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CHAP'rER I 

THE MOSSBAUER EFFECT 

An excited nucleus may undergo a transition to its 

ground. state by the emission of a gamma ray •. The nucleus, 

if free to do so, will recoil and take some of the transition 

energy as recoil energy leaving less energy for the emitted 

gamma ray. This gamma ray does not have enough energy to 

excite a similar nucleus and will, therefore, not be res-

o:nantly absorbed due to the fact that the natural lineNidth 

of the gamma ray is so much smaller than the energy taken 

by the emitting atom and the similar energy needed by the 

absorbing atom. 

In 1958 a new effect in the emission and absorption 

processes of low energy gamma rays was armounced by Rudolph 

L. r1ossbau~r. 1 His discovery was made \'l'hile he was doing 

graduate work at Heidelberg, Germany. Since that time th1s 

effect_, noY..r kn0111n as the Hossbauer effect, has been studied· 

and confirmed in many laboratories. By 1961 the significance 

1Rudolnh L. Mossbauer ttKernresonanzfluoreszenz 
von Ga.mmastrahlund in rrl91,rr Die Naturwissenschafter, 
Vol. 45 (1958), pp. 538-539; Rudolph L. l'lossbauer, 11Kern
resonanzfluoreszen.z von Gammastrahlund in rrl91, 11 Zei tschrift 
fE1: Physi~, Vol. 151 (1958), pp. 124-ll~J; Rudolph L. Iviossbauer, 
"Kernresonanzabsorption von Gamma.strahlund in rrl91," z. 
Naturforsch, Vol. 14a (1959), p. 211. -
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and usefulness of this effect was so widely recognized that 

Rudolph l'tlossbauer was awarded the Nobel Prize. 2 

The new effect involves recoil free emission and res-

onant absorption of low energy gamma rays by atoms tightly 

bound in a crystalline lattice. ' The. characteristics of the 

Mossbauer effect have lead to the feasibility of studies 

previously not possible in nuclear-, solid state-, and atomic 

physics; chemistry; and biology. 

It is the purpose of this research project to design 

and build a tti'6ssbauer effect apparatus. 

~Le_nU.P.P1.!£a t ion 

Nuclear absorption of gamma rays is not easily observed · 

because of the interaction of the photons with the atomic 

electrons ln photoelectric and Compton effects. The 

absorption of a gamma ray into the nucleus can be observed 

if it results in some nuclear reaction. Of interest is the 

attempt to observe nuclear resonance absorption. This 

phenomenon is difficult to observe because the energies of 

the emitted and absorbed gamma rays do not coincide and are 

different from the transition energy by an amount equal to 
2 2 

the recoil energy taken by the nucleus, Er = E /2I'1c . 

2Rudolph L. Ivfossbauer, "Les Prix Nobel En 1961, Nobel 
Foundation Stockholm, 1962." Science, Vol, 137 (~962), 
pp. 731-738. 



(For the 14.4 kev transition in Fe57 this recoil energy 

amounts to 2 x lo-Jev.) The emitted gamma ray energy is 

less than the transition energy by the amount Er, and the 

absorbed gamma ray must have an energy greater than the 

transition energy by an amount Er. 

Nuclei have very highly defined energy levels and the 

radiations given off in transitions from an excited state 

J 

to a ground state will all have about the same energy. The 

natural linewidth ' r. of the resulting radiation is ob

tained from the uncertainty principle 

r1" = 1i 
or 

r = 
From which v-1e see that a half-life of 1.0 x lo-7sec (cor

responding to the Fe57 metastable state) leads to a linewidth 

of L~. 6 x lo-9ev. By considering the ratio of this linewidth 

to the total energy of the gamma ray, 
r u. , -r -15 

- = 'r. t> XID3 Q.'f.i. = 3 X /0 

£ /~ J! X/O e.v-

we see that the energy of the gamma ray is defined to within 

three parts in 1013, one of the most accurately defined en~rgies. 

The natural linewidth is six orders of magnitude smaller 

than the energy Er taken by the recoiling nucleus, and 

therefore the emission and absorption lines do not overlap. 

Thus, resonant absorption is- not observed unless the recoil 
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energy loss is made up. 'rhis ""YTas demonstrated by P.B • .Moon3 

who shifted the gamma ray energy by applying the Doppler 

effect to bring about resonant scattering. 

Atoms which are bound in a crystalline lattice, will 

be dislodged from their lattice sites if their free-atom 

recoil energy is larger than their lattice binding energy, 

15-JOev. 4 Hm'lever, if the recoil energy is not larger than 

the binding energy, the recoil energy will be dissipated by 

the transfer of integral multiples of phonon energy 

(0, ±nw, ~2tw, ••. ) to the lattice,5 and the effective line

width is of the order of the phonon energies. 

If the recoil energy is less than the phonon energy 

(on the order of l0-2ev), there will be the possibility of 

zero phonon energy transfer, and the gamma ray will come off 

with effectively the full energy of the transition. In 

this case the recoil momentum accompanying emission or 

absorption of a gamrn.-:t ray is taken up by a large number of 

the atoms in the crystal~ rather than by a single nucleus. 

Even for a minute crystal of Fe57 (e.g., lp3 crystal contains 

3p. B. Hoon, f!:9c. Pbizs. Soc. A64 (1951), p. 76. 
4Gunther K. Wertheim; Hossbauer J?tf~9..:t$ .. R.t:.~nc1l?].es and 

:1-pplicati_91}~ (New York: Academic Press, l9b ) , p. 8. 

5rbid •• p. 9. 
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about 1011 atoms), the recoil energy is 

for the 14.4 kev transition. This is extremely small, much 
.... 

smaller than the natural llne'I-·Tid th of the gamma rays , and 

thus resonant absorption can be observed. It is these zero 

phonon events which constitute the 11ossbauer effect. 

If the zero phonon gamma ray energy is shifted such 

that it falls outside the natural linewidth of the absorbing 

nucleus, reabsorption again becomes impossible. This shift in 

gamma ray energy can be obtained by subjecting the gamma ray 

to a Doppler effect. This can be accomplished by relative 

motion between the emitting crystal and the absorbing crystal. 

If the emitting crystal is moving tm•tard the absorbing crystal 

with a velocity ,v, the gamma ray energy is changed by an 

amount 
~£ = £v • c 

It only takes a velocity v =·l0-2cm/sec to shift the gamma 

ray energy by one line\'lidth, and it will take twice this 

velocity to overcome the line1fiidth of both the source and the 

absorber and thus cancel out resonance. 

It has been found that the excited state of Fe57 has 

a most advantageous combination of half-life, recoil energy, 

and phonon energy to permit the Nossbauer effect. Fe57 also 



. has a cross section for resonant absorption of gamma rays 

of 2.2 x lo-18cm2. This is about two hundred tim~s larger 

6 

than for photoelectric absorption, the second most important 

process. 6 Fe57 comes from the decay of co57, as is illus

trated in Figure 1. rrhe 14.4 kev transition is the one 

probably most often used in J.VIO'ssbauer experiments and is the 

one which will be used here. The source for tM.s research 

is co57 imbedded in Platinum. 

,-
~ 

I 3 7 It 3 J.4v 

?~ ' 71~ 

til. If Kev 

Fesv-

Figure 1. The Decay of co57 to Fe57. 

