.

8 Data and Address lines, 3 I/O limes, and control circuitry available in buffered TTL levels via a 26-pin DIP connector for general

Figure 1 68000 Typical Application Page 4

2.0 System Memory

The following section discusses in detail the timing of the MC68000 processor within the board, its relationship with asynchronous devices, and the memory configuration on the MC68000 board. These explanations should serve the user as a guide to connecting asynchronous peripherals to the system through connectors J1, J2, and J3.

2.1 The MC68000 Read Cycle

The MC68000 machine cycle consists of a minimum of four clock cycles and is divided into eight states labeled S 0 to S 7 (see figure 3 next page). All machine cycles start in state SO with the clock high and end in state S 7 with the clock low. Of course the machine read cycle may be extended (up to 1.6 seconds in the case of this MC68000 design) by the insertion of wait states (each with a duration of one half clock cycle) between clock states S4 and S5, allowing the MC68000 to operate with a mixture of both fast and slow interface components.

At $\mathbf{S 0} 0$ of the read cycle, all signals are negated with the exception of R/W which remains high for the rest of the read cycle. In State S1, the address on A01 to A23 becomes valid and remains so until state S 0 of the following cycle. In state S 2 the address strobe, AS^{*}, goes low indicating that the content of the address bus is valid. The timing of LDS* and UDS* are the same as $A S^{*}$, and their falling edges can be used to initiate a memory access. After the falling edge of AS* (and the Data Strobe Lines), if the

Figure 3 MC68000 Timing Diagram

DTACK* does not go low at least 20 ns before the end of state S 4 , wait states are introduced between S4 and S5 until DTACK* is asserted. If the DTACK* line is not asserted by the component being read within the next 1.6 seconds, the processor is reset by the external watch dog timer on the board.

During the final state, S 7 , of the current bus cycle (after the assertion of DTACK*) both AS* and LDS*/UDS* are negated (unasserted) and the data is latched into the MC68000 internally. DTACK* must be negated after the strobes have been negated.

2.2 Timing Relationship

The following timing parameters pertain to the MC680008L 8 MHz CPU by Motorola Inc. Please refer to Figure 3, above.

The address bus is floated within 80 ns (Max) of the start of SO. The new address is placed on the bus no more than 70 ns (Max) after the start of $\mathbf{S 1}$. The address strobe, AS^{*}, is asserted no less than 30 ns after the address has stabilized.
R / W is set high at the beginning of a read cycle no more than 70 ns (Max) after the start of SO , and stays high for the remainder of the current cycle.

The key parameter governing the DTACK* handshake from the peripheral is its setup-time, 20 ns (min.), before the falling edge of $S 4$. If DTACK* satisfies this timing, the next state will be $S 5$, otherwise wait states will be inserted until DTACK* is asserted. In order to avoid the
insertion of a wait state, DTACK* must be asserted at least 20 ns before the next clock input.

During state S 7 , both address and data strobes are negated within 70ns (Max) of the falling edge of the clock. In order to meet the data holdtime of the MC68000, the contents of the data bus must be stable for at least 0 ns after the rising edge of the strobes. In other words, the data may become invalid concurrently with the rising edge of AS* or LDS/UDS**

Note: The MC68000 Board has a watchdog timer that resets the MC68000 processor if the timer is not strobed by AS* within 1.6 sec . Therefore, all read and write cycles can hold the bus (i.e., keep DTACK* inactive) no longer than 16 sec . This feature is provided to avoid a bus freeze in case of an erroneous bus cycle.

23 Peripheral Compatibility

Figure 4 (next page) relates the essential features of the MC68000 timing diagram to those of a peripheral that will be placed directly on the bus without needing wait states (All the memory components placed on the MC68000 Board operate with zero wait states).

From the falling edge of $S 0$ to the falling edge of $S 6$, three full clock cycles take place, a total time of 3^{*} tcyc (The processor latches the data at the end of state S6). During this time, the value on the address bus become valid (70 ns), the peripheral is accessed (t_{AA}), and the data setup-time is met (15ns). Thus, the total time for this action is given by $70 \mathrm{~ns}+15 \mathrm{~ns}+$ taA.

Figure 4 MC68000 /Peripheral Timing Diagram

Putting the two equations together we get:
or

$$
3^{*} t_{c y c}>70 \mathrm{~ns}+15 \mathrm{~ns}+t_{\mathrm{AA}}
$$

$$
t_{A A}<3 * 125-70-15 \Rightarrow t_{A A}<290 \mathrm{~ns}
$$

Therefore, the peripheral must have an access time of less than 290 ns to work with the MC68000L8 at 8 MHz without any wait states.

Note: The data from the peripheral must stay valid until the AS* (Chip Select) is negated.

24 MC68000 Board Memory Configuration

The MC68000 Board has 16K Bytes of ROM available for storing a Monitor program and permanent data. The 16 K Bytes of ROM are configured as two 8 K Bytes in parallel to form an 8 K Word (16bit/Word) memory space. The ROMs have an access time of 150 nsec , which makes it possible to use them without any wait states.

The same configuration applies to the two 8 K Bytes of RAM used in the design to provide an 8 K Word space for downloading programs. The RAMs have an access time of 100 ns making it possible to operate them without any wait states.

2.5 Memory Map

The complete memory map of the system is shown in table 1 (next page). It should be noted that ROM starts at address 0 F , eliminating the choice of dynamic programming of the exception vectors. In other words,

A23	A22	A21	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	ADDRESS	DEVICE	SPACE
X	-	X	X	0	0	0	0	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	000000	ROM	8K
X	X	$\underset{X}{X}$	\underline{X}	0	0	0	0	0	X	1	1	1	1	1	1	1	1	1	1	1	1	1	00 3FFF	ROM	
							0		X	0	0	0	0	0	0	0	0	0	0	0	0	0	008000	RAN	8K
X	X	X	X	0	0	0	0	1	X	0	1									1	1	1	00 BFFF	RAM	
X	X	X	X	0	0	0	0	1	X	1	1	1	1	1	1	1	1	1	1	1	1	1	00 BFF!	Hand	
																							010000	90168	24 REG.
X	X	X	X	0	0	0	1	0	X	X	x	X	X	X	X	X	X	0	0	0	0	0	010000	9016	24 ALC.
X	X	X	X	0	0	0	1	0	X	X	X	X	X	X	X	X	X	1	1	1	1	1	01 003F	9016	
X	X	X	X	0	0	0	1	1	X	X	X	X	X	X	0	0	0	0	0	0	0	0	018000	HEADCS	256 WORDS
X	X	X	X	0	0	0	1	1	X	X	X	X	X	X	1	1	1	1	1	1	1	1	01 81FF	HEADCS	
X	X	X	X	0	0	1	0	0	X	X	X	X	X	x	0	0	0	0	0	0	0	0	020000	BOARDCS	56 BYTES
X	X	\times	X	0	0	1	0	0	X	X	X	X	X	X	1	1	1	1	1	1	1	1	02 01FF	BOARDCS	
x	X	X	X	0	0	1	0	1	X	0	0	0	0	0	0	0	0	0	0	0	0	0	028000	N, C	32K
X	X	X	X	0	0	1	0	1	X	1	1	1	1	1	1	1	1	1	1	1	1	1	02 FFFF	$\mathrm{N}_{4} \mathrm{C}_{2}$	
X	x	X	X	0	0	1	1	0	X	0	0	0	0	0	0	0	0	0	0	0	0	0	030000	N.C.	32K
X	X	X	X	0	0	1	1	0	X	1	1	1	1	1	1	1	1	1	1	1	1	1	03 7FFF	N.C.	
X	X	X	x	0	0	1	1	1	X	0	0	0	0	0	0	0	0	0	0	0	0	0	038000	N.C.	32K
X	X	X	X	0	0	1	1	1	X	1	1	1	1	1	1	1	1	1	1	1	1	1	03 FFFF	N.C.	

