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INTRODUCTION 

Oil Pollution in the ocean. A General Overview 

Sources of Hydrocarbons in the 
Marine Environment 

Public concern over the increasing pollution by 

petroleum hydrocarbons in the marine environment has grown 

as its visible effects--oil films and tar balls in surface 

waters, soiling of beaches, etc.--have in turn increased and 

received wider mass-media coverage. However, there is not a 

corresponding increase in the volume or quality of the 

information available to assess the long-term effects that 

petroleum compounds can cause in marine ecosystems. Consider 

the following to get an idea of the magnitude of the 

problem: it has been estimated that the total input of 

petroleum hydrocarbons to the oceans is six million metric 

tons per year (Thacher and Meith, 1978}. Of these, about two 

million metric tons are due to problems related to the 

transportation of petroleum by sea, an amount that was 

predicted to increase to six million metric tons by 1980 

(Thacher and Meith, 1978}. 

There are three major sources of petroleum hydrocarbons 

in the oceans (Th~cher and Meith, 1978; Farrington et al, 

1 9 7 6 1 Farrington and Meyer , 19 7 5 } : 1} .!!!~~.:~~~~!.~!.~~ 

~£.!!!P£U~~~; mainly crude oil and refined products; 

2}geochemically originated hydrocarbons; such as those from 

1 
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seepages through the sea floor and diagenesis of organic 

matter; 3)biosynthetic hydrocarbons; which are the metabolic 

products of marine organisms. From now on, the first two 

classes of petroleum hydrocarbons will be referred to as 

either "petroleum hydrocarbons" or "crude oils." 

In assessing the environmental impact of oil pollution 

it is necessary to differentiate between petroleum and 

biosynthetic hydrocarbons, but due to the extreme complexity 

of crude oils (Farrington et al., 1976) it is very difficult 

to do so. At least some general guidelines are available 

(Farrington et al., 1976; Farrington and Meyer, 1975): a) 

the n-alkane fraction of crude oils is a 50-50% mixture of 

odd and even numbers of carbon atom chains, whereas 
-

biosynthetic hydrocarbons always contain chains with an odd 

number of carbon atoms; b) alkene·s are generally absent in 

crude oils, but they are often a major portion of the 

hydrocarbons found in marine organisms; c) crude oils 

contain a complex mixture of cycloalkanes, polycyclic 

aroma tic hydrocarbons (PAH 'S) , as we 11 as heterocyc lie 

compounds, none of which have been found in marine 

organisms. 

Physical States of Hydrocarbons 
in Seawater 

Hydrocarbon molecules in water can be found in any of 

the following forms (Thacher and Meith, 1978; Shaw, 1977): 

1) Dissolved, in the thermodynamic sense (in 1975, the 

National Academy of Science estimated the amount of 

-
~:~~-~--~-~~~ 

---

-~----- -- ---
¥..:__:~:._:___--_..-::;~;.._ 
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dissolved petroleum in the oceans at 400 million tons.); 2) 

Colloids, defined as aggregates of less than one urn in 

diameter (no estimates of the amounts of hydrocarbons 

present in this form are available, but Shaw (1977) 

estimates that the amount of colloidal hydrocarbons should 

greatly exceed that of hydrocarbons in solution.); 3)~ 

Balls. These are defined as particles bigger than one urn. 

Butler (1975) estimated the amount of tar present in surface 

waters in 1975 at 0.7 million tons. The total amount of 

petroleum hydrocarbons in the oceans was estimated to be 

14,000 million tons in 1976 (Thacher and Meith, 1978). 

Environmental Pathways for Hydrocarbon 
Loss in the Ocean 

Once petroleum hydrocarbons enter the marine 

environment several pathways for tJ1e loss of hydrocarbons 

are possible (Thacher and Meith, 1978;): Evaporation. 

McAuliffe (1977) and McAuliffe et al. (1980) have presented 

experimental evidence, from intentional oil spills, that low 

molecular weight hydrocarbons (i.e. up to 12 carbon atoms) 

evaporate very fast, with the result that this fraction was 

no longer detectable in surface waters after two days. 

Harrison et al. (1975) predicted that the evaporation of 

aromatic hydrocarbons would be 100 times faster than 

dissolution, and that the rate of evaporation for alkanes 

would be 10,000 times faster than that for dissolution. 

Regnier (1975) and Mackay et al. (1975) measured the rate 

constants of evaporation of n-alkanes, the results ranging 

from 3.44 X 10-3 min-1 for n-c 10 to 4.00 X 10-5 min- 1 for n-

----

-------
----



4 

c18 at 20°C. More recently, Atlas et al. (1981) measured the 

mass transfer coefficient for high molecular weight 

compounds and compared their results with theoretical 

models, finding good agreement. 

Emulsification. There is evidence (Shaw, 1977) that 

colloidal-size hydrocarbon particles are formed under 

turbulent mixing conditions in the ocean. McAuliffe et al. 

(1980) have also reported that the addition of emulsifiers 

speeds up the physical weathering of oil. 

Sedimentation. Sorption of petroleum hydrocarbons on 

sediments can accelerate deposition on the sea floor (Means 

et al., 1980), where biodegradation is slow~r due to the 

lack of oxygen. The loss of volatile components can increase 

the density of an oil enough to produce sedimentation 

(McAuliffe, 1977). Another mechanism that can speed up the 

rate of sedimentation is by ingestion and incorporation into 

fecal pellets by marine copepods (Prahl and Carpenter, 

1979), this being the major route of removal in some areas. 

Microbial Degradation. More than 90 species of bacteria have 

been identified which can metabolize many constituents of 

oils (Thacher and Meith, 1978). Some organisms will grow at 

the expense of aromatic hydrocarbons, whereas others will 

grow only if an additional substrate is present, a 

phenomenon called cooxidation (Gibson, 1977). The usual 

route is to oxidize the aromatic hydrocarbon to a cis-

dihydrodiol, and from there to form the ortho-dihydroxy 

r=-- -=-
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---

derivatives (catechols), the last step being the enzymatic 

cleavage of the aromatic ring (Gibson, 1977; Lehr et al., 

1980). At least three species of the genus Pseudomonas can 8---

oxidize naphthalene (Jeffrey et al., 1975), and some species 

of the genera Flavobacterium and Beijerinckia can oxidize 

phenanthrene, anthracene, and benzo (a) pyrene (Gibson, 1977). 

Oxidation. The photo-oxidation of polynuclear aromatic 

hydrocarbons in aqueous systems has been reported (Zepp and 

Schlotzhauer, 1979; Korfmacher et al., 1979; Katz et al., 

1979). The photoreactivity of PAR's in aqueous solutions has 

been reported to be 10 to 100 times higher in aqueous 

solutions than in organic solvents (Zepp and Schlotzhauer, 

1979). The necessity of the presence of oxygen is still open 

to discussion (Katz et al., 1979) •. E.rom simulation studies 

of natural conditions it was reported that the photo-

oxidation of PAR's adsorbed on sediments is four times 

higher than for dissolved PAR's (Korfmacher et al., 1979) 

and that the rate of photo-degradation decreases 

logarithmically with increasing depth (Zepp and 

Schlotzhauer, 1979). 

Biological Incorporation. It is a well known fact that 

aquatic organisms accumulate organic pollutants from their 

environment. This is called "bioconcentration" (Albers, 

1980; Ringa et al, 1980). If it is assumed that the biotic 

phase is approaching thermodynamic equilibrium with its 

medium, then it is posible to correlate the potential 
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bioconcentration (i.e. the total biotic accumulation under 

ideal conditions) of organic compounds to their physical 

properties (Dexter and Pavlou, 1978 and 1978a; Chiou et al., 

1977). These studies were done following a method developed 

by Neely et al. (1974), which correlates the potential 

bioconcentration to the partition coefficient (defined as 

the dimensionless ratio of the solubility in 1-octanol to 

that in water) of the compound. Mackay (1982) extended the 

method by developing a one-constant correlation between 

aqueous solubility to bioconcentration. The correlation 

holds for bioconcentration in the range 10 to 106. These 

methods have been applied to bioconcentration in marine 

organisms in artificial ecosystems (Hinga et al, 1980), 

rainbow trout (Dexter and Pavlou, 1978a; Chiou et al, 1977), 

fathead minnow (Southworth et al., 1,980), marine zooplankton 

(Clayton et al., 1977), organisms in estuaries (Pavlou and 

Dexter, 1979), freshwater fishes (Mackay, 1982), and even in 

marine bird eggs (Albers, 1980). 

Solution. The solubilities in seawater of both low and high 

molecular weight n-alkanes as well as those of some aromatic 

hydrocarbons have been measured (Sutton and Calder, 1974; 

Eganhouse and Calder, 1976). In general it has been found 

that the solubilities of hydrocarbons in seawater are 60 to 

70% of that in pure water. Several attempts have been made 

to relate the solubility of a hydrocarbon to physical 

parameters (Shaw, 1977), like molar volume (Bohon and 

Clausen, 1951; McAuliffe, 1966), the number of carbon or 

- -- - --- --- ---

,.__ - -
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hydrogen atoms in the hydrocarbon molecule (Tanford, 1980), 

and the size of the cavity in the solvent holding the 

hydrocarbon solute (Hermann, 1972; Harris et al., 1973; 

Reynolds et al., 1974). Only a couple of workers have 

studied the influence of one hydrocarbon solute upon the 

solubility of another one (Eganhouse and Calder, 1976; 

Mackay, 1978) and the effect of dissolved organic matter 

upon the solubility of hydrocarbons in seawater (Boehm and 

Quinn, 1973). 

Dissolved hydrocarbons are important from a practical 

point of view; they are the most readily available to marine 

organisms and therefore the most likely to have toxic 

effects (Hutchinson et al., 1980). This is especially true 

of the polynuclear aro~atic hydrocarbons (Collier et al., 
._,,._· 

1980). 

