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A POJ.JAHOGHAPHIC S~f.lUDY OF SELECTJm METAJ~ COUIPU~X IONS 

OJ!' ST~VEIUl.IJ P;?'OSYJ~ AMINO ACIDS 
J,,..J'e..r>h /11. R.e:yf_j' 

. ABSTRACT OF DISSERTATION 

A polarographj.c study of the con1plexes of selected metal ions 

and the p ... T'osyl der:l vat:L vos of' the am:Lno acids; gl;y·cine P glutamic 

nc:ld and lysine has been made to detc:cm:i.ne th.e:tr coord:lnation number·, 

:formulasr dissociation constant and free energy of formationo 

All pola:cograph:l.c measurements i.n ·tlds stud~r \vcre made using the 

J;eeds a.n.d NorthxJup Electro~hemograph 1'ype E polnrog:raph(i; Polarogre...ph:tc 

determ:!.nat:i:ons were made :tn the conventional nr-r.,.Oell 11 immersed :tn u 

constant 'temperatu.re held at 25°0" 

M . ( ) .. ++ -1-+ ( • ) ( ) . . etal ion solutions of Cu II , Cd ,. Zn , Hg II 9 Pb II . a.r.i.d 

Mn(II) to be analyzed at the dropping meJ.'cury elect:code were made up 

to· 5~0 x 10~4 M metal ion~ 

Two different salts (KCl f' KNO~,~.) wm.~e "llsecl as supporting electro ... · 
:; 

ly-teso When neededp a 0"002% solution of Tri·ton ·x=lOO was used as 

a max1.nn.U11 supp:cem:;or., 

FolarograulfJ \'/ere run at current ranges: of 5 and 10 m:tcroamperc~~ eo 

Erwh po1a:cagre.m cons:tsted of a forward and reverse rlmo Corrections. 

were made for residual currento 

The reversibility of the electrode reaction was tested for each 

:t 
------- against 
j;d~~ i 

. ·-· .. 
~nialysis by determining. the slope of plots of log 

Ed • The analys:l's was discarded unless a straight line was; • e. 
obtainedp, with sl?pe equal to the theoretical value .±.. 5 mv. 

Correction for iR drop vms made using the following equation: 

(El/2)d,e·. := (El/2)obs. + (id:j 2 + ir
1

;
2 

)R 

when (E1; 2 ) j_s 4-.he half·~vmve potential observed from the recorded 

polarogram, .. 
l. . . · .. Q. is the average diffusion. current and j_ is 

rl/2 
the average resLdVta·l current at the observed half-vtave potentiale-



···' 

Data obtained in this invest:i_gation reveals the existence of 

fourteen previously unreported complexes~ They aret Copper (II) 

p~tosyl glyc:tnc>,tov Copper (II) P"·to::;yl ..... J~=glu:tamate~ Cadmium p=tosyl 
. . 

gl;ycina te~ Cadmj_rtm. p~·tosyl·~Jpglutmnate 9 Cadm:Lum p.,..tosyl·~I.~~l;~n:Jinate ~ 

binc p-toFJyl glycinate P Z:Lnc p~·tosyJ.L~J>-gJ.utama.te ~- Mer·cury (II) 

p-tosyl glycinatep Me~cury _(II)_p~tosyl-L-glut~matep Lead p-tosyl 

- gJ.jrcinatet> 1~ead(II) p~~tosyl~I1~gJ.utwnate P J.Jead. (II) p··tosyJ~~JJ<•lys:tnatc:~' -

Manganese (II)_ p~·tosyl glyc:tnate and Manganese (II) p·-,tosy·l~·L=lysinate., · 

~'he pK values o:f tin (II) and )!i:} (II) o:f the p~·tosyi glyctne 

complexEis a:ce somewhat !lj_gher than those of the unsubtTt:Ltiuted gJ.yc:Lnep 

indj.oatj.ng a lesse:e degree o:t" s·tabil:t ·tyo O:t' tho remaining meta.L 

complexes o:t" trw ~r~"l.t.)sti tu:ted an<l trw "\.m~:ubst:L t·l1"ted gl;y-oj.:ne there i.u 

practicalJ;v no cJj_:ft·erence J.n pK valuef:1 o Appm:'en~J.y the su.br;ti tut:Lon 

Of a>' po-~i;(I;J;)'l, g);c)np. :fo:r:' ~l-jlyd.:co[~Cn Oll the e.mjjlQ g;:·oup Of glyo).ne docs; 

not drastically effect the stability 6f m~tal complexes examined j~ 
tll:i.B study. 

_G?~oup· II H metal comple:x:P.8 of the glyc:lnates and the ghJ.tamates, 

$i1o\v E~·ii jjte:ce~se j_n st3~bili :i.iY~ vn tr1 ~n' ii.ie:c~as6 '':[n. atom:lc we:lght o 

Both O;;l,dmium and ztnc g.lu:tamat<::s ha.ve the rarely repox·tec1 

coorcliru:::tton number oi" three o 
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CHAPTER I 

THE PROBLEM 

Many investigators have studied the complex ions 

formed between metal ions and amino acids. Most of the 

-~:x:_p~J:'~~!l_tal data reported in these studies were obtained by 

means other than polarographic. 

A search of the literature failed to reveal any data 

on complex ions between metal ions and p-toluenesulfonyl 

(p-tosyl) amino 'acids. These compounds are employed in 

peptide synthesis. The p-tosyl group masks the chemical 

activi.ty of the amino group and because of bulk may pro-· 

duce steric htndrance. Brown (2,3) in several papers dis-

cusses the phenomenon of F-strain, where the clashing of 

groups o~ two co-ordinated ligands will result in a distor­

tion of bond angles and a decrease in stability. 

A comparison of the dissociation constants of com­

plex ion between metal ions of the unsubstituted amino acids 

and those of its p-tosyl derivatives might indicate whether 

or not steric hindrance was involved in the complex forma-

tion. 

The purpose of this study was to determine the 

co-ordination number, formula, dissoctation constant, and 

free energy of formation ofcomplexes of p-tosyl deriva-

tives of glycine, glutamic acid, lysine and selected metal 

ions. Additionally the stability of these complexes would 

F 
l:; 



be compared with those of the unsubstituted amino acids. 

A study of these complexes is important in biologi­

cal chemistry, in that the accumulation of sufficient data 

on the complexes of amino acids and its derivativ-es with 

metal ions may contribute to a better understanding of the 

type of linkage involved in metal-protein interactions. 

2 



CHAPTER II 

INTRODUCTION 

I. THEORY 

' Jaroslav Heyrovsky vms the orlginator of polaro-

_ _ __ gr_§.Ph!Q _£l,_J:la_.ly_s_i_s. The theoretical principles of polaro-

graphy can be.fo~~d in a number of current publications; 

"Polarography" by Kalthoff and Lingane (17), in particular 

is an excellent reference. 

The applfcatlon of polarography to the study of 
) 

complex ion, is made possible by the fact that the half-

wave potentials of metal ions are usually shifted to a more 

negative potential by complex formation. By measuring this 

shift as a function of concentration of the complex ion 

substance both the formula and the dissociation constant (25) 

of complex can be determined. ·rhe essential requirement is 

that reduction or oxidation of the metal ion complex takes 

place reversibly_ at the dropping electrode. 

The reduction to the metallic state (amalgam) of a 

com,plex ion of a metal may be represented by: 

(n-pb) -b MX + ne + H~'')IM(Hg) + pX p 
(1) 

vlhere N ,(Hg) represents· the amalgam formed at the surface of 

the dropping electrode and x-b is the complex forming sub-

stance. It is customa~y to regard reaction 1 as the st~ of 



4 

two partial reactions, 

(2) 

'and 

Mn+ + ne + Hg _, M(Hg) ( 3) 

-- -- --

is the simple or aquo ion of the metal. 