the interrupt vectors will have to be programmed in ROM and a jump to RAM would have to be placed after the vectors for software development that uses exceptions. This scheme was adopted in order to save additional circuitry that would have been needed to select the ROM at Power up then select RAM eight clock cycles later.

2.6 Battery Backup

A 165 mAh 3 V Lithium battery is used in conjunction with a Maxim 695 to detect brownouts, power-ups, and power-downs. Any time the power falls below 4.65 V , both RAM chips are disabled via their chip-enables, power to the RAM VCC is re-routed to the 3 V battery, and the processor is reset. At power up, the Max695 holds the reset line low for 200 ms after valid power levels are restored. This gives the MC68000 plenty of time beyond its required 100 ms initialization period. It also guarantees sound RAM data and prevents the processor from erroneously writing to RAM.

The current required by the memories is $50 \mu \mathrm{~A}$ maximum. Therefore, the current supplied by the battery can be up to $2 * 50 \mu \mathrm{~A}+1 \mu \mathrm{~A}$, or $101 \mu \mathrm{~A}$ (The Max 695 leaks $1 \mu \mathrm{~A}$ Max in power-down mode).
A 165 mAh fully charged Lithium battery should be able to supply this current for 1633 hours, or over 60 days.

3.0 MC68901 Multifunction Peripheral

The MC68901 directly interfaces with the MC68000 microprocessor via the asynchronous bus structure. Both vectored and polled interrupt
schemes are supported with the M.F.P. providing unique vector number generation for each of its 16 interrupt sources. The MC68901 offers the following functions to the MC68000 board:

- Eight Individually Programmable I/O Pins with Interrupt Capability.
- 16-Source Interrupt Controller with Individual Source Enable and Masking.
- Four Timers, Two of which are Multi-Mode Timers.
- Single-Channel Full-Duplex Universal Synchronous/Asynchronous Receiver-Transmitter.

3.1 The MF.P. in the MC68000 Board

The MC68901's I/O functions are available on the MC68000 board via connectors on the board, and are described in detail below (refer to the circuit diagram in appendix A for details):

- All seven I/O lines are available at connector J4 as TTL level inputs. The main purpose of this connector is to provide the user with seven external interrupt lines. Consequently, the lines have optional pull-up resistors connected to them. The I/O lines on J4 could be used as input bits, however the user should provide proper buffering of the TTL lines since no on-board buffering is provided for these lines.
Timer A and Timer B are also available at J4 as general purpose Event Counters/Pulse Measurement Timers.

Note: In no circumstance should any of the lines on J 4 be used as outputs. These lines are not buffered and are to be used as inputs only; connecting them as output lines to an off-board device could permanently damage the

MC68901. Refer to J1 for output lines.

- Connector J1 has I/O bit 7 (I/O7) connected to it as a buffered TTL level output bit. This line could be used as output because it is buffered. J 1 also has I/O5 and I/O6 available as input bits, as in J4, but with no pull-up resistors.

Note: Bits I/O5 and I/O6 on J1 should be used as inputs only since they are not buffered.

- The serial communication channel on the MC68901 is converted to EIA Standard RS-485 and connected to connector J6. The Serial channel clock input is a 2.4576 MHz from which any desired baud rate can be programmed via timer D and the internal frequency divider in the M.F.P. - The MC68901 Timers A, B, C, and D are general purpose 8-bit timers that can generate periodic interrupts, measure elapsed time, and count signal transitions. Timer D is used as a programmable baud rate generator.
- The MC68901 has an interrupt level 7 assigned to it by the MC68000. This is the highest priority level on the MC68000. This guarantees immediate processing of all the prioritized interrupts generated by the MC68901.

3.2 Addressing The MC68901

The MC68901 has a base address of 010000 H , and contains 24
registers that are directly addressable, simplifying programming. The register map is shown in table 2 on the following page.

Hex Address	Abbreviation	Register Name
10001	GPDR	General Purpose 1/O Data Register
10003	AER	Active Edge Register
10005	DDR	Data Direction Regıster
10007	IERA	Interrupt Enable Register A
10009	IERB	Interrupt Enable Register B
1000B	IPRA	Interrupt Pending register A
1000D	IPRB	Interrupt Pending register B
1000F	ISRA	Interrupt In-Service Register A
10011	ISRB	Interrupt In-Service Register B
10013	IMRA	Interrupt Mask Register A
10015	IMRB	Interrupt Mask Register B
10017	VR	Vector Register
10019	TACR	Timer A. Control Register
1004B	TBCR	Timer B Control Register
1001D	TCDCR	Timers C and D Control Register
1004 F	TADR	Timer A Data Register
10021	TBDR	Timer B Data Register
10023	TCDR	Timer C Data Register
10025	TDDR	Timer D Data Register
10027	SCR	Synchronous Character Register
10029	UCR	USART Control Register
10028	RSR	Receiver Status Register
1002D	TSR	Transmitter Status register
1002F	UDR	USART Data Register

Table 2 MC68901 Register Map

4.0 I/O Connectors

The MC68000 Board has seven I/O connectors that are discussed in detail below.

4.1 Connector J1

Connector J1 has 8 Address and 8 Data lines, 3 I/O lines, and 4 control lines for asynchronous communication with the MC68000. J1 is configured to communicate with an I/O board with asynchronous communication capabilities. The four control lines are $\mathrm{R} / \mathrm{W}, \mathrm{LDS}$, BOARDCS*, and IODACK*. These lines are used in conjunction with the address and data lines to give access to 256 bytes of I/O space. The 3 I/O lines are discussed in detail in section 3.1 above.