From a theoretical point of view, solubility data can 
----

provide information about the structure of liquid water and 

aqueous solutions (Frank and Evans, 1945; Nemethy and 

Scheraga, 1962; Shinoda, 1977). On the other hand, 

solubility can be related to partition coefficients, -----
~~~ 

allowing the calculation of potential bioconcentration 
----

(Hansch et al., 1968; Banerjee et al., 1980; Mackay, 1982). 

These aspects will be further elaborated in the next 

two sections. 
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Water as a Solvent 

Liquid water shows several anomalies when compared to 

similar compounds (like the hydrides of the group VI 

elements): its very high melting and boiling points, the 

increase of density on melting, the density minimum at 4°C, 

the large molar heat capacity, and the minimum of the 

viscosity as a function of pressure at about 1000 atm, to 

name just a few (Franks, 1972; Dahl and Andersen, 1983; 

Stanley and Batten, 1969). 

As a solvent, water has also an anomalous behavior in 

solution, especially when the solute is nonpolar in which 

case a positive change .in Gibbs free energy, and a negative 
--_.,,>,.' 

enthalpy change are observed 1~vidt, 1983). There is 

universal agreement that the anomalous properties of water 

are due to its ability to form up to four strong, 

directional hydrogen bonds, with tetrahedral symmetry around 

the central oxygen atom (Frank, 1972). This high degree of 

association is thought to be the cause of the abnormal 

properties of water. 

Any attempt to rationalize or to predict the solubility 

of nonelectrolytes in general, and of petroleum hydrocarbons 

in particular, should be based upon a thorough knowledge of 

the structure of water. Following Eisenberg and Kauzmann 

(1969), we will refer to "structure" as being the "relative 

positions and motions of the molecules", averaged over times 

----- -- --- -------- --
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that are longer than the hindered translational mode at 200 

cm- 1 (about 2 X lo-l3 s), but shorter than the dielectric 

relaxation time (about l0- 11 s)., In this way, we will be 

talking about the vibrationally-averaged structure, or "V

structure" of liquid water. 

There are two general types of models of liquid water: 

the mixture models postulate that liquid water is a mixture 

of sever a 1 different "species", namely monomeric and 

polymeric water molecules in different degrees of 

association. On the other hand, continuum models consider 

that all the liquid water in a container consists of one 

giant "molecule" whose hydrogen-bonded structure gets more 

and more distorted as the temperature increases. 

Theoretical Models of Liquid wate~ 

a) Mixture Models. 

·-··-· 

The first step in relating the degree of structure of 

water to its properties as a solvent was given by Frank and 

Evans (1945). They explained the entropy decrease upon 

dissolving a nonpolar solute by assuming that an 'iceberg' 

forms around a solute, leading to a more ordered state. 

Later on, Nemethy and Scheraga (1962 and 1962a), in the 

first of a long series of papers, proposed that liquid water 

is a mixture of molecules with five different coordination 

numbers, ranging from zero (monomeric water) up to four. The 

water molecules whose coordination number is different from 

zero are considered to be forming ice-like clusters. Since 

~-

'-i-
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the clusters are formed and destroyed continously, they are 

called "flickering clusters". The concept of "flickering 

clusters" was develo~ed by Frank and Wen (Nemethy and 

Scheraga, 1962), but Nemethy and Scheraga were the first to 

develop a statistical mechanical analysis of the model. They 

were able to formulate a canonical partition function, and 

from that to calculate the number and size of the clusters 

as a function of temperature. The thermodynamic functions 

(He lmho 1 tz free energy, interna 1 energy, entropy, and heat 

capacity at constant volume) were calculated from the 

partition function in the usual way. 

Nemethy and Scheraga (1962) considered that the 

structure of dilute solutions of nonelectrolytes is basicaly 

the same as above, witl;J. the main difference being that "the 

energy levels and hence the distribution of water molecules 

in the water layer next to the hydrocarbon are shifted due 

to the different interactions between the water and 

hydrocarbon molecules" (Nemethy and Scheraga, 1962). They 

assumed that the probability of finding a cluster is higher 

in the vicinity of a solute than in the bulk of pure water. 

The calculated values of the thermodynamic functions of 

solution for nonelectrolytes are in good agreement with the 

experimental values. 

Several improvements have been made to the model 

(Hagler, Scheraga, and Nemethy, 1972 and 1973; Lentz, Hagler 

and Scheraga, 1974; Scheraga, 1977 and 1982), like using 

better expressions for the partition function, taking into 

---
-
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account the cooperativity of hydrogen bonds, etc. Curiously, 

as the model was improved they concluded more and more that 

the results are inconsistent with a mixture model (see 

below) . 

Another contribution to mixture models was made by Ben 

Nairn (1965), who assumed that liquid water is a mixture of 

two kinds of molecules in chemical equilibrium with each 

other: monomeric water molecules (P molecules), and water 

molecules tetrahedrally bonded to other water molecules to 

form spherical clusters (C molecules). The equilibrium is 

;:===~nP 

where n is the number of water moleg.ules in the cluster. The 

presence of a nonelectrolyte shifts the equilibrium to the 

left, that is to a more ordered state. In this model any 

partial molecular quantity Es can be divided in two parts: 

* r E 5 = E 5 + E 8 ••••••••••••••••••••••••• (1) 

where E;is the static contribution arising from the 

equilibrium between C and P, and E~is the relaxation term, 

which arises from the shift in the equilibrium between C and 

P. The difference between Ben Nairn's model and the other 

models discussed before is that it does not place any 

constraints on the position of the new order induced by the 

presence of the nonelectrolyte, that is, the more structured 

~-

----------



12 

form does not have to surround the solute molecule totally 

as Frank and Evans (1945) postulated, or even partially 

surround it, as is the case with Nernethy and Scheraga's 

(1962) model. Another difference is that Ben Nairn does not 

assume the formation of a new kind of structure due to the 

presence of the solute (as is the case with Frank and Evans' 

"icebergs"), because he merely postulates a shift in an 

already existing equilibrium. 

Frank and Evans (1945) were the first to propose an 

increase in the degree of structure of water molecules 

around a nonpolar solute as an explanation for the entropy 

decrease when the solute is dissolved. The currently 

accepted view is that the low solubility of nonpolar 

compounds is due to the increased --.J>tructure they introduce 

in the solvent. However, a group of workers have proposed 

the opposite explanation, namely, that the "icebergs" around 

a nonpolar solute promote the solubility of such compounds 

These authors (Shinoda, 1977 and 1978; Hvidt, 1983, 1983a). 

Hvidt (1983) consider the dissolution of a nonpolar molecule 

as a two step process: 1)the mixing of the components, which 

is considered similar to the formation of a "regular" 

solution, and 2)the structural relaxation to the equilibrium 

state, considered to be a hydrophobic solvation. The 

"chemical" equation describing this pocess is (Hvidt, 1983): 

R + nH 20 --------+ R (H 20) n •.•••...•••••• ( 2) 
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where R is a nonpolar solute, and R(H 20ln is the solute 

surrounded by a solvation sphere of n molecules. The change 

in the free energy of the dissolution can be given as the 

sum of two terms 

LlG = t.Gmix + AGsolv • • • • • · • • • • • · • • • • (3 ) 

where Gmix is the change in the Gibbs free energy for the 

formation of a regular solution, and Gsolv is the free 

energy change when n moles of water are transferred from 

pure water to the solvation spheres of one mole of nonpolar 

solutes. For methane and ethane, Hvidt (1983) estimates 

Gsolv to be -2.7 and -2.0 kJ mole-1 , respectively. It can be 

concluded, then, that the format:i,pn of a clathrate-like 

structure around a nonpolar solute increases the solubility 

of the solute. 

b)Continuum Models 

Continuum models of liquid water consider all the water 

molecules in a container to be tetrahedrally bonded by 

hydrogen bonds, forming a single unit. The effect of 

temperature is not to break the ice-like clusters, as in the 

mixture models, but rather to distort the tetrahedral bond 

angles away from their normal value of 109°. 

A continuum model of water was first proposed by Bernal 

and Fowler (1933) in their classical work. They were the 

first ones to propose a continuous, disordered network of 

-----

~--

~'--

~-----
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tetrahedrally bonded molecules as a model for the structure 

of water. In his sequel to this work, Pople (1951) estimated 

the average distortion of the hydrogen bonds by assuming 

that the orientation of two water molecules depends only on 

the energy required to bend the hydrogen bond between them. 

This energy was approximated by a hydrogen bond binding 

force constant, K0 which depends only on the hydrogen bond 

angle ~. This model can account for the temperature 

dependence of the static dielectric constant, and for the 

observed oxygen-oxygen pair correlation function. 

Recently, a new continuum model has been developed, 

namely, the Random Network Model (RNM) (Rice and Sceats, 

1981; Sceats and Rice, 1982). The main difference between 

the RNM and Pople's model is the~eparation of the time 

scales for the various classes of molecular motions in 

liquid water. For the v-structure of water they propose a 

continous distorted hydrogen bond network, which has the 

following characteristics (Rice and Sceats, 1981): a) the 

intermolecular separation is essentially constant, and 

centered about the value in a crystalline phase; b) the 

bonding is irregular, so that there are different odd- and 

even-numbered rings in the network; and c) the distribution 

of values for the hydrogen bond angle has a nonzero width. 

Sceats and Rice (1982) introQuced a Random Network Potential 

(RNP), which depends only on the average oxygen-oxygen 

separation and the deviation of the hydrogen bond from 

linearity. The RNP incorporates several quantum mechanical 

----

~--

= 
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corrections, such as the dependence of the zero-point energy 

on the hydrogen bonding, and the proper weighting of thermal 

motions. 

The RNM is an intermediate stage theory, in the sense 

that it does not start with a given water-water 

intermolecular interaction potential, predicting all the 

properties of the liquid from such a potential. Instead, the 

_ intermolecular potential is replaced by a potential due to 

the whole hydrogen bonded network, the RNP. The effective 

water-water interaction potential, the molecular motions, 

and other properties are expressed only as functions of the 

distribution of intermolecular distances and distortions of 

the hydrogen bonds. Properties such as the temperature 

dependence of the width of the Ram•n peaks for ice Ih (the 

form of ice stable at one atmosphere and temperatures lower 

than 273 K), liquid water and o2o; the o-o-o angle 

distribution functions, oxygen-oxygen pair correlation 

functions, and the thermodynamic functions are all well 

predicted by the RNM. 

c)The Current View, A Consensus. 

Over the years a consensus appears to have been reached 

among the different positions. As Nemethy, Peer and Scheraga 

(1981) wrote in a recent review paper: 

"The overall structure consists of extensive 
three dimensional random networks of mostly 
nonlinearly hydrogen-bonded molecules. The 
local structure tends to be tetrahedral. This 

------

---
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description is similar to Pople's model of 
liquid water and its recent extension in the 
random network model of Sceats et al. These 
results rule out any model of water wherein 
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a small number of species that consist of a 
specific number of water molecules with fixed 
intermolecular geometries are assumed to 
exist; two-state interstitial models specially are 
not realistic." 

Computer simulation techniques, employing either Monte 

Carlo or molecular dynamics simulations, have shown that the 

inclusion of a nonpolar solute increases the order of the 

water molecules surrounding it, forming a clathrate-like 

structure (Nemethy, Peer and Scheraga, 19 81; Scheraga, 

1982). The number of nearest neighbors has also been shown 

to increase, from 5 for a water molecule in the pure liquid, 

to 15 for a nonpolar solute of the same size (Rapaport and 

Scheraga, 1982). The in~rease in structure around a nonpolar 

solute does not imply the presence of permanent structures 

around the solute, as Nemethy, Peer and Scheraga (1981) 

point out: 

"This does not imply the presence of long
lived or solid-like structures, but merely 
a slightly increased correlation time and 
lessened irregularity." 

The aggregation of nonpolar solutes in aqueous 

solutions remains a point in dispute. Scheraga (1982) cites 

several computer simulations of the potential of mean force 

(defined as the solvent-induced pair potential between two 

solutes (Nemethy, Peer and Scheraga, 1981)) between two 

Lennard-Janes solutes, which shows two stable 

configurations. One in which the two solutes are in contact, 

--
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and one in which the two solutes are separated by one water 

molecule. However, Rapaport and Scheraga (1982) made a very 

long molecular dynamics simulation of four solute molecules 

"dissolved" in 339 water molecules, lasting for about 70 ps, 

which showed no tendency for the solutes to aggregate, even 

when they were placed together at the beginning of the run. 

In the next chapter the effect of an electrolyte on the 

activity coefficient of a dissolved nonpolar solute will be 

discussed, as it is necessary to understand the solubility 

of petroleum hydrocarbons in sea water. 
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Solubility in Electrolyte Solutions 

The presence of an electrolyte changes the activity 

coefficient of a dissolved nonelectrolyte, hence changing 

its solubility. For many electrolyte-nonelectrolyte systems 

the experimental results can be described by the empirical 

Setchenov equation: 

log f/f0 =log 5°/S = ksCs ••••••••••••••••••••••(4) 

where f, S, f 0 and s 0 are the activity coefficient and 

solubility of the non~lectrolyte in pure water and in an 

·~··-· 
aqueous electrolyte solution, respectively1 Cs is the 

concentration of the nonelectrolte, and ks is the salting 

constant, also called the Setchenov parameter. If ks > 0 the 

solubility of the nonelectrolyte decreases in the presence 

of the electrolyte, and the process is referred to as 

"salting-out". If ks < 0, then the solubility increases, and 

the nonelectrolyte is said to be "salted-in". 

It can be shown that equation (4) is a special case of 

the following equation (Long and McDevit, 1951): 

when both S and s 0 are small, even if ki is of the same 

=-

--



19 

order of magnitude as ks. For polar solutes the term 

containing ki must be taken into account, even if eq. (4) 

holds, because in such cases the experimentally measured ks 

would not be the theoretically significant salting constant. 

When results for different electrolytes, but for the 

same nonelectrolyte are reviewed several generalizations can 

be made (Long and McDevit, 1952; Gordon, 1975): a) the order 

of values for ks is constant, with very few inversions; b) 

the single-ion contributions to k
5 

are, to a very good 

approximation additive; c) the contribution of the anions to 

ks becomes more negative with increasing ionic radius; d) 

the cationic contributions to ks do not follow either 

crystal or hydrated ion radii (these contributions are in 

the order Na+>K+>Li+,Rb~>NH4>C~>H+); and e) for organic ions 
---~··: 

ks becomes more negative with th~ presence of aromatic 

rings, or with increasing chain length in aliphatic organic 

ions. In general, it has been found that large ions with low 

charge will "salt-in" a nonpolar nonelectrolyte; such is the 

case of the tetraalkylammonium salts, the perchlorates, and 

straight chain carboxylic acids. 

Theoretical Models. 

Many different models have been proposed to predict the 

magnitude of ks for any given pair of electrolyte -

nonelectrolyte cosolutes. In general, these models can be 

divided into three categories: electrostatic, thermodynamic 

and statistical mechanical. Since this review does not 

,~-- ----------------
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pretend to be exhaustive only a few examples in each 

category will be discussed. 

Electrostatic Models. 

In general, electrostatic models of salting-out explain 

the decrease of the solubility in terms of two different 

processes (Bockris and Reddy, 1970). The first contribution 

is due to the decrease in the number of "free" water 

molecules left to dissolve the nonelectrolyte, because many 

water molecules are tied up in the primary solvation shell 

of the electrolyte. If ns is the number of water molecules 

in the first hydration shell of the ion,then the number of 

"free" molecules will be 

nf = 55.5 - C8 n 5 ••••••••••••••••••••• {6) 

and the decrease in solubility will be given by 

The second contribution arises from the secondary 

hydration shell of the ion, and it is related to the work 

done when one mole of water molecules around an ion are 

replaced by one mole of nonelectrolyte molecules. This 

effect arises from the differences in the ion-dipole, or 

ion-induced dipole, interactions between the nonelectrolyte 

and water. The decrease in the nonelectrolyte's solubility 

due to this factor is given by: 

---------
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where Z and e are the charge on the ion and on the electron 

respectively;~w andcCne are the orientation polarizabilities 

of water and nonelectrolyte, E. is the dielectric constant of 

water, k is Boltzmann's constant, and rh is the radius of 

the primary solvation shell. 

By combining equations 7 and 8 one obtains 

Equation (9) correctly predicts salting-out for many 

nonelectrolytes; however, the only possibility to predict 

salting-in is when the the nonelectrolyte has a dipole 

moment greater that that of water. Experimentally, salting

in has been observe4 for many systems in which the 

nonelectrolyte was nonpolar, and th~···electrolyte was big and 

with a low charge. The only way out is to introduce a 

correction term which takes into account dispersion forces 

(instananeous dipole-instantaneous dipole interactions, 

which are attractive). This term is of the form 

cC.did:dne/zr6 ....... • .................. (10) 

where oCdi and oCdne are the distortion polarizabilities of 

the ion and nonelectrolyte, respectively. By taking into 

account dispersion forces electrostatic theory predicts that 

salting-in will occur if dispersion forces overcome the ion

dipole interactions, that is, if both the ion and the 

=--
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nonelectrolyte are big enough, so that the product di dne 

is big (the distortion polarizability of a molecule is 

roughly proportional to the cube of the molecular radius). 

Electrostatic equations usually predict ks values that 

are very similar for all 1:1 electrolytes, and salting-in if 

~e > dCw for all salts, which is not usually the case. The 

theory has been criticized also as not being convincing 

because the input parameters are very flexible (Gordon, 

1975). In the recent literature electrostatic theories of 

salt effects have received very little attention. 

Thermodynamic Models. 

These models, developed in their original form by 

McDevit and Long (1952), are based on the Tamrnan-Tait-Gibson 

(T-T-G) equation for electrolyte ~plutions (Leyendekkers, 

1976): 

where sP is the isothermal compressibility of water at an 

applied pressure P, vP is the volume of the solution at 

pressure P, x1 is the number of grams of water per gram of 

solution, C is equal to 0.315 Vw, Vw being the specific 

volume of water, B is a parameter related to the internal 

pressure of liquid water, ~ 2 is the apparent specific volume 

of the electrolyte in solution, and Pe is the effective 

pressure exerted by the electrolyte. The terms containingy 2 

are negligible at moderate pressures (P<1000 bar). 

f':-- -------- --- -
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The T-T-G model assumes that the properties of an 

aqueous electrolyte are the same than those of pure water 

under an additional pressure, Pe' exerted by the 

electrolyte. The T-T-G model has been succesfully applied to 

the prediction of properties such as the refractive index 

(Leyendekkers and Hunter, 1977 and 1977a), viscosity 

(Leyendekkers, 1979), and the heat capacity (Leyendekkers, 

1980) of aqueous electrolyte solutions and seawater. 

McDevit and Long (1952) assumed that the only 

significant interaction in the process of dissolving a 

nonelectrolyte is the work necessary to create a cavity in 

the solvent, large enough to accommodate the solute. The 

nonideal work of transferring one mole of solute molecules 
---··-· 

from pure water to an electrolyte ·solution is given by 

W = V~Pe ••••••••••••••••••••••••••• (12) 

where V~ is the partial molar volume of the nonelectrolyte 

solute. No other interaction, like solute-cavity interaction 

is considered. 

McDevit and Long (1952) derived a limiting equation for 

ks by using a Taylor's expansion of the Helmholtz free 

energy of the solution around V0 = nwvw + nsvs, where Vs and 

Vw are the molar volume of the pure liquid salt and pure 

water, respectively; nw and ns are the number of moles of 

water and salt. For very small concentrations of both salt 

n----
H--
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and nonelectrolyte they found 

ks = v~ (V s - V~) I 2. 3B0 RT •••••.••.••••••••.••.• ( 13) 

where Vs. and V~ are the "liquid" volume and partial molar 

volume of the salt, respectively; B0 is the isothermal 

compressibility of water; R and T have their usual meaning. 

An equivalent expression for ks is 

= lim V~/2.3RT dPe/dCs 
cs-•O 

••••.••••••••••••••••••• ( 14 ) 

This equation contains explicitly the pressure exerted by 

the electrolyte, Pe, instead of the "liquid volume" of the 
--.-: 

salt, Vs' which is somewhat vaguely defined. 

Equations (13) and (14) correctly predict the relative 

change of ks for different salts, and are in good 

quantitative agreement for small nonelectrolytes, such as 

0 2 , H2 , and the noble gases (Long and McDevit, 1952). It 

also correctly predicts salting-in for the five organic 

salts for which Vs values are known (Gordon, 1975). However, 

for larger nonelectrolytes such as benzene or naphthalene 

the estimated values of ks are usually off by a factor of 

two to three. McDevi t and Long ( 19 52) proposed that a 

correction factor needs to be added to their equation, to 

take into account the nonzero distance of closest approach 

of the nonelectrolyte to the ions. This was attempted by 

~--
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Deno and Spink (1963), who estimated the correction factor 

to be 0.3, finding good agreement for their measured values 

for tetralin, diphenylmethane and 2,4-diphenyl-2-methyl-2-

pentene in sodium sulphate solutions. 

Cross (1975) modified the McDevit and Long's equation 

to take into account the change in the nonelectrolyte's 

activity coefficient with respect to a change in the 

concentration of salt,and corrected explicitly for the 

nonzero distance of closest approach. His corrected equation 

is 

lim log f = V~Cs(Vs-Vs)/2.3RTB[1-Cs(Vs-Vs)/2]rh/(rh+rn) 

Nn--•o 
-f~g (1+2 X 10~ 3 IDs Ms) •••••••••••••••• (15) 

where ms and Ms are the molality and molecular weight of the 

salt, rh is the average hydrated ionic radius, rn is the van 

der Waals radius of the nonelectrolyte, Vs is the apparent 

molar volume of the salt in a solution of molality ms, B is 

the isothermal compressibility of the solution and Nn is the 

number ofmoles of nonelectrolyte. The other symbols have 

been defined before. This equation has been very successful 

in predicting the activity coefficient of nonpolar compounds 

up to fairly high concentrations of salt (up to 16m in the 

case of oxygen dissolved in KOH) (Cross, 1975), and even of 

the polar alkyl acetates in solutions that were up to 7 m in 

electrolyte concentration (Cross and McTigue, 1976). In both 

M-·----



26 

cases, the agreement between measured and predicted values 

was excellent. 

Recently Aveyard (1982) used a slightly different 

approach, which resulted from his work on the salt effect 

for alcohols (Aveyard and Heselden, 1974 and 1975) by 

assuming that the nonideal work of transfer W (eq. 12) 

depends not on Pe, but on the change of surface tension of 

the aqueous solution when the salt is added. This means that 

it has been assumed that: a) the surface tension of a 

microscopic cavity is the same as the macroscopic value, and 

b) the solute-solvent interactions are the same in pure 

water and in the aqueous electrolyte solution as assumed by 

McDevit and Long (1952). Aveyard (1982) also assumed that 

the work of transfer depends on the surface area of the 

cavity, not on the volume, as McDevit and Long (1952) did. 

