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I 
INTRODUCTION 

Trhe human-glycerol and human-glucose systems were 

investigated by LeFevre (1948). He found that the kinetics 

of the volume changes in glucose-saline solutions suggested 

a mechanism for transport of glucose into the cell other 

than simple diffusion. He also found that mercury, iodine 

and phlorizin depressed glucose penetration, which led him 

to suggest that the transport of glucose into human erythro-

cytes was effected by an active metabolic system in which 

at least.one essential link involved a sulfhydryl group. 

In subsequent investigations concerning the trans-

port of hexoses LeFevre and LeFevre (1952) and Widdas (1952), 

suggested that the kinetic treatments of the facilitated 

transfer of sugars across cell membranes were based on a 

syrrunetrical carrier transfer mechanism. The carrier system 

of Widdas (1952) postulated th~ presen~e of carriers in 

the membrane which pass backwards anc1 forwards·across the 

membrane owing to thermal agitation, irrespective of whether 

they are saturated with hexoses or riot. 

LeFevre (1954) suggested that facilitated diffusion 

involves the following steps: 

1. The formation of the substrate carrier 
complex on the outside of the membrane. 

1 



2. The penetration of the complex through 
.the membrane . 

. 3 •· The uncoupling of the substance from 
~he carrier ~pon arrival at the inside 
face of the membrane. 

2 

Rosenberg and Wilbrandt (1955) proposed a carrier 

system similar to Widdas' except that the formation and dis-

sociation of the carrier complex was catalyzed by an enzyme 

present in the membrane. 

Bowyer and Widdas (1956) and Stein and Danielli (1956) 

suggested a polar pore system where molecules pass through 

pores which extend from the outside to the inside of the 

membrane. 

Stein (1961) proposed neither the existance of pores 

nor a mobile carrier, but rather a dimerase. This enzyme, 

at least in the .case of glucos·e and glycerol, aids in the 

formation of dimer solute molecules which causes a decrease 

in the numbE;)r of free hydrophyllic groups. This allows 

the dimer to pass through the lipid layer more rapidly than 

the monomers. The dimer spontaneously disassociates into 

two monomers upon reaching the aqueous phase at the inner 

'layer of the cell membrane. 

According to Lieb and Stein (1971), transport in 

human red blood cells may proceed by internal transfer 

across a protein tetramer. Such a model could account for 

transport phenomena in other systems. Lieb and Stein (1972) 

suggested that trarlsport occurs as a result of four 

sequences: 
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1. A sugar mole.cule binds to one of the subunits. 

2. Following a conformational change, the sugar 
will be present within the i~ternal cavity 
of the tetramer. 

3. The sugar will distribute itself between the 
two inwardly facing binding sites according 
to· energetic considerations. 

4. A second conformational change occurs. If, 
while in the internal cavity, the substrate 
is bound to the binding site ·other than that. 
on which it entered the cavity, then a trans-
port event will have. been achieved. · 

These studies have not only assisted in establishing 

the concept of facilitated diffusion involving a carrier 

mechanism, but also suggested new theories for glucose 

transport across membranes. 

Hunter (1961), studying the effect of butanol on 

thiourea and glycerol penetration in human, rabbit, sheep 

and chicken erythrocytes, suggested that butanol increases 

the permeability in the case of simple diffusion but de-

creases the permeability in the case of facilitated dif-

fusion. In each case in which it was assumed that .simple. 

diffusion occurred, n-butyl alcohol increased the thiourea 

permeability of the respective erythrocytes. · The glycerol 

permeability was decreased by n-butyl alcohol in those 

instances where glycerol was postulated to cross the mem-

brane by a carrier mechanism. 

· Subsequent studies using n-butyl alcohol and tannic 

acid (Hunter, George and Ospina, 1965; Ospina and Hunter, 

1966), helped to dist:inguish between simple and facilitated 

diffusion systems. These data suggested that carrier 
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systems were found,· among otbers, for urea in hum:;tn erythro-

cytes. Hunter (1970L studyi:ng competitive inhibition in-

pigeons' erythrocytes, suggested that urea and thiourea 

shared the same carrier. 

After research ori saturation and competitive inhibition, 

it was found that the carrier for urea is shared with thio-

urea in the erythrocytes of rabbits and mice. The research 

suggested that thiourea entered by simple diffusion into 

human and rat red blood cells (Canielli et al., 1974). 