If the assumed foregoing reactions are rapic!_ and 

~r~J.ble at the dropping electrode 5 then the potential of 

the latter at a~~ point on the wave should be given by 

Ed = .e. (4) 

Where the constant 

is the concentration of amalgam formed on the surface of the 

dropping electrode, ca is the concentration of the simple 

ions at the electrode surface, fa and fm are the correspond­

ing activity coefficients and aHg is the actlvity of the 

surface of the dropping electrode. When the dissociation of. 

the complex ion is sufficiently rapid so that equilibrium 

with respect to reaction 2 is practically mainte.ined at the 

ele6trode surface, then C~ can be replaced by 

(5) 

Where Kd is the dissociation constant of the metal ion 



5 

complex, C~x and C~ are, respectively, the concentration at 

the electrode surface of the complex metal ion and the com­

plexing metal ion and the complexing agent x-b, and the f's 

are activity coefficients. Equation l+ then becomes 

E = d.e. · 
ln C~( C~)P 

c~x 
( 6) 

When the equa.tions for the current ( i), the diffusion cur­

rent (id), cgx, C~, and C~ are {substituted into equation 6 

the·equation of the wave at 25° is obtained. With an excess 

of the complex f"orming substance present in solution 

Where 

E d.e. 

0.0521 log i 
M. ~- i 

= potential at dropping mercury electrode in 

volts 

E~ = the half-~ra.ve potential in volts. EJ.
2
_ is 

2 
A. 

·constant anAindependent of concentration 

n =number of electrons involved with the reduc-

ible ion 

i = the current at any point on the wave, in 

microamperes 

id = limiting diffusion current in microamperes 

Values of i and (id-i) are taken from a polarogram (Figure 

1) and converted into workable data. 



.. , . 

FIGURE-
,!-

--~·--- -- - - - -

.... 
z 
w 
~ 
0: 
:J 
u 
_j 
<( 
::> 
0 
(/) 
w 
0: 

to I i"• 
·- co C'\1 

' ,_-o 

·~.~~ • .. e·~ 
q 0 g . 
('I) (\J 

0 

SH3dWVOCI :)I W 

(}') 

d 
I 

CQ 
0 
I 

d 
I 

<D . 
0 
I 

-~-
·-:..J 
0 
> 
"-' 

• 
~ 

-d 
w 

6. 

~ ' 
<( 
rr: 
~ 
0 
0:: 
<( 
..J 
0 
0.. 

_j 
<( 
u 
a.. 
>-._. 

' 

<( 



7 
i A plot of log id-i vs Ed.e. will produce a straight 

line having a slope equal to o:o39r· If i equals id-i, then 

Ed e will equal E~. The straight line is used as a. cri-
• • 2 

terion of the reversibility of the dropping mercury elec-

trode reaction. 

The half-wave potential Ei is given by 
---- ----· 2 

.- - p -~221- log c f. (8) - n X X 

\tlhere ka and kc are proportional to the square roots of the 

diffusion coefficients of the complex metal ions and the 

metal in the amalgams, respectively. 

The concentration of the metal ion complex is not 

used in equation 8, thus E~ is constant and independent of 
2 

the concentration of the complex metal ion. 

Equation 8 predicts that the half.:.wave of a complex 

metal ion should shift with changing activity of the complex 

forming substance according to 

E~ (9) 

from this relationship, the co-ordine.tion number p of the 

metal ion can be determined, and thus· the formula. of the 

complex. 

From equation 8 it is apparent that the half-wave 

potential depends on the logarithm of the dissociation 



constant of the complex metal ion, and it is more negative 

the smaller the value of Kd, that is, the more stable the 

complex ion. 

The dissociation constant is determined from the 

8 

difference between the E1. of the simple ion and that of the 
2 

complex metal ion. 

= .Q...&22l log ~ -p hQ.m log C f 
n f ~k- n x x c c 

(10) 

The ratio ~ is determined experimentally from the ratio 
c 

of the observed'"diffusion currents of the simple and complex 

metal ions at the same concentration holding all other 

variables constant. 

Equation 10 may b·e more specifically applied ( 21, 22) 

to the case of ~ amino acids complexes where the concentra­

tion of the complexing agent is dependent on pH. From the 

expression for the dissociation constant of the ~ amino acid 

CA- • CH+ k = a 
CAR 

(11) 

it follows that 

c = a pH + log CAR (12) 

keeping the ionic strength (~ constant, l'l'ould keep the 

activity coefficient of the amlno acid nearly constant, and 

as a first approximation this may be considered to be unity. 



Equation 12 is then substituted into equation 10 for 

log Cxfx' from which equation 13 is obtained. 

9 

In many instances the ratio ks/k0 is unity or nearly 

so, and may be omitted. 

Be .!10 !! .. §..<l.J:J or k 

From a search of the literature it was found that 

most studies (14") involving the determination of dissocia-

ti.on constants of complexes of amino acids, utilized the 

potentiometric method. 

The complex ions formed from copper (II) with 

glycinate and alinate ions were determined polarographically 

by Keefer (15). He reports that the complexes formed are 

mainly [Cu(gly) 2J or Cu[Cu(alan) 2J with ligand concentration 

of O.OSM to 0.1 ·molar, at higher concentrations [CU(gly) 3J. 

Two electron reductions are reported indicating the ~nstabil­

i ty of the complexes. The determinations 1-rere made in a pH 

range of 9.80 - 11.75. 

Kierson and Barsily (16) have found that Copper (II) 

forms two types of complexes with aspartic acid [CUA] and 

[CuA 0 ]. The formation of these complexes was studied by 
c.. 

spectrophotometri.c ·and potentiometric measurements, and it· 

was observed that the composition does not depend on the 



ratio Cu(II): ligand but solely on pH. At pH less than 4 

[CuA] was formed, at pH 6 [CuA2] was the main product. 

10 

By measuring (43) the free eu++ concentration, the pH, 

and using titration curves of various solutions, evidence of 

t't'TO complexes cu++ and L-leucine was obtained. The cu++ con­

centration is measured potentiometrically with a copper-

amalgam electrode. The two complexes are formed from nega­

tive amino ions and are postulated to be CUR+ and CuR2 
( R = leucine). T'ne complex CuR can be precipitated as the 

hydroxide CUROH. , .. The equilibrium constants for the complexes 

are pK(CUR+) = 8.11 and pK(CuR2 ) - 15.84. Spectrophotometric 

evidence for the formation of CuR+ and CUR++ is presented. 

Stability constants are in good agreement with those reported 

above. 

Malik and Khan (27) report that copper-asparagine 

complexes were reducible reversibly at the dropping mercury 

electrode. Studies were conducted at pH 7.2-12.04. Two 

asparagine molecules were found to combine with one copper 

at a· pH of approximately 11, while for higher pH ranges only 

one asparagine was found to combine 't'J'i th one copper. 

Kostromin and associates (12) polarographically 

studied the reaction of eo( aminobutylene and o( amino pro­

pionic acids with Copper (II), data obtained show that 

these reactions are pH dependent. 

Li, Doddy, and White (23) in a study of Copper (II), 
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nickel and uranyl complexes report the formation constants 

of Copper (II) and nickel complexes of hydroxyproline, 

asparagine and N, N-dimethylglycine. The pK2 of asparagine 

and the formation constants of its complexes are indepen­

dent of optical configuration. The formation constant of 

the Cu( II) and hydroxyproline, which 'tlms determined by the 
-- --- ~- -

polarographic method, is 15.4. The nickel complexes of 

serine methyl ester and glycine methyl ester are equally 

stable, indicating that the serine ester co-ordinates to the 

metal ion throug_h the amino group only. 

Pleticha (36) writes that in solutions of O.lM KCl 

.and 0.001 N NiC12 , L-histidine and methionine produce two 

polarographic waves and D-argine three, with E~ at -0.96, 
2 

-1.11, -0.86, -1.03, -0.87, -0.94, and -1.09 V (vs s.c.E.), 

respectively. The more positive waves are caused by the 

amino acid complexes and the more negative by the aquo 

complexes. All.the Ni-amino acid complexes are polaro-

graphically irreversible. 

In a dropping mercury electrode investigation (15) 

of cadmium-thiocynate complexes in absolute ethanol, the 

dissociation constants of the complexes were found to be 

appreciably lo"rer than in itlrater. 