After noting that in many cases the surface tension of 

an electrolyte solution is a linear function of ms0s, where 

C/Js is the osmotic coefficient at molality ms, Aveyard 

arrived at the following expression for ks: 

m' 1/3 2/3 ,, + + ,.. 1 ( 6) ks= 1,.N) (4.44Vi) v (rH-rxlws 2.3 .••••••••••..•• 1 

where is the number of ions per mole of salt, r~ is the 

radius of the hydrated cation, r~ is the crystallographic 

cationic radius,and 0s is the osmotic coefficient for a one 

molal salt solution. 

1-~ -
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Assuming that (r~ - r~) is equal to the molecular 

diameter of the solvent, and that the pure solvent consists 

of close-packed spherical molecules, then for an aqueous 

solution of a 1:1 electrolyte equation (16) reduces to 
• 

ks = 3.86v1 1~v2 1I_0s·· ••.•.••••••••••••••••• (17) 

where Vw is the molar volume of pure water. Agreement with 

experiment was found to be very good for nonpolar compounds 

ranging from methane to diphenyl, except for the salts 

containing the sulphate anion, but if (r~ - r~) is assumed 

to be 1.0 nm instead of 0.56 nm the agreement is excellent. 

In agreement with both equations (16) and (17), a 

linear relation wait-found between v 2 11_ and ks, in contrast 

to the McDevi t-Long equation ( 13) , which predicts a 1 inear 

relationship between Vi and ks. 

Scaled-Particle theory. 

For a long time it has been considered that the 

dissolution of a solute in a liquid is a two-step process: 

1) the creation of a cavity in the solvent, large enough to 

accommodate the solute, and 2) the introduction of a solute 

molecule into the cavity, that is, the energy of interaction 

of the solute with the cavity (Clever and Battino, 1975). At 

present the best approach to calculate the free energy 

change associated with these processes is the statistical 

mechanical theory of Reiss (Clever and Battino, 19751 
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Desrosier and Morel, 1981), the Scaled Particle Theory 

( SPT) • 

SPT considers liquids as composed of particles with 

spherical symmetry and hard cores repelling each other with 

infinite force. The theory is based upon the properties of 

the exact radial distribution function, and from that an 

approximate expression for the reversible work required to 

add a spherical particle into a liquid composed of spherical 

particles is derived. The particles are assumed to obey a 

pairwise additive potential, and an additional particle 

obeying the same potential is introduced into the liquid by 

the procedure of distance scaling (Pierotti, 1976; 

Desrosiers and Morel, 1981). 

--~--~· 

For dilute solutions of gases it can be shown that 

RT ln H2 ,l = ~c + ~i + RT ln RT/V~ •.•••.••.••.•••. (18) 

where Gc and Gi are the partial molar free energies for 

cavity formation and interaction, respectively; V~ is the 

pure solvent molar volume, and H2, 1 is the Henry's law 

coefficient. Pierotti (1963, 1965, and 1976) applied SPT to 

the solubility of gases in real liquids, and calculated the 

molecular parameters of water that are needed in the 

calculations (hard-sphere molecular diameter, work function, 

and polarizability). These values are in good agreement with 

the values calculated using other methods (Pierotti, 1976). 

~---
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For a complete compilation of all the necessary equations 

see the review by Pierotti (1976). 

Shoor and Gubbins (1969) applied SPT to the solubility 

of gases in concentrated electrolyte solutions, and from 

their results they found a general expression for ks. After 

assuming that the water-salt-nonelectrolyte system consists 

of m components, and that the solvent is a mixture of m-1 

components they obtained 

ln H2 , 1 = g~/kT + gtJkT + ln (kT dj) •••••••.•.••••• (19) 

where dj is the number density of component j, g~ and §yare 

the free energies of creating a cavity in the electrolyte 

solution and of introducing the solute in the cavity, 

respectively. 

Masterton and Lee (1970) extended the derivation of 

Shoor and Gubbins (1969) to obtain a general expression for 

ks. They obtained 

k 5 = ka + kb +kg •••••••••••••••••••••• (20) 

where ka is the contribution from the cavity formation, kb 

is the term containing the solute-cavity interaction, and kg 

is a statistical term which disappears when the solubility 

is expressed in either mole liter-1 or Bunsen coefficients 

(Masterton, 1975). Full expressions for all the terms in eq. 

(20) are given in Appendix A. The term ka always leads to 

0------
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salting-out, and it increases as the molecular diameter of 

the solute increases. It becomes smaller with increasing 

temperature. The term kb always leads to salting-in, and its 

magnitude decreases with increasing temperature. Masterton 

(1975) recalculated equation (20) for seawater in the 

temperature range from 0° to 40°C. At 25°C the calculated 

values agree very well with the experimental values, but the 

temperature coefficient is about half the experimental one. 

For bigger solutes, such as cyclohexane and benzene the 

agreement is not so good (Tien Chang et al., 1974). 

A further elaboration to SPT is the "Perturbation 

Theory" of Tiepel and Gubbins (1973). Full equations are 

given in Appendix A. The main differences between the SPT 

and perturbation theory are that T.:i,epel and Gubbins do not 

assume that gi = ei, where ei is the internal energy 

contribution to the solute-cavity interaction term; and that 

Tiepel and Gubbins (1973) assume that a real liquid behaves 

as a hard sphere fluid only in the high-temperature limit, 

so.that their theory involves an expansion around T = • The 

agreement of the perturbation theory with experiment is 

slightly better for big solutes than it is for SPT. However, 

both theories have been criticized on the basis that 

pairwise additivity seems unlikely in aqueous solutions, and 

that the assumption of a random distribution of particles 

breaks down for big solutes and for polar solutes (Cross, 

1975). Another criticism is that the thermodynamic functions 

for cavity formation are very sensitive to the solvent 

" 
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molecular diameter. A change of only 0.1 l? in the diameter 

of water produces a 30% change in Gc, which is well within 

the differences of the different estimates available 

(Desrosier and Morel, 1981). 

,; ---
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OBJECTIVES. 

From the discussion above, it can be seen that the 

study of the solubility of hydrocarbons is very important 

from both theoretical and practical points of view. A review 

of the literature reveals that very little is known about 

the solubility of hydrocarbons in seawater at 25°C and one 

atmosphere and even less is known at other temperatures or 

pressures. Only two papers deal with solubilities in 

seawater at temperatures other than 25°C, and then only for 

a very limited range of temperatures and salt 

concentrations. The results of this review are summarized in 

table I. 

To the best of our knowledge only two papers so far 

have dealt with the effect of pressure on Setchenov 

parameters (Suzuki et al., 1974; Gerth, 1983), and neither 

of them was done in seawater. All that is known about 

Setchenov parameters in seawater is at 25°C and 1 atm, which 

is equivalent to the specific conditions found in a very 

shallow tropical sea while the average temperature and 

pressure in the ocean are 5°C and 400 atm (the oceans' 

average depth is 3,800m). 

It is the purpose of this work to study the solubility of 

naphthalene, the simplest polycyclic aromatic hydrocarbon as 

F:t----
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a function of the salt content and the temperature, in 

ranges that span those likely to be found in natural 

ecosystems. Another goal is to set up a high-pressure 

generator, to study the effect of pressure on the solubility 

of hydrocarbons. 

• 

--- ----------
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Table I. Setchenov coefficients for hydrocarbons in sea 
water. -----

Compound temp. 

Naphthalene 

Benzene 

Toluene 

Ethylbenzene 

Dodecane 

Tetradecane 

Hexadecane 

Octadecane 25°C 

Eicosane 

Hexacosane 

Toluene 

Ethylbenzene 

o-Xylene 

p-Xylene 

Isopropylbenzene 

1,2,4-Trimethylbenzene 

1,2,3-Trimethylbenzene 

1,3,5-Trimethylbenzene 

n-Butylbenzene 

s-Butylbenzene 

t-Butylbenzene 

0.256 

a 

0.22 

0.25 

0.68 

0.95 

0.68 

2.~2.3 

0.206 

0.224 

0.165 

0.192 

0.258 

0.239 

0.262 

0.259 

0.306 

0.235 

0.198 

reference 

Gordon and 
Thorne, 1967 

Brown and 
wasik,1974 

sutton and 
Calder,1974 

sutton and 
Calder,1975 

;;:;-···_--_-



Table I. Continued. 

Compound 

Naphthalene 

Biphenyl 

Phenanthrene 

Toluene 

Acenaphthene 

Pyrene 

temp. 

0.3031 

0.4119 

0.3871 

0.166 

0.238 

0.319 

reference 

Eganhouse and 
Calder,1976 

Rossi and 
Thomas,1981 

35 

athe ks values change with temperature. A plot of ks as a 
function of temperature is given in the Discussion. 

---------------
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Solid polycyclic aromatic hydrocarbons were chosen 

because they are the most toxic fraction of crude oils, 

their metabolic products have been shown to be carcinogenic, 

and because they present fewer complications due to colloid 

formation, or to "accomodation" in the structure of the 

solvent. 

-------r:. 
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EXPERIMENTAL 

Naphthalene was zone refined (James Hinton, Valparaiso, 

FA), phenanthrene and anthracene were scintillation grade 

(Eastman). The salts NaCl, KCl, CaC1 2 •4H 2o, and Na 2so 4 were 

from Alpha (Ultra Pure grade). NaHC0 3 and MgC1 2·6H 2o were 

from Baker (reagent grade). Hexane and pentane were obtained 

from Malinckrodt (reagent grade), and methylene chloride was 

supplied by Aldrich {Spectro Quality, Gold Label). All these 

reagents were used as received, without further 

purification. The water used ·throughout this work was 

deionized and then dlstilled from an all glass still 
:-"'!'· 

(Corning model AG-2). 

Natural seawater was IAPSO standard seawater (Institute 

of Ocenographic Sciences, Surrey, England), which is used as 

a salinity standard and therefore is provided with. a very 

accurate value of its salt content. 

All absorption spectra were recorded with a Cary 219 

double-beam uv-vis spectrophotometer with a nominal slit of 

0.5 nm. Matched one centimeter quartz cuvettes were used, 

and a baseline was recorded by running a spectrum with 

distilled water in both the reference and sample beams. The 

temperature of the solutions was controlled by running water 

and pr0?ylene glycol from a thermoregulated bath (Lauda 

--- --- - ------ ---
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08/25) through the cuvette holder. 

In order to accomodate the high pressure cell (see 

below), the cuvette holder was removed and replaced by a ::;-

custom made holder, that aligned the optical axis of the 

high pressure cell with the sample beam of the instrument. 

In the reference beam a block of plastic, painted black to 

minimize stray light, was placed. This block of plastic had 

a hole of the same diameter as the opening of the optical 

axis of the cell. This was done to approximately match the 

reference and sample light intensities, thus keeping the 

baselines in a low range of absorbances. The whole sample 

compartment was covered with a light tight wooden box, 

painted black to minimize scattered light. 

Luminescence measurements were done on a Perkin-Elmer 

LS-5 spectrofluorimeter. One centimeter quartz fluorescence -- ---

cuvettes were used. The cell holder was kept at the same 

temperature as the solution to be analized by circulating 

water from a Lauda B-1 thermoregulator. A nominal slit of 3 

nanometers was used for the excitation and emission 

monochromators. The excitation and emission wavelengths for 

phenanthrene and anthracene were 300, 365, 258, and 401 

nanometers, respectively. 

All temperature measurements were done with a digital 

telethermometer (Bailey model BAT-12). 

The electrolyte solutions were prepared gravimetically 
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in the range 0 to 0.5 molal, except for the NaCl and KCl 

solutions, for which the range was 0 to 1 molal. The 

concentration of the electrolyte solutions are in the 

molality scale (moles of solute per kilogram of solvent), 

which is independent of both temperature and pressure; 

therefore no corrections for volume changes are needed. 

However, due to the method of measurement used here, it is 

necessary to correct the hydrocarbon concentration for 

temperature and pressure induced volume changes, even if it 

is expressed in the molal scale. The calibration plots were 

done at 25°C, so if the same solution were to be measured at 

a lower temperature or higher pressure, then more 

hydrocarbon molecules would b~ in the light path of the 

instrument, leading to an erroneously higher concentration 

value. 

Artificial seawater solutions were prepared following 

the recipe given by Lyman and Fleming (1940). Only the six 

most important electrolytes were used because, as shown by 

Gordon and Thorne (1967), the contributions of the other 

salts to ks is negligible. A stock solution with a salinity 

of about 70 parts per thousand (ppt) was prepared (the 

average salinity for oceanic waters is 35+2 ppt), and from 

it dilutions were prepared with distilled water. Natural 

seawater was prepared by gravimetic dilutions of natural 

standard seawater with distilled water. Some samples of 

standard seawater were irradiated with ultraviolet light 

from a medium-pressure mercury vapor lamp overnight in order 

------ ---- ------- ----
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to oxidize any dissolved organic matter that might have been 

present. 

One Atmosphere Work 

In one part of the work the solubilities of naphthalene 

in water and electrolyte solutions were determined by 

equilibrating an excess of this aromatic compound in 100 ml 

flasks containing the solvent under study. These flasks were 

placed in a thermostaticly controlled water bath (Haake 

model E52). Typically, the temperatures were 8, 15, 20, 25, 

30, and 35°C. Given that a reliable and consistent method 

was needed to remove the excess undissolved naphthalene from 

the saturated solutions, different filtration methods were 

tested. A known amount of naphthalene was dissolved in 

methanol first to make sure that no crystals would be 

present in the solutions. An aliquot of the methanolic 

solution was diluted in water in such a way that the final 

concentration of methanol in water was less than 0.05% v/v, 

and the final concentration of naphthalene was about half 

the saturation solubility. A 5 ml glass syringe was filled 

with the solution to be analyzed, and fitting with different 

filters placed at the tip of the syringe. In the case of 

the glass wool filter, it was placed between the barrel of 

the syringe and the needle. The concentration of naphthalene 

in the filtrate was calculated from the absorbance at 276 nm 

and the absortivity value given by Gordon and Thorne (1967). 

The results are given in Table II as the percent naphthalene 

- - --------------
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tha~ passed through the filter. The rest of the naphthalene 

was probably adsorbed on the filter, or evaporated during 

the filtration. Each value given is the average of at least 

seven trials. Based on these results the glass wool filter 

method was chosen. 

In another parts of the work a different approach was 

tried to obtain saturated solutions of hydrocarbons. In this 

method, developed at the u.s. National Bureau of Standards 

(DeVoe et al., 19811 Wasik et al., 19831 May et al., 19831 

Tewari et al., 19811 Tewari et al., 1982), the surface area 

of contact between the hydrocarbon and the solvent is 

greatly increased, thereby leading to decreased saturation 

times. Typically, the hydrocarbon of interest is deposited 

on 6 0-80 mesh glass beads (All tech-.,.Associates) by adding 20 

g of the beads to 200 ml of a 0.1% w/w solution of the 

hydrocarbon in methylene chloride, and then evaporating the 

solvent in a rotary evaporator. A 60 X 0.6 em polypropylene 

tube was filled with the dry beads and placed inside a one 

meter water jacket connected to a thermoregulated bath 

(Lauda model B-1). For equilibration between 200 and 500 ml 

of water at 50°c were pumped through the column using a 

Bodine NSI-34RH pump. Then, water or seawater at the 

appropiate temperature was pumped through the column. The 

effluent from the column was collected in a one centimeter 

quartz cuvette, and the concentration of the hydrocarbon 

measured by emission or absorption spectroscopy. Calibration 

curves were done by emission spectroscopy for phenanthrene 

-- ----------
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Table II. Comparison of several filters for transmission of 
-- aqueous solutions of naphthalene. 

filter efficiencya 

Unfiltered 100.0 % 

Glass-wool 98.5 % 

Glass-fiber 97.9 % 

Needle filter ( 5) b 97.8 % 

Millipore AH ( 0 • 4 5-) 83.0 % 
"·'-"!-'-' 

Polycarbonate ( 1. 0) 94.0 % 

Whatman 3 91.9 % 

Cellulose (0.45) 79.5 % 

aReferred to an unfiltered, unsaturated solution. 

bThe number in parenthesis refers to the nominal pore size 
in microns. 

~-

-
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------ ---------------

and anthracene in water. These plots were linear up to 
5"_: ___ _ 

saturation. (See figures 1 and 2). · -------

~--__ 

High-Pressure Work 

The high pressure work was done with a custom built 

high pressure generator assembled according to our 

specifications by the Stanford University machine shop. 

A block diagram of the high pressure generator is shown 

in figure (3). It consists of an air driven high pressure 

pump (Haaskel Eng. and Supply Co., model DHE-302), which 

converts the compressed air input (about 30 psig) provided 

by a one HP air compressor (Sears model 919-176210) into 

high hydraulic pressu~e by means of a large area piston of 

nominal ratio 302:1. The high -pressure so obtained is 

further increased by a 1:10 high pressure in tens if ier 
---- ---

(Haaskel model 15770-1). All connections between the ~~-~~-~~~~ 

-------

different components are made with seamless stainless steel 

super pressure tubing (1/.4 inch, rated at 100,000 psi) 

provided by Aminco (Silver Springs, Maryland). 

Non-rotating stem three-way cross valves (Aminco 44-

19155, 100,000 psi) (A, B, C and D in fig. 3) were used to 

separate different sections of the generator and the high 

pressure cell. For the study of aqueous solutions the 

pressure transmitting fluid was distilled water. However, 

pentane and hexane were used in some other experiments. 

Thus, with these valves shut, the optical high pressure cell 
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Figure .!. 

Calibration plot for phenanthrene in water, by emission 
spectroscopy. 

----------

-
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Figure l 

Calibration plot for anthracene in water, by emission 
spectrosopy. 

• 
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Figure 1_ 

Block diagram of the high pressure generator. (1) is 

the fluid reservoir; (2) is a filter; (3) pressure gauge; 

(4) is a shut-off valve; (5) high pressure pump; (6) high-

pressure tubing; ( 7) three-way c;ross valves; -,-........ 
( 8) high 

pressure intensifier; (9) high pressure transducer. 
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can be carried under pressure to the Cary 219 
~-----

Spectrophotometer. ·· .. · ... · 

Pressures are measured with a pressure transducer 

(Precision Sensors model 6550-100). A 9.8 V DC excitation 

potential was applied to the high pressure transducer by a 

custom built power supply. The output potential was measured 

with Keithley 169 multimeter. The pressure was then 

calculated from a calibration table provided by the 

manufacturer. See table III. Since this component is 

connected to the high pressure generator via a 60,000psi 

rated coupler (Autoclave Engineers) the cells can be used 

safely to pressures up to 4 kilobars. 

Typically, in a· high pressure experiment the air 

compressor is started, taking it.to a pressure of 30 to 40 

psi. The air-liquid pump is ~tarted by opening its shut-off 
-~ -

valve. If valves A through C are closed and D is open, it is 
--~~-------~-- --

possible to get an exit pressure of up to 9000 to 12,000 psi 

by increasing the outlet pressure of the compressor, without 

using the high pressure intensifier. 

For higher pressures, it is necessary to use the 

pressure intensifier, and make sure that the piston in the 

intensifier is up. In order to raise the piston, valve B is 

open and the other thee-way valves shut. This causes the 

pressure to increase only in the lower arm of the generator, 

pushing the piston up. Normally no more than seven strokes 

of the pump are needed to take the piston up. Once the 
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Table III. Calibration table for the high pressure 
transducer, based on values obtained with 
N.B.S.traceable laboratory standards. 

pressure {psi) 

0 

10,000 

20,000 

40,000 

60,000 

80,000 

100,000 

output {mV) 
increasing decreasing 

o.oo 0.008 

1.713 1.694 

3.430-
---'"!-': 

3.384 

6.855 6.773 

10.277 10.190 

13.668 13.617 

17.050 17.050 
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piston is up, valve B is shut and the high pressure cell is 

connected to the outlet port of the generator. To increase 

the pressure valves A and D are opened, thus allowing the 

compressed water coming from the pump to get into the upper 

arm of the generator. The compressed water in the upper arm 

pushes the piston down, increasing the pressure in the lower 

arm of the generator by a factor of ten, which in turn 

increases the pressure in the high pressure cell through 

valve D. Once the desired pressure has been reached, as 

indicated by the reading in the multim~ter, both valves D 

and the one connected to the cell are closed, and the cell 

disconnected from the generator and taken to the 

spectrophotometer. 

To release the pressure the pump's shut-off valve must 
.-__,,_,. 

be closed, and all the three~way valves must be open. When 

the pressure inside the generator is one atmosphere again, 
----

as indicated by a reading of zero in the multimeter, valves ·-

A through D are closed again and the generator is ready for 

another experiment. 

The high pressure optical cell is shown in Figure 4; 

its outside dimensions are 5.69 em in diameter and 3. 71 em 

high and it fits the sample compartment of the Cary 219 

Spectrophotometer and the Perkin-Elmer LS-5 

Spectrofluorimeter. The cell geometry is a modification of 

the original design by Fichten (Rodriguez, 1978), which 

allows the use of the cell at low pressures without leaks. 
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Several cells were built from this design at the Stanford 

University machine shop, and were heat treated for hardness 

to a Rockwell C scale value of 50-55. 

The optical windows are 60° taper Lynde synthetic 

sapphires (A) made by Union Carbide. The windows are 0.635 

em in diameter by 0.635 em in length, ground optically flat 

on both ends. Sapphires were ordered with a 3.81 x 10-2 em 

radius on both edges to help prevent cracking under high 

pressure. The sapphires are sitting on '0' rings, and held 

in place by two mushroom plugs (B), which in turn are 

supported by thin packing rings made of copper, indium, 

Teflon and brass (C), prevented from extruding by two small 

beryllium-copper rings of triangular cross-section (D) which 

rest against the face of a hardenecj.,,support ring of.-the same 

material. The support ring is held in place by a threaded 

plug (E) with a 10° tapered aperture hole to minimize 

shadowing; this plug can be screwed in, flush with the cell 

body. The stem of the mushroom plug is backed up by this 

threaded plug in case it should suffer "pinch off" from the 

high pressures at the packing rings. 

A three-way valve was attached to the high pressure 

cell, thus allowing us to seal the contents of the cell 

without pressure drops. 

The light path of the high pressure cell is variable, 

depending on how tight the threaded plugs are, therefore, 

before each high pressure experiment it is necessary to 

!'-~ 

--~--~-- ~~- ----
,-----~ 
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Figure ! 

Top and side cross sectional views of the high pressure 

cell for absorption spectroscopy. (A) sapphire windows; (B) 

mushroom plugs; (C) copper, indium, teflon and brass packing 

rings; (D) beryllium-copper rings; (E) threaded plug; (F) 

stainless steel jacket;. (G) Aminsp hgh pressure nut and 

connecting tube; 

------ --~------
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measure the one-atmosphere spectrum of naphthalene in both 

a one centimeter quartz cuvette and the high pressure cell 

to calculate the light path. Also, it is necessary to 

subtract the baseline produced by the cell filled with 

distilled water, because it produces a spectrum that cannot 

be removed by the AUTOBASELINE mode of the Cary 219 

Spectrophotometer. As mentioned above, this effect is 

somewhat reduced by placing in the reference beam a block of 

opaque plastic with a small diameter hole • See Figure 5. 

·------~ 

"-'-"""'--"-"'-=~~--'- ··· 
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Figure 2 

"Spectrum" produced by the high pressure cell filled 

with distilled water. (A) versus air in the reference beam; 

(B) versus an opaque block of plastic. 

---- -
~~~~~ 
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RESULTS 