_, 
"t: = /.0 ~lo ~c. 
~ 

The Mossbauer effect can be used in the study of 

processes which cause shifts in gamma ray energy or in 

nuclear energy levels. 

According to the theory of special relativity, a photon 

6 Gunther K. Wertheim. · r1c)ssbauer~ Principles and 
~£1i$~~ons (New York: Academic Press, 19641: p. B. 
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should undergo a shift in energy due to its interaction 
. . 7 

with a gravitational field. Investigation of the gravita-

tional red shift showed the predicted effect of gravity upon 

a photon and thus added additional experimental evidence for 
8 .... the theory of special relativity. 

Processes which cause shifts in nuclear energy levels 

can be investigated by the study of (1} isomer shift, (2) 

quadrupole coupling, and (J) magnetic hyperfine structure. 

All of these are due to the interaction of the nucleus with 

the surrounding electrons. 

'l'he isomer shift, also known as the "chemical shift 11
, is 

caused in part by a difference in the s-electron density at 

the nuclear site of each participating atom and in part by. 

a difference in the effective radii of the energy states. 

The nuclear energy levels are shifted by the electrostatic 

interaction of the nucleus ·N·i th the orbital electrons. The 

electrostatic potential for a point nucleus is 

\!,; .= ~e 
whereas for a finite spherical nucleus of radius ,R, and 

. of uniform charge density, the potential becomes 

7 Robert Resnick; Introduction to s:e.~.cie.l RelEi Vi tr 
(New York: John Hiley & Sons, Inc., 19b"8), p. 212 

8a. V. Pound, G.A. Rebka, Jr., "Apparent \•Teight of 
Photons, n Ph;ys. Rev. Letters, Vol. 4, No. 337 ( 1960) ; R. V. 
Pound, J.L:--sn1der;-1 iE;ffects of Gravity on Gamma Radiation,'' 
fpy~ Rev. ~etters, Vol. 140. B-788 (1965). 



v-zer'3 ~~~ J for -7L-;: - r~ R 
I 

and V ':: z~ .f.oY" .... ~ R . 
r 

When emersed in a uniform electron cloud of density J f • 

there is an energy difference between a finite nucleus and 

a point nucleus given by the integral. 9 

J£ -= i:zt?-111' s.:~" ( V- Vn) f r-z. /.l-m e- J. v J 8 .,(~ 

-= 'lrrr S~ ( V- Vpe) r-2-d r 

= tfrte Ze ( \ i -";: _E.) ;r'2..J,. 
R. JD r 

=: - j1YZet f· = ~ 1( l e'1. J lfcoJ/2-Rz. 

where in the last step we replace f with 

f = - e / tfcoJ{ t. 

This expression predicts a raising of all nuclear energy 

8 

levels according to the radius of the energy state and permits 

an effect upon the energy levels according to the electron 

density, which is subject to chemical changes. In other words, 

the ground state and all excited states of a nucleus are 

shifted by such an amount, called the isomeric shift. The 

nucleus in an exc1ted state has a larger charge radius and 

therefore a larger energy level shift. When emitting a gamma 

ray in a transition from the excited state to the ground state, 

the gamma ray comes off with the energy difference Es between 

9Gunther K. \ITertheim, Iftossbauer Effect: Pri.nci,£le~ .. ~.~n_C1_ 
Applications (Ne~r York: Academic Press-,-f§{)If), p. 50. 
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these two isomeric shifted energy levels . 

.... 
A similar change in the energy levels will have taken place 

in the absorber where the electron charge density is apt to 

be different (See Figure 2). The energy of the absorbed 

gamma ray will be given by a similar expression where the 

only difference lies in the electron charge density 

The isomer shift is the difference in the energies of the 

emitted and absorbed gamma rays, i.e., 

rs ~ tA-- E; 

: fY z e%- [ J ~[0) r -/lf{(o)(] ( /?; - «~) , 

j~ 

~s 
f., 

-
5ou re e 

($) 

Figure 2. Isomer shift of energy levels in Fe57 source 
and absorber. 



10 

If the electron charge densities are the same, there will 

be no isomer shift; and the emitted gamma ray will be res-

onantly absorbed •. As is generally the case, the electron 

charge densities will not be the same and to bring the system 
.... 

back to resonance the source is given a velocity which, by the 

Doppler effect, changes the energy of the emitted gamma ray. 

Electric quadrupole coupling10 is due to the interaction 

of the nuclear electric quadrupole moment with the electric 

field gradient at the nuclear site within the crystal. The 

quad.rupole moment of the nucleus appears if the nuclear 

charge distribution is not spherical, and is dependant upon 
11 

the nuclear spin quantum number,I. (Nuclei with spin of 

0 or 1/2 do not exhibit a quadrupole moment due to their 

spherical symmetry.) The interaction of the nuclear quad-

rupole moment ,Q, t-Tith the electric field gradient leads to 

a splitting of the nuclear energy levels. This interaction 

is expressed by the Hamiltonian 

whose eigenvalues 

10T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance 
Spectroscpp_r {Nei>T York: Academic Press Inc.,(f9.58). 

11Robert A. Howard, Nuclear Physics (Belmont: 
Wadsworth Publishing Company, fnc., i963), pp. 59, 135. 



11 

give the amount of splitting. 'rhe ~ is an asymmetry 

parameter which permits application to non-axially symmetric 

field gradients. And eq is the field gradient ln the axial 

direction (taken as z axis). The m1 is the magnetic quantum 
.... 

number, which can take on the val~es. mi =I, I-1, ... ,-I. 

The equation for EQ is degenerate for states whose mi 

differ in sign only. Thus, the I = J/2 level is split into 

two levels one for rni = ± J/2 and the other for mi = + 1/2. 

These two levels (See F'igureJ) differ by an amount 

A£q =- EcyC%) - t="q<Y.r.) 

:= 
e'.l.Sf-Q --

J_ 

for an axially symetric field gradient. 

1 

1.
::z.. ' 

I' 

~r:> 
EA. 

--
EQ<~) 

-

E7-

P, 

Qv.. 11J. rJA- pole 
sr-I itt inj 

D.£. 

'I 

+,1... 
- 1.. 

+ I 
-'i 

+ L 
- t. 

F'igure J. Quadrupole splitting of Fe57 energy levels. 
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In the ground state of Fe57, I= 1/2; and there will be 

no quadrupole splitting of this level. An absorbed gamma 

ray wlll thus need either of the two transition energies, 

or 
== £&<-- ei-% 
~ Ea.. +- et"rCJ.i 

since the que.drupole interaction spll ts the isomeric shifted 

level, as is illustrated in Figure J. This means that the 

emitted gamma ray from a single line source (a source with 

unsplit levels), can be brought into resonance at two different 

Doppler velocities. 

12 'J.1he magnetic hyperfine structure in a nucleus is 

produced by the relative orlentation of the nuclear m:::tgnetic · 

dipole moment, P~ in the magnetic field produced by electronic 

spin and orbital motions. This interaction could properly be 

called magnetic dipole coupling. 