The formation constants of Cd(II) complexes (24) of 

glyclne dipeptldes have been determined. In each case n = 2 

and p = 2. 
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The cadmium complexes of glycine (J2) DL- -alanine, 

DL- alanine, DL Valine, L-a.sparagine, DL aspartic acid 

L-glutamic acid were examined polarographically in solu-

tions pH 11.3. The analysis of the results indicate that 

in all cases three moles of the acid enter into the complex. 

pK for glycine complex was 9.90. 

was changed from 11.3 to 12.3. 

E~ did not shift when pH 
2 

The complex formation of uranyl ion (26) with glycine 

was studied polarographically at pH 1.5 - 5.0. The reduc­
++ 

tion of uo2 -glycine complex i'Jas a one electron reversible 

process. 

The preceding periodical citations represent a part 

of the library research undertaken prior to entering the 

laboratory. 

,. 
\_; ,, 
F 



CHAPTER III 

EXPERH1ENTAL 

I. INSTRUMENTATION AND ACCESSORIES 

--- -- -----A-1-1--po-1-ar-o-graphic- measyrements in t!1is study 't-Jere 

made using the Leeds and Northrup Electro-Chemograph Type 

E polarograph. This visual recording instrument (9} employs 

the null balance principle for precise measurements. For 

damping control, four positions are available, O, 1, 2, and 

3· The number one position should yield half-wave potential 

values in agreement with accepted literature values. All 

polarograms in this work were made at the one position, 

which is the galvanometer equivalent. 

The instrument is provided with an internal standard 

for proper adjustment of the voltage supplied to measuring 

circuit and polarizing circuit. 

The reverse polarization feature of the Electro­

Chemogram, enables one to reverse polarization at comple-

tion of a forward run, and continue the curve in reverse 

then obtaintng the E1.. of both forward and reverse sections 
2 . 

of the curve and recording the mean of the sum of these two 

valu.es as the half-wave potential. 

!:9_la.r_g_gr§l!?.h . .:._H-Cel~. The polarograph "H-Cell" 

r p 
IT 
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with a saturated calomel electrode (the type that is gen­

erally used with an external reference electrode) was made 

according to directions in Meites' "Polarographic Tech­

niques" ( 29). 

Internal resistanc~. The internal resistance of the 

---"H=ce-1-l"-was--measured by comparing the half-wave potentials 

of different concentrations of Cd(No3 )2 in the same electro­

lyte, first in O.lM KN0
3 

and then in O.lM KCl, calculating 

the resistance (R) from the relationship 

R = (14) 

to be 2100 ohms. 

Th~ 9a£tll~.r~. The capillary used as the dropping 

electrode was brolcen from a 6..:.12 second drop time E. H. 

Sargent Capillary so as to deliver a drop every 3 to 5 

seconds. The drop t was determined by measuring the time 

for 2.0 drops to fall and obtaining the mean value. This 1~as 

done prior to each run. The 3-second drop ti.me was held 

constant by keeping the pressure at 59 em. This was done by 

adding mercury to the reservoir as needed to keep it at the 

same level. 

T§Pl...:Q..eratu:£..~· The temperature was held at 25° C by 

a 5-10 ampere rating Fenwal 'Ihermoswi tch hooked up to the 

heating element, immersed in large pyrex glass jar. A li$ht 



15 

duty electric stirrer provided the necessary circulation of 

water around the H-Cell. 

Bli meter. The Beckman model 76 expanded scale pH 

meter was used in determining the pKa values of p-tosylamlno 

acids and in measuring the pH of each solution which was 

-polarogxa:phically-_ analyzed~ 

I I • CHEriJ.I CALS 

The p-tosylamino acids were purchased from K & K 

Laborat.ories, Plainview, New York. Their melting points 

were used as a criterion of purity. Reagent quality inor­

ganic. ·salts w·ere used without further purification. 

Stock solutions of O.lM potassium salts of the 

p-tosylamino acids were.prepared using boiled distilled 

water and. less than the equivalent amount of potassium 

hydroxide. Less than equivalent amount of KOH was used 

because other workers (8) had reported that at low concen-

tra ti·ons of amino acids, the electrode reactions were irre-

versible if the solutions were prepared using the equivalent 

amount of p-tosylamino acids and potassium hydroxide. 

The salts of the metal ions that were to be complexed 
-4 were made up to 5.0 x 10 M. The stock solutions were pre-

pared ahead of time, with the exception of the Mn(II) salt, 

which was prepared before Mri(II) runs to prevent change in 

concentration by formation of the oxide. 
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~1t:P:l2Q:r:.·~J_ng_J!l e c 9:Q1.lli 

The two different salts (EC1, KNOJ) were used as 

supporting electrolytes because,other investigators in work­

ing with cadmium (20), cupric {lJ), lead(II) (l2), man­

ganese(II) (91), mercury(II) (17), and zinc (11) salts had 

reported l'rell-defined reversible waves of the simple ion. 

Molar stock solutions of the salts were prepared. 

M~J£i.l!L~~Up"J?:r_Q_.§._~ 

The maximum suppressor, Triton X-100, ·was obtained 

from Rohm and Haas Company, Philadelphia. A 0.2% stock 

solution l'Tas prepared by shaking 0. 2 grams of the substance 

thoroughly with 100 ml of distilled water. 

III. PROCEDURE 

§. o ).:Jl ~ l on~ 

All solutions to be analyzed at the dropping mercury 

electrode were ~ade up to 5.0 x lo-4 M metal ion. The 

concentrations of supporting electrolyte was 0.1 M, and that 

of the maximum suppressor 0.002% (when used). 
. . 

Usually seven solutions were made up in 50 ml volu-

metric flasks. Solution one was the simple metal ion, solu­

tion two a p-tosylamino acid at the same concentration as 

the stmple metal ion, used to determine ks/kc ratio. The 

five solutj.ons ranged from 5. 0 x lo-4 to 4. 0 x 10-2 M, their 

concentration being dependent on the parttcular metal ion and 
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p-tosylam:i.no acid reacting. 

Sufficient potassium nitrate was added to solutions 

to keep the ionic strength constant at--ftil.= 0.1. 

Removal of 9~~~J1· To remove the ·last traces of 

oxygen, the oil pumped nitrogen (Air Reduction Company) was 

bubbled through a train consisting of ( 1) an an1monia.cal 

solution of . c.uprous salt containing copper turnings, ( 2) a 

sulfuric acid wash bottle to absorb ammonia gas which may 

be liberated by the initial absorber, and (3) a flask con·· 

taining dilute s.odium hydroxide, to neutralize any acid 

vapor. The[osyge~ free nitrogen was then bubbled through 
~~ 

the solution to be analyzed (in H-Cell) for ten minutes. 

A two-t-ray stopcock permitted change of direction of nitro­

gen flow from bottom of H-Cell to the area immediately above 

the solution, during the recording of a polarogram. 

Pol~ro_graJl1s 

Polarograms were run at current ranges of 5 and 10 

microamperes. Each polarogram consisted of a forward and 

reverse run. Corrections were made for residual current. 

Crit~LQll of reversibility~ The reversibility of 

the electrode reaction was tested for 

determining the slope of plots of log 

each analysis by 
i 

against E rd - i d.e. 

The analysis was discarded unless a straight li.ne was 

obtained, with slope equal to the theoretical value :1: 5 mv. 
. -
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This range Has based. on experimental work by Mei tes ( 30) l'rho 

found that it 't'ms possible for experimental errors to com­

bine in such a way that the observed slope of a plot for a 

reversible wave.wlll differ from theoretical value by as 

much as 3-5 mv. Eit ls the point o:p the plot where log 

1/id - i is equal to zero. 

QQ.r.r-.~ti_qn for iR d:r.QJ2.. Correction for ohmlc poten­

tial drop was a major concern. Meites (29) suggests that 

the iR drop through the cell may be corrected by subtract-

ing the va.lue id_R/2 (where id is the diffusion current in 

microamperes and R is the measured cell resistance), from :,'1 

the apparent half-wave value. In a recent publication (36 ),....... 

Schapp and McKinney state that the ohmic potential correc­

tion depends on the total current given by 

(15) 

when (E.1.) is the true half-wave potential, (Eb.) b is z d.e. 2 o s. 
the half-wave potential observed from the recorded polaro­

gram, id is the average di.ffusion current and irt is the 

average residual current at the observed half-wave potential. 