a)Shake-Flask Method 

The solubility of naphthalene in NaCl, KCl, MgC1 2 , and 

Na 2so4 by the shake-flask technique is given in Table IV in 

the temperature range go to 30°C, and in cac1 2 and NaHco 3 

solutions in the range go to 35°C. The solubilities were 

calculated from the absorbance at 276 nm and the 

absorptivity value given by Gordon and Thorne (1967) of 4946 

± 36 kg/ (mol em). These values were corrected for 

temperature induced volume changes by multiplying by a 

correction factor R: 

R = D25 /Dt ••.••. -~--• ••......•.••...••••• ( 21) 

where o25 is the density of the electrolyte solution at 

25°C, and Dt is the density at the experimental temperature 

t. The densities for the NaCl, Na 2so4 and MgC1 2 solutions as 

a function of temperature were calculated from an equation 

given by Lo Surdo et al. (19g2), and the densities for 

NaHco 3 were calculated from the equation given by Hershey et 

al. (19g3). These equations are of the form 

where D and o* are the densities of the electrolyte solution 

of molality m and the density of pure water, respectively; 

59 
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Aij is the matrix containing the coefficients for the 

equation, and t is the temperature in degrees Celsius. The 

* values of D were calculated from 

o* = 0.9998395 + 6.7914xlo-5t-

-9.0894xlo-6t2 + 1.0171x10-7t 3-1.2846x10- 9t4+ 

+ 1.1592xlo-11t 5 - 5.0125x1o-14t 6 ....•.•..... (23) 

The estimated standard error of eq.(22) for the range 0 

molal to saturation in salt concentration, and 0 to 50°C in 

temperature is less than 25 parts per million for all the 

salts studied (Lo Surdo et al., 1982). Since no high 

accuracy density data are available for KCl and cacl 2 

solutions, the corrections were taken to be the same as 

those for NaC 1 and MgC 12 , respectiyely. This approximation 
,-.,!!• 

does not cause a large error, because, as can be seen from 

Table IV, the corrections are small. While this thesis was 

being written, a paper containing density data for MgC1 2 

and CaC1 2 solutions, was published Ikono (1983). Ikono 

shows that the difference in density between a 0.5 m 

solution of these electrolytes is less than 0.6 % in the 

range 15° to 45°C, and even smaller for more dilute 

solutions, confirming our earlier assumption. 

The corrected solubility values were then converted to 

the mole fraction scale by using the equation 

X = S I ( S + m5 + mw) ••••••••••••••••••••••• ( 2 4) 

-----
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where X is the solubility in the mol fraction scale, S is 

the solubility in moles per kilogram, and ms and mw are the 

molalities of the electrolyte and water, respectively 

(Whitefield, 1979 ). Eq. (24) was modified, so that the 

molality of water in water, mw, can be made temperature 

dependent: 

* mw = D x1000/18.01534 ..•••••••••••••.••••• (25) 

where o* was calculated from eq. (22). 

The uncertainties in the solubilities were estimated 

assuming that the error in the absorbance measurements is 1% 

full scale (the commonly accepted vca:-lue of 0.5% was not used 

because the Cary 219 was used in the AUTO BASELINE mode and 

therefore the total uncertainty is twice 0.5%). This 

uncertainty was propagated through all the calculations 

using standard statistical techniques (Bevington, 1967). 

The solubilities were then fitted to the Setchenov 

equation in its equivalent form 

logS= log S0 - k 5 C8 ••••••••••••••••••••(26) 

by the least-squares method. The results are given in Table 

v, along with the estimated standard errors for the fit, the 

.,--------

==--~-----~-----
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estimated uncertainty in ks, and the coefficient of 

determination. The value of r 2 is used instead of r, because 

r 2 is an estimate of the fraction of the variance due to 

random variations of the results. Table VI gives the 

Setchenov parameters for each salt at 25°C, and literature 

values when available. Considering that different techniques 

were used, the agreement with the published values is very 

good, with the exception of KCl, which seems too high 

compared with the literature values. 

The values for the Setchenov parameter for each salt 

were used to calculate the salting-out of naphthalene in 

seawater, by taking a weighed mean for the six salts at each 

temperature, the mole fraction for each salt in seawater as 

given by Gordon and T~orne (1967) being the weights. The 

values of the mole fraction for eaci(salt are given in Table 

VII, and the calculated values for the Setchenov parameter 

in seawater are given in table VIII along with the value 

obtained by Gordon and Thorne (1967) at 25°C, for 

comparison. The agreement with their value at 25°C is 

excellent. This is the only one we can compare with, because 

this work represents the first attempt to measure the 

salting-out of naphthalene as a function of temperature. 

The solubility values were also fitted to the 

integrated form of the van't Hoff equation 

log X= -!H0 /2.303RT + C .••••••..••••••••• (27) 

F,~----

~-
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where AH 0 is the enthalpy change for the process: solid 

naphthalene - aqueous naphthalene, C is an integration 

constant, and the other symbols have their usual meanings. 

The results for this fit are given in Table IX along with 

the estimated standard errors of the fit, the uncertainty in 

H0 , and the coefficient of determination. The enthalpy 

change for solution in water is 25 kJ/mol, the average 

values for the different electrolytes being 23 kJ/mol for 

NaCl, 25kJ/mol for KCl, 25 kJ/mol for MgC1 2 , 22 kJ/mol for 
' 

cac1 2 , 25 kJ/mol for Na 2so4, and 25.5 kJ/mol for NaHco3. 

The values for ks in Table V show no trend as a 

function of temperature, with the exception of the results 

for NaCl, which show a minimum around 25°C~ However, the 

results for NaCl and ail the other salts are· the same within 
·_;~!!-" 

the experimental uncertainty, the average values being 0.233 

for NaCl, 0.216 for KCl, 0.282 for MgC1 2 , 0.326 for CaC1 2 , 

0.655 for Na 2so 4 , and 0.276 for NaHC0 3• The "shake-flask" 

technique, because of its inherently large experimental 

uncertainty, seems to indicate that the Setchenov parameters 

for each salt are equal in the temperature range studied, a 

result which appears arroneous in view of our subsequent 

work. 