The Hamiltonian stating this interaction is 

fr~t = - _.Rt • H 

- .~ 'f'/tn I· H 

leading to a splitting of the energy levels by the amount 

£"" = -,_,#( H ??tz/I 

= -1-' /( )1 H '#'II 

where g is the gyroruagnetic ratio, and J~ is the nuclear 

magnet on. ~le see that the amount of splitting is directly 

12Gunther K. Wertheim, M6ssbauer Effect: PrinciEles and 
!£plic<:l.tio!1§. (Net1 York: Academic Press, 1961f), p. 72. 
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proportional to mr• which means that the ground state energy 

level will be split into two levels, and the excited state· 

energy level will be split into four levels as is shown 

in Figure 4. 

:r -
-r-J.-

:t. 

f/) 
£().. 

E,.,c-\> 

-

£, E ,. £, £'1 £S 

M4j ne /,~ OtptJle 
Splitt /nj 

·-
-

E b 

+ J. 
2 

·~ l. 
;J 

t ... -t. 
_l 

2. 

Figure 4. Nagn~tic hf splitting of the ground and first 
excited states of FeJ7. 

A gamma ray resulting from a transition between nuclear 

energy levels will carry away an amount of angular momentum 

Lh, such that the sum of the z component of the angular 

momentum of the resultant nuclear level and the angular 

momentum of the gamma ray will be the same as the original 

nuclear level (conservation of angular momentum). Possible 

transitions are determined by the equation, 
1 I,-- I,./ '$ L ~ 1 r, t L-z.l , L -I o 

which determines the mode of transiti.on consistent with parity. 

For transitions between the split nuclear levels f A-m/-~ L 

must be satisfied. 
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For Fe57, in which r1 equals J/2- and r 2 equals 1/2-, 

1 is equal to 1 and the gamma ray is of the magnetic dipole 

form; the type for which 1 = 1 does not change parity. 

Since L = 1, .6"»?=0,tf 1 and the six possible transitions con

sistent with these criteria are illustrated in Figure 4. 

The gamma ray resulting from one of these transitions 

or, as in our ce.se, inciting one of these transitions upon 

absorption will have one of the following energies. 

£, -= Fa_ + £~(-+~) + ~>?!(d) 

~,. == £A. j- £;1/)(+f) +- ,=~c+O 

£~ = Ec.. +- E"'~ (~.4-_) +- E"' (+ j) 

Elf = Ea.. -r E~ (+f)+ E'?!C-0 

~:; = Ec.. + Em(- f) + E.;,(~o 

~ ':::. ErA. .,.. t":o>r (.- .v ,_ e >n c- iJ 

The monochromatic gaoona ray from a source without 

nuclear level splitting can be brought into resonant absorption 

at each of these six energies by applying appropriate Doppler 

shifts-. The resulting hyperfine Nossbauer spectrum is thus· 

a six line spectrum. 

Instrumen;;..t;?:.tion 

In order to detect when resonant absorption takes place, 

"\'Te must modulate the gamma ray energy over a range including 

the absorption energies. rrhis is most easily done by 

applying a varying Doppler shift to the emitted monochromatic 



15 

gamma rays; and observing the number of gamma rays trans

mitted through the absorber as a function of their modulated 

energy. This yields a MBssbauer absorption spectrum. 



CHAP'I'ER II 

DESIGN AND CONS1rRUC1riON OF DRIVE UNIT 

There are hro approaches to the Doppler r1odulation 

technique: (1) Constant Velocity, a~d (2) Variable Velocity. 

In using the constant velocity technique1.3, one stores 

counts for a predetermined length of time and then increases 

the velocity by some increment, and the procedure is repeated. 

In the variable velocity technique14 , the system sweeps 

repeatedly through the range of velocities of interest. This 

type of system requires the use of a multichannel analyzer to 

sort the counts acoordlng to instantaneous velocity. To obtain 

l.3P.A. Flinn, uveloc1ty Servo Drive for a High Precision 
Nossbauer Spectrometer," Rev. Sci. Inst. Vol • .34, No. 12 (1963), 
pp. 1422~1426; Ruegg, P.c:-;-:J-:-.r;--sp:ik'b:!rrnan, J.R. Devon, HDrift 
Free MBssbauer Spectrometer,u Rev. Sci. Inst., Vol. )6, No. 3 
(Narch 1965), pp • .356-359; J.Bli"pkin;-ar1ci-others, ''Inexpensive 
Automatic Recording Nossbauer Spectrometer," Rev. Sci. Inst. 
Vol. .35, No. 10 (October 1964), pp. 1.3.36-1339. -~ 

14E. Kankelel t, "Veloci:ty Spectrometer for I1ossbauer 
Experiments, n Rev. Sci. Inst., Vol. 35, No. 2 (February 196Lq, 
pp. 194-197; David-Rubin, HConstant Acceleration Transducer 
Employing Negative Feedback for Use in 'lvlossbauer Experiments 1 , 11 

Rev. Sci. Inst, Vol. JJ, No. 12 (December, 1962), pp. 1.358-
IJElOTF:-c:- Rue'gg, J.J". Spilckerman, J.R. DeVoe, 11Drift Free 
Moss bauer Spectrometer, ·rr Rev. Sci. Inst, Vol. 36, No. 3 ( r1arch 
196.$), pp • .356-.359; R.L. CoheD;* P.G • .t1cNullin, G.K. Wertheim, 
"High Velocity Drive for Nossbaue.r Experiments, " Rev. Sci. Inst. 
Vol • .34, No. 6 (June 196J), pp. 671-673; R.L. Cohen, "Im
provements on Electromagnetic Velocity Drive for !'~Joss bauer Ex
periments, 11 Rev. Sci. Inst. , Vol. 37, No. 7 (July 1966), 
pp. 957-959. --- ·---



this data in the most convenient form requires that we 

maintain a linear velocity scale and a flat nonabsorption 

spectrum,· i'lhich means that equal lengths of time must be 

spent in equal velocity increments. That is, we maintain 

constant acceleration. Having avs.ilable a multichannel 

17 

analyzer readily adaptable to the requirements of constant 

accelerated motion, this type of drive system will be used. 

J!lLQ!i ve !JJl+. t 

The drive unit (Figures 5,6) consists of a loud speaker 

driver l5 mechanically coupled to a velocity transducer. 

J.Iechanical coupling is achieved through the use of a 3/16 

inch brass rod, one end of which is attached to the voice 

coil of the speaker. The other end is attached to a short 

length of magnetized iron rod centrally located in the 

velocity transducer. Another piece of J/16 inch brass rod 

is then attached to the other end of this magnetic rod and 

extends out the further end of the velocity transducer~ The 

radioactive source (co57) -is mounted on the distal end of 

this piece. of rod. This three-piece rod is supported near 

each end by a three wire system. Many commercial or locally 

constructed drive systems employ the use of elaborate 

punched phosphore-bronze support spiders, but not having the 

facilities to make such items, it was necessary to develop 

. 15oaktron 12H3 (Chosen for its lm•T cost, about $7,00). 



Voice Coi,l Velocity Transducer 
6-,viN 

J : :: I 1 Rod (Brass) 
I I 11 ' 

i' ' " rr ~ I : I I 

Clamps 

Guitar Keys , 'i£1 

e e 

Figure 5. Diagram of' Drive Unit Constr·uction 

Rod (Magnetic) 

Steel Hire (0.011") 

Transducer 
Centering 

Bolts 

...... 
():J 
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-~·-·--·-·· 

Figure 6. Photograph of Drive Unit. 
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another type of suspension. 