Note: IODACK* is to be held high at all times for proper board operation unless a valid read/write cycle is in progress through J1. IODACK* is the data acknowledge line for the $1 / O$ board.

4.2 Connectors J2 and J3

J 2 and J3 are the main data input source for the board. Together, they provide 16 data lines, 8 address lines, and control lines, all in EIA standard RS-485. J2 and J3 are configured as read-only buses. The control lines HEADACK* and HEADCS* are needed to establish read-only asynchronous communication. RS-485 communication protocol requires two differential lines for each TTL line. Consequently, the 26 TTL lines are converted to 52 transmission and reception lines at the connectors. Every
line is split into two, namely X and Y (i.e., D01 becomes D01X and D01Y) where Y is the low line and X is the high line.

The main reasons the $\mathrm{RS}-485$ Standard was adopted in this design are the noise immunity offered by the transceivers (Common Mode Output Voltage Range of $\mathbf{- 1 2 . 0}$ Volts to +12.0 Volts with an input sensitivity of $+/-$ 200 mV over this range), the high speed at which they are able to communicate (10 Mbs), the multipoint communication scheme they offer due to their three-state output capabilities, and the long distances at which they are able to perform these functions (up to 4000ft). As a result, the MC68000 board is able to communicate at high speed with several produce sorting lanes located at various locations throughout a produce sorting company without the worry of communication noise.

In a typical application, the MC68000 reads sampled raw data from J2 and J3, and sends feedback control signals for produce sarting and boxing through J1, which would normally be connected to an I/O board that uses the same communication standards.

Note: The only constraint on the MC68000 board as far as $J 2$ and $J 3$ are concerned, is that every read cycle must be no longer than 1.6 sec , otherwise the processor will be reset by the watchdog timer.

4.3 Connector J4

Connector J4 was discussed in detail in section 3.1 along with the operation of the MC68901 Multifunction Peripheral.

4.4 Connector J5

J5 is the power connector with pins 1 and 3 as Ground signals and pin 2 as 5 Volts. The board uses a single 5 V power supply. Power requirements are discussed in section 5.0 , below.

4.5 Connector J6

J6 is the RS-485 Serial communication connector. Four lines are available: Transmit lines X\&Y, and receive lines X\&Y. The baud rate is programmable via Timer D, which uses a base clock frequency of 2.4576 MHz .

4.6 Connector $J 7$

J 7 is the reset connector. A cable attaches to J 7 and is connected to a normally-open SPST switch which is placed on the casing of the board.

5.0 Power Requirements

The majority of the integrated circuits used on the MC68000 board are low power CMOS devices. Consequently, the power requirements are lower than they would have been if TTL LS and HMOS devices had been used. The maximum power requirement for the board is 1.3 Amperes at 5 Volts in the event an HMOS MC68000 CPU is used. If a CMOS CPU 68HC000 is used, the maximum power requirement would drop to 1.1 Amperes. In either case, a standard 1.5 Amps power supply at 5 Volts would serve the board well.

6.0 Board Prototyping and Testing

An Augat wire-wrap breadboard system was used to prototype and test the MC68000 design initially. The system development consisted of modular building and testing of the microcomputer parts as suggested by the time table in appendix C. The system peripherals were the first parts to be tested in order to insure compatibility with the MC68000 and proper functioning. The first prototype included reset circuitry, the RS-485 line drivers and receivers, the system clocks, and the serial drivers. No parts proved to be incompatible or defective.

The second phase consisted of testing the processor, reset circuitry, ROMs, and various glue parts. A simple infinite loop program was written to test the circuit which gave expected results by displaying the correct repetitive waveforms on all address and data lines. At this time the final address decoding was implemented using a single $74 \mathrm{HCT} 1383 / 8$ decoder. The address decoding was tested by writing to all the assigned memory blocks and observing the corresponding waveforms.

The last part of testing the basic microcomputer consisted of installing the two $6264 \mathrm{LP}-10$ Random Access Memories, and the corresponding glue parts. An elaborate test program was written to test every bit in the RAM by using the stack as a pointer to the memory location to be tested and writing a different data Long word to every location. Initial results of the tests revealed a bus error every time the processor accessed RAM via the user stack also located in RAM. However, a different test
program revealed a positive RAM test if the stack is not used. It was later discovered that for proper processor operation the stack is to be initialized at a long word boundary (i.e., at an even address). The initial test program was re-run with a correct stack address and the the RAM test was completed successfully.

The last phase of the test consisted of assembling the compete board, with the MC68901 Multifunction Peripheral, RS-485 line transceivers, and bus buffers. A test program was written to test the complete features of the board. The test proved satisfactory. A copy of the program can be found in appendix D .

7.0 Printed Circuit Board Design

The Final stage of the design procedure was to implement the MC68000 board on a 4-layer high density printed circuit board for commercial use. To accomplish this task, the DOUGLAS CAD/CAM ${ }^{T M}$ PROFESSIONAL SYSTEM (D.P.S.) electronic design and manufacturing system was used on an Apple® Macintosh ${ }^{\text {TM }}$ personal computer. The D.P.S. is a professional software system that is acquired in three separate packages. Each of three packages is crucial to developing a professional PCB and will be discussed in detail in the following sections.

7.1 The D.P.S. CAD/CAM ${ }^{\text {PM }}$ Schematic Program

The Schematic program was used during the initial stages of the design. This is a schematic capture program with the ability to simulate

SSI and MSI circuitry dynamically. The program comes with libraries that contain hundreds of digital and analog parts that are normally used in electrical and computer engineering design. Integrated circuits that were needed in the MC68000 design which were not available but which were needed in the design had to be created using a graphics program then transferred to the Schematic libraries. The complete circuit diagram is shown in appendix A. A reduced size copy is included, along with a four page detailed copy. Following completion of the circuit diagram, Schematic generated a report containing all the pin-to-pin connection listings, the complete parts list, and the instructions for the Autorouter program (the third part of D.P.S). The report is included in appendix L. Before continuing with the PCB development, several design modifications took place, in part due to design optimization and in part by HAGAN's request.

7.2 The D.P.S. CAD/CAM ${ }^{\text {TM }}$ Layout Program

Layout is used in the second phase of the PCB development. After the final schematic diagram is completed, Layout is used in conjunction with the Schematic report to place the integrated circuit footprints on the PCB. The report is used to check off every part that has already been placed on the board in order to avoid its placement more than once.

Layout has the ability to generate multilayered boards with high density component spacing. The program comes with a built in footprint library of the most popular ICs. Other IC footprints can be easily created with Layout and stored in the library.

After placement of all the parts, the board outlines are set and a silk screen file is created. The silk screen file is usually printed on the PCB over the solder mask in white epoxy ink. This file usually contains the name of all components, their orientation, and any information that needs to be on the PCB itself. The silk screen file does not effect the tracing or routing of the board.