Attempts to determine the half-saturation constant (<I>) 

and maximum transport rate (K) for the glucose carrier were 

made by Widdas (1953, 1954) using sorbose-glucose competi-

tion, by LeFevre (1954) using competition between phlorentin 

and glucose, and by Miller (1965) using the light scattering 

method with glucose, mannose, and. galactose. 

· The main purpose of this work is to determine the 

characteristics of the thiourea carrier in human erythro-

cytes taking into consideration the two parameters of trans-

fer (half-saturation constant and maximum transport. rate) 

and the energy of dissociation of the carrier complex. 

·In the present experiment, the problem has been approached 

by observing the exit of thioure·a·, from cells previously 

equilibrated with thiourea, into a saline medium containing 

different ·concentrations of thiourea. The ·most important 

advantages of this method are the rapidity of th~ exit pro-

cess and the fact th~t it can be easily measured. 
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l 
I MATERI.ALS AND METHODs· 

All of the experiments were carried out on human 

·erythrocytes. Blood was obtained by venipuncture from a 

single individual for each series of experiments and dry 

heparin was used as an anticoagulant (cf. Hunter, Stringer 

and Weiss, 1940). The cells were washed three times with 

1% NaCl, buffered to pH. 7.5 (6.05 gm Tris plus 3.45 ml 

concentrated HCl per liter), bY centrifugation at low. 

speeds for 3 to 5 minutes. After each centrifugation the 

supernatant and huffy layer were removed by aspiration. 

Shrinking measurements for one volume of washed 

cells equilibrated with 10 ·volumes of 200 mM thiourea in 

1% NaCl (pH. 7.5), were made by adding 0.25 ml of this 

cell suspension to 10 ml of 1% NaCl, with or without 

added penet·rant in the chamber of a densimeter (9}rskov, 

1935) and the rate of exit was measured (Sen and Widdas, 

.1962) at various temperatures (7, 12, 20, 25, 30, 35 and 

40 C) with different concentrations of penetrant in the 

external solution (4.6, 9.5, 14 .. 3, 18.7 and 23.1 mM). 

The densimeter consists of a chamb~r in which the 

cell suspension is.placed. A beam of light passes through 

this cell suspension and falls on a photocell which is 

connected .to a D.C. amplifier and pen recorder. Temperature 

5 
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is regulated by .circulating water from a constant tempera­

ture bath through an outer jacket surrounding the chamber. 

The suspension is stirred to avoid settling of the cells: 

As the penetrant molecules leave the cells, the internal 

osmotic pressure is decreased, water leaves the cells and 

they shrink. A record of these volume changes is obtained 

with the pen recorder. 

On.the basis of a 70% hematocrit value following the 

washing of the cells and assuming that 50% of their volume 

is solvent, the internal concentration of thiourea following 

equilibration was calculated to be 188 mM. A small 

amount of thiourea outside of the cel-ls, calculated . to be 

4.6 mM, was added tothe salt solution with the cells. 

In the experiments, 0.25, 0.50, 0.75 and 1.0 ml of 200 mM 

penetrant were added to the external solution; thus; the 

maximum value of concentration outside the cell was 23.1 mM. 

Tangents were drawn :to the initial, steep portion of 

each shrinking curve. The times when these tangents inter­

sected the base line drawn through the final equilibrium 

.volume were measured and then plotted as a function of the 

external concentration of penetrant. The x-intercept of. 

the straight line (calculated by the method of least squares) 

drawn through these points gives a value of -<P, the con­

centration required for half-Saturation of the carrier. 

These graphs were linear with external concentrations of 

23.1 mM or less, although with higher concentrations outside 

the cells the effect was proportionately less. 
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Fick's First Law of Diffusion, (equation 1), giv~s 

the relationship between solute rate of transport across 

a cell membrane and the concentration gradient. 

dS 
dt K (C - D) (1) 

K represents the permeability constant, C is the external 

soluie concentration and D is the solute concentration in-

side the cell. The rate of penetration (dSjdt) is thus 

dependent upon the concentration gradient .between the out­

side and ins.ide faces of the membrane. 

Widdas (1951, 1952, 1954) adapted equation (1) to 

fit those instances in which a carrier mechanism is in-

volved in the transfer of a penetrant across the cell rnem-

brane. In .instances of facilitated diffusion, he postu-· 

lated that the tran~fer rate is proportional to the dif-

ference between the fraction of carriers combined with 

penetrant on the outside and inside faces.of the membrane. 