· In the design of this support system, consideration 

was given to (1) adjustability of centering, (2) low· natural 

frequency, and (3) simplicity and ease of construction. The 

suspension system relies upon a triad of steel wires sup

porting each end of the rod. The wires are attached to the 

rod by an alum:lnum disk, which is clamped to the rod bet1-reen 

two nuts. ( 1l'his. of course, requires that the rod have 

external threads in the area of support.) The other end 

of each of the three wires is wound around the take-up drum 

of a single guitar key. The three guitar keys have been 

mounted equiangularly on the periphery at the end of the 

rigid aluminum cylinder, which is the basic support for the 

whole unit. rrhis spider assembly is duplica.ted at the other 

end of the drum to support that end of the rod aJ.so. 

The guitar keys are of the worm gear design and thus 

hold their position firmly. They also· h..qve a 12:1 reduction 

ratio, which enables a fine adjustment on the centering of 

the rod. 

The loud speaker has the cone totally cut away to 

eliminate the work that it would have taken to move that 

large column of air. Also, the voice coil alignment spider 

is removed to decrease the restoring force, and thus to 

lower the natural frequency. Alignment of the voice coil in 

the magnet gap now depends upon the adjustment of the guitar 

keys. 
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The velocity transducer, Hewlett Packard model 6LV1N, 

is mounted in two heavy sets of spokes. These are mounted 

inside the aluminum cylinder, and each contains three 

centering bolts to allow for the centering of the transducer 

housing. The loud speaker magnet and the velocity transducer 

sensing coils are thus rigidly held together via the spokes 

and cylinder. 

To construct this Drive Unit, the large cylinder is cut 

from a length of 12 inch aluminum pipe having 7/16 inch walls, 

and the spoltes are made from 1/2 inch thick aluminum stock. 

The spoke material is first rough cut into two disks which 

are slightly larger than 12 inches in diameter and are then 

bolted together to the face-plate of a large lathe. These 

are turned down to the inside diameter of the pipe, and a 

7/8 inch center hole is bored. The spokes are rough cut out 

of the disks with a band saN. 'rhey are then bolted together 

to the bed of the milling machine, and the final cuts made to 

each pair of the spokes. Finally, the holes for the center~ 

ing bolts are drilled and tapped, Emd the centering bolts 

.(6-32 x 1 1/4) inserted. Now the spokes are ready to be 

bolted to the cylinder with a distance of 4 1/2 inches between 

centers. 

· ~~e nov1 take advantage of these spolces in· the process of 

facing the ends of the drurn. A J/4 inch rod having a center 

dimple on one end for dead centering is clamped in a 
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collet chuck used in conjunction with the face-plate. The 

drum with spolces is slipped over the rod, and bolts are 

passed through the inner set of spokes to the face-plate. 

Appropriate spacers are used to relieve excessive strain on 

the spokes. Before the ~olts are tightened, the centering 

bolts are adjusted to give the truest turning of the drum. 

After facing one end of the drum, the drum assembly is 

reversed on the lathe, and the other end is faced. A lip 

is cut in this end just large enough to accept the speaker 

basket. The drum must have three notches cut in one end 

to allow the guitar keys to be recessed, such that the loud 

sp~aker basket can be mounted also. This is done by bolting 

the drum assembly to the milling machine bed, in the same 

manner as 1 t 't'ras bolted to the face-plate of the lathe, and 

milling out the notches to 9/16 inch deep by 1 3/1+ inches 

wide. The speaker is clamped to the aluminum cylinder with 

six bolt-dow·n clamps made from sheet brass. The construction 

of the clamps is shown in Figure 7. 

Figure 7. Construction of speaker b_ol t-dovm clamps. 

The only rernainlng steps are drilling and ts.pping the 

holes for mounting the guitar keys and speaker clamps. The 



complete assembly of the unit then follows according to 

Figure 5. (pg. 18) 

~t.~r1!1g:.-2f:_D..:r1 ve_!!pi,! 

2J 

The rod of the drive unit needs to be centered before 

the system is used the first time. Once centered, the drive 

unit will remain so, but should be checked periodj_cally if 

the system is to be used over a period of months. It should 

be checked, of cou.rse, if the system has not been used for a 

while. 

To facilitate the centering, connect the power amplifier 

to the speaker and the sine \~ave generator (Hewlett Packard 

model 200CD), to the pm•7el:' amplifter input •rri th gain set at 

minimum. The frequency of the sine wave generator should be 

set at ,..., 1 0 liz • 

There are hro variables in the centering of the unit. 

First, there is the centering of the voice coil in the magnet 

gap. This is accomplished with the transducer housing left 

unclamped, and mov-ing the rod manually at flrst to listen 

for rubbing. Eliminate any rubbing of the voice coil on the · 

pole faces by adjusting the guitar keys. Do not put too much 

tension on the wire supports. Tension is about right if the 

wires give a dull ring when plucked. 

Second, the transducer housing must be centered around 

the rod and clamped in position with its centering bolts. 

Careful and final adjustment here is facilitated by driving 
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the speaker coil sinusoidally and observing the output of 

the velocity transducer with the oscilloscope. (If a dual 

trace is available, connect one input to the power amplifier 

output to monitor it also.) When a good, clean output signal 

is obtained, the centering is complete. 

After assembling and centering the complete unit, 

the resonant frequency was measured using an oscilloscope. 

The displayed transducer output indicated a natural frequency 

for free oscillation of 10Hz. Hire tension, however, affects 

this value. 



CHAP'l'ER III 

DESIGN OF ASSOCIA'l'ED ELECTHONICS 

In conjunction vJi th the electromechanical drive unit, 

there is a system of electronic circuitry. Referring to the 

block diagram (Figure 8, pg. 30) of this system, we find that 

the reference signal generator supplies a triangular signal. 

This enters the summing point of operational amplifier No. 2 

along with the negative, amplified transducer signal. This 

difference (the error signal) is amplified and fed to the 

voice coil to produce parabolic motion. The velocity 

transducer output is proportional to the velocity and after 

amplification in operatlonal amplifier No. 3 is fed into the 

ADC input of the multichannel analyzer and to the summing 

point of operational amplifier No. 2 to complete the control 

j.cop. 

The detector circuitry (as indicated in Figure 8, pg. 30) 

consists of a proportional counter with its associated high 

voltage power supply. The detector pulses are amplified and 

fed into a single channel e.nalyzer which passes certain pulses 

into the coincidence input of the multichannel analyzer. Let 

us now consider these components. 

Beferenc~~al Generator 

The constant acceleration function is simply a square 

wave with a Sillllll, non-zero rise time, 2 E . · Integration of 
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this function gives the velocity function--the reference 

signaL This triangular wave is also the form of the 

velocity transducer output when the drive system is operating 

correctly. If the velocity function were integrated, we 

would have the displacement function - the parabolic motion, 

but ·we do not need to generate this ftmction as the reference 

signal,because it is not the dominant term in the loud speaker 

voltage equation. 