The latter method 't'fas used to correct for iR drop. 

The value n was determined from the slope of 

log ___ !__ vs Ed plot using the equation 
id - i • e. 

slope 



CHAPTER IV 

RESULTS AND DISCUSSIONS 

Data obtalned in this investigation are given in 

Tables I through XIV. The electrode reactions of thirteen 

of the complexes undoubtedly involve two electrons as shown 

by the values of the plot of log i/id-i against the poten­

tial. Straight lines were obtained in all cases, indicating 

the reversibility of the electrode reaction. Slope of log 

plot ve.lues up to 0. 040 were considered two· electron reac­

tions, although the usual value is : 5 mv of the theoretical 

value. Support for this assumption is provided by· Bailar ( 21) 

e.nd associates, who used this slope value (0.040) as a 

criterion for a two electron reaction. Only single waves 

were observed on all polarograms made in this study, a 

further indication that at least thirteen of these complex 

ions are probably reduced directly to the almalgam. 

I. COMPLEX ION CO-ORDINATION NUMBER AND FORMUlA 

J?.:'t9uru &l1l£+.D.§. tf2.• The supporting electrolyte used 

was 0. 01 r•I KN03• Ini tiall~methyl red-bromo:· .cresol green 

mixture was· considered as a maximum suppressor, but 

experience proved Triton X··lOO to be more dependable. A 

0.002% solution was used in the copper ion complex 

L 
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determinations. The cupric nitrate stock solution (0.005 M) 

11J'as practically colorless, but when made up to 0.005 M with 

the glycinate ion, gave a pale blue color that deepened, 

with increased concentration of the glycinate ion. 

Well-defined waves were obtained in all seven runs. 

The half-"t·mve potential of the simple ( aquo) cupric ion as 

determined from a plot of log i/id-i vs Ed.e· was 0.011 V 

in fair agreement with literature (8) values. The ratio of 

the diffusion current (J.lp amps) of the simple cupric ion 

to that of the glycinate ion at the same concentration 

(0.005 M), ~~as for all practical purposes, equal to one. 

As evident from Table I, there is a very definite 

shift of the half-wave potentlal of the complex to more 

negative values as the p-tosyl glycinate ion concentration 

is increased, with the diffu.sion current remaining nearly 

constant. 

Knowing the value of n, and using equation 9, the 

number of groups p, co-ordinated to each cupric ion is 

determined from the plot of the slope (Figure 2, page 23}, 

which in this case i.s 0.085, indicating that three groups are 

co-ordinated. This is precisely the value reported pre­

viously (15), for the unsubstituted glycine. Thus the form­

ula for this complex would be [Cu(p-tosyl-gly) 3J. 

p-to~?,X}-L-glutama tE:_ •. · The conditions of. analysis for 

the glutamate ion are about the same as those for glyctnate 



TABLE I. 

HALF..:.·HAVE POTENTIAL OF THE COPPER p-TOSYL 
GLYCINATE COMPLEX AS A FUNCTION 

OF THE p-TOSYL GLYCINATE 
ION CONCENTRATION 

21 ' 

----:::::=.......--========· =-=~-==-------=---·--- -"' -~----
Total p-Tosyl . -E1,. vs 