This relationship is represented by the following equation: 

dS K {c c SLV 
¢} (2) --dt + <P (S/V) + 

in which s = amount of penetrating. solute in the cell, 

c = external medium solute concentration, K = permeability 

constant, V = volume of cell water, and ¢ = half satura-

tion concentration of the carrier. 

If the values of <P and of the concentrations are 

small, equation (2) can be integrated and one obtains the 
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expression: 

t = (Si + ~) (C + ~) 
~K 

(3) 

in which Si = initial amount of penetrant inside the 

cells, C = concentration out~ide the cells, ~ = half-satura-

tion concent~ation of the carrier, K = maximum transport 

rate; and t = time (Sen and Widdas, 1962). This relation 

indicates that the times as measured in the manner des-

cribed above should vary linearly with the outside concen-

tration and the x-intercept of that line should give th~ 

value for-~ (Sen and Widdas, 1962). 

Graphs were also made relating ~ (mM) vs temperature, 

ln 4> vs 1/1', K ( isotonesjmin) vs temperature and ln K vs 

1/T. 

Miller (1965) has. proposed a method for the determina-

tion of the half-saturation (K) and maximum transport rate 

(k) constants simil_ar to that of. Widdas but it does not 

require small values of ~ and of the concentrations of 

penetrant. 

Widdas' equation (2) is equivalent to Miller's 

following expression: 

dx C = k (-;._____ 
dt K + 'C 

c ) = 
K + C 

kK (C - C) 
(K + C) (K + C) 

(4) 

where by k = maximum transport rate, C = external substrate 

concentration, K =affinity (half-saturation) constant, and 

C = interna~ substrate concentration. 



9 

Under conditions not requiring Widdas' approximations, 

(equation 3), one obtains the expression: 

(5) 

in which A = permeability factor, At
0 

= time interval, K = 
affinity (half-Baturation} constant, and C = external sub-

strate concentration where 

A= 
E (E + C - C ) 

0 

in which E = external osmolarity of non penetrating species, 

C = external substrate concentration, and C
0 

= internal 

substrate concentration. Thus by plotting AAt against C 

a straight line is obtained whose slope is At
0

/K and whose 

intercept ~s At
0

. 

Furthermore, 

k = (6) 

so that both k and K may be determined from such a plot. 
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RESULTS 

Figure 1 shows a tracing .of records of typical. "exit" 

shrinking curves at 12 C and different outside concentra-

tions of thiourea. The initial portion of these curves 

is linear which can readily be explained on the basis of 

a nearly complete saturation of the sites or carriers on 

the inside of the cell membrane and a· low saturation of 

those on the outside. This low outside saturation is main-

tained because the external concentration is not sensibly 

changed by thiourea lost from the cells. As long as the 

inside of the membrane is nearly saturated, the process 

is proceeding at a constant and (at low outside concentra-

tions) nearly maximal rate. When the inside thiourea con-

centration falls, so that saturation is reduced, the 

linear part of the record is not maintained and it curves 

toward the equilibrium volume. 

In figure 2, the linear part of each exit record was 

reproduced on lin~ar coordinates to cut the base line (rep-

resenting the final equilibrium volume). The times were 

measured in minutes to the intersection of tangents drawn 

to initial, steep portion of typical shrinking curves with 

the horizontal base line drawn through the equilibrium 

volume. The times for the various experiments (Table I) 

10 
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were plotted against the outside concentrations at.dif­

ferent temperatures as s·hown in figures 3, 4, 5, 6, 7, 8 

and 9. 

From figure 2 it can be seen that, as the concentra-

tion of thiourea outside the cells is increased, the initial 

slope decreases; the time for the tangent to intersect the 

base line representing final equilibrium volume increases 

and the total deflection decreases slightly. 

The Widdas' ~ values were obtained from the graphs re-

lating external concentration of thiourea and times. The 

K values were obtained from the expression t = (Sl$~ ~) 

(C + <P) solving forK for.each value of C and averaging at 

each temperature. These data are summarized in table II. 

The half,...saturation constant (~) was found to decrease 

from 7- 20 C but increase from 20- 40 C (Fig. 10). The 

maximum transport rate (K) did not change appreciably at 

low temperatures but increased markedly at higher tempera-

tures (Fig. 12). 

Since the half-saturation concentration is nearly 

analogous to the Michaelis .... Menten constant of an enzyme 

reaction, a plot af the logarithm of this constant against 

the reciprocal of the absolute temperature was used to 

demonstrate the linear relationship. The result is shown 

in ,:figure 11. 