'!'his can be shown by considering the equations charac

teristic "of a loud speaker16 

£==Li+F?I t-Ci. 
CI = n-t:;. t- ri< -r s x 

therefore 

Combining gives 

where the electrical and mechanical entities appearing in the 

coefficients are defined as: 

E = driving voltage 
L =inductance (electrical), coil at rest 
B =resistance (electrical), coil at rest 
m =natural mass of rod, coil, etc., + accession to inertia 
r = mechanical resistance (force/unit velocity) 

l6N. W • .NcLachlan, Loud E!,_2eak~, (New York: Oxford 
University Press, 1934). 



s = linear axial elastic constraint (force/unit dis
placement) 
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C ~ force per unit current = e.m.f. per unit velocity. 

Applying the results obtained by a Fourier analysis 

of the acceleration (see appendix, p.69) 

... 2. Jf a... e._ . '2>111:€. ~ '2. ,a-"f 
'X ::: 

enrr 4-vn.T I 
, .J,t 

.. 2. ,2.. P-oT ~ :2:..._1117"6 ~ 
:t.nrrt. 

-:x --:::: 6 n%.rrz. -r ( 
,.,» 

-:z. Z n fJ- -b 
:::-2 aoT - 1. nn-6 

6 l-rr 3 ~-- C..tn- -=r-X 
/)'~ 

T 

"3 
~,.,rrt. ~~ =-2. t::{~ T 

'X ~ ~-.2.. e. }1 '11r 4 T T 
:>1,/.t 

to this voltage equation we obtain 

Combining like terms, 
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'rhe measured values of the entities are: 

L = 3.7 x.lo-4h 
R = 2. 9 2 
m = 6.0 X 10- kg 
r = 0.53 nt/2/sec 
s = 2.5 x 10 nt/m 
c = 4.5 nt/amg 
E.= 2.5 x 10- sec. 

Upon inserting these values and using a period T = 1/10, we 

have 

Hhere we let 

Using the expansion of sin (kn), leads to 

J 
- .u~>12-z. f._ h nl -

- 3! + S! 
' ( ~ n )_ -t- , • • 

7£ 

which will. never be larger tn~n 1 and drops about 1% for 

n = 15. For lov~ n-values ( 1. e. , first few harmonics) , we can 

simply_ let 1 t be equal to one, and expanding termwise 



29 

He see that by far the largest component is 
-3 t- -z. 

-1~,/ X to a~ ~t:n-t.:; -::::-- Cf. l/l:tto~() t--tn- C,2.?(t-

This is the fundamental (n=1) term corresponding to velocity, 

therefore the driving voltage is primarily dependent upon 

the velocity function.· 

The term 
~ k '"~ - 3 ~ n. rrt 

tJ-. 6 --;;::- X 0 · 315" X lb c....tn-~ 

becomes the dominant term for n ~ 125, but its value is only 

1.87 x lo-4a 0 cos (2n1?'t/'r), for n = 125, and its amplitude 

l'Till be less for larger n-values. Thus, even for large n-

values, no term \'llll be larger than the velocity fundamental. 

Therefore, the velocity transducer signal is subtracte6. 

from the triangular reference signal, to produce an error 

signal. This is then amplified and fed into the Voice coil 

to produce the parabolic motion. 

The reference signal generator indicated in Figure 8 

(pg. 30) and shown schematically in Figure 9 (pg. 30), relies 

upon a sine ~rave generator ( He•'flett Packard :Hodel 200CD) for 

the selection of the frequency, and to provide the switching 

voltage. The transistor is operated as a saturated switch and 

thus gives out a square wave having a negative d.c. level, 

since this is a PNP type of transistor. 

Prior to entering the first integrating operational 

amplifier, we must remove the d.c. level on the square wave, 

or else this d.c. level will also be integrated, yielding an 
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Figure 8. Block Diagrar.r of Complete System. 
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Figure 9. Reference Sisnal Generator. 
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·increasing d. c. level on the output. To eliminate the d. c. 

level, we employ·a high pass filter having aRC time 

constant of about 5 seconds so as not to have a large 

effect on the square '!1-rave. The resistance should be on the 

order of 100 KJ1. since this is about the magnitude of the 

input resistance of the amplifier and thus the capacitance 

will be about 50 mf (non-electrolytic). At 5hz, this will 

cause a voltage drop of about 2% on each half cycle. The 

square wave nC"'i'I enters the integrating amplifier and is 

integrated giving the triangular reference signal. \~e 

desire that this reference signal have an amplitude of 

2 volts p-p, since that is the same amplitude required by 

the ADC input to the multichannel analyzer. 

The series input resistor to the integrator is made 

variable so that the gain can be adjusted to give this output 

amplitude. This will need readjustment whenever the fre

quency is changed, 

A. similar high-pass filter (using non-electrolytic 

capacitors) is needed after the integrator to remove any 

d.c. drift from the output of this integrator. 

Feedback Los>E 

Let us analyze the error signal amplifier and feedback 

loop (composed of the remaining amplifiers and transducers) 

as though it were a single amplifier of gain K and negative 
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feedback ;J e 0 • (See Figure 10.) 

Figure 10. Amplifier with negative feedback. 

With a reference signal eR, the error signal E, which appears 

at input to the amplifier will be 

the output is 

therefore 

eo = /<. E 

: K ( e 1-=? - f eo) 

=: kef? - ;5 k €.o 

e = 0 

Returning to the error signal equation above: 

and. substitution for e 0 from above 

;dK 
E = eR- ft-;i"Ker<. 

Which becomes for f K >> 1 1 

I e 
- I +;'k 1\ 
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Which means for ~ K >> 1 , that the error signal, the input of 

the error signal amplifier, is a small fraction of the 

reference signal. The error signal amplifier has adjustable 

feedback reslstance to allow adjustment from unity gain up 

to a gain of 51. 

Since the power amplifier is a D.C. amplifier, any D.C. 

level on the output of the error signal amplifier would be 

applied to the voice coil and could force the rod to one ex

treme or the other, or could cause a distorted motion. There

fore, the output of the error signal amplifier was coupled to 

the pmrer amplifier through a JO mf non-electrolytlc capacltor, 

as shmvn in Figure 8 ( pg. 30). The signal coming from the 

velocity transducer is of low voltage, and its relationship 

to.the velocity is given by the manufacturer's calibration 

specification to be 102 mV/cm/sec. An adjustable gain 

amplifier is needed to amplify this transducer signal to 

2 V p-p, ~s required by the ADC input. By incorporating this 

amplifier into the feedbac.k loop, as is shm'll1 in Figure 8, 

any drift, which ~vould cause a shift in the ADC register, is 

corrected. This amplifier then supplies both the input 

voltage to the ADC and the velocity signal which is to be 

subtracted from the reference signal to produce the error 

signal. The subtraction is accomplished by adding opposite 

polarity itla ve forms. In our system, I e 0 is this amplified 

velocity signal. 



This circuit arrangement thus has the advantage in that 

the reference signal has the same amplitude (2 v p-p) at all 

velocity ranges. The velocity range is determined by the 

gain setting of the transducer sigDal amplifier. In order to 

achieve a variety of velocity ranges, it was desirable to 

operate at several different frequencies. The gain of the 

error signal amplifier and the power amplifier are run as 

high as possible without going into paracytic,...oscillation. 

The transducer output is scoped to determine the actual 

velocity amplitude by using the formula 
v 

Veloc:l. ty amplitude = 102 mV ern/sec. 

where V is the voltage amplitude in millivolts. The velocity 

amplitude is easily adjustable from 0.65 mm/sec to 150 mm/sec. 