The MC68000 board was designed with four layers: A component layer, a solder layer, a ground layer, and a power layer. Appendix E shows the footprints that were created with Layout. It can be seen that all holes of the same size are printed with a distinct pattern. This scheme is used to make automated Printed Circuit Board manufacturing feasible. The silk screen created for the board is shown in appendix F.

7.3 The D.P.S. CAD/CAM ${ }^{\text {PM }}$ Autorouter

The Autorouter is the final and most crucial part of the CAD/CAM package in that it establishes all the interconnections on the PCB, including Power and Ground connections. Autorouter is a program that requires preset instructions (usually included in the Schematic report) according to which it will route the board. The router routes the board by making several passes (as many as instructed in the report from the Schematic program) through the pin-to-pin connection list in the report. For every one of these connections or nodes, the router attempts to place a trace in such a way that it follows the criteria given in the instructions of the Schematic report. The criteria can be changed for each pass through
the node list. They can also be changed for selected nodes in the list. Usually, several experimental runs need to be made on a board before the best Autorouter instruction set is established, otherwise the Autorouter will route a certain percentage of the nodes and will leave the rest unconnected. The unrouted nodes are then listed in a new report that is generated by Autorouter. It is then up to the user to either re-run the program with a new instruction set or route the remaining nodes manually. Another way of routing a board would consist of first manually placing the traces known to have presented some difficulty to the program, then running the program on the board with the manual traces included. In this case the user has to flag all the pre-routed nodes in the report list to prevent Autorouter from routing them again.

Several runs were made on the MC 68000 board in order to optimize the Autorouter's instruction set for a higher percentage of the routed nodes. It took Autorouter about 5 hours on the Apple® Macintosh Plus ${ }^{\text {TM }}$ (or Apple(ß) Macintosh SE $^{\text {TM }}$) to complete each run. The first run yielded 83% of the nodes routed. With subsequent runs the percentage was increased gradually by modification of the instruction set. At 92% a plateau was reached where it was realized that node pre-routing was necessary if the board was to be routed with its present size and component density. Since the most inefficient routing done by Autorouter was on the memory components, a pre-routed file (Barrier file) was created with all the memory components interconnected (see appendix G). Finally, after some instruction modifications, Autorouter routed the complete board (100% of
the traces) in four passes. The development time was greatly reduced when the Apple ${ }^{(8)}$ Macintosh IIX $^{\text {TM }}$ was used which decreased the Autorouter runs to 1.5 hours instead of the 5 hours required on the Apple(${ }^{(1)}$ Macintosh Plus ${ }^{\text {TM }}$.

The final routed files consist of the component side traces, the solder side traces, the power plane traces, and the ground plane traces. All four layers are shown in Appendices H, I, J, and K respectively.

7.4 Photoplotting and PCB Manufacturing

Following the completion of the board design, the routing files were sent electronically (via Modem) to Douglas Company, where they were photoplotted with a high precision laser. The artwork was received from Douglas five working days later and was ready to be submitted to a PCB manufacturer. After consulting with several PCB companies, the film was given to a PCB manufacturer who produced the 4-layer board in two weeks.

8.0 PC Board Cost

A parts list including prices is given in appendix B. The printed circuit board cost will be $\$ 33.69$ if it is manufactured in quantities greater than 100. The fully populated MC68000 Board will cost around $\$ 127.41$ excluding labor (i.e., assembling and testing).

9.0 PC Board Testing

After receiving the 68000 PCB , it was checked for shorts and missing traces. Several vias were found to have shorted the ground plane to the power plane due to Autorouter's handling of the barrier file. This problem was corrected by inserting an instruction in the Schematic report that clears the vias on all four layers. The holes on the PCB were drilled out and connecting wires were placed instead which cleared all the shorts.

Three traces were missing from the board, the ground and power shorting bars of the 74 HCT 04 and the RESET line of the MC68901. The missing lines were corrected on the D.P.S. files and were soldered on the Board.

After all the corrections were made the MC68000 PCB ran and executed all the test programs that the prototype had previously run.

Appendix A

Appendix B

	Quantity	Unilt Price	Cost	Source
Part Description	$\frac{1}{1}$. 15	. 15	Bourns
$100 \mu \mathrm{~F}$ Capaclior Axial/Polárized	32	. 15	4.80	Bourns
. $1 \mu \mathrm{l}$ capacitor 100 volts	32	3.95	3.95	Reovac
Llihlum Battery Bq2325	1	. 79	. 79	Reovac
Socket for BR2325	4	. 95	3.80	Jsmeco
Right angle male double row DIP 26 Pins	32	${ }^{0} 05$	1.60	Bourns
4.7 k Resisiors $1 / 4$ Watt Carbon	32	. 19	. 19	Texas Instruments
Hex inverter w/ open collector	1	9.95	9.95	Motorola
MC6B000LB 8 MHz CPU	2	10.95	21.90	Texas Instruments
6264LP-10 CMOS RAM 100ns access	2	5.95	11.90	Texas Instruments
27C64-15 CMOS 8K ROM 150ns access	1	. 19	. 19	Texas Instruments
74HCT04 Inverter	1	. 19	. 19	Texas Instruments
74HCT32 OR Gate	1	. 29	. 29	Texas instruments
74HCT74 Dual D Flip Flop	1	3.95	3.95	Texas Instruments
8MHz Oseillator TTL output	3	. 39	1.17	Texas instruments
74HCT138 3/8 Decoder	2	. 59	1.18	Texas Instruments
74HCT244 Oclal Thl State noninvering bulier	2	. 99	. 99	Texas Inslruments
$\frac{74 L S 148}{} \frac{8-L I n e ~ t o ~ 3-L I n g ~ P r l o r l i t y ~ E n c o d e r ~}{\text { 74HCT20 4-Input NAND Gates }}$	1	. 17	:17	Texas Instruments
74HCT20 4-Input NAND Gates	1	. 69	. 69	Texas Insituments
74HCT245 Octal Bus Noninverting Transciever	3	2.95	8.85	Falrchild
A96172 Quad ElA-485 Line drivers, w/ A 96173 Quad ElA 485 Line recelvers $/ 3$ stato oufput	5	2.95	14.75	Fatrehlid
14 Pin low prolle solder sockel	5	. 12	. 60	Advanced
14 Pln low proflle Solder Socket	13	. 13	1.69	Advanced
20 Pln low proflia Solder Socket	3	. 19	. 57	Advanced
28 Pin low proille Solder Socket	4	. 27	1.08	Advanced
48 Pin low preflle Solder Socket	1	1.69	1.69	Advanced
64 PIn low profile Solder Socket	1	2.14	2.14	Advanced
2.4576 MHz Osclliator TTTL Output	1	7.40	7.40	ITT
68901LC Multi-Functlon Perlpheral for 68000	1	5.00	5.00	Motoroia
MAX695CPE Mlcroprocessoin Supervlsory IC	1	4.00	4.00	MAXIM
TOTAL PARTS COST			93.72	
PARTS + BOARD $=93.72+33.39$			127.11	HAGAN