Such plots, first suggested by Van't Hoff, have been 

extensively used in enzyme studies (Dixon and Webb, 1958). 

The results plotted in this way are V-shaped with two linear 
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portions. From the slope of the continuous line obtained 

at higher temperatures (Fig. 11), the energy of dissocia-

tion of the carrier-penetrant complex was calculated to be 

approximately 8, 500 cal/mol. 

On the other hand, a similar plot of values for the 

maximum transport rate was not V-shaped but was linear 

(Fig. 13) .. 
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TABU: I 

Average exit time in minutes of thiourea from human 
erythrobytes at different t~eratures and concentrations. 
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TABLE I 

Temperatures Concentrations 

4.6 mM 9.5 mM 14.3 mM 18.7 mM 23.1 mM 

7 c 0.95 0.98 1.00 1.01 1.14 

12 c 0.94 0.98 1.05 1.09 1.15 

20 c 0.66 0.77 0.79 0.89 0.99 

25 c 0.48 0.56 0.60 0.60 0.65 

30 c 0.44 0.48 0.48 0.50 0.55 

35 c 0.33 0.35 0.36 0.38 0.41 

40 c . 0.24 0.25 0.25 0.25 0.25 
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TABLE II 

Values of half-saturation (cjJ) and maximum transport rate 
(K) for the thiourea carrier in human erythrocytes. 
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TABLE II 

Widdas' Miller's 

Temp. $ mM K isotonesjmin $ mM K isotonesjmin 

7 c 104.7 1.1 54.3 2.5 

12 c 77.7 1.0 ~9. 9 2.5 

20 c 34.5 1.3 25.9 3.4 

25 c 57.1 1.8 41.7 4.5 

30 c 75.9 2.1 51.5 5.3 

35 c ·75.9 2.,9. 50.7 7.1 

40 c 310.6 7.0 118.8 11.7 



FIGURE 1. 
Shrinking of human erythrobytes at 12 C 
with different outside concentrations of thiourea. 

- ---~ 
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FIGURE 2. 
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19 

Initial portion of typical shrinking curves at 
12 C with different outside concentrations of 
thiourea. Human erythrocytes were previously 
equilibrated with 200 mM thiourea in 1% NaCl. 
An aliquot of this cell suspension was added to 
1% NaCl with increasing concentrations of 
thiourea. The linear part of each exit record 
was reproduced on linear coordinates to cut 
the base line .(representing the final equilib_: 
rium volume).· 'J;'he times were measured in 
minutes to the intersection. of t·angents drawn 
to initial, steep portion of.ty~ical shrinking 
curves with horizontal line drawn through 
equilibriwn.. Average of 9 exper·iments. 

I' ~, 
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FIGURE 3. 

21 

Exit times obtained from typical shrinking 
curves at 7 C plotted against the concentra~ 
tions of thiourea in the outside media. 
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FIGURE 4. 
Exit times obtained from typical shrinking 
curves at 12 C plotted against the concen­
trations of thiourea in the outside media. 
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FIGURE 5. Exit times obtained from typical shrinking 
curves at 20 C plotted against the concen­
trations of thiourea in the outside media. 
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FIGURE 6. Exit times obtained from typical shrinking 
curves at 25 C plotted against the concen­
trations of thiourea in the outside media. 
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FIGURE 7:, 
Exit times obtained from typical shrinking 
curves at 30 C plotted against the coricen­
trations of thiourea in the outside media. 
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FIGURE 8. · Exit times obtained from typical shrinking 
curves at 35 C plotted against the concen~ 
tra~ions of thiourea in th~ outside media. 
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FIGURE 9. 
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Exit times obtained from typical shrinking 
curves at 40 C plotted against the concen­
trations of thiourea in the outside media. · 
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FIGURE 10. The effect of temperature on the half­
saturation constant of the thiourea 
.carrier in human erythrocytes. 
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FIGURE 11. 

37 

The Van't Hoff plot of data for the half­
saturation constant. The- slope of the con~ 
tinuous line indicates· that ari energy of 
8t500 £aljmol is.requi~ed for dissociation 
of the thiourea carrier complex. 
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FIGURE 12. 
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The effect of temperature on the maximum 
transport rate of·the thiourea carrier in 
human erythrocytes. 
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FIGURE 13. 