'rhus the system can be used for 1118.ny types of experiments. 

Each operational amplifier in this circ'Lli t has negative 

gain, which means that the polarity is reversed at each 

amplifier. 'rhls need not cause any difficulty if care is 

used i·n connecting the different components. For ease of 

setting up and of operation, the circuitry just described 

(except for the large non-electrolytlc capacitor banl{s) 1-ms 

mounted into a chasis which vTas designed to be plugged onto 

the Heath Kit Operational Amplifier i:11odel No. EUV1-19A. An 

Operate-Balance Sv'l'itch i'ias also incorporated which allm<:t~ 

one to balance the amplifiers, and then S\111 tch immediately 

into the operating mode. ~!hen in the "balance·,, mode, all 
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Three of the amplifier inputs are connected to ground 

through their respective input resistors. Since the internal 

bias adjustment is sometimes not sensitive enough for the 

integrating amplifier (amplifier no. 1). An External-Internal 

bias switch and bias input jacks were added. Whenever ex

ternal bias is deemed necessary,· one only needs to connect 

the circuit shown in Figure 11 ( pg. 37) to those jaclts. This 

is about four tlmes more sensitive than the internal bias 

control. 

By analyzing the schematic of the multichannel analyzer 

(Nuclear Data, f'llodel No. ND 110) tt was determined that the 

ADC input (·when in the Ho'ssbauer mode) was effectively a d. c. 

restorer if a series input capacitor was added, and that the 

d. c. level was controlled by the it zero level 11 adjustment to 

some extent. We used a 50 mf electrolytic capacitor for this 

d.c. coupllng between the final amplifier stage and the ADC 

input so as :not to distort the wave form. Hith this capacitor 

·in place the d. c. restorer was basically the circuit shown 

in Figure 12 (pg. 37). Where C is this coupling capacitor 

{also shmiln in Figure 8, pg. 30), and RL is the input resistance 

of the analyzer (approximately 70 K J1). 
The ADC requires that the velocity signal be 2 volts p-p 

with an offset of -l.volt d.c. This d.c. restorer accomplished 

this verynicely. 

The power amplifier, a two-stage complimentary symmetry 
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circuit, vJas based on a design given by R. L. Cohen, et.al. , 1 7 

and by G. K. \~ertheim. 18 However, different output tran-

sistors were chosen on the basis of reduced cost and 

availability. The circuit shown in Figure 13 (pg. 37) was 

used. The voltage supplies were four six-volt storage 

batteries connected in series with the center tap as ground, 

This gave a very stable D.C. po1·1er source even with the 

battery charger on, which was necessar~- due to the long 

periods of operation. 

Detector Circuitry _._._ ... .,-.-_____ ~-

The detector is a Reuter-Stokes proportional counter 

( Nodel No. RSG-·30A). 'l1his particular detector requires about 

2000 volts D.C. for operation. The gain of the proportional 
I 

I 
counter is very sens~tive to fluctuations of high voltage, 

therefore the power supply must be well regulated. 

The basic pov-1er supply uses a half-t'l'ave rectifier with 

two R.C. filters followed by a series of gas voltage-regulator 

tubes (See Fj.gure 14, pg. 38). The no-load voltage at the 

output of the filters was about 6000 volts. Under a load of 

8 rnA this output voltage dropped to 4000 volts. 

l7a. L. Cohen, P. G. l1c.rtiullin, G. K. T;·Iertheim, "High 
Velocity Drive for lllossbauer Experiments, 11 Rev. Sci. Inst. · 
34, No. 7 (1963), p. 671-673. ------

18cunther K. l,~ertheim, Nossbauer Effect: Principles and 
. Applications (New York: Acaaemic Press, 19b4l': p, ~·:-
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Figure 13. Pmrer Amplifier. 



.s-~ J5K 

o. I 

" tj ~------' 
'I 

I !I f--;z-.:S"'v-. ~~ PL. 

~v. 

!PI 

1/1 
{)/3:2.. 

,:a2-$1/Pf . 
~·~ 

!fVl 

t5K /3:1..K ~CJI( 

T o. I =r r-4. r ! 

. T -l L..{ a 

-=- r- - - -- - -. ~ 

-,/@I.:~~ l 
os~P' l 

I , 

'I}J ~L~ l 
08~ ~ ~ 

{--- !-'/ /?cf.f,"-/,i>no./---) 

w.. 
~~I 

I 

l I 1 . ' 

@{:: l 
$4J r ~--t ~ .. , ... 
CJsW 1'~"~ r /oo~ 
OB~~liM ~ 
®

\' 3of'1 0./ -;- o. I T ! ; 

tn M~·------~--~~ 
OB~ · 

"-----..;;;.
5--!. D ~ ~/{V 

Figure 14. High Voltage Power Supply (330-3000 volts). 
w 
()) 



39 

Since the minimum current needed for regulation by an 

OB2 is 5 rnA, this will allow 3 rnA that can be dra~'m by the 

switching and metering circuit and the external load and 

still maintain regulation. Since t't-1enty OB2 Is in series lidll 

regulate 2200 volts, that leaves 1800 volts at 8 mA to be 

handled by the series resistor. It was decided to use ten 

22 KJl., 2 watt resistors in series to handle this power. 

To extend the usefulness of this power supply, an 

additional eight OB2's can be switched into the lower end of 

the earlier string of twenty; at the same time, the switch 

cuts out four of the 22 KSL voltage dropping resistors leaving 

only 132 KJ2,. This then still allm'ls about 8 mA to flo1-r 

through the VR tubes for regulation. The total of 28 VR tubes 

extends the regulated output voltage to 3000 volts D.C. 

An eighteen position, tw·o wafer rotary switch is used as 

a course adjustment to select the output voltage with one 

position used as an "off" position. A 100 Kdl. potentiometer 
. 

is used as a fine adjustment. The effect of this switching 

arrangement is to switch across each of the upper seventeen 

OB2's in sequence with the course adjustment. The fine 

adjustment then is used to give a smooth adjustment to any 

voltage as found across that selected tube. The two ranges 

of output voltages are 330 to 2200 volti and 1200 to 3000 

volts. 

After this voltage selector come the meters and some 
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· final R-C filters as shovm. This particular arrangement gaYe 

very smooth outpUt to the detector. 

The charge-sensitive preamplifier, F'igure 15 (pg. 41), 

was designed and built by Fred H. Inman. It amplifies the 

detector pulses and delivers positive output pulses whose 

voltage amplitudes are proportional to the energy of the 

detected gamma rays. 'l'he B+ ( 250 volts) for this circuit 

is supplied by the Hewlett Packard pov.Jer supply ( :t-J:oclel 721-B), 

and. the fillaments, ·needing a very stable 6 volts, are 

poNered by one Of the storage batteries. rrhe output of this 

amplifier j_s connected to the input of the single channel 

analyzer, (Flgure 16 (pg. 42). 