Appendix \mathbf{C}

Time Table for the 68000 project

Appendix D

FILE: MFPI:PRAMZI HEWLETT-PACKARD: 68000 Assembler LOCATION OBJECT CODE LINE SOURCE LINE

FILE：MFPI：pRAMZI
LOCATION DBJECT CODE LINE
〈0000》 58 NULL EGU O〈OOA （0020）〈003A〉 （0008）

0000000000 EFFE 00000400000500

000500 13FC 0000 00050400010007 000508 13FC 0000 00050 C 00010009 000510 13FC 0040 00051400010017 00051813 FC 000 i 00051 CO 01001 F 000520 13FC 0000 0005240010019 000528 13FC 000377 00052 C 0010025 000530 13FC 00.61 78 0005340001001 D7980000100290005440001002 B00054 B 13FC 000584
$0055013 F C$ 0．0FF0005540001000500558 207000055 A 000100000055 E 227C00056000.01002 B000564247 C0005660001002800056 267C00056 C 0.0100 .2 F000570 103C 0041$000574143 C 0000$
000578
000578 4ER9 0000
00057 C 0590
0005゙7E 5202
0605801082
000582 4EB9 0000
000586 059C

SOURCE LINE
（OROD）EOCR EQU OD

HELLETT－PACKARD： 68000 ASsembler

ODH GAH 2 OH
3AH
8

DRG 0
DC．L 00000 BFFEH
DC．L 000000500 H
ORG 0500 H
MDUE．B $\because 0$, IERA
mLVE．$\quad * 0$, IERI
MJUE，B ： 40 OH ，UR
MOVE，B SOIH，TADR
MOUE．S $\because O C H, T A C R$
MDUE，E 3 ，TDDR
MDUE．E $\ddagger=1 \mathrm{H}$, TCDCR

MOUE．E $\$ 98 \mathrm{H}$, UCR

MDUE． $\mathrm{B} \neq 1, \mathrm{RSR}$
MOUE．B \mathcal{F}, TSR
MOUE．B + OFFH，DDR
MOUEA．L GGPDR，AO
MOVEA．L＊RSR，Al
MOUEA．L＊TSR，AZ
MOUEA．L＊UDR，A3

MOUE．B＊41H，DO
MLUE．E $0, \mathrm{D}$ ：

JSR OUTCHR

ADDG．B $1, D 2$
MOUE．K DE？［AO］
JSR INEHARTST
；DISAFLE INTERRUFTS
；SET VECTOR REGISTER ；SET TIMER A TU DIUIDE EY 1 ；PRESCALER DIUIDE EY 50
；TIMER D DIUIDE EY 6 ；TIMER D DIVIDE EY A TO GET
； 4900 FAUD，TIMER C DIUIDE ； EY 100 FGR FUN ；UART B EITG，NO PARITI， ； 2 STOP HITS，DIUIDE EY 16 ；ENAELE RECEIUER
；ENAELE TRANSHITTER
；GLL BIT ARE DUTPUT
；MFP IO PORT ADDRESS

```
;LOAD AN "A"
```

；LLEAR PDRT CZOUNTER

I INCREMENT COUNTER ；iNCREMETYT PURT

FILE: MFP1:pRAMZI
LOCATION OBJECT CODE LINE

000588	6702		98	
V005BA	1013		99	
000585	4EFB	0578	100	AGAIN:
000590			101	OUTCHR:
000590	1212		102	
000592	0801	0007	103	
000596	67F9		104	
000598	1680		1 CS	
			106	
00059 A	$4 \mathrm{E75}$		107	
00059 C			108	INCHARTST:
0.0059 C	1211		104	
00059 E	0 010	0080	110	
d005Az	4E75		111	

Errors 0

HEWLETT-PACKARD: 86000 Assemoler sOURCE LIVE

EEG.S GGAIN MOUE.E: [AZ],DO JMP LDDF

MOUE, B (AZ), D1 ETET *7, D1 BLLG.S OUTCHR MOUE, H DO, [A3]

RTS
MCUE. B [A1],Di AND.E $\ddagger \mathrm{EOH}_{\mathrm{O}}^{\mathrm{O}}, \mathrm{D} 1$ RTS

```
;READ TKANSTITTER
;IS IUFFER EMPTY
; WAIT FOR TKARdFMITIUH
;SEND C.HPPRGCTEK
;RETUFN FROH SUFROLTIIF
; READ RECEIVER
```


Appendix \mathbf{E}

- - :
- : E
- $=$
- *
- E
- E シ

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

Appendix L

```
***NETLISI***
+5V C3-1 C4-1 C5-1 C6-1 C7-1 C8-1 C9-1 C10-1 C11-1 C12-1
C13-1 C14-1 C15-1 C16-1 C17-1 C18-1 C19-1 C20-1 C21-1 C22-1 C23-1
C24-1 C25-1 C26-1 C27-1 C28-1 C29-1 C30-1 C31-1 C32-1 J1-26 J4-22
J4-24 J4-26 J5-2 R2-1 R3-1 R4-1 R5-1 R6-1 R7-1 R8-1 R9-1 R10-1 R11-1
R12-1 R13-1 R14-1 R15-1 R16-1 R17-1 R18-1 R19-1 R20-1 R21-2 R22-1
R23-1 R24-1 R25-1 R26-1 R27-1 R28-2 R29-1 R30-1 R31-1 U1-3 U2-14
U3-14 U3-49 U6-1 U6-27 U6-28 U7-1 U7-27 U7-28 U8-14 U9-14 U10-14
U11-14 U12-14 U13-16 U14-16 U15-16 U16-1I U17-20 U18-16 U19-14 U20-20
U21-20 U22-16 U23-16 U24-16 U25-16 U26-16 U27-16 U28-16 U29-16.
D03Y J2-8 U27-1
D04X I2-9 U28-10
D10X J2-21 U29-14
D15 U3-54 U5-19 U7-19 U25-3
D14 U3-55 U5-18 U7-18 U25-13
D13 U3-56 U5-17 U7-17 U25-5
D12 U3-57 U5-16 U7-16 U25-11
D11 U3-58 U5-15 U7-15 U29-3
D10 U3-59 U5-13 U7-13 U29-13
D08 U3-61 U5-11 U7-11 U29-11
D09 U3-60 U5-12 U7-12 U29-5
s10 U8-6 U13-6
h2. R17-2 U19.10
RW+ U4-27 U5-27 U8-1 U16-1 U17-14 U21-8
HEADCS U13-12 U24-15 U25-12 U27-12 U28-12 U29-12
HEADACK U19-13 U26-3
LDS++ J1-18 U21-16
UDS U3-7 U17-4
RAMCS U9-13 U9-10 U13-14 U19-4
ROMCS U9-4 U9-1 U13-15 U19-2
UDS+ U9-12 U9-5 U17-16
RW U3-9 U17-6
4MHz U11-5 U16-35
8MHz U3-15 U11-3 U12-8
901CS U13-13 U16-48
A01
A01+ J1-9 U15-1 U17-3
A01X J3-11 U23-14
A01Y J3-12 U23-13
A02
A02X J3-13 U23-10
A02Y J3-14 U23-11
A03
A03+
A03X J3-15 U23-6
A03Y J3-16 U23-5
A04
A04X
A04Y J3-18 U23-3
A05 U3-33 U4-6 U
A05+ J1-13 U21-3
A05X J3-19 U22-14
A05Y J3-20 U22-13
A06 U3-34 U4-5 U5-5 U6-5 U7-5 U21-15 U22-9
```