The enthalpy change for the dissolution of naphthalene 
• 

in the electrolyte solutions shows no systematic trend, all 

the values being the same within the experimental error. 

However, the internal consistency of the data must be 

F 
!; 

-
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stressed, as shown both by the high values for the 

coefficient of determination (r2) for the Setchenov 

parameter calculations and the enthalpy change calculations, 

and by the very good agreement found with the k
5 

value of 

Gordon and Thorne (1967) at 25°C. 

The comparison of the values reported here for the 

enthalpy change for the dissolution of naphthalene in water 

with the values in the literature shows very good agreement. 

May et al., (1983) recalculated some of the experimental 

enthalpy change values reported in the literature, and 

obtained values of 29.9 kJ/mol for the data of Bohon and 

Claussen (1951), 21.8 kJ/mol for the results of Schwartz, 

(1977), and 23.8 kJ/mol from the results of Wauchope and 

Getzen, (1972). These results compare well with the value of 

25 kJ/mol obtained in this work. 

-- - - ------ -----
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Solubility of naphthalene in aqueous 
electrolyte solutions, expressed in the 
molal and mole fraction scale. S is the 
uncorrected solubility, and Sc is the 
solubility corrected for temperature
induced volume changes. The values in 
parenthesis. are the estimated 
experimental errors. 

~~-~--
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Table IV. Solubility of naphthalene in aqueous 
----- -- electrolyte solutions, by the shake-flask 

technique. 

Mol Fractionx106 

water 

35 3.78 3.79(0.05) 6.85(0.13) 

30 3.25 3.26(0.05) 5.88(0.12) 

25 2.63 2.63 (0.05) 4.75(0.11) 

20 2.27 2.27(0.04) 4.10 (0.11) 

15 1. 78 1.78(0.02) 3.22 (0.06) 

8 1.54 1.53 (0.02) 2.77(0.06) 

NaCl, m=0.1955 

30 2.74 2. 75 (o-.'os) 4.95(0.12) 

25 2.33 2.33 (0.04) 4.19 (0.11) 

20 2.02 2.02(0.02) 3.63(0.06) 

15 1. 68 1.68(0.02) 3.01(0.06) 

8 1.37 1.36(0.02) 2.45(0.06) 

m=0.4055 

30 2.52 2.53 (0.04) 4.53 (0.11) 

25 2.16 2.16 (0.04) 3.88 (0.11) 

20 1. 92 1.92 (0.03) 3.44(0.06) 

15 1.57 1.57(0.02) 2.81(0.06) 

8 1. 25 1.25(0.02) 2.24(0.06) 

0-----

-- --------

-- - -----------
-·---- --
~--~--- -~-----

----------
~:__~ 

----



Table IV. Continued. 

m=0.6043 

30 2.21 

25 1. 90 

20 1. 63 

15 1.37 

8 1.10 

m=0.8395 

30 1.94 

25 1.71 

20 1.45 

15 1.23 

8 0. 971 

m=l.029 

30 1.83 

25 1.56 

20 1.37 

15 1.11 

8 0.876 

KCl, m=0.2023 

30 - 2. 75 

25 2.53 

20 2.08 

2.22 (0.04) 

1.90 (0.01) 

1.62 (0.02) 

1.37 (0.02) 

1.09 (0.02) 

1.94(0.03) 

1.71(0.02) 

1.45 (0.02) 
--~ .. ~· 

1. 2 2 (a·. o 2) 

0.967(0.01) 

1.84(0.02) 

1.56 (0.02) 

1.37(0.02) 

1.10 (0.01) 

0.872 (0.01) 

2.75(0.05) 

2.52(0.04) 

2.07(0.04) 

67 

Mol Fractionx106 

3.97(0.11) 

3.29 (0.03) 

2.90(0.06) 

2.44(0.06) 

1.95(0.04) 

3.46 (0.06) 

3.05(0.06) 

2.58 (0.06) 

2.17(0.06) 

1.72(0.03) 

3.26(0.06) 

2.77(0.06) 

2.42 (0.06) 

1.19 (0.02) 

1.54(0.03) 

4.97 (0.12) 

4.55 (0.11) 

3.73(0.11) 

---------------------

~----

--- ----- - - -

----------

-------- - - --

----------------
~- ----- - -
~-~----~~~-~---

--·--------
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Table IV. Continued. 

~-. 

Mol Fractionx10 6 
~-

------------------------------------------------------------ ~-~~~ 

15 1.67 

8 1.33 

m=0.4338 

30 2.53 

25 2.07 

20 1. 74 

15 1.45 

8 1.15 

m=0.6196 

30 2.30 

25 2.05 

20 1. 64 

15 1. 35 

8 1. 08 

m=0.8348 

30 2.11 

25 1. 87 

20 1.51 

15 1. 24 

m=1.030 

30 1. 88 

25 1. 53 

20 1. 39 

1.67 (0.02) 

1.32(0.02) 

2.53 (0.05) 

2.07(0.04) 

1.74(0.02) 

1.45 (0.02) 

1.15(0.02) 

2.30 (0.04) 
._-..,_ ..... 

2. 05 (0-. 04) 

1.64(0.02) 

1.35 (0.02) 

1.08 (0.02) 

2.11(0.04) 

1.87 (0.02) 

1.51(0.02) 

1.24(0.02) 

1.88 (0.02) 

1.53 (0.02) 

1.38 (0.02) 

3.00 (0.06) 

2.37(0.06) 

4.55 (0.11) 

3.71(0.11) 

3.11(0.06) 

2.59 (0.06) 

2.05 (0.06) 

4.12 (0.11) 

3.66 (0.11) 

2.92(0.06) 

2.41(0.06) 

1.92(0.05) 

3.77(0.11) 

3.32(0.06) 

2.68 (0.06) 

2.20 (0.06) 

3.34(0.06) 

2. 77 (0.06) 

2.45 (0.06) 
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Table IV. Continued. 

Mol Fractionx10 4 

15 1.15 1.14(0.02) 2.03 (0.06) ------------------

-
- -

8 0.905 0.901(0.01) 1.59 (0.03) 

---- ----

MgC1 2 , m=0.1085 

30 2.96 2.96 (0.05) 5.35 (0.12) ---- ------

- ·-·-

20 2.07 2.07(0.04) 3.73(0.11) - - -

15 1.72 1.72(0.02) 3.09 (0.06) 

8 1. 36 1.35(0.02) 2.43 (0.06) 

m=0.2043 

30 2.84 2.85(0.05) 5.13 (0.12) 

--·\· 
25 2.26 2.26(0.04) 4.08 (0.11) 

20 1. 89 1.89(0.02) 3.40 (0.06) 
--------

15 1.61 1.60(0.02) 2.88 (0.06) 

8 1. 29 1.29(0.02) 2.32(0.06) , _______ 

m=0.3174 

30 2.67 2.67(0.05) 4.81(0.11) 

25 2.19 2.19 (0.04) 3.93 (0.11) -

20 1. 81 1.81 (0.02) 3.25 (0.06) 
-- --· -
~~------

15 1. 51 1.51(0.02) 2.70(0.06) E-----=-----==---

8 1.23 1.22(0.02) 2.19 (0.06) 

m=0.4150 

30 2.50 2.50(0.04) 4.49 (0.11) 
------· -----·----""''-

25 2.02 2.02(0.04) 3.62 (0.11) 
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Table IV. Continued. 

------------------------------------------------------------ ~~ ~ 

20 

15 

8 

30 

25 

20 

15 

8 

CaC1 2 , 

35 

30 

25 

20 

15 

8 

35 

30 

25 

20 

15 

1. 77 

1. 41 

1.15 

m=0.5219 

2.29 

1. 83 

1. 60 

1. 29 

1.06 

m=0.07978 

3.99 

3.38 

2.79 

2.45 

2.03 

1.72 

m=0.1696 

3.81 

3.21 

• 2.60 

2.39 

1. 94 

1.77(0.02) 

1.40 (0.02) 

1.14(0.02) 

2.29(0.04) 

1.83 (0.02) 

1.59 (0.02) 

1.29(0.02) 

1.05(0.02) 

·,-_,_.,: 

4.00 (0.07) 

3.39(0.05) 

2.79(0.05) 

2.45(0.04) 

2.03 (0.04) 

1. 72 (0.02) 

3.82(0.05) 

3.21(0.05) 

2.60(0.05) 

2.39(0.04) 

1.93(0.04) 

3.17(0.06) 

2.51(0.06) 

2.04(0.06) 

4.11 (0.11) 

3.27(0.06) 

2.85(0.06) 

2.30 (0.06) 

1.88 (0.05) 

7.23(0.17) 

6.12(0.12) 

5.03 (0.12) 

4.41(0.11) 

3.66 (0.11) 

3.09(0.06) 

6.91(0.13) 

5.79(0.12) 

4.69 (0.11) 

4.30 (0.11) 

3.47(0.11) 

~" -
~-----=-=== 

----------

-·--

-
~ 

--------------- --------- ·- - -- -
----

!"P" --

tl 

,.-_-- ... . -

-----
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TABLE IV. CONTINUED. 
~---_--_ 

Mol Fractionx10 6 

8 1. 66 1.65 (0.02) 2.97(0.06) 

m=0.2905 

35 3.41 3.43 (0.05) 6.17(0.12) 

30 2.93 2.93 (0.05) 5.27(0.12) 

25 2.37 2.37(0.04) 4.26 (0.11) 

20 2.07 2.07(0.04) 3.71(0.11) 

15 1. 74 1. 73 (0.02) 3.11(0.06) 

8 1.47 1.46(0.02) 2.62(0.06) 

m=0.4213 

35 3.13 3.14(0.05) 5.65 (0.12) 

30 2.78 2. 78 (0.05) 
... -- ... !'!-

4.99(0.12) 

25 2.18 2.18(0.04) 3.91(0.11) 

20 1. 90 1.90 (0.02) 3.40(0.06) ---------- -- ----

~------

15 1. 61 1.60 (0.02) 2.87(0.06) 

8 1.37 1.37(0.02) 2.45 (0.06) 

m=0.5401 

35 3.96 3.97(0.07) 7.13(0.17) ---------- ---
,~-~---

30 2.44 2.45(0.04) 4.38 (0.11) 
------
----------- --

- - - -

25 2.04 2.04(0.04) 3.65(0.11) 
=;~~~=-= 

"'=----==--== 
20 1. 73 1.73(0.02) 3.09 (0.06) 

c---

15 1. 45 1.44(0.03) 2.58 (0.06) 

8 1. 21 1.21(0.02) 2.15(0.06) 
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Table IV. Continued. 

Mol Fractionx106. 

~ ------------------------------------------------------------
Na 2so 4 ,m=0.1085 

30 2.49 

25 2.23 

20 1. 87 

15 1. 54 

8 1.20 

m=0.1934 

30 2.19 

25 2.01 

20 1. 74 

15 1.38 

8 1.10 

m=0.3072 

30 2.05 

25 1. 69 

20 1.41 

15 1.14 

8 0.902 

m=0.4215 

30 1. 57 

25 1. 43 

20 1.19 

15 0.982 

2.49 (0.04) 

2.23 (0.04) 

1.87(0.02) 

1.53 (0.02) 

1.20 (0.02) 

2.19 (0.04) 

2.01{0.03) 

1.74(0.02) 
-.~~!.~· 

1.38 (0.02) 

1.09(0.02) 

2.05(0.04) 

1.69(0.02) 

1.41 (0.02) 

1.14 (0.02) 

0.898 (0.01) 

1.52(0.02) 

1.43 (0.02) 

1.19 (0.02) 

0.979 (0.01) 

4.50 (0.11) 

4.02 (0.11) 

3.36 (0.06) 

2.77(0.06) 

2.15 (0.06) 

3.95(0.11) 

3.49(0.04) 

3.13 (0.06) 

2.47(0.06) 

1.97(0.05) 

3.69(0.11) 

3.04(0.06) 

2.53 (0.06) 

2.04 (0.06) 

1.61(0.03) 

2.82 (0.06) 

2.56 (0.02) 

2.13 (0.06) 

1.75(0.03) 

----

----------------

~------------

-------- -------

- -- -- ---

~=--=-:::: ____ :_:_,,,:c::O: 

---

--·---



Table IV. Continued. 

8 0.756 

m=0.5171 

30 1. 39 

25 1.19 

20 1.01 

15 0.842 

8 0.664 

35 3.47 

30 3.01 

25 2.44 

20 2.05 

15 1. 70 

8 1.38 

m=0.1963 

35 3.30 

30 2.84 

25 2.27 

20 1.93 

15 1.62 

8 1.28 

m=0.3163 

0.753(0.01) 

1.39 (0.02) 

1.19 (0.02) 

1.01 (0.02) 

0.839 (0.01) 

0.661(0.01) 

3.48 (0.05) 

3.01 (O.A1,5). 

2.44(0.04) 

2.05(0.02) 

1.70(0.02) 

1.38 (0.02) 

3.31(0.05) 

2.84(0.05) 

2.27(0.04) 

1.93 (0.02) 

1.61(0.02) 

1.28 (0.02) 

73 

Mol Fractionx10 6 

1.35(0.03) 

2.50(0.06) 

2.13 (0.06) 

1.80 (0.05) 

1.50 (0.03) 

1.18(0.03) 

6.30(0.13) 

5.44(0.12) 

4.40 (0.11) 

3.69 (0.06) 

3.05(0.06) 

2.48 (0.06) 

5.98 (0.12) 

5.12 (0.12) 

4.09(0.11) 

3.46(0.06) 

2.90 (0.06) 

2.29 (0.06) 

,.,-------

:..;; '' 

-== 
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- -- ---

Table IV. Continued ~--

Mol Fractionx10 6 

35 3.07 3.06(0.05) 5.53 (0.12) 

30 2.60 2.60 (0.04) 4.68 (0.11) 

25 2.12 2.12(0.04) 3.81 (0.11) 

20 1. 79 1.79(0.02) 3.22(0.06) 

15 1. 49 1.49(0.02) 2.66 (0.06) 

8 1.20 1.20 (0.02) 2.15(0.06) 

m=0.3967 

35 2.93 2.94(0.05) 5.28(0.12) 

30 2.45 2.45(0.04) 4.41(0.11) 

25 1. 98 1. 9 8 ( 0 ,_Q,2 ) 3.55 (0.06) 

20 1. 69 1.69 (0.02) 3.02(0.06) 
'-'--------

15 1.42 1.41 (0.02) 2.53 (0.06) --------------

8 1.14 1.14(0.02) 2.03 (0.06) 

m=0.5270 

35 2.63 2.64(0.05) 4.74(0.12) 

30 2.31 2.32 (0.04) 4.15 (0.11) 
-----

25 1. 86 1.86 (0.03) 3.33 (0.06) 

20 1. 60 1.60 (0.02) 2.86 (0.06) 
~-=----

15 1.31 1.31(0.02) 2.34(0.06) 

8 1. 08 1.07(0.02) 1.91(0.04) 

------------------------------------------------------------------

~-------
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Table v. Setchenov prameters for the salting-out of 
- naphthalene in different electrolytes as a 

function of temperature. 