Glycinate 
id Slope of 

~~~~~~~~-~~~~~~~~~~~log·~~~~~~ 

MolesLliter PH S.C.E. ------·~----~u~.~~~------~R~l~o-~t. __ __ 

0.005 

0.010 

0.020 

0.030 

0.040 

10.4 

11.00 

11.)0 

11.40 

11.50 

0.228 

0.253 

o. 276 

o. 291 

0.304 

2.80 

2.70 

2.75 

2.75 

2.67 

pKa of p-tosyl glycine = 2.86. 

0. 03;1 

o. 032 

0.037 

.0037 

0. 03L~ 



Total 
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TABLE II 

HALF-HAVE PO'l'ENTIAL OF THE COPPER p-'l'OSYL-L-GLUTAMATE 
COMPLEX AS A FUNCTION OF THE p-TOSYL-L-GLUTAMATE 

ION CONCENTRATION 

........ "'._. ____ ----.. --:P-T~osYI= ----::--E1 vs 
G-l~a--t-a-m-a-t-e 2 

~ -Slope of 
--------""'-~------------:leg~----~ 

Molel?Lli ter pH s.c.E. ____ u_g_~P.t..__ _ ___l21o,L_ 

0.005 11.30 0 & 21-rl+ 2.60 0.032 

0.010 11.60 0.265 2.60 0.033 

0.020 1~.90 0.305 2.50 0.032 

0.030 12.00 0.310 2.40 o. 028 

0.04 12.20 0.320 2.30 0.034 

-- ---~ ---
:pKa of p-tosyl-L-glutamate acid = 3.67. 
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ion. However, there is a greater depression of the diffu­

sion current. The co-ordination number again is found to 

be three, giving a complex [Cu(p-tosyl-glu)3J. 

-4 At 5.0x10 M lysinate ion, a 

complex was formed i-Ji th a half-wave po"t;ential of -0.151 and 

centration ~as increased to 5.5xlo-4 M, the copper wave 

was completely obliterated. This was at a current range of 

five. At a current range of three, the diffusion current of 

the simple ion was too great to be measured; therefore, the 

ratio ks/kc could not be directly obtained at this curr·ent 

range. Since it was not possible to obtain an additional 

run at current range five, p, for this complex cannot be 

calculated, consequently, neither can the instability con-

stant of p-tosyl-lysinate cupric complex. 

~-tos~ gllcinate. As in the case of the cupric ion 

0.1 M KNo
3 

was the supporting electrolyte. The half-wave 

potenti.al of the simple ion was -0.563 with a diffusion 

current of 3.5 microamperes •. The ·seven solutions analyzed 

were perfectly clear. A maximum suppressor was not needed 

in any of the cadmium determinations. The plot of 

E!/ log ex gave a slope 0.060, which is the value for p = 2. 

The formula of this complex is then [Cd{p-tosyl-gly) 2J. 
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· !2.-to§xl.-J..:-glut~:!llate. It was not polarographically 

possible to analyze the glutamate solutions at the same 

concentration as the glycinate ions, because a precipitate 

formed at 0.002 M glutamate ion. For this reason it was 

necessary to analyze the solutions at a very low concentra-

tion. These solutions exhibited a very slight turbidity, 

but no solid material was observed to fall from solutions 

on standing.' ·A ks/kc ratio of 1.46 was indicative of the 

extent of depression of the cadmium '\'Tave. The co-ordination 

number (p) for ~J:is complex was three. This same value has 

been reported (17) for the unsubstituted glutamic acid. The 

ce.dmtum p-tosyl-L-glutamate would have the formula 

[Cd(p-tosyl-L-glu)
3

J. 

!2.-tosyl-b-±xsinat~. As in the case of the glutamate, 

it was necessary to work with the more dilute solutions of 

the lysinate ion. The co-ordination number of cadmium in 

this complex is ten. Four is usually the highest co-ordina­

tion number reported (8, 38, 39) for organic addends. The 

plot of log i/id-i versus Ed.e. ranges from 0.039 to O.Ol-1-0, 

an apparent two electron reaction, from which p must equal 

to 10. The dilemma can be more happily resolved if n is 

assumed to be one, then p becomes five and the formula of 

the complex is [Cd(p-tosyl-L-Lysine)5J which is in the realm 

of reason, since both zinc and cadmium (?) are known to 

exhibit a co-ordination number of five. 



TABLE III 

HALF-WAVE POTENTIAL OF THE CADMIUM p-TOSYL 
GLYCINATE COJ.VIPLEX AS A FUNC'riON OF 'l'HE 

p-TOSYL GLYCINATE ION CONCENTRATIONS 

-- --- - -- --~----·--i-fi0181 -p-.:-rros¥ r----:.K]_ ---id--V'S 
Glycinate 2 

.MQ.lE?sLli te;r~ . ~H s.c.E. u amp. 

0.005 10.40 0.640 2.85 

0.01 10.90 0.690 2.80 

0.02 11.10 0.739 2.80 

0.03 11.20 0.756 2.75 

0.04 11.30 0.765 2.70 

26 

---
Slope of 
Log Plqt 

0.032 

0.032 

0.035 

0.031 

0.031 _ _____..... ---
pKa of p-tosyl glycine = 2.86 

~ 

~-~ 

" 



TABLE IV 

HALF-WAVE POTENTIAL OF THE CADMIUM p-TOSYL­
GLUTAr1ATE-L-COMPLEX AS A FUNCTION OF 

THE p-TOSYL-L-GLUTAMATE 
ION CONCENTRATION 

·---

Total p-Tos,yi- --=E~-v-s 

27 

L-Glutamate 2 id 
Slope of 

t1olesLlJ. t;_er ' J?1L s.c.E. u am.J2.!._~ 

0.000.5 8.90 -0._5780 2.38 0.031 

0.0008 ,.'.·9· 20 0~.5940 1.68 0.033 

0.001 9.60 0.6080 1.12 0.031 

0.0012 9.70 0.608.5 0.9 0.036 

0.0016 10.30 0.6412 0._5 o. 0296 

==~-:.:::..====~~-=-====·-=·=-:::::-:::::· ==--=-="-=- --==-====== 
pKa of p-tosyl-L-Glutamic acid = 3.67 
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TABLE V 

HALF-WAVE POTENTIAL OF CADMIUN p-TOSYL-L-LYSINATE 
COMPLEX AS A FUNCTION OF THE p-TOSYL-L-LYSINATE 

ION CONCENTRATION 

-~ 'O~t---al p~TcS"J l --E~--;:ts ia 
Lysinate 2 Slope of 

MolesL1~ ~ J2H S.C. E. u all]-P· Log Plot 

0.0005 9.30 -0.583 1.09 0.04 

0.00525 9·33 0.585 0.85 0.039 

0.0055 9.40 0.595 0.56 0.04 

0.0006 9.49 0.605 0.35 0.04 

-.....---~------- -_____ ,....__ ... _____ ... _____ ... ·- ...... - ~-- ... -· - - --~ 

L 
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R-y?s~l ~at~. In the zinc series, the sup­

porting electrolyte was O.lM KCl. The half-wave potential 

of the simple ion was -0.991 V with a diffusion current of 

3.25 microamperese The ks/kc is equal to unity. The slight 

----------~&&~~t~~~~t~@_hal~-wa~~otential could not be detected from 

a visual inspection of the polarograms. Only when correc-
- . 

tions for iR drop were made, did the shift become apparent 

If n is t-v-ro, then p is also two and the formula of 

the complex is [Zn(p-tosyl-gly) 2J. This formula is within 

reason. Monk (31) has reported data for [Zn(gly) 2J. 

n-tq~x±-L-g1~t~~· These solutions were more 

dilute than those of the preceding determination, the pH 

is lower, but the zinc wave was depressed to about the 

same extent; this depression is probably due (20) to the 

large size of the complex ions. From the test for reversi­

bility, n = 2, thus the co-ordination number must be three. 

This is rather surprising because zinc (6) complexes with 

two moles of aspartic acid. Co-ordination number two is 

encountered in the work with diamines (4) such as ethyl­

enediamine. With p equal three the formula of this complex 
++ is [Zn(p-tosyl-glu)3J • 

n-~os;y)...-L-~. --The half-wave potential of the 

complex ion -1.093 was, appare~tly different from that of 
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TABLE VI 

HALF-\olAVE POTENTIAL OF ZINC p-TOSYL GLYCINATE 
COMPLEX AS A FUNCTION OF THE p-TOSYL 

GLYCINATE ION CONCENTRATION 

- ............... - - -- .... _ .. "' 

32 

TOtal ~p-Tosyl. id 
- -~ 

-EJ. vs 
Glyoina.te 2 Slope of 

Mol.f.3sLliter .PH k 
s.c.E. u amp. _Log Plot _ .. 

0.001 8.00 0.97 2.80 0.037 

0.0015 8.10 1.010 2.20 0.040 

0.002 8. 25 1.020 1.50 0.040 

0.003 8.50 1.045 0.7 0.040 

--



TABLE VII 

HALF-\vAVE POTENTIAIJ OF ZINC p-TOSYL-L-GLUTAl'lATE 
COMPLEX AS A FUNCTION OF THE p-TOSYL­

·L-GLU11AMATE ION CONCENTRATION 

-- --- ---
Total p-Tosyl- --.. --- ~--E~ VS 
L-Glutamate 2 Slope of 

33 

Moles.(li ~r ' :QH S.C.E. u amp. J;..Qg_~lot __ 

0.0005 7-90 0.993 2.25 o.o36 

0.0006 7-95 1.002 2.10 0.034 

0.0008 8.00 1.013 1.40 0.032 

0.001 8.05 1.002 1.00 0.04 

0.0012 8. 20 1.293 0.45 0.04 

---.......---~... ... __ 
---;,;~ 
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the simple ion V'Ti th ks/kc equal to 3. 56 microamperes. The 

zinc wave was almost completely obliterated at higher con­

centrations of ·the lysinate, making further-analysis under 

these conditions impossible$ 

Mere~ J.I.ll 

£-~OSI~ ~~ate. The half-wave potential of the 

simple ion tn· 0.1 M KCl as supporting electrolyte and 

0.002% Triton X-100 as maximum suppressor was -0.113 v, 
with diffusion current of 4.1 microamperes. The ks/kc 

ratio was 1.1, or for purposes of calculations, unity. The 

E~/ Log ex slope is 0.12, for a two electron re~tion, the 

co-ordination number of mercury (II) is four. The formula 
++ 

for this complex is then [Hg(p-tosyl gly) 4J • For organic 

addends the co-ordination number of mercury (II) is 

usually two• No complexes of organic addends with p equal 

four are cited in Iatsmiskii's (14) comprehensive volume. 

£-~oq~-1-~lutama~~· The supporting electrolyte and 

maximum suppressor are the same as in the glycinate anal­

ysis. Again the solutions are colorless. ks/kc (1.1) for 

all practical purposes is unity. ·The slope of the log plot 

ranges from 0.029 to 0.040 v. Kolthoff and Miller (18) in 

working with simple mercuric ion obtained a slope 0.039, and 

consider it a two electron reduction. They attribute the 

upward divergence of slope to the presence of gelatin, 



TABLE VIII 

HALF-WAVE POTENTIAL OF THE MERCURY (II) p-TOSYL 
GLYCINATE COMPLEX AS A FUNCTION OF THE 

p-TOSYL GLYCINATE ION CONCENTRATION 

'T0ta1 p-Tosyl- -E1.. vs id ~ · 
L-Glutamate . 2 Slope of 