A06+ Jl-14 U21-5
A06X J3-21 U22-10
A06Y J3-22 U22-11
A07
U3-35 U4-4 U5-4 U6-4 U7-4 U21-13 U22-7
A07+ $\quad \mathrm{H}-15 \mathrm{U} 21-7$
A07X 53-23 U22-6
A07Y J3-24 U22-5
A08
A08+
A08X
A08Y
A09
A10
All
A12
A13
A15
Al6
U3-36 U4-3 U5-3 U6-3 U7-3 U21-11 U22-1
J1-16 U21-9
J3-25 U22-2
J3-26 U22-3
U3-37 U4-25 U5-25 U6-25 U7-25
U3-38 U4-24 U5-24 UG-24 U7-24
U3-39 U4-21 U5-21 U6-21 U7-21
U3-40 U4-23 U5-23 U6-23 U7-23
U3-41 U4-2 US-2 U6-2 U7-2
U3-43 U13-1
U3-44 U13-2
A17 U3-45 U13-3
A18 U3-46 U13-4
A19 U3-47 U8-5
AS Ul-11 U3-6 U17-8
AS + U13-5 U15-5 U17-12
BATE* U1-6 U4-26 U5-26
BERR* R31-2 U1-14 U3-22
BGACK* R7-2 U3-12
BOARDCS U13-11 U20-19 U21-2
BOARDCS + J1-17 U21-18
BR R6-2 U3-13
CMOSVCC C2-2 U1-2 U4-28 U5-28
D+00 J1-1 U20-18
D+01 J1-2 U20-17
$\mathrm{D}+02 \mathrm{~J} 1-3 \mathrm{U} 20-16$
D+03 J1-4 U20-15
D+04 Jl-5 U20-14
D+05 J1-6 U20-13
D+06 J1-7 U20-12
D+07 J1-8 U20-11
D00 U3-5 U4-11 U6-11 U16-37 U20-2 U27-11
D00X J2-1 U27-10
DOOY J2-2 U27-9
D01 U3-4 U4-12 U6-12 U16-38 U20-3 U27-5
D01X J2-3 U27-6
D01Y J2-4 U27-7
D02
D02X J2-5 U27-14
DO2Y J2-6 U27-15
D03
D03X
D04 D04Y
D05
D05X
D05Y
D06
D06X D06Y D07

D07X J2-15 U28-2
D07Y J2-16 U28-1
D08X J2-17 U29-10
D08Y J2-18 U29-9
D09X J2-19 U29-6
D09Y J2-20 U29-7
D10Y J2-22 U29-15
D1IX J2-23 U29-2
D11Y J2-24 U29-1
D12X J2-25 U25-10
D12Y J2-26U25-9
D13X J3-1 U25-6
D13Y J3-2 U25-7
D14X J3-3 U25-14
D14Y J3-4 U25-15
D15X J3-5 U25-2
D15Y 13-6 U25-1
DT901 R8-2 U16-46 U19-5
DTACK* U3-10 U19-6
DTACKX 13-7 R2-2 U26-2
DTACKY J3-8 R1-2 U26-1
FC0 U3-28 U14-1
FC1 U3-27 U14-2
FC2 U3-26 U14-3
Ground Batt-1 Cl-1 C2-1 C3-2 C4-2 C5-2 C6-2 C7-2 C8-2 C9-2
C10-2 C11-2 C12-2 C13-2 C14-2 C15-2 C16-2 C17-2 C18-2 C19-2 C20-2
C21-2 C22-2 C23-2 C24-2 ©25-2 C26-2 C27-2 C28-2 C29-2 C30-2 C31-2
C32-2 J1-22 J1-24 J4-1 J4-3 J4-5 J4-7 J4-9 J4-11 J4-13 J4-15 J4-17
J4-19 J4-21 J4-23 J4-25 J5-1 J5-3 J7-1 R1-1 U1-4 U1-9 U2-7 U3-16
U3-53 U4-14 U4-22 U5-14 U5-22 U6-14 U7-14 U8-7 U9-7 U10-7 U11-7 U12-7
U13-8 U14-4 U14-5 U14-8 U15-8 U16-34 U16-36 U17-1 U17-10 U17-19 U18-5
U18-8 U18-10 U19-7 U20-10 U21-1 U21-10 U21-19 U22-4 U22-8 U22-12
U23-4 U23-8 U23-12 U24-4 U24-8 U24-12 U25-4 U25-8 U26-4 U26-8 U26-12
U27-4 U27-8 U28-4 U28-8 U29-4 U29-8
HALT* R3-2 U2-4 U3-17
HEADCSX J3-9 U24-14
HEADCSY J3-10 U24-13
I/OO J4-16 R27-2 U16-22
I/O1 J4-14 R26-2 U16-23
I/O2 J4-12 R25-2 U16-24
I/O3 J4-10 R24-2 U16-25
I/O4 J4-8 R23-2 U16-26
I/O5 J1-23 J4-6 R22-2 U16-27
I/O6 J1-21 J4-4 R30-2 U16-28
I/O7 J4-2 R29-2 U16-29 U21-6
IACK U14-7 U15-4
LACK7 U15-7 U16-45
107+
IODACK
J1-19 U21-14
J1-25 U19-12
IPLO U3-25 U18-9
IPL1 U3-24 U18-7
IPL2 U3-23 U18-6
IRQ1 R9-2 U18-11
IRQ2 R10-2 U18-12
IRQ3 R11-2 U18-13
IRQ4 R12-2 U18-1
IRQ5 R13-2 U18-2
IRQ6 R14-2 U18-3