NaCl 

30 

25 

20 

15 

8 

KCl 

30 

25 

20 

15 

8 

MgC1 2 

30 

25 

20 

15 

8 

CaC1 2 

35 

0.229(0.013) 

0.220(0.018) 

0.227(0.021) 

0.241(0.014) 

0.247(0.086) 

0.207(0.010) 

0.258 (0.031:) 

0.210 (0.020) 

0.200 (0.012) 

0.205(0.013) 

0.277 (0.019) 

0.307(0.047) 

0.254(0.033) 

0.305(0.011) 

0.269(0.017) 

0.325(0.022) 

7.8 0.9899 

13.8 0.9811 

20.1 0.9742 

9.0 0.9896 

3.3 0.9964 

4:0 0.9935 

37.1 0.9713 
.-.., .. _,_. 

17.4 0.9728 

6.1 0.9893 

6.6 0.9915 

3.9 0.9862 

12.0 0.9562 

11.4 0.9531 

12.9 0.9962 

3.0 0.9886 

3.2 0.9910 

.,.------~-

'-'-------------

" -------- -----------

----
--------

----
==~~ 

~---=- - - ~-=:;::: 

--------~~--~--
-"-'-==------'-=--"----.=o. 



Table v. Continued. 

30 

25 

20 

15 

8 

Na2so4 

30 

25 

20 

15 

8 

NaHC0 3 

35 

30 

25 

20 

15 

8 

0.303 (0.024) 

0.304(0.012) 

0.352(0.027) 

0.330 (0.012) 

0.341(0.025) 

0.630(0.064) 

0.655(0.028) 

0.681(0.035) 

0.653 (0.013) 

0.657(0.024) 

0.286(0.014) 

0.283 (0.014) 

0.286 (0.013) 

0.264(0.014) 

0.276(0.007) 

0.263 (0.014) 

8.0 

1.8 

9.9 

2.1 

8.7 

45.3 

8.6 

13.4 

1.8 

6.1 -;:"">!:-· 

2.2 

2.3 

1.9 

2.1 

0.5 

2.3 

0.9814 

0.9957 

0.9828 

0.9958 

0.9839 

0.9696 

0.9945 

0.9921 

0.9989 

0.9961 

0.9928 

0.9923 

0.9937 

0.9919 

0.9981 

0.9911 

76 

~~-------

-----

---------
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Table VI. Literature values for the Setchenov 
parameters of naphthalene at 25°C. 

Salt This Work Gordon and Thornea M. Paulb Vesalac 

NaCl 0.220 0.220 0.260 -----
KCl 0.258 0.186 0.204 0.207 

Na2so4 0.655 0.696 0. 716 -----

MgC1 2 0.307 0.301 
-_~..,.!<· ----- -----

CaC1 2 0.303 0.322 ----- -----
NaHC0 3 0.286 0.319 ----- -----
------------------------------------------------------------
aGordon, J.E. and Thorne, R.L., (1967). 

b Paul, M., (1952). 

eves ala, A. and Lonnberg, B., (1980). 

~------
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Table VII. Mole fractions of the six most important 
constituents of seawater. 

Salt Mole Fractiona 

NaCl 0.79914 

MgClz 0.10407 

Na 2so4 0.05476 

cac1 2 ----·0. 01976 

KCl 0.01771 

NaHC0 3 0.00456 

a Taken from Gordon and Thorne, (1967). 

-----------

------------ ----

--------------------

-----
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Table VIII. Setchenov parameters for the salting-out of 
naphthalene in seawater as a function of 
temperature, calculated as the weighted 
mean of the six salts. 

ks/ (kg/mol) 

30 0.257 

25 0.256 

25 ""''-0. 256a 

20 0.260 

15 0.271 

8 0.273 

avalue calculated by Gordon and Thorne, (1967). 

• 

-------

- . -

.. 
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Table IX.Enthalpy change for the process solid 
----- -- naphthalene-aqueous naphthalene at 25°C. 

molality 

0 25.1(5.2) 34.9 0.9877 

NaCl 

0.1955 22.7(3.4) 4.1 0.9979 

0.4055 22.8 (3.8) 6.5 0.9966 

0.6043 22.6(3.6) 5.3 0.9972 

0.8395 22.9(3.0) 2.5 0.9987 

1.029 24.6 (4.5) 12.6 0.9943 

KCl 

0.2023 25.0(5.3) 24.4 0.9895 

0.4338 24.6(4.1) ---·· 8. 2 0.9966 

0.6196 25.5 (4.8) 15.8 0.9934 

0.8348 26.6 (5. 7) 13.0 0.9919 

1.030 23.4(4.5) 12.0 0.9941 

MgC1 2 

0.1085 25.4(3.5) 4.1 0.9987 

0.2043 25.2(5.4) 25.7 0.9891 

0.3174 25.4(4.9) 17.0 0.9929 

0.4150 25.4(5.0) 19.3 0.9919 

0.5219 25.0 (5.3) 23.1 0.9900 

------ ----------

~-----

-
------

----------

-----------

-- ----- ----
- - --- -

---------- --
c -----~-~-~-

-----

-

~---
------------

---------

---
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Table IX. Continued. 

molality t,H0 I (kJ /mol) 

cac1 2 

0.07978 21.4(5.5) 27.0 0.9842 

0.1696 21.3(5.7) 32.6 0.9809 

0.2905 23.2(4.8) 25.8 0.9894 

0.4213 23.1(5.4) 40.9 0.9831 
----

0.5401 23.1(4.7) 15.1 0.9923 

Na 2so4 

0.1085 24.4(4.2) 9.2 0.9958 

0.1934 22.9 (5.3) 24.6 0.9874 

0.3072 26.9 (3.9) 6. 9 0.9974 

0.4215 24.5 (4.8) :c•:16 • 4 0.9926 

0. 5171 24.3 (2.1) 0. 6 0.9997 

,-- -- -
---- -- --~- --------

NaHC0 3 

0.09821 25.5(4.1) 14.2 0.9951 

0.1963 25.9(3.9) 11.7 0.9961 

0.3163 25.5 (4.0) 12.8 0.9956 

0.3967 25.6 (4.4) 17.3 0.9941 

0.5270 24.9(4.2) 15.1 0.9946 
~-·--------------------------------------------------------------

• 
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b)Generator Column Method. 

The solubility measurements of naphthalene in water and 

seawater obtained with the column generator were similarly 

corrected for temperature induced volume changes. The 

density of seawater as a function of temperature and 

salinity was calculated from the equation given by Wang and 

Millero (1973): 

Vsw = 1.000027/(1+st10-3 ) •••••••.••••...•• (28) 

where Vsw is the specific volume of seawater, and st is 

given by 

2 Ctso.~~·~ ._ •••.•••••••••.•••.• (29) 

where the coefficients are functions of both temperature and 

salinity. The solubilities were transformed to the mole 

fraction scale using the same equations given above. The 

results given in Table X are the averages of at least three 

experimental determinations. 

The solubilities were fitted to the Setchenov equation, 

and the results are given in Table XI. The electrolyte 

concentration in seawater was calculated taking advantage of 

the well known fact that the proportion between the major 

constituents of seawater is constant, irrespective of what 

the salinity is. If the major constituents are present in 

--- -------------

~-~~- --~~----
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constant proportions, then a weighted average molecular 

weight can be calculated for "seasalt". This value will 

depend upon the recipe used to mimic the composition of 

natural seawater (Leyendekkers, 1976). For the recipe used 

in this work the weighted average molecular weight has a 

value of 68.0811 g/"mole". Once this value is known, the 

"molality" of seasalt can be calculated from (Leyendekkers, 

1976) 

ms = S/ (Mt (1-S/1000)) .•.•••••••••...••••• (30) 

where ms is the "molality" of seasalt, S is the salinity in 

parts per thousand, and Mt is the "molecular weight" of 

sea salt. 

As the results obtained with the generator column are 

considered to be of higher accuracy, the Clarke and Glew 

equation 

(where & is a reference temperature (298.15 K) and the other 

symbols have their usual thermodynamic meanings) was used to 

calculate the thermodynamic functions for the process solid 

hydrocarbon-aqueous hydrocarbon (Clarke and Glew, 1966; May 

et al., 1983; Blandamer et al., 1982). In contrast to the 

integrated van't Hoff equation, the equation proposed by 

Clarke and Glew does not assume the change in heat capacity 

- - - --------

-
------

---------

g_-
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to be equal to zero in the temperature range of interest. 

Also, this equation has the advantage that the adjustable 

coefficients are not correlated, and that the adjustable 

parameters are the desired thermodynamic functions. 

The solubilities of naphthalene were fitted to the 

Clarke and Glew equation by a multivariable linear least-

squares fit program from the Statistical Package for the 

Social Sciences (SPSS) (Version H, Release 9.1). The results 

are given in Table XII, along with the values obtained by 

May et al., (1983). 

From the results in Table XII it can be seen that the 

more positive value (less favorable) for the Gibbs free 

energy of dissolution of naphthalene in seawater, as 

compared to the value in pure watecF,. is due entirely to an 

entropic contribution. From the discussion in the 

introduction, these results seem to indicate that the solute 

creates less order in seawater than it does in pure water. 

As can be seen from the results given in Tables XI and 

XII, the accuracy of the generator column method is better 

than that obtained with the "shake-flask" technique. The 

estimated uncertainties for the Setchenov parameter are much 

smaller; the same is true for the errors in the 

thermodynamic functions, as can be seen from Table XII, 

where the solubility values obtained with the "shake-flask" 

method were also fitted to the Clarke and Glew equation. The 

error in the Gibbs free energy is five times smaller for the 

...., __ ., ______________ _ 
'"' 
~---,, 

- -- ----------

-
-------
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data obtained using the generator column, and the error in 

the enthalpy change is ten times smaller. The agreement with 

the thermodynamic functions calculated by May et al., 

(1983), who also used the Generator Column Method, is 

excellent. Furthermore, the error in the thermodynamic 

functions is smaller for the results obtained in this work, 

probably due to the more extended temperature range used. 

Using the Generator Column Method, the Setchenov 

parameters as a function of temperature show a minimum 

around 25°C, as can be seen from Figure (6). This result was 

unexpected because minima of the salting-out coefficient 

have been reported only for gases at temperatures higher 

than l00°C (Clever and Holland, 1968), but never around room 

temperature. This resHlt made it desirable to have values 

for the salting-out of other aromatic hydrocarbons as a 

function of temperature in order to ascertain that the 

behavior shown by naphthalene was not anomalous. 

---------------

==-=-===----=== 

~~--------~-

"" 

------

~=-----
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Table X. Solubility of naphthalene in water and seawater by 
- the generator column method. 

Mol Fractionx106 

water 

43.7 5.35 5.38(0.07) 9.79(0.19) 

34.6 3.77 3.78(0.05) 6.85(0.13) 

24.8 2.59 2.59(0.05) 4.67(0.11) 

13.5 1. 69 1.68(0.02) 3.03 (0.06) 

3.5 1.18 1.18 (0.02) 2.12(0.06) 

seawater, m=0.2679 

43.6 4.52 4.55 (0.05) 8.23 (0.13) 

34.7 3.22 3.23 (0.05) 5.82 (0.13) 

24.8 2.20 2.20(0.04) 3.96 (0.11) 

13.2 1.41 1.41(0.~,2) 2.53 (0.06) 

3.5 1.00 1.00 (0.02) 1.79(0.05) 

m=0.3587 

43.7 4.29 4.32 (0.07) 7.80(0.18) 

34.6 3.03 3.05(0.05) 5.48 (0.12) 

24.8 2.10 2.10 (0.04) 3.77(0.11) 

13.2 1.35 1.34(0.02) 2.41(0.05) 

3.5 0.953 0.981(0.01) 1. 70 (0.03) 

m=0.5329 

43.6 3.89 3.92(0.05) 7.06(0.13) 

34.6 2.79 2.80(0.05) 5.03 (0.12) 

24.8 1.91 1.91(0.03) 3.43 (0.06) 

13.2 1.23 1.23 (0.02) 2.20 (0.06) 

3.5 0.857 0.854 (0.01) 1.52 (0.03) 

-------------

---------

---- -

~--- ---- - --
- -

------- --~---

F--
------------
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Table XI. Setchenov parameters for the salting-out of 
naphthalene in sea water as a function of 
temperature. 

43.6 0.267(0.007) '0 .12 0.9988 

34.6 0.254 (0.009)- 1.5 0.9969 
-.";"?!.': 

24.8 0.252 (0.007) a·. 67 0.9993 

13.2 0.262(0.014) 2.7 0.9947 

3.5 0.270(0.003) 0.12 0.9998 

-- ----

-- --

-------- -- --

-------
....,--~---~- --
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Figure ~ 

Setchenov parameter for the salting-out of naphthalene in 
seawater as a function of temperature • 

• 
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Table XII. Thermodynamic functions for the process solid 
--- naphthalene-aqueous naphthalene. 

water 30.41 (0.019) 28.4(0.1) -2.01 0.26 (0.02) 

watera 30.55 (0.032) 28.6 (1.3) -1.95 0.31(0.17) 

waterb 30.32 (0.094) 27.57(1.19) '?<"' 2 .• 7 5 -0.29(0.40) 

seawater 31.16 (0.014) 28.4(0.09) -2.76 0.19 (0.02) 

acalculated from the experimental results of May et al., (1983). 

bcalculated with the results obtained in this work using the 
"shake-flask" technique. 

5--=- --
" 
~-
;-:;-

-----

~---~~ 

---
----
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In order to compare with the .values obtained with 

naphthalene, the solubilities of anthracene and phenanthrene 

in natural seawater were measured using the Generator 

Column technique. The concentrations were calculated from a 

calibration plot of the fluorescence of these compounds. The 

solubility of phenanthrene in water is approximately 100 

times less than that of naphthalene, and the solubility of 

anthracene is about 1000 times less than the solubility of 

naphthalene. This low solubility makes the use of absorption 

spectroscopy very difficult, so the more sensitive technique 

of emission spectroscopy was chosen. The calibration plot 

was calculated by a weighted linear least-squares program 

(program L/B, written by Dr. Richard P. Dodge), the weights 

being the instrumental uncertainties. The resulting 

equations are: 

[A] = If- 0.31451(0.057)/2.9584x10 7 (8.83x10 5 ) •••••• ( 3 2) 

for anthracene, where If is the measured fluorescence 

intensity, and the other numbers are the intercept and slope 

of the calibration plot and their estimated uncertainties. 

The equation for phenanthrene is: 

[Ph] =If- 0.007631(0.013)/1.9258x106(1.4x10 4 ) ••••• ( 3 3) 

The results were processed in the same manner described 

above for naphthalene. The solubility values are given in 

------

~--

!__ 
...j--

~---- --- ---
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Tables XIII and XIV. The calculated Setchenov coefficients 

for both compounds as a function of temperature are given in 

Tables XV and XVI and are shown in Figures (7) and (8). The 

thermodynamic functions for the process solid hydrocarbon-

aqueous hydrocarbon are given in Tables XVII and XVIII. 

The solubility of phenanthrene 9.92x1o- 8 at 25°C is in 

very good agreement with the value obtained by May et al., 

-8 (1983) of 9.65x10 , but the solubility of anthracene of 

7.98x10- 9 is higher than their value of 3.82x1o- 9 . The 

agreement of the calculated thermodynamic functions is very 

good in the case of the Gibbs free energy change for both 

phenanthrene and anthracene, but the values for the enthalpy 

change are so different that ~he entropy term for the 

dissolution of phenanthrene becomes negative (-0.67 kJ/mol), 

while the value reported by May et al., (1983) is positive: 

+3.28 kJ/mol. 