As a pulse enters the single channel analyzer it is 

applied simultaneously to two amplitude discriminators 

(Schmidt circuits). The triggering level of the loNer level 

discriminator is adjusted so that any pulse corresponding 

· to energy less than J.Lt-. 4 kev will not trigger it. The other, 

the upper level discriminator, is adjusted such that it is 

triggered only when a pulse comes whose energy ts greater 

than the 14.4 kev. Thus a pulse corresponding to 14.4 Kev 

will trigger the lower level discriminator, but will not 

trigger the upper level discriminator. Also, any pulse 

whose energy is greater than the 14.4 kev will trigger both 

discriminators. With the output of these two discriminators 
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fed into an anticoincidence c~rcuit;9 there is a resulting 

pulse only Nhen the lower level is triggered and the upper 

level is not (i.e., only when a 14.4 kev pulse is detected 

will there be an output pulse). This output pulse is fed 

via an emitter follovwr into another Schmidt circuit to 

give a more uniform output pulse shape \'fhich is connected 

through another emitter follower to the coincidence input 

of the multichannel analyzer. 

Whenever a pulse arrives at the coincidence input of 

the multichannel analyzer, the analyzer stores one count 

in the channel co:t.'l'esponding to the velocity signal appear-

ing at the ADC input at that instant. By this means we 

tally counts to give the absorption spectrum in 1-'ihleh a drop 

in intensity indicates a velocity corresponding to resonant 

absorptlon. 

------·----------
19Robert L. Chase, Nuclear Pulse SpectrometE_l, (New 

York: NcGra1-r- Hi 11, Inc. :196iT-;-·-p-:-· 64. 



CHAPTER IV 

BALANCE AND OPERA'EION OF CONSOLIDATED APPARATUS 

Ba.:);f..tnq~~"'lLQ.pe~~ tt9lL..£f S]Lste~ 

Now that each of the components of the electro-mechanical 

drive system has been described in detail, let us consider 

the consolidated system. Each component has certain adjust

ments to be made to enable it to operate properly for better 

than twelve hours. Some of these adjustments are made before 

the components are connected into the system, others are made 

afterwards. 

This chapter ~'I ill be concerned. l'li th the ad,justments that 

have to be made on the entire system in order for it to operate 

properly. This will necessitate returning to some previously 

discussed components (e. g., all of the adjustments and hool{ing 

up of a single component will not be completely discussed at 

one time). This will be especially noticed in the discussions 

of the function generator, the adjustment and operation of 

which is most critical. 

Due to the need of stability and of careful adjustments 

to be made, the Heath Kit operational amplifier should. be 

plugged in and turned on first. The function generator module 

which plugs onto the front of this instrument should be left 

off, until the B+ supplies have been adjusted according to the 

manufacturer's specifications. A warm-up period of at least 



one half hour is recommended before attempting this adjust

ment. rroo short ·a warm-up period will result in D.C. drift 

in the operational amplifiers. 

\~hile the amplifier warms up, we turn our attention to 

the balancing of the pov1er amplifier. Connect the power 

amplifier to the storage batteries or some other well 

filtered source supplying + 10 to + 12 volts at about 2 amps. - ' -
'I'hen VIi th the input open and the gain control at maximum, 

measure the no-load output with a sensitive VTVM or DC 

oscilloscope. Adjust the balance controls until zero output 

voltage is obtained at all settings of the gain control. This 

completes the balancing of the power amplifier. Also check 

the centering of the drive unit accordin,g to Chapter 2. 

Now return to the operational amplifiers, and balance 

the B+ supplies according to specifications. ':l'hen plug the 

flmction generator module onto the amplifier bank e.nd place 

the Operate-Balance switch in the ttBalanceu position. \~lith 

the amplifier's D.C. power switch uon", adjust the bias 

settings of each amplifier using a very sensitive VTVr1, or 

better yet, use the oscilloscope on its most sensitive D.C. 

range. Adjust to zero output at each amplifier (test points 

are supplied) ~ith its gain setting adjusted as high as is 

practical. Recheck each amplifier several times. If external 

bias is deemed necessary for the first amplifier, simply 

connect the circuit shown in Figure 11 ( pg. 37 ) to the bias 



input jacks provided, and switch to 1'external bias 11 • 

Leave the function generator in the"balance"mode and 
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connect the associated driver clrcuitry as shmm inFigure 8 

(pg. 30). Adjust the audio oscillator for frequency and for 

"' maximum output, and check the output. of the square wave gen-

erator for a clean, sharp i'lave form by using the oscilloscope. 

Again, check the amplifier outputs to see if there has 

been excessive drift dUring the intervening moments. (Some 

drift will be inevitable.) If the drift has not been ex-

cessive, turn down the gain controls of the amplifiers and 

s~ri tch to the 11 0pera.te 11 mode. If the speaker begins to 

viprate wildly, due to the feedback signal being in phase 

with the reference signal, reverse its leads. Connect the. 

oscilloscope to the output of the first amplifier, and adjust 

its gain until the resulting triangle wave is 2 V p-p. This 

sets the reference signal. Next set the power amplifier gain 

at maximum and adjust the gain controls of the other tt<ro 

amplifiers until a good, sharp triangular wave having an 

amplitude corresponding to the desired velocity range is ob

tained from the transducer output. vlhen the wave form thus 

ob.tained is sharp, the output of the third amplifier should 

be a 2 V p-p triangular wave. If a high frequency oscillation 

occures while trying to make these adjustments, there is too 

much gain in the feedback loop. 

Once this part of the system is adjusted properly, turn 
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down the pov-mr amplifier gain to zero, and connect the 

oscilloscope to the transducer output and gently pull on the 

end of the rod. If the transducer output is positive with 

respect to ground as the rod moves out~-Jard, the information 

stored in the higher numbered ehannels corresponds to a 

positive velocity and the lm<Ter channel numbers to a negative 

velocity. 

Also~ 'l.'rhile the unit is still, attach the Ness bauer source 

material to the end. of the rod. The power amplifier gain 

can then be return~d to its maximum setting, Place sufficient 

shield materlal (sheet lead) around the driver unit for protec

tion. Also line up the collimator (1/2 inch thick lead plate 

with a 1/4 inch hole through it) and place the detector behind 

it, aligning the entrance window with the hole in the plate. 

Connect the detector to the charge sensitive preamplifier, 

connect the preamplifier to the high voltage power supply, and 

connect the oscilloscope to the output of the preamplifier. 

Turn the high voltage to about 2000 volts, and observe the 

detector pulses on the oscilloscope. Adjust the cathode bias 

potentiometer of the preamplifier until the best shaped pulses 

are obtained. 

Next connect the single channel analyzer to the 12 volt 

d.c. supply. {The positive half of the series of storage 

batteries makes a very good source, but be careful to make 

proper connections.) Also, connect the positive output of 
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the preamplifier to the input of the single channel 

analyzer, and con.nect the trigger input of the oscilloscope 

to the lower discl"iminator output (e. g., test point). S\'ri tch 

to triggered sweep and observe the detector pulses as the 

lm•1er discriminator level is· adjusted to that level such that 

the 14.4 kev gamma pulses (for Fe57) are still seen on the 

oscilloscope. 

Now connect the trigger input to the upper discriminator 

output, and adjust that level until only pulses greater than 

14.4 kev are seen. 

To help determine which pulses are the 14. 4· kev gamma 

pulses, use one of the Nossbauer absorbers. By placing the 

absorber over the collimator hole (on the source sj_de), the 

111-. L~ kev gamma rays v.1ill be noticeably attenuated, v-rhereas 

the 123 kev gamma.s will be very slightly e.ttenuD.ted. These 

two spectral lines are, however, superimposed upon a line of 

6. kev X-rays and a continuous band of thermal noise which 

complicates the situation. 