MQ..1_<2_§./.J.i t~~·----l2H ---~&!...~!.. __ l!_ang~. ---~&. Pl.9t ·- __ 

0.005 10.35 0.0765 2.95 0.029 

0.01 .... 10.85 0.1130 2.70 0.034 

0.02 11.10 0.1490 2.65 0.033 

0.03 11.20 0.1630 2.70 0.029 

0.04 11.25 0.1751 2.60 0.033 
·,~. 

_ .. .._ __ ::t==.~--... ~--~~~~""··~--;:=:=:- ..=..:,:....,~-:=.;:~.;; --
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TABLE IX 

HAI~-WAVE POTENTIAL OF THE MERCURY (II) p-TOSYL­
L-GLUTA~~TE COMPLEX AS A FUNCTION OF THE 

p-TOSYL-L-GLUTAV*GE ION CONCENTRATION 

Total p-.:To;;~~~===E7~ --~ ~- ~1;~~-=-== 

L-Glutamate 2 Slope of 
M<?J&.~~_:_. ·. b • __ :Qll __ _§~.!... -~~ Ip_g_E!_Q..L.. 

0.005 11.05 0.1005 2.7 o.OJ6 

0.01 ll.J5 O.lJl8 2.5 0.04 

o. 02. 11.65 0.1588 2.6 0.04 

O.OJ 11.80 0.1850 2.6 0.036 

0.04 11.90 0.2021 2.2 0.029 

--~_... __ . 
---~- ~ - -____ ... ___...._.._ ..... _ ..... ___ ......_._,.__.~ ____ ....,...,___ __ 



0.0 

X 
u 

C) 

o·· 
..J 
\ 

1.0 

2.0 

~lGURE 7 

-0.10 -0.12 -0.14 -0.16 

E~ v Cvs. S.C.E) 
z. . 

VARIATION OF HALF· WAVE POTENtiAL 

COMPLEX lON WITH CONCENTRATION ' .. 
,.. J • 

- L- GLUTAMATE. , 

39' .. h ..: ;-: 

-0.18 -o.20. 

OF THE MERCURV(Jll 

OF P- TOSVL 



which had been added to suppress the maximum$ In this 

analysis the high slope value might be due to bulkiness of 

the molecule be.ing studied. The plot of 

give a slope of 0.125, for n equals 2, the co-ordination 

number is 4, thus for the complex the formula is 

[Hg(p-tosyl-L-glu)4]++. 

n.-to.:~.tl-L-~~. _These solutions were cloudy 

and a precipttate formed on bubbling nitrogen through them. 

The height of the zinc wave was depressed to 0.65 micro-

amperes, although the concentrations were to the order of 

lo-4 M. No attempt was made to evaluate these polaro-

grams. 

n.-~l ~cine. Lead complexes were studied in a 

0.1 M KNo3 supporting electrolyte with 0.002% Triton x~100 

as the maximum suppressor. The height of the simple wave 

was J.Ll-5 amperes with half-wave potential of -0.370 V and 

ks/kc = 1. These solutions became turbid on standing and 

had to be made up immediately prior to oxygen removal. On 

use of appropriate data p is found to be equal to three, 

with the formula of the complex as [Pb(p-tosyl glu) 3 J. 

Although Pb(Gl) 2 (JO) is listed as being determined 

potentiometrically, no mention is made of a higher complex 

of lead and glycine. A Russian worker (42) reports a 
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tartrate complex of lead as [Pb(H Tart)3J. There ls no 

reason to believe that this is a lead hydroxo complex. 

Lingane (25) has shown that the half-wave potential of the 

lead hydroxo complexes increase linearly with concentra·~ 

tion of sodium hydroxide only in the range 0.01 M to 0.5 

Th_!? E:"l;I'~ge_st_ concentration of glycinate ion used 1;.1as 

0.006 M, yet a linear increase in E.l. was observed at these 
2 

low concentrations. From Lingane's observations, this 

would not have been true were the complex being formed that 

of the hydroxo •... 

12-io§Xl-L-gl)!t;aJP.p.t~. Analytical conditions were 

generally the same as those in the precedlng glycinate 

runs. 'Ihese solutions were perfectly clear. From slope 

of plot· it is evident that there is a genuine one electron 

reduction, with slope values ranging from 0.050 to 0.073. 

The co-ordination number is calculated to be one. The 

formula of this complex is postulated to be 

Pb(OH)p-tosyl-L-glu. There is ample evidence (32, 5) for 

the existence of Pb(OH)+. Pederson (34) of the Royal 

Veterinary Agriculture College of Copenhagen explains the 

formation of Pb(OH)+ on the basis of three equilibriums: 

and 



TABLE X 

HALF-WAVE POTENTIAL OF THE LEAD (II) p-TOSYL 
GLYCINATE COJYIPLEX AS A FUNCTION OF THE 

p-TOSYL GLYCINATE ION CONCENTRATION 

. _ .... " ------""'bt.-·---------------Tots:f'. ·i):.rros"YF-~-------- ~~-~fd·-- - · ·---~ -
Glycinate 2 . Slope of 

1.1Q..l_Elli[J). 12§_~ -~-- ,:pH • ~9.• E ,• ___ ...!Lg!!lP ~~g_j'lot _ 

0.003 8.?0 0.475 1.90 0.035 

0.002 8.80 0. L~86 1.90 0.036 

0.004 10.20 0.534 1.40 0.032 

0.005 10 .4·8 0.542 1.60 0.030 

o.oo6 10.55 0.554 1. Lt·O 0.029 



~~-·--------- -- - --

TABLE XI 

HALF-\'iAVE POTENTIAL OF THE LEAD (II) p-·TOSYL-L­
GLUTAMATE COf1PLEX AS A FUNCTION OF THE 

p-TOSYL-L-GLUTAMATE ION CONCENTRATION 

43 

~=-~~~==-~.....::t:=--~ .. --====:r.-.:~-===-~~=·---:- ....:::..:...:: 
Total p-Tosyl- -E~ vs id 
L-Glutamate . 2 Slope of 
]:1Ql<i§.~L_ ____ J2H ~ 2.~---_Laml?.!_~_bog P]:_Q.L 

0.002 6.55 0.371 3·35 0.050 

0.005 , .. 6.75 0.402 3· 20 0.073 

O~OJ. 6.90 0.428 3.10 0.070 

0.02 7.1 0.443 2.90 0.060 

0.04 7·5 0.469 2.88 0.050 



TABLE XII 

HALF-WAVE POTENTIAL OF THE LEAD (II) p-TOSYL-L­
LYSINATE COMPLEX AS A FUNCTION OF THE 

p-TOSYL-L-LYSINE ION CONCENTRATION 

0.0005 

0.00055 

0.0006 

0,0007 

8.70 

9· 20 

9·30 

9.60 

0.4665 

0.4?00 

0.4?22 

0.4?73 

44 



)( 

u 

t9 
0 
..J 
I 

2.0 

3.0 

/~ 
~ / .. 

FIGURE 8 
45 

. '· 

... 

/ 
if. 

. ~- .. 

·-o.3s -0.40 -0.4_4 -0.48 -0.52 -056 

· E~ v ( vs.S.C.E.) 

VARIATION OF HALF-WAVE POTENTIAL Ot THE LEAD (D:) 

COMPLEX ION WITH CONCENTRATION ;OF THE ·P-TOSVLAMINO 
... 

ACIDS: Ow .P-TOSVL GLVCI~ATE;A~: P-TOSVL- L- GLUTAMATE~ 
•'· ·,· "' . 

6, P~TOS YL -L.:.. L YSINATE. . 



The presence of oxonium ions in solution is supported by 

the low pH values of the solutions. Usually the pH of a 

0.04 M solution of the glutamate was approximately 11.9; 

in this solution it is 7.5. 

46 

The presence of hydrogen ions in solution may hydro­

lize some of the glutamate and make possible the formation 

of Pb(OH)Glu., much in the same manner as Zn(OH) Tart- (31) 

is formed. 

R-tos~l-b-!xsine. Supporting electrolyte and maxi-

mum suppressor, are the same as for the glycinate ion. The 

shift of the half··wave potential is very slight, between 

that·of glycinate and glutamate; the lead wave, however, 

is depressed more than that of glycinate or glutamate. p 

is calculated to be two. The formula of the complex would 

be [Pb(p-tosyl-L-lysinate) 2J. 

Mang~n;ese (II) 

~-tos~l-glycinate. All solutions in the manganese 

(II) series were de-aerated completely before preparing the 

solution to be analyzed. This additional precaution was 

necessary to prevent basic manganese (II) from oxodizing 

to the dioxide. Although the solution gave a very light 

tan color on addition of the glycinate, no precipitate was 

observed to form. p is fourid to be one. The formula then 

is [Mn(p-tosyl-gly)]+., Monk (31) reports the same type 



( 
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TABLE XIII 

HALF-WAVE POTENTIAL OF THE MANGANESE (II) p-TOSYL 
GLYCINATE COMPLEX AS A FUNCTION OF THE 

p-TOSYL GLYCINATE ION CONCENTRATION 

--- -Total p:Tosyl 
... 

G1ycina te ' · 
112.l~sL1 i tsrr_. 
0.0005 

-
0.001 

0.002 

0.003 

0.004 

... _ _.. 
... -· -----E vs 1,. 

8 

'I?.~-- ?.!.C.~. 

id·~-­

S1ope of 
~--~~~----¥=.-~a=~~~2-~·----~~£1_ __ 

9.65 1.513 2.85 0.04 

9.85 1.521 2.84 0.04 

10.05 1.529 1.72 0.036 

10.10 1.537 1.00 0.036 

10.25 1.)54 0.55 0.030 

---__ _, -.. ........... -

p,-
'· 
~ 

'-'­r.-
H 
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TABLE XIV 

HALF-WAVE POTENTIAL OF THE MANGANEZE (II) p-TOSYL­
L-LYSINATE COMPLEX AS A FUNCTION OF THE 
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J. 

formula for ¥m(II) with glycine and alanine. 

wave potential was observed. 

~-to~xl-1-lY-sina~~· While the shift of the half­

.. _ wa.Yf3 _:R_oi;en"t;ial for lysinate complex is greater than the 

glycinate's the nand p values are the same, making the 
'. . + 

formula [Mn(p-tosyl~L-lysine)] • 

II. DISSOCIATION CONSTANTS AND FREE ENERGY 

OF FOR:t-'IATION OF' C0£11PLEXES 

Dj.§.§£_q~tJop. 9.QD_S~§J.nt§. 

Dissociation constants for the complexes studied 
)<.. 

are listed in Tables XV, XVI, and)BVII (see pages 52, 53, 

and 54). The order of stability of the p-tosyl glycinate 

complexes as found in this study is: 

Hg")- Cu ">Pb '>Cd > rtm ..,zn 

This order of stability of complex formation among metals 

is different from that reported by Albert (1) for the 

unsubstituted acid, 

CU~Zn '>Cd>Mn 

50 

but is in substantial agreementwith that found by Blood and 

Loras (10) for the unsubstituted glycine, 



Hg>Cu >Zn'?Cd 

Maley and Mellor (28) working with glycine alanine 

and valine list the follo~ring order of stability of com-

plexes: 

Cu~Zn')Mn 
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In th,is study of the p-tosyl-L-glutamate complexes, 

the order of stability is about the same as that of the 

p-tosyl-glycinates: 

Hg>Cu>Cd>Zn >Pb 

In group IIB, there is an increase of stability of 

p-tosyl glycinates and glutamates metal complexes with an 

increase in atomic weight (Figure 10, page 56). Perkins 

{34) in working with glycine reports the following order 

for group IIB: 

In thj.s instance there is no apparent rele,tionship 

between stability and atomic weight, as found in this study. 

Throughout this investigation it ~1as apparent that 

the metal was the dominating factor in the stability of 

the complexes studied. 

A comparison of pK values of metal complex ions of 
. 

glycine with those of p-tosyl glycine (Table XVIII, page 55) 