IRQ7	R15-2 U16-32 U18-4
LDS	U3-8 U17-2
LDS+	U9-9 U9-2 U16-47 U17-18 U21-4
RCV	U16-9 U26-5
RCVX	J6-1 U26-6
RCVY	16-2 U26-7
RESET*	R4-2 U2-2 U3-18 U16-21
RL	U4-20 U9-8
RU	U5-20 U9-11
RW*	U6-22 U7-22 U8-2 U20-1
RW++	J1-20 U21-12
S00002	U19-8 U19-1
TAI	J4-18 U16-19
TB1	J4-20 U16-20
TCLOCK	U16-7 U16-10 U16-16
TXMT	U16-8 U24-1
TXMTX	J6-3 U24-2
TXMTY	J6-4 U24-3
VPA	R5-2 U3-21
bat	Batt-2 U1-1
ce1	U6-20 U9-3
ce2	U7-20 U9-6
h1	R16-2 U19-9
resout	C1-2 J7-3 R28-1 U1-15 U8-11
rest	U2-3 U2-1 U8-10
s13	R20-2 U11-4
s14	U11-2 U11-6
s15	R21-1 U11-1
s16	R19-2 U14-6
s17	R18-2 U15-6
xt11	U10-8 U16-17

PARTS

Batt	Battery RC805 Battery	BR2325
C1	Capacitor RC100 Cap	$.1 \mu f$
C2	Capacitor RC100 Cap	$.1 \mu f$
C3	Capacitor RC900 Cap+	$100 \mu f / 16 \mathrm{~V}$
C4	Capacitor RC100 Cap	$.1 \mu f$
C5	Capacitor RC100 Cap	$.1 \mu f$
C6	Capacitor RC100 Cap	$.1 \mu f$
C7	Capacitor RC100 Cap	$.1 \mu f$
C8	Capacitor RC100 Cap	$.1 \mu f$
C9	Capacitor RC100 Cap	$.1 \mu f$
C10	Capacitor RC100 Cap	$.1 \mu f$
C11	Capacitor RC100 Cap	$.1 \mu f$
C12	Capactor RC100 Cap	$.1 \mu f$
C13	Capacitor RC100 Cap	$.1 \mu f$
C14	Capacitor RC100 Cap	$.1 \mu f$
C15	Capacitor RC100 Cap	$.1 \mu f$
C16	Capacitor RC100 Cap	$.1 \mu f$
C17	Capacitor RC100 Cap	$.1 \mu f$
C18	Capacitor RC100 Cap	$.1 \mu f$
C19	Capacitor RC100 Cap	$.1 \mu f$
C20	Capacitor RC100 Cap	$.1 \mu f$

C21	Capacitor RC100 Cap . 1	$1 \mu f$		
C 22	Capacitor RC100 Cap .l	l 11 f		
C 23	Capacitor RC100 Cap .l	.1 11		
C24	Capacitor RCl00 Cap .l	. 111 f		
C 25	Capacitor RC100 Cap .	. $1 \mu \mathrm{f}$		
C26	Capacitor RC100 Cap .lı	. $1 \mu \mathrm{f}$		
$\mathrm{C}_{2} 7$	Capacitor RC100 Cap .	. $1 \mu f$		
C28	Capacitor RC100 Cap .	. 111 f		
C29	Capacitor RC100 Cap .	, $1 \mu f$		
C30	Capacitor RC100 Cap .	. $1 \mu f$		
C31	Capacitor RC100 Cap .	. $1 \mu \mathrm{f}$		
C32	Capacitor RC100 Cap	. $1 \mu f$		
J1	26 Pin Connector DIP26 CONC	T26		
J2	26 Pin Connector DIP26 PIN26			
J3	26 Pin Connector DIP26 PIN26			
J4	26 Pin Connector 326 H J26H			
I5	3 Pin Plug 3PLUG 3PLUG			
J6	4 pin Plug 4PLUG 16			
J7	3 Pin Plug 3PLUG 3PLUG			
R1	Resistor RC400 RES 4	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R2	Resistor RC400 RES 4	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R3	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom.	1/4 Watt Carbon Film
R4	Resistor RC400 RES 4	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Wau Carbon Film
R5	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Waut Carbon Film
R6	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Wat Carbon Film
R7	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Firm
R8	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Wan Carbon Film
R9	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Waut Carbon Film
R10	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Firm
R11	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$.	Pacom	1/4 Watt Carbon Film
R12	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R13	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R14	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R15	Resistor RC40\% RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R16	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R17	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R18	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Firm
R19	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R20	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watu Carbon Fim
R21	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fimm
R22	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R23	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R24	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R25	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watu Carbon Film
R26	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R27	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R28	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Fim
R29	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Watt Carbon Film
R30	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	
R31	Resistor RC400 RES	$4.7 \mathrm{k} \Omega$	Pacom	1/4 Wau Carbon Film
U1	MAX691 DIP16 MAX691		MAX	
U2	74HCT05 DIP14 NOT		Texas In	rruments Plastic Package
U2	74HCT05 NOT			
U3	MC68000L8 DIP64 68000		Motoro	
14	MCM6164P55 DIP28 6164		Motor	la Plastic Package
U5	MCM6164P55 DIP28 6164		Moto	la Plastic Package
U6	TMS 2764-20JL DIP28 2764		Texas	astruments Ceramic
U7	TMS 2764-20JL DIP28 2764		Texas	struments Ceramic Pac

U8	74HCT04	DP14 NOT	Texas Instruments Plastic Package
U8	74HCT04	NOT	
U8	74HCT04	NOT	
U9	74HCI32	OR-2	
U9	74HCT32	DIP14 OR-2	Texas Instruments Plastic Package
U9	74HCT32	OR-2	
U9	74 HCT 32	OR-2	
U10	2.4576 MH	z Oscillator OSC14 2.4576	6 Crystal ITT
U11	74HC174	DIP14 DFF	Texas Instruments Plastic Package
U12	8 MHz Osc	cillator OSC14 8Mhz Crystal	al ITT
U13	74HCT138	DIP16. 138	Texas Instruments Piastic Package
U14	74HCT138	DIP16 138	Texas Instruments Plastic Parkage
U15	74 HCr 138	DIP16 138	Texas Instruments Plastic Package
U16	MC68901	L DIP48 MC68901	Motorola Plastic Package
U17	74HCT24	4 DIP20 244	Texas Instruments Plastic Package
U18	74LS148	DIP16 148 T	Texas Instruments Plastic Package
U19	74HCT21	DIP14 AND-4	Texas Instruments Plastic Package
U19		AND-4	
U20	74HCT24	5 DIP20 245	
U21	74 HCT 24	4 DIP20 244	Texas Instruments Plastic Package
U22	A96172	DPP16 422 DRIVER	Fairchild Plastic Package
U23	A96172	DIP16 422 DRIVER	Fairchild
U24	A96172	DIP16 422 DRIVER	Fairchild
U25	A96173	DIP16 422 RECEIVER	Fairchild Plastic Package
U26	A96173	DIP16 422 RECEIVER	Fairchild
U27	A96173	DIP16 422 RECEIVER	Fairchild
U28	A96173	DIP16 422 RECEIVER	Fairchild
U29	A96173	DIP16 422 RECEIVER	Fairchild
ROUTER			
* Set Spacing on all layers			
GRID $=25$			
WIDTH $=12$			
TOLERANCE $=5$			
* Set Solder side			
LAYER 0			
VERT $=10$			
HORZ $=1$			
$\mathrm{BEND}=8$			
* Set Component side			
LAYER 1			
VERT $=1$			
HORZ $=10$			
BEND $=8$			
* Set colors			
LAYER 0 RED			
LAYER 1 GREEN			
*Select all layers againLAYER ALLBURY 0			
* N	e the files		