------ ~ 

The Van't Hoff plot of data for maximum transport rate. 
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DISCUSSION 

Values of half-saturation ~onstant (•) and maximum 

transport rate (K) have been calculated by Sen and Widdas 

(1962) using data obtained with a photo-electric method 

and by Miller (1965) from data obtained u~ing a light 

scattering technique. The method of Widdas requires that 

the concentrations of penetrant and the half-saturation 

constant are small. Miller's method does not require these_ · 

conditions and therefore should be applicable to a wider 

range of experimental conditions. According to Miller 

(1965), his method should give higher values of half-

saturation constants than Widdas' method. Miller (per-

sonal communication) subsequently agreed that the reverse 

should be true. In the present work, the values for the 

half-saturation constant obtained by Widdas' method were 

higher than those obtained by Miller's method. 

Widdas' method assumes that concentrations and half-

saturation constant are·small. When half-saturation con-

stant and concentrations are not small, the expressio~ 

given in equation (3) can be obtained if one treats volume 

as a constant. Since the densimeter technique depends on 

volume changes, this introduces an error which, however, 

is not .gre~t if one considers only the initial, steep· 
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portion of the shrinking curves. 

Sen and Widdas (1962) measuring the rate of exit of 

glucose from human red cells by a photo-electric method 

obtained a value of 4 mM for the half-saturation constant 

at 37 C. The maximum transport rate as obtained by Widdas 

in his experiment at 37 C is approximately 0.8 isotonesj 

min. Thus, it· can be seen that the thiourea carrier for 

human erythrocytes has half-saturation and maximum transport 

rate values considerably larger than the human-glucose 

system. 

The effect of temperature on the half-saturation con~ 

stant and maximum transport rate of the glucose carrier for 

human erythrocytes was studied by Sen and Widdas (1962). 

They found that both of these parameters for this carrier 

. increased as the temperature increased, but the cha:r:1ge was 

not linear. In the present study, the half-saturation con­

stant has been found to decrease at temperatures of 7 C 

to 20 C but to increase at temperatures of 20 C to 40 C 

(:F'ig. 10). The maximum transport rate did not change 

appreciably at low temperatures but increased markedly at 

higher temperatures (Fig. 12). It did not vary linear.ly 

which is in agreement with the data of Sen and Widdas. 

In a Van't Hoff plot of data for the half-saturation 

constant, Sen and Widdas (1962) found a linear relation­

ship and from the slope of the line they calculated the 

energy of dissociation of the carrier-penetrant complex to 

be approximately 10,000 cal/mol. The data obtained in 
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the present research when plotted in the same way show a 

V-shaped figure with two linear portions (Fig. 11). The 

dissociation energy for the carrier-penetrant complex cal-

culated from the slope of the continuous line obtained at 

higher temperatures (Fig. 11) was 8, 500 cal/mol.· 

The V-shaped figure with a break at 20 C (possible 

transition point) may suggest a conformation change in 

the carrier . 

. The present study demonstrates that the carrier for 

thiourea in human erythrocytes has different values for 

the half-saturation constant and maximum transport rate at 

different temperatures, as shown in table II. 

LeFevre (1962) and .Miller (1965) have shown that the 

maximum transport rate is the same for all sugars carrted 

by a given transport system. LeFevre (1962) obtained a 

maximum transport rate of approximately 2 isotonesfmin 

at 37 C for six different sugars having a wide range of 

half-saturation constants. Similar results were obtained 

by Miller (1965) for three sugars tested. This might sug-

gest that for the same penetrant carried by a transport 

system in different cells the characteristics of ~the car-

rier are not necessarily going to be the same. Because of 

that, it would be of interest to determine in further 

investigations whether or not the thiourea carrier in dif-

ferent red blood cells would have the same characteristics 

as those in human erythrocytes. 



SUMMARY 

1. A photo;...electric method was used.to measure the 

rate of exit of thiourea from human erythrocytes. 

2. The .half-saturation .constant (¢) and the maxi­

mum transport rate (K) for the thiourea carrier were found 

at different temperatures using times measured on the 

exit curves. The half-saturation constant (¢) was found 

to increase.at low·and high temperatures with a break at 

20 C. The maximum transport rate (K) did not change 

appreciably at low temperatures but increased markedly at 

higher temperatures. 

3. This system had half-saturation values (¢) of 

the carrier considerably larger than the human-glucose 

system; consequently, higher concentrations of penetrant 

had to be used. 

4. From the temperature dependence it was calculated 

that 8,500 cal/mol ar.e required for the dissociation of. 

the complex which thiourea is presumed to·form with a com­

ponent of the membrane. 
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