TABLE XV 

CONCENTRATION DISSOCIATION CONSTANTS AND pK'S FOR 
THE p-TOSYL GLYCINATE-METAL COMPLEX IONS 

52 

. _ .. ----- ==· -=-:.::: ....... =·=-==-::;;: ... "';::=-::::-=·=-=-·-====== 
~ietal___ -- - - Mean · · · 
Ion -Log Cx Kd Kd* pK 
------·~--.---------·-----... -------....... ---------
cu++ 

2.3010 

1.3979 
14.92 

----- ·----------------------,------------------------
2.3010 

. 1.3979 

7 .Ox10.;..·10 
3.2x1o-10 

2.4xlo-10 ____ ... _..........,..._----~----·~--,-----------
Z ++ n 

3.0000 

2'. 5229 

6.3x1o-7 

2.7x1o-7 

--------------·-----------·--
2.0000 

1.3979 
----- ' - --. --·· ... - ----------· 

Mn++ 

J.OOOO 

2.2218 

3.0000 

2.3979 

12.88 

8.85 

-:-----::-- __ ::.=......:....-..-~---·-··--- _ __:.:;..o:::=.....==-

*Mean of five values. 
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TABLE XVI 

CONCENTRATION DISSOCIATION CONSTANTS AND pK FOR 
THE p~TOSYL-L-GLUTAMATE-METAL CONPLEX IONS 

---------~·--~·----

.53 

15.47 

----~------~-------------------------------------------
3.3010 

z:·9208 

J.5xlo-16 
3.6xlo-6 

4.0xlo-16 
5.46 

---------~ _w _________ . ____ -------

Zn++ 3.3010 

3.0000 
14.02 

--------~----------· ----.. ·---------·------
2.3010 

2.6990 

1.3979 

4.4xlo-17 
8.0xlo-l7 

3.63x1o-6 _6 -6 1.68xl0 
O.l5xl0 

16.10 

,5.77 

--------------------------~---------

---~-=-=-:::· ... --=-=-= .. :::===-._:::===-=·-===·-======-=-= 
*Mean of five values. 



TABLE XVII 

CONCENTRATION DISSOCIATION CONSTANTS AND pK FOR 
THE p-TOSYL-L-LYSINATE-METAL COMPLEX IONS 

54 

========.--::-:::::=::.. --==------=---..::::::::-- ---- - --
:f.1etal 
Ion 

Mean 
-Log Cx Kd Kd* pK 

3·3010 
.... 

. 3·2218 

1.8xlo-101 -101 
101

.2.1x10 
2.4x1o-

100.68 

----~------------------- ---~---------

i·t· Zn 
·-

-·----- ·~-----------------------

--
Pb++ 3•2596 1.32x1o-10 

8 -10 
1.29x1o-10 1.7 xl.O 9.74 

3.1871 
·-- -

Mn++ 3·1549 1.29xlo-4 
1.76x1o-4 

1.45x1o-4 3·74 
2.6990 

---- - -
*Mean of five values. 



TABLE XVIII 

pK VALUES OF METAL COMPLEX IONS OF GLYCINE 
COMPARED WITH THOSE p-TOSYL GLYCINE 

55 
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indicates that in some instances there is an appreciable 

effect on the stability of a complex when the hydrogen 

atom of the glycine amino acid group was substituted by 

the p-tosyl group. The differences are small however 

(except in the case of l'lmii) when compared with the metal 

effects. 

Free ]perEY of Formation of Com~le~ 

57 

Towards the end of the last century it was found that 

an energy quantity called its free energy (F) can be assigned 

to each substance in a reaction, such that a reaction in a 

system held at constant temperature tends to proceed if its 

is accompanied by a decrease in free energy--that is, if the 

free energy of the reactants is greater than that of the 

products. At equilibrium the driving force of the heat 

content (A H) accompanying a reaction is exactly balanced 

by the driving force of the probability change lA S.). 

The discovery of the relation between equilibrium 

constants and free energy has simplified the task system­

atizing chemical reactions. 

The magnitude of the equilibrium constant of a reac­

tion is an approximate indication of the completeness of 

the reaction under specified conditions. A large Ke indi­

cates that the reaction goes from left to right, a long 

way toward completion, a small value indicates that the 

reaction proceeds right to left. 



The relationship between the equilibrium constant 

and free energy is expressed in the equation. 

F = - RT ln K (16) 

58 

Li and Doody (6) have reported the free energy of 

formation of cupric complexes of aspartic acid and alanine 

from polarographically determined dissociation constants~ 

The free energy of formation of the metal complexes 

of p-tosyl glycinate and p-tosyl-L-glutamate are shown in 

Table XIX. For the lead (II) lysinate complex F ~ 13.3 

kcal and for the Manganese (II) lysinate F = 4.99 kcal. 



TABLE XIX 

FREE ENERGY OF FORMATION OF p-TOSYL GLYCINATE 
AND GLUTAJ.11ATES COJ.I1PLEXES 

59 

. --

p-Tosy1 
G1ycinate 12.2 

p-Tosy1-L­
Glutamate 

F 

cu Zn 

-20.00 -8.68 

-21.10 -19.1 

---

(kCal) 

Cd Hg Pb 

-12.90 -22.10 -17.)0 

-21.1 -27.80 -5.77 

----



CHAPTEH V 

SUMMARY 

This study has been fruitful in that the complexes 

synthesized are new, consequently there is no.data available 

in the literature concerning these compounds, thus it repre-

sents a contribution to knowledge. 

1. The names and formulas of' the fourteen new and 

previously unreported complexes are: 

a. Qopper (II) p-tosyl glycinate, 

[Cu(p-tosyl-gly)3J-. 

b. Copper (II) p-tosyl-L-glutamate, 

[CU(p-tosyl-glu)3J-. 

c. Cadmium p-tosyl glycinate, 

[Cd(p-tosyl-gly) 2J++. 

d •. Cadmium p-tosyl-L-glutamate, 

[Cd(p-tosyl-L-glu) 3J-. 
e. Cadmium p-tosyl-L-lysinate, 

[Cd(p-tosyl-lysinate) 5J3-. 

f. Zinc p-tosyl glycinate, 

[Zn(p-tosyl-gly)
2
2. 

g. Zinc p-tosyl-L-glutamate 

.fzn(p-tosyl-glu)3J-. 
h. Mercury (II) p-tosyl glycinate, 

[Hg{p-tosyl-gly)4J2+. 



i. Mercury (II) p-tosyl-L-glutamate, 

[Hg(p-tosyl-L-glu)4J 2-

j. Lead (II) p-tosyl glycinate, 

. [Pb(p-tosyl-gly) 3J-. 

k. Lead(II)p~tosyl-L-glutamate 

Pb(OH)+ p-tosyl-L-glu. 

1 •. Lead (II) p-tosyl..;L..;.lysinate, 

.[Pb(p-tosyl-L-lysinate) 2J. 

~. Mangenese (II) p-tosyl glycinate, 
+ ,C.Mn( p-tosyl-gly)] 

n. Manganese (II) p-tosyl-Irlysinate, 
. + 
[Mnp-tosyl-~lysinate)] 
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2. Of the amino· acids studied, only the dissocia­

tion constants of the metal (Cu II, Cd, Zn, Hg II, Pb II, 

and Mn II) complexes of the unsubstl tuted glycine ~rere to be 

found in the literature, hence only the stability of these 

complexes can be compared "ri th the p-tosyl glycine com­

plexes prepared in this study. 

The pK values of ~m (II) and Pb (II) of the substi­

tuted glycine (p-tosyl) are a little higher than those of 

the.m,ptal complexes of the unsubsti tuted glycine, denoting 

a lesser.degree of stability. Of the remaining metal com­

plexes of.the substituted and unsubstituted glycine there is 

practically no difference in pK values. 

A careful appraisal of these data would seem to 



indicate that the substitutlon of the bulky putosyl group 

for a hydrogen on the amino group of glycine does not 

drastically effect the stability of the metal complexes 

examined in this study. 

3. The order of stability of complex formation 

among metals with .the substituted glycine is in general 

~1e notable, exception is the zinc complex, which is the 
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most stable instead of being among the least. stable of the 

complexes. The data for the order of stability were obtained 

by a variety of techniques, generally not polarographic. 

This method might account for the difference in pK values, 

along '\'l'i th the nature of the co-ordinating agent. 

With the glutamate complexes the order of stability 

is in fair agreement with the expected order of stability. 

4. The Copper II complex of p-tosyl glycine pK values 

were essentially the same as those reported previously for 

the unsubstituted glycine, further evidence that steric 

hindrance of the p-tosyl group does not appreciably effect 

the stability of the simple amino acid complex. 

5. Group II B metal complexes of the glycinates 

and glutamates show an increase in stability with e.tomic 

'\'l'eight. 

6. Polarographic evidence indicates the existence 
- ++ 

of the mercury complexes [Hg(p-tosyl-gly)4] and 



[H ++ g(p-tosyl-gly)4J • A search of the available literature 

showed that mercury complexes of Q.r.ElliJl.i..Q gsidE?nQ..§. with p 

equal to four, ·have not been previously reported. 

7. In their complexes, zinc and cadmium have co­

ordination numbers 2, 4·, 5, and. 6. In this study both the 

cadmlum and zinc glutamates have the rarely reported 

co-ordination numberof three. 

8. ori.ly single 1<rave polarograms were· observed in 

this study, indicat:i.ng a constancy of oxidation state of 

the metal ion during experimentation. 
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POLAROGHAM •· 5o.O X 10""4 M Cd(N0

3
)2 

SOLVENT ... no ·2 
EIJEC ~~ROJ~ Y'rF~ • 0~1 M KN03 

SAMPLE • • O~I. M 

CURRENT HANGE 0 10 (l 

DROP TIME .. } seconds 

MAXIMUM SUPPRESSOR • • 1\fone 
-'--------.!r-:·:· ~-~ -·-~----:_( :_-~:·--.::~:.:._~~: '".f '.;..:··:~:·L:~~_:_:: :. - __ :: -·~-~-·; ~--~ ;~::~:~-~~~=-~·:f} ~-~_}_:_:~::·: ~ 1--~:-.-.:~~:.:~::-:_ ·-· ···- ·-~·:_·,·.·~: 

~~i'{:i'jr"z-:~:r]'W ~':~";;,~.:··0'~-~~~-~:.:_:,---~~f~~ili;:l;~~;J:;:~-J~~.;>:c~:~~=~ · :~~:~::::~~~:·::t:,~:~~-·~\:,:i~:·; '~~~.·· 
i ,·.-!·:.:·::·-_-.--- [ :_:_.-=-·:.:;_··::·:.~:-_ -· - -

... '..~·----:--: ---··- ------.----

---- · · .= ~i=:~-: ~ :- __ :_ ·:-: · L-~- t..: :~ :~ 

'"' c" " - - ' - - - - w fl ! ~;l wn 1f1···· .... · •.....••....... 
J£"i~~ff(·"~ •·••·· ~; .(}~L~-t~=··. ·}wr-B~'i~ w J .-y-_· .. ~~~.~;;~~x~~~~t-1 
~:r·~r-:~6 .i:!:::Y/=;_s~~i;~·y;; ;~,o~, -·•· .. -.. ::: ~ --~~=:-~'-~=-~:'~;::, 
f:~:~~;:~:~·_::~::~:~~ ~.. ,1 
::.:~:;_::~~:-~:~-;:::~:~:~:_: ~:-:-

lilr~~~t 
... 

-···· · ... LI --- ·- ~--d 