As can be seen from Tables XV and XVI, and Figures (7) 

and (8), the Setchenov parameters for the salting-out of 

these compounds in seawater show a minimum also, but at a 

lower temperature in the case of anthracene. These results 

are consistent with the minimum obtained with naphthalene. 

-----

ro::--

i':----

------
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Table XIII. Solubility of anthracene in natural 
----- ---- seawater by the generator column method. 

Mol Fractionx10 9 

------------------------------------------------------------
water 

5.0 

13.1 

25.1 

34.9 

44.3 

5.0 

13.0 

25.1 

34.9 

44.0 

13.0 

25.5 

34.8 

44.0 

5.0 

13.1 

1.51 

2.15 

4.42 

8.04 

14.8 

m=0.2013 

1. 38 

1. 98 

4.04 

7.66 

12.9 

m=0.3261 

1.71 

3.66 

6.78 

10.3 

m=0.5328 

1.14 

1. 70 

1.51 (0.05) 

2.15(0.03) 

4.42(0.06) 

8.07(0.09) 

14.9 (0.02) 

1.38(0.03) 

1. 9 7 ( 0. 04) ~ 

4.04(0.05) 

7.69(0.09) 

13.0(0.2) 

1.71(0.03) 

3.66(0.05) 

6.80(0.07) 

10.3 (0.11) 

1.14 (0.04) 

1.69 (0.03) 

2. 73 (0.14) 

3.88 (0.09) 

7.98(0.14) 

14.6(0.20) 

26.9(0.38) 

2.48 (0.01) 

3.59 (0.09) 

7.27(0.10) 

13.8 (0.3) 

23.5(0.5) 

3.07(0.07) 

6.57(0.10) 

12.2(0.20) 

18.58 (0.30) 

2.04(0.09) 

3.03 (0.07) 

~---

~-

~--

--~--

- ~ 

~- --

-
~ 

-

------
----



24.9 

35.0 

44.0 

Table XIII. Continued. 

3.33 

6.00 

10.7 

3.33 (0.05) 

6.02(0.09) 

10.8 (0.20) 

94 

Mol Fractionx10 9 

5.96 (0.10) 

10.8 (0.20) 

19.3(0.60) 

• 

~- -"-----~ ---=----

-------



Table XIV. Solubility of phenanthrene in natural 
--- seawater by the generator column method. 

95 

Mol Fractionx108 

water 

3.10 1. 84 

13.8 3.36 

24.9 5.49 

34.7 10.1 

43.6 16.5 

m=0.5329 

2.6 1. 28 

13.8 2.61 

24.9 5.04 

34.8 8.91 

43.6 13.5 

m=0.1658 

14.0 3.08 

24.9 5. 77 

43.9 16.4 

1.84 (0.02) 

3.35 (0.02) 

5.49(0.07) 

10.1 ( 0. 2) 

16.6 ( 0. 1) 

1. 27 (0. OJ,·) _ 

2.60 (0.03) 

5.04(0.06) 

8.94 (0.08) 

13.6 (0.10) 

3.07(0.003) 

5.77(0.009) 

16.5 (0.17) 

3.31(0.04) 

6.04(0.05) 

9.92 (0.2) 

18.3 (0.4) 

30.1 (0.2) 

2.27(0.03) 

4.64(0.07) 

9.01(0.2) 

16.1 ( 0. 2) 

24.6 (0.03) 

5.52 (0.007) 

10.4 (0.002) 

29.8 (0.04) 

--

~~- -

...... -··-·-

- ---
----- ---- ---
--

- -- ---

-
-

----
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Table XV. Setchenov parameters for the salting-out of 
-- anthracene in natural seawater. 

ks/ (kg/mol) 

5 0.239 (0.004) 2.2 0.9973 

13 0.202 (0.004) .,.Q_.. 2 0.9997 

25 0.244(0.020) 4.7 0.9896 

34.9 0.245(0.008) 0.8 0.9990 

44 0.268 (0.010) 1.6 0.9985 

~"-'·c:-:c·---_--

c e-'--:--:-----:
~----

--------
-- - --- -

- . 

-------

----

-------
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Table XVI. Setchenov parameters for the salting-out of 
--- phenanthrene in natural seawater. 

2.6 

13.8 

24.9 

34.7 

43.6 

ks/ (kg/mol) 

0.300 

0.213 (0.007) 

0.0784 

0.104 

0.174(0.04) 

0.9989 

29.3 0.9391 

~----~ 

----

----
- -- -

------ - -
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Figure ]_ 

Setchenov parameter for the salting-out of anthracene in 
seawater as a function of temperature. 
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Figure ~ 

Setchenov parameter for the salting-out of phenanthrene in 
seawater as a function of temperature. 
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Table XVII. Thermodynamic functions for the process 
solid phenanthrene-aqueous phenanthrene. 

solution 4G/(kJ/mol) AH(kJ/mol) T4S/ (kJ/mol) .L\Cp(kJ/mol K) 

water 39.83 (0.19) 40.50 (1.26) -0.67 0.44(0.20) 

watera 39.98 (0.03) 36.70(1.90) 3.28 0.29 (0.21) 
-.. -_., .. ].." 

seawater 40.17(0.08) 42.47(0.50) -2.30 -0.018(0.08) 

------------------------------------------------------------
aMay et al., (1983). 

.---

-----
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Table XVIII. Thermodynamic functions for the process 
solid anthracene-aqueous anthracene. 

solution AG/(kJ/mol) ~H/(kJ/mol) TAS/(kJ/mol) ~Cp/(kJ/molK) 

water 46.28 (0.11) 44.03(0.70) -2.25 0.71(0.12) 

watera 47.69(0.02) 47.2 ( 1. 5) -0.49 0.41(0.18) 

46.96 (0.04) '43.13 (0.28) -3.83 0.61(0.05) seawater ;,.,,:-· ___________________________________ ...... _ .... ______________________ 

avalues of May et al., (1983). 

-:_; ___ :-----_:_:·co_----_--_ 
,-----------

~ .. r ----------

----
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c)High pressure results. 

=~-~--- ~-~~--

The experimental method used in this work assumes that " 
t:L_ 

j;j 
~___: -_ 

the solubility of the solute will decrease with an increase 
~-

in pressure. In cases where there is an increase in the 

solubility of the solute this method cannot be used because 

there is no more solid solute available to be dissolved. In 

that case what would be observed is a constant solubility as 

a function of pressure. Previous work has shown that the 

solubility of naphthalene decreases in aqueous solutions 

upon compression (Suzuki et al., 1974; Rodriguez, 1979). 

Given that the high pressure transducer is not 

connected directly to the optical cell it is necessary to 

relate the pressure in the high pressure generator, (as 

measured with the press"re transducer) with the actual 

pressure inside the cell. One way of doing this is by 

studying the shift in the absorption spectrum of a 

hydrocarbon molecule dissolved in a nonpolar solvent, such 

as pentane. It is a well known fact that the dielectric 

constant of the solvent affects the spectra of dissolved 

molecules, and that increasing the pressure changes the 

dielectric constant of the solvent, thus shifting the 

position of the absorption bands of the solute. 

Robertson and co-workers (1957), studied the effect of 

applied pressure on the absorption spectra of aromatic 

hydrocarbons dissolved in pentane, finding a linear 

relationship between the shift of the maxima and the 
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dielectric constant of the solvent. Therefore it is possible 

to determine the actual pressure of the sample if the 

magnitude of the shift is known. 

The 1La band of anthracene dissolved in n-pentane at 

374 nm was selected for comparison with Robertson's values. 

A typical example of the pressure-induced red shift in the 

absorption spectra is shown in Figure (9). If Robertson's 

value of 161 for the ratio Lll/Llc (where A. is the wavelength 

and <=is the dielectric constant), is considered to be 

correct, then the change in the dielectric constant of n-

pentane can be calculated from the observed shifts of the 

1La transition of anthracene. The dielectric constant of n

pentane as a function of pressure have been measured by 

Danforth (1931), and therefore mea·surements of pressure-

induced spectral shifts can be used to compute the actual 

pressure exerted on the sample. 

Our results show that at pressures between 2500 and 

3500 atm the readings of the pressure transducer were on the 

average 15% higher than the actual pressure in the high 

pressure optical cell. 

For the measurement of solubility, a saturated aqueous 

solution of naphthalene was placed inside the high pressure 

cell, and the pressure increased. The cell was taken to the 

spectrophotometer and readings of the absorbance were 

automatically taken every fifteen minutes, until a constant 

value was obtained. Typical results are shown in Figures 

&==--~--=-=-
" 
~ -----------------
~-~------_ 

~=----------=--

------
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(10) and (11). Figure (10) shows the absorption spectrum of 

a saturated solution of naphthalene in water at 25°c, at one 

atmosphere and 1771 atm. Figure (11) shows the absorbance 

of a solution of naphthalene as a function of time. In 

general, the higher the pressure the faster equilibrium was 

reached. Most runs took from two to three days to 

equilibrate. Table XX gives the experimental result for the 

solubility of naphthalene in water as a function of pressure 

at 25°C. The solubility of naphthalene decreases with 

pressure. However, no precise values could be obtained. This 

problem, and the long equilibration times made impractical 

the determination of Setchenov parameters as a function of 

pressure in a reasonable time. 

----

L_--

~-

-·-·---

.;::_ 

-----
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Figure 9 

Pressure-induced red shift of the absorption spectrum 
of anthracene in n-pentane. A, spectrum at one atmosphere; 
B, spectrum at 2300 atm. . ... ,_. 
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Figure 10 

Absorption spectrum of naphthalene in water at: A, one 
atmosphere and B, 1771 atmospheres. 
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Table XIX. Solubility of naphthalene in water as a 
function of pressure at room temperature. 

------------------------------------------------------------
Pressure/atm Solubility x 104/(mole/kg) 

334 0.735(0.02) 

535 1.59(0.04) 
-;-.-,.:; 

1503 1.92(0.05) 

1771 1.56(0.04) 

Li_: __ -__ -.. _ 

--
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Figure 11 • 

Absorbance of naphthalene in water as a function of 
time. 
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DISCUSSION 

The solubility of naphthalene in water and in aqueous 

electrolyte solutions behaved as expected. The solubility of 

naphthalene decreases in the presence of all the salts 

studied in this work, that is, naphthalene was salted-out at 

all the temperatures investigated. This was expected from 

the results reported previously in the literature at 25°C 

for naphthalene and other hydrocarbons, which were also 

salted-out by these salts and sea salt. The solubility of 

naphthalene increased with increasing temperature in all the 

electrolyte solutions studied. The solubility of naphthalene 

as a function of temperature had b€r~n investigated in water 

only, but there were no theoretical reasons to expect a 

different behavior in seawater, or in the other electrolyte 

solutions. 

The thermodynamic functions for the process: solid 

hydrocarbon-aqueous hydrocarbon presented in this work are 

in good agreement with the values reported in the 

literature. The entropy change reported here is always 

negative, in agreement with the values reported by May et 

al., (1983), except for the positive value for the entropy 

change of solution for phenanthrene reported by them. For 

the three hydrocarbons studied in this work the Gibbs free 

energy change on going from water to seawater is positive, a 

~~----

" ~:o~_:-__ 

----

! 
---

-- ---
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result to be expected from the lower solubility of these 

hydrocarbons in seawater with respect to pure water. This 
t~~~ 
R---change is due to a negative entropy term which, considering 

that the initial state is the hydrocarbon dissolved in pure 

water, means that the hydrocarbon solute induces less 

ordering in seawater than it does in water. This effect 

might be due to the electrostriction caused by the ions 

dissolved in seawater. The major ionic components of 

seawater are known to "break" the structure of water by 

forming strongly attached primary hydration shells. This 

effect can explain the decreased order created by the 

aromatic solute in seawater, as compared with water. The 

disruption of the structure of.water caused by the ions 

makes it more difficult for the nonpolar solute to form its 

own hydration shell. 

Although minima have been reported for the salting-out 

of gases at temperatures above room temperature (Clever and 

Holland, 1968; Masterton, 1975b), the unexpected result of 

the presence of a minimum for the salting-out of aromatics 

below room temperature, makes it necessary examine the 

theoretical models to find out if the minimum can be 

predicted. 

We have shown before (Gold and Rodriguez, 1983) that 

the Tamman-Tait-Gibson (TTG) model can be used to predict 

the salting-out of gases in seawater. In order to use the 
----

TTG model it_is necessary to know the value of dPe/dms as a 



function of temperature. The effective pressures exerted by 

seasalt as a function of both seasalt concentration and 

temperature were calculated from (Leyendekkers, 1977): 

BPvP=0.4343X1 (0.315Vw) / (Bt+Pe+P) •.•.••••••••••.•. (34) 

where BP is the isothermal compressibility at pressure P, vP 

and Vw are the volume of the solution at pressure P and the 

volume of pure water at atmospheric pressure, and x1 is the 

number of grams of water per gram of solution. The other 

terms have been defined before. 

The values of Bp and vP for seawater in the range 0 to 

40 ppt of salinity, and 0 to 40°C in temperature were 

calculated from the high pressure equation of state of 

Millero et al (1980): 

= K0 + AP + BP 2 ••.••.. ~ •• (35) 

where v 0 and vP are the specific volumes at zero and P 

applied pressure, and K is the second degree secant modulus 

(K0 =1/B0 ). The parameters K0 , A, and B are given by 

= K0 + as + bs312 
w •••••••••••••••••••• ( 3 6 ) 

3/2 + cS + dS •..•..•••...••••...... (37) 

B=Bw+eS ••••••••••••••••••••••••••••• (38) 

~----

;;;_ 
~""----==--- --=,- ~ 

- --- --

-------
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where Sis the salinity, the coefficients K~, Aw, and Bw for 

pure water are polynomial functions of the temperature, and 

the coefficients a to e are functions of the temperature. 

The values of Pe were calculated from 0 to 40 ppt every 5 

ppt for every five degrees temperature from 0° to 40°C using 

the computer program "Seawater", listed in the appendix. The 

results were then fitted to a polynomial in the 

concentration at every temperature, using a modified version 

of the program "Nth Order Regresion" (Poole and Borchers, 

1981): 

Pe =a+ bms +em~+ ••• 

so that the term 

lim dPe/dms 
ms --'»0 

• ••••••••••••••• ( 3 9 ) 

is just b. Then the b values were fitted to a polynomial in 

the temperature, the result being: 

1 im Pel dms=4 8 5. 916-6.312 9t+ 0.09905lt2-6.3853x10- 4t 3 •• (40) 
m6 -?0 

with a standard error of one part per thousand. This 

equation was used to calculate the ks values predicted by 

the TTG model as a function of temperature. The results are 

shown in Figure (12). The temperature dependence of the 

~-:~-:~---~ 

-~---

-------
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predicted values for ks is of the same form as that of the 

gases dissolved in seawater (Gold and Rodriguez, 1983), the 

predicted temperature coefficient being better than the 

values predicted by the scaled particle theory. However, in 

the case of naphthalene the TTG model predicts values for ks 

which are bigger than the experimental values by a factor of 

three (see Table XIX), and it does not predict the presence 

of a minimum around 25°C. 

The values for ks predicted by the Scaled Particle 

Theory were calculated from the equations given by Masterton 

(1975) and. listed in the Appendix. This equations are 

written for ks in the ionic strength scale, so the values 

from Table X were recalculated using the equation 

(Leyendekkers, 1976): 

Iw = 0.01994S/(1-S/1000) •••••••••••••••• ( 41) 

where S is the salinity in parts per thousand. 

The calculation of ks from ka and kb requires the 

knowledge of the Lennard-Janes parameters for the solutes. 