REPORT RouteReport68
LOAD LABEL " 68000 Layout"
LOAD BARRIER 0,1 "68000 BAR"
LOAD BARRIER 2,3 "68000 BAR GRND"
SAVE 0,1 ${ }^{\text {" } 68000 . T R C S .0 .1 " ~}$
SAVE 2,3 "68000.GRND.2.3"

* Indicate prerouted nodes

JUMPER U4-10 TO U5-10 TO U6-10 TO U7-10
JUMPER U4-9 TO U5-9 TO U6-9 TO U7-9
JUMPER U4-8 TO U5-8 TO U6-8 TO U7-8
JUMPER U4-7 TO: U5-7 TO U6-7 TO U7-7
JUMPER U4-6 TO U5-6 TO U6-6 TO U7-6
JUMPER U4-5 TO U5-5 TO U6-5 TO U7-5 JUMPER U4-4 TO U5-4 TO U6-4 TO U7-4 JUMPER U4-3 TO U5-3 TO U6-3 TO U7-3 JUMPER U4-25 TO US-25 TO U6-25 TO U7-25 JUMPER U4-24 TO U5-24 TO U6-24 TO U7-24 JUMPER U4-21 TO US-21 TO U6-21 TO U7-21 JUMPER U4-23 TO U5-23 TO U6-23 TO U7-23 JUMPER U4-2 TO U5-2 TO U6-2 TO U7-2 JUMPER U4-11 TO U6-11 JUMPER U4-12 TO U6-12 JUMPER U4-13 TO U6-13 JUMPER U4-15 TO U6-15 JUMPER U4-16 TO U6-16 JUMPER U4-17 TO U6-17 TO U3-64 IUMPER U4-18 TO U6-18 TO U3-63 JUMPER U4-19 TO U6-19 TO U3-62 JUMPER U5-11 TO U7-11 JUMPER US-12 TO U7-12 JUMPER U5-13 TO U7-13
JUMPER U5-15 TO U7-15
JUMPER U5-16 TO U7-16
JUMPER U5-17 TO U7-17
IUMPER U5-18 TO U7-18
JUMPER U5-19 TO U7-19
JUMPER U6-22 TO U7-22 TO U8-2
JUMPER U4-26 TO U5-26 TO Ul-6
JUMPER U4-28 TO U5-28 TO U1-2 TO C2-2
JUMPER U4-20 TO U9-8
JUMPER U5-20 TO U9-11
JUMPER Batt-2 TO U1-1
JUMPER U6-20 TO U9-3
JUMPER U7-20 TO U9-6

* Show the Rats nest DRAW RAT
* Report

PRINT Routed by Ramzi's Method CHECK
DRAW

* Route Ground planes

TITLE "Ground Planes"
SHORTBAR 95
PLANE 2 ONLY Ground

```
SHORTBAR96
PLANE 3 ONLY +5V
DRAW
* No Traces on ground planes
LAYER 2,3 OFF
LAYER 0,1 ON
* 1st Pass
ORTHOON
CLEARANCE 100
PITCH 100
THRU 20
*Route
TITLE IST PASS
ROUTE
DRAW RAT
* 2ND Pass
ORTHO OFF
TITLE 2ND PASS
ROUTE
BEEP
BEEP
BEEP
* 3RD Pass
CLEARANCE 0
PITCH }2
TTILE 3RD PASS
ROUTE
DRAW RAT
* LAST PAST
BEND 3
THRU 3
LAYER 0
VERT = 2
HORZ=1
LAYER 1
VERT = 1
HORZ =2
TITLE LAST PASS
ROUTE
BEEP
BEEP
BEEP
DRAW
PAUSE 4
CYAN
DRAW RAT
```


PAUSE 5
 END
 DONE

Abstract

Appendix M

Bibliography

Clements, A. Microprocessor Systems Design: 68000 Hardware, Software, and Interfacing. PWS 1987.

Brown, G., and Harper, K. MC68008 Minimum Configuration System. Application Note AN897, Motorola Inc., 1984.
Motorola Inc. MC6800016/32-bit Microprocessor Programmer's Reference Manual, 4th ed. Prentice-Hall,1986.

Starnes, T.W. I Design Philosophy behind the MC68000. Note AR208, Motorola Inc. 1983

Ford, W., and Topp, W. MC68000 Assembly Language and Systems Programming. Heath1988.
Intel Inc. Memory Components Handbook. Intel Inc 1988.
Motorola Inc. MC68000 8-/16-/32-Bit Microprocessors User's Manual. 6th ed. Prentice Hall, 1989.
Stone, H., Microcomputer Interfacing, Addison Wesley 1982
Douglas Professional Systems CAD/CAM, Schematic, Douglas Inc. 1989. Douglas Professional Systems CAD/CAM, Layout, Douglas Inc. 1989. Douglas Professional Systems CAD/CAM, Autorouter, Douglas Inc. 1989. Motorola Inc. MC68901 Multi-Function Peripheral, Motorola Inc. 1988. Motorola Inc. MC68000 Programming Pocket Reference Guide, Motorola Inc. 1988.
Texas Instruments Inc. High Speed CMOS Logic Data Book. Texas Instruments Inc 1984.
Lawrence, P., Real-Time Microcomputer System Design: An Introduction. McGraw Hill,1987.
Hall, D., Microprocessors and interfacing: Programming and Hardware. McGraw Hill, 1986.
Motorola Inc. Motorola Semiconductor Selection Master Guide. Motorola Inc. 1988.

Bibliography (continued)

Texas Instruments Inc. The TTL Data Book. Texas Instruments Inc 1984.
Maxim Inc. Microprocessor Supervisory Circuits. Maxim Integrated products 1988.
Maxim Inc. +5 V Powered RS-232 Drivers Receivers. Maxim Integrated products 1988.
Fairchild Inc. EIA Standard R-485 Quad Differential Line Drivers and Receivers: $\mu A 96172 / \mu A 96173$. Fairchild Inc. 1985.