~~~::·~~~~:~: =~:.:_~: : 
h'··---.--···:-: ~ ·--; -.- ___ :_ .... --

t::::::l::~::~~·r·~ ·:..-~::::~:: 
.-...~-~-r-------·- --~ 

----: .. -·. ·-- -~:-~-~L.-:-.~·.::.·.:·::. :=::..:.:: 

···- --·--- : ... -~~~-.:.:.~.--~:-~~[.-~~~-=-~-~-;·:..:·· 
..... - ~--·--·~· -- '. ~ ..... ________ .,.. .. , .•. ·--- --- ----·- ---· •····· .~ ... - ----

i . 
·: .---· ---·-: 



·, 

.?. 

Va.lues of i and id are taken from the polarogram 

·.·.on the preceding page and convet•ted :i.nto workable date. as 

show in the following tableo 

. ( 

' 

1b 

'When a l)lot of log ~//id~~ i. .. vs r~d.e. gives a st::catght line, 

the reac~j~on is revertdble at the dropping electrode 9 · ~.nd 

thus the data from the polarogram can be used.. k·plot of ·.the 

data: from _this polarogram is shovriJ. below. '!J).;2 is the 

· potential where the value of i· equals :i.d.,.,i or at log 1 ~ 

. !Ji,ili-J __ ;_; __ -=; :_c~T~l~:~--- , ---· .. 
~itf?f[Ii:~~f;_; : ::•_-::-.:~?~l:: :;··. 
j.:.::::-.::: .. :::·; :·_ :.::::..-_-7 .. _ 

(~f~-?H:"JY:it=-~~~- -- .. 
r_::::::::;_::I_::-:: :-:~::: 
!'".~.--~·-·· -·-·. 1';···:·:·· ---

---. --· .---••• ' _____ ; • .o. ••• 



71 

Albg .. i 

. id - j:j 
The slope = 

then 30·.,5 ··.~rt~: ·,..._-= 7"'0:D59 

n = (30.5} (0 •. 059)' = 1.8 or 2 . ; 

The data used to caculate Pt is obtained from figure 
3, page 28, the plot o.f E112 vs Log .ex ( ofc-tJ:le·:-amiLro~ac-±:d';-c::c---.·':~--
and' plugged into equation (9;), page 71 

·IJ El/2 

t1log ex 

0 •. 0591 

2 

..JhL!i2 - 0.·12-L = - p {0.0296) 
1 .•. 52 -· 1. 39 

p = 2 

. ·.·· .. 
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