These parameters, which to the best of our knowledge have 

not been published for naphthalene, were calculated using 

two approaches. The first approach uses an empirical 

relationship between the critical properties of a compound 

and the Lennard-Janes constants (Stiel and Thodos, 19621 Sen 

Tee, Gotch, and Stewart, 1966): 

F 
<=--
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Figure 12 

Comparison of the experimental values for the Setchenov 
parameter of naphthaiene in seawater as a function of 
temperature, with the values preditted by the Tamman-Tait
Gibson and the Surface Tension models. 
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Elk= 65.3 Tc z~ 8/ 5 •••••.••••••••..••••• (42) 

and 

(11 = 0.812 (Tc/Pc)-13 / 5 ••••••••••••••••• (43) 

where Tc is the critical temperature, Pc is the critical 

pressure,and Zc is the critical compressibility (=PcVc/Tc). 

The critical constants for naphthalene were taken from the 

compilations by Kudchadker et al., (1978) and Dreisbach, 

(1955). Using this method, the work function was calculated 

to be 394.1 K, and the intermolecular distance as 6.89 ~. 

The calculated value for ks using these parameters is 0.546 

kg/mol, which is three times higher than the experimental 

result of 0.186 kg/mol. 

In the second approach the work function was calculated 

using the Mavroyannis-Stephen equation (Balon et al., 1983): 

where ol is the molecular polarizability, E is the total 

number of electrons, andCiis the intermolecular distance. 

The molecular polarizability (17.48x1o- 24 cm 3 ) was taken 

from the compilation by Miller and Savchik (1979), and the 

intermolecular distance was taken to be equal to the 

crystallographic diameter (Balon et al., 1983), which was 

calculated from the bond lengths and angles determined from 

~---

-
------
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X-ray diffraction by Ponomarev et al. (1976), and Sellers 

and Boggs, (1981). The calculated value fort1;k is 169.3 K, 

which compares well with the value calculated by -Balon et 

al., (1983) for 1-naphthol of 123.3 K. The value for rr is 

6.58xlo- 8 em. The calculated values for ks using these 

parameters are in better agreement with the experimental 

values than the values calculated using the first set of 

parameters, as can be seen from Table XIX. The results for 

ka, kb and ks as a function of temperature were fitted to a 

polynomial in the temperature 

•••••• ( 4 5) 

••••• ( 4 6) 

••••• ( 4 7) 

------- ----

~-~~-~--

with a standard error smaller than 3xlo-3• These polynomials = 
===~=== 

are shown in Figure (13) , and the predicted value of ks is 

compared with the experimental value in Figure (14). It can 

be seen that this model does not predict the minimum inks 

as a function of temperature, but the magnitude of the 

predicted values is in better agreement with the 

experimental values than those predicted by the TTG model. 

The Surface Tension model was also used to predict the 

values of ks as a function of temperature. The osmotic 

coefficients of seawater with a seasalt concentration equal 

-------- ------- --- - -----
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to one molal as a function of temperature were calculated 

from the equation given by Millero (1976): 

1-Ql = 2.303SA1 / 2 (Q"/3) +BI+CI3/2+DI2 ••.••••••••••••• (48) 

where A, B, C, D and ~ are temperature-dependent parameters. 

The values obtained were fitted to a polynomial in the 

temperature: 

••• ( 4 9) 

These results are compared with the experimental values in 

Table XIX and Figure (12). The best quantitative agreement 

with the experimental results is obtained with this model. 

The temperature coefficient calculated from each model 

is compared to the experimental values in Table XIX. All the 

models, except for the Surface Tension model, predict a 

negative temperature coefficient at 25°C, in agreement with 

experiment. The failure of the Surface Tension model to 

predict the sign of the temperature coefficient should not 

be considered a drawback of the model because the reference 

temperature was chosen to be 25°C, just before the minimum 

in the ks vs. temperature curve, when ks is decreasing. If 

the reference temperature had been higher than 25°C, then 

the experimental value would have been positive, in 

agreement with the Surface Tension model, but not with 

..,-
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Figure 13 

Setchenov parameter, ks, and its contributions ka and 
kb, for naphthalene in seawat.er as a function of 
temperature, as predicted by the Scaled Particle Theory. 
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Figure .!:.! 

Comparison of the experimental value 
parameter as a function of temperature, 
predicted by the Scaled Particle Theory. 
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either the Scaled Particle Theory or the Tamman-Tait-Gibson 

model. 

From the predicted values for ks by the different 

models, it seems that the main interaction in the process of 

dissolving a hydrocarbon molecule is the creation of a 

cavity in the solvent. The good agreement of the Surface 

Tension model, which does not assume any interaction between 

the hydrocarbon and the cavity surrounding it, with our 

experimental values points in that direction. It also 

implies that the SPT model overestimates the contribution to 

ks due to the creation of the cavity in the solvent, 

probably due to the assumption that the intermolecular 

potentials in liquid water are additive. The TTG model 

predicts values that are about three times higher than the 

experimental results, a result thaf'"'has been observed before 

for other big molecules, and it is due to the neglect in the 

original model of the distance of closest approach between 

the solute and the ions in the solution. 

The results presented here for anthracene and 

phenanthrene confirm that the observed minimum in the 

Setchenov parameter for naphthalene in seawater is not an 

anomalous behavior. This was further confirmed when the 

results given by Brown and Wasik, (1973), for the solubility 

of benzene and toluene in water and artificial seawater were 

used to calculate the Setchenov parameters for these 

compounds in the range from 0° to 20°C. the results are 

shown in Figure (15). A minimum is clearly visible around 
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The values for the solubilities of naphthalene under 

pressure are calculated under the assumption that the 

absorptivity coefficient of the aromatic in water is 

pressure-independent. Two other authors have reported 

solubilities of aqueous naphthalene at 25°C under pressure. 

Suzuki et al., (1974) obtained their values by removing the 

solutions from the high pressure cell for external analysis 

via ultraviolet spectroscopy at one atmosphere. Rodriguez 

(1978) analized his solutions by measuring the absorbance of 

all the solutions 15 minutes after compression. As expected, 

the pressure dependence of the solubility is higher in 

Suzuki's experiment. This work represents the first attempt 

to reach "true" equil iorium by foll9wing the absorption of 
. "';;"'!!-

the compressed solution as a function of time. 

The lack of precision of the results is probably the 

result of adsorption of the unsolubilized naphthalene on the 

sapphire windows of the high pressure optical cell. This 

effect made it necessary to clean with ethanol the surface 

of the windows in contact with the solution. 
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Table XX. Experimental and predicted values for the 
Setchenov parameter and its temperature 
coefficient for naphthalene in sea water 
at 25° c. 

Experimental T-T-G SPT ST 

0.252 0.836 0.267 

0.333 

-4.2xlo-4 9.4xlo-8 

-3.2xl0-4 -4.7xlo-4 

a recalculated using the ionic strength scale. 
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Figure 15 

Setchenov parameters foi benzene arid toluene in 
seawater as a function of temperature, calculated from the 
values given by Brown and Wasik, 1973. 
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CONCLUSIONS 

A comparison of the two methods used to measure 

solubilities in this work shows that, for work at one 

atmosphere, the Column Generator method is better. No 

changes could be found for the values of ks as a function of 

temperature using the "Shake-Flask" method, and all the 

values were measured to be the same within experimental 

error. Although the values for r 2 calculated for the 

Setchenov equation, and for the van't Hoff equation, are 

quite high, the "Shake-Flask" technique gives higher 

standard errors for the fit. On the other hand, the results 

obtained with the Generator Column method are much less 

scattered, as indicated for the lower.uncertainties obtained 

when both the Setchenov and Clarke-Glew equations were 

fitted to these results. 

A minimum was found for the Setchenov parameter, ks, 

for the salting-out of naphthalene in seawater as a function 

of temperature. This result was supported when a minimum was 

also found for the salting-out as a function of temperature 

of anthracene and phenanthrene. Further confirmation was 

obtained when the Setchenov parameters for benzene and 

toluene in seawater were calculated from published 

solubilities, and a minimum was similarly found. Thus, it 

can be concluded that the simplest aromatic hydrocarbons 

show a minimum in the salting-out as a function of 
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temperature. 

The transference of the hydrocarbon solute, from water 

to seawater at 25°C, was found to be mostly an entropy-

driven process. At the temperature of the the minimum the 

enthalpy change for the transfer of one mole of solute from 

water to seawater must be zero, so at this temperature the 

Gibbs free energy change of transfer is entirely the result 

of an entropic contribution. 

Of the three theoretical models used in this work, none 

predicts the presence of a minimum. However, the Surface 

Tension model is in good agreement with the experimental 

values over the temperature range investigated. This means 

that the main process in dissolving a hydrocarbon solute is 

the creation of a cavity, large eiJs_.ugh to hold the solute. 

The interaction of a polynuclear aromatic hydrocarbon solute 

with the cavity is negligible. The Scaled Particle Theory 

and the Tamman-Tai t-Gibson model tend to overestimate the 

contribution due to the formation of the cavity in the 

solvent. The T-T-G model fails for big molecules because in 

its original form it does not take into account the non-zero 

distance of closest approach between the nonpolar solute and 

the ions. The SPT model gives a poor correlation probably 

due to the non-additivity of the intermolecular potential in 

liquid water, which is not considered in the model. Another 

problem is that this model requires the input of molecular 

parameters for which a wide range of values, or methods to 

calculate them, are available in the literature. 
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Although the main objective of this work, i.e. to set 

up a high pressure system, was accomplished, measurement of 

solubilities were complicated by the adsorption of excess 

hydrocarbon. Furthermore, the long time required for 

equilibration made it impractical to measure Setchenov 

parameters as a function of pressure. In general we can say 

that the solubility of naphthalene decreases upon 

compression, but the values were not precise. 

For future work, it can be suggested: a) that the 

sapphire windows be siliconized, to minimize adsorption of 

the unsolubilized solute and, b) to connect the high 

pressure transducer directly to the high pressure optical 

cell, so that the pressure inside the cell can be measured 

directly. Also, the design of a thet'mostated jacket for the 

high pressure cell is desirable. This would allow the 

measurement of the solubilities as a function of both 

temperature and pressure. 

For work at one atmosphere, the study of the 

alkylbenzenes is suggested. The partial molar volume of the 

simplest alkylbenzenes in aqueous solutions has been 

measured at 25°C, as well as the enthalpy change of solution 

at the same temperature. These measurements can be repeated 

in the temperature range where these compounds show a 

minimum in the Setchenov parameter. Therefore, independent 

measurements would be available for all parameters needed in 

the theoretical models. 
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APPENDIX A 

Scaled Particle Theory 

The expressions for ka, kb, and kg for 1:1 electrolytes 

are (Masterton and Pei Lee, 1970): 

3 I 4 z 1 I 4 ( ~ +IT ) 3 1 3 + 6 2 6x 1 017" ( E 1 k) 1 I 2 (u +IT' ) 3 + 4 4 '1 4 .4 • 'I' 1 1 2 

.- •••••••••••••••••••••••••• ( A2 ) 

kg= 0.016-4.34x1o-4 ¢ ............................... (A3) 

where Q is the apparent partial molal volume of the 

electrolyte, E;k is the depth of the Lennard-Jones 

potential, oi. is the polarizability, and ([is the molecular (or 

ionic) diameter. The subscripts refer 1 to the 

nonelectrolyte, 2 to the solvent (water), 3 to the cation, 

and 4 to the anion. 

These equations were later reformulated by Masterton 

(1975) to predict the salting-out of nonelectrolytes in 
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seawater. The concentration of seasal t is expressed in the 

ionic strength scale. The expressions for ka and kb are: 

ka = A + Bxlo 6a-1 + cx1o 14crr .................... (A4l 

d/di (Lc · (E. /k) l/2q-1 ~) .•••••••..••••...••••.•••• (AS) v l l l 

where A, B, c, and Av are temperature-dependent coefficients 

tabulated in the original paper, Iv is the ionic strength, 

and the terms ~li are calculated from the usual mixing rules 

a-li = (tTl + (j"i) /2 • • · • • • • • · • • • • • • • • • • • · · • (A6) 

and the subscripts have the same meaning as before, except 

that i refers to the individual ions. 
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APPENDIX B 

Program SEAWATER. 

The program SEAWATER calculates the effective pressure 

exerted by seasalt as defined in the Tamman-Tait-Gibson 

model. This program, written in BASIC, calculates Pe as a 

function of both temperature and salinity. It also 

transforms the seasalt concentration from the salinity scale 

to molality and ionic strength. 

10 PRINT "THE PRESSURE IS" 

20 INPUT P 

30 FOR T=O TO 40 STEP 5 

40 A=54.6746-0.6035*T+0.0110999*T**2-6.167E-5*T**3 

50 B=O.O 7944+0.01648 *T-5. 30 0 9E-4 *T*'* 2 

60 C = 2. 2 8 3 8E-3-1.098*T-1.6078E-6*T** 2 

70 D=1.91075E-4 

80 E=2.0816E-8*T+9.1697E-10*T**2-9.9348E-7 

90 F=2671.8+19.454*T-0.27028*T**2+9.798E-4*T**3 

100 A1=0.9998414+6.79395E-5*T-9.0953E-6*T**2 

110 A2=1.00169E-7*T**3-1.1201E-9*T**4+6.5363E-12*T**5 

120 A3=8.2592E-4-4.449E-6*T+1.0485E-7*T**2 

130 A4=-1.258E-9*T**3+3.315E-12*T**4 

140 A5=-6.3376E-6+2.8441E-7*T-1.687E-8*T**2 

150 A6=2.83258E-10*T**3 

160 A7=5.4705E-7-1.97975E-8*T+1.6641E-9*T**2 

170 A8=-3.1203E-ll*T**3 

152 

- -

---
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180 B1=A1+A2 
---

190 B2=A3+A4 

200 B3=AS+A6 
""--
~ ----~-- -----

210 B4=A7+A8 

220 L1=19652.21+148.4206*T-2.32711*T**2+0.0136048*T**3 

230 L2=5.15529E-5*T**4 

240 L=L1+L2 

250 M=3.23991+1.4371E-3*T+1.16092E-4*T**2-5.77905E-7*T**3 

260 N=8.50935E-5-6.12293E-6*T+5.2787E-8*T**2 

270 PRINT "T=";T 

280 FOR S=O TO 40 STEP 5 

290 W=B1+B2*S+B3*(S**3/2)+B4*S**2 

300 V0=1.000028/W 

310 O=M+C*S+D*S**3/2 

320 U=N+E*S 
'!:_,_ •. ~· 

330 R=L+A*S+B*S**3/2 

340 Q=R+O*(P-1)+U*(P-1)**2 
-::;--

350 Z 1 =VO * (R-U* (P-1) **2) 

360 Z2=V0*(1-(P-1)/Q) 

370 B5=1.000028/B1 

380 Q2=Z1/Z2/Q**2 

390 C1=1-(S/1000) 

400 P2=((0.1368*B5*C1)/(Q2*Z2))-F-P 

410 I=(0.01994*S)/(1-0.001*S) 

420 M1=S/ 68.0811* (1-0.001*5)) 

430 I2=S*0.019927*VO 

---
440 PRINT "SALINITY=";S,"IONIC STRENGTH=;I,"MOLALITY=";M1 
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450 PRINT "VOLUME IONIC STRENGTH=";I2 -
~~~-~~ 

460 PRINT "EFFECTIVE PRESSURE=";P2 ~-.-.-

F=------~----

470 NEXT S g------

480 NEXT T ""~ ---

490 END 

---

---

' 
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