Now that we have the upper and lower discriminators set, 

we can check the operation of the anticoincidence output. We 

should only see pulses corresponding.to the 14.4 kev gamma 

rays on the oscllloscope. 

There are two other adjustments to be made on this single 

channel analyzer. To balance the anticoincidence circuitry, 

the 50 K J1 rheostat is adjusted to give the be·st output pulse 
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from that part of the circuit. The second adjustment 

( 30 K J1, potent·iorneter) is to set the bias level of a Schmidt 

circuit used as a pulse shaping circuit. If it is not·ad

justed properly. no pulses will be seen at the output of 

the single channel analyzer. Connect the output of the single 

channel analyzer to the "coinciden.ce input 11 of the multi

channel analyzer. 

There remains only one more connection to be made. That 

is to co:rmect the output of the third amplifier of the function 

generator to the APC input of the mul tich:'lnnel analyzer. This 

applies the amplified transducer output to the ADC l.nput. 

Sot the zero level adjustment on the analyzer to minimum and 

s1ATi tch to 11 Nossbauer 11 mode. 

our system is now complete and all adjustments have been 

made. liJe are ready to take a spectrum. Tape or by some 

other means attach one of the r~1ossbau.er absorbers over the 

collimator hole on the source side, and start the analyzer. 

Allow the system to run undisturbed until sufficient counts 

have accumulated. 



CHAP'rER V 

EXPERIMENTAL DATA 

.!!Q~§~:::.2EL~e t l}_g,2.s 

There are several methods of obs_erving or obtaining the 

information (spectrum) stored in the analyzer. First, the 

spectrum can be displayed on the oscilloscope. This is not 

very quantitative, but is of value in checking progress 

periodically during a "run". Second, the stored information 

can be fed into a strtp-chart recorder, thus giving a per

manent display similar to that on the oscilloscope, but this 

also is not too quantitative because the resonant absorption· 

will be 20% or less. 

Thus, a method to read out the actual count total in 

each channel is needed, from which data a graph can be made. 

The Nuclear Data analyzer can be equipped with typewriter 

output, which automatically types out the total for each 

channel. At the time this r.esearch \'las done, our analyzer 

was not so equipped, however, this capability was added 

later. 

To satisfy the need at the time, a device v1as designed 

and bui.lt by Fred \L Inman. The circuit, Figure 17, consists 

of a unijunction transistor relaxation oscillator, which sends 

pulses to the analyzer's '11digi tal advance" input. Each pulse 

causes the analyzer to set the level of binary outputs cor-
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· responding to the first digit. The next pulse will trigger 

the feed out of the next digit, and so on for the five digits 

in the number of counts in the first channel. This will be 

followed by three Hzero 11 pulses, and then the five digits in 

the number of counts in the second channel, again three "'zerot' 

pulses, and so forth for each of the 128 channels. The first 

channel is the clock. Its data is of no value to us. 

These four binary outputs constitute a BCD digit and are 

fed into a series of four neon indicator lamp drivers, a 

most simple and effective BCD display. In the plate circuit 

of each trlod is a neon glow tube to indicate the level of 

the binary signal. The first neon bulb is assigned the 

value "1", the second is assigned the value 112 11
, the third 

114", and the fourth t18 ''. To determine the value of each 

digit 1 one merely adds the values corresponding to the glowing 

bulbs. 

A headset is used to hear the click of the oscillator 

pulse ~nd thus know that the next digit is ready for tabula

tion. The frequency of the oscillator is adjustable so that 

an indi vidu.c"ll can set his mvn pace, or even turn it off a.t 

any spot, and start again from that same place. After some 

practice, one can read out the total storage in about JO 

minutes - that's one digit every two seconds. This is ad

mittedly a slow and tedious process, but the best available 

at that time. 



Sarnules of Data --do:--.-·--·--
The system has been used to obtain the three types of 

spectra. Table I (pg. 54) and its graph, Figure 18 {pg. 55), 

is a spectrum of the isomer shift sho~ing the percent absorp-
.... 

tion. 'I;he velocity amplitude was 0 •. 65 mm/sec for this 

spectrum. 'I'able II (pg. 56) and its graph, Figure 19 (pg.57), 

is a spectrum showing the magnetic hyperfine struct1.1.re, where 

the velocity amplitude was set at 10 mm/sec. For these two 

spectra the velocity scale was not calibrated, but the spectra 

are rather clear. 'I'he spectra of FeC12 which shows quad

rupole splitting, Table III (pg. 58), was made by John 

Hoscelli as an adYanced laboratory project. He calibrated 

the velocity scale by taking a hyperfine structure spectrum 

of Fe2o3, and comparing it "''lith a published spectrum. 20 

'rable IV summarlzes his velocity call brat ion. A graph of his 

quadrupole coupling spectrum is presented in Figure 20, (pg.59) 

'rABLE IV 

VELocrrY CALIBHATION 
FOR FIGURE 20 

--·-.. ------ -----Chanrie-r--·----·-ve 1 ocTty 
__ ,.._}rumber ----~~~ 

16 -8.0 
30 -4.2 
69 5.6 
81 8.8 ---· ________ ... __ ----.:,......_._· 

20Gunther K. Hertheim. t1C5ssbauey __ Eff_~ct : __ Principl::;~
and Ar<.,ulic£l-ti9!~· New York: Academic Press, 1%4. p. 78. 
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TABLE I 

ISOMER SHIFT 
STAINLESS STEEL ABSORBER 

.. ·---- --·--~----,.·-- - . ---..::::-~==--.--.:::;~'~ 
Channel Channel Channel ., 
Number Counts Number Counts Number CO£:r1E. ----.... ·~-- - --1 9998 41 9396 81 9488 

2 9605 42 91.!-35 82 9557 
3 9619 43 9336 83 9585 
4 95L1-2 44 9331 84 91.1-85 
5 9314 45 9146 85 9584 
6 9611 46 9191 86 9505 
7 9394 47 920'7 87 9651 
8 9660 48 9185 88 9708 
9 9642 49 9015 89 9694 

10 9334 50 9042 90 9695 
11 9520 51 9002 91 9794 
12 9344 52 8837 92 . 9707 
13 9263 53 8708 93 9669 
14 9428 54 8549 94 9955 
15 9365 55 8422 95 9735 
16 9440 56 8372 96 9993 
17 9537 57 8337 97 9851 
18 9618 58 8186 98 9957 
19 9430 59 7971 99 10008 
20 9482 60 7975 100 9941 
21 9545 61 7845 101 9914 
22 9330 62 7774 102 9814 
23 9375 63 7769 103 9996 
24 9410 64 7655 104 9904 
25 9544 65 7715 105 9786 
26 9346 66 7787 106 10005 
27 9633 67 7810 107 10192 
28 9291 68 8030 108 9619 
29 9273 69 8055 109 4029 
30 9378 70 8275 110 1539 
31 9177 71 8544 111 1005 
32 9422 72 8505 112 529 
33 9435 73 8786 113 71 
34 9529 74 8880 114 4 
35 9331 75 8901 115 4 
36 9337 76 8991 
37 9348 77 8919 
38 9386 78 916L~o 
39 9371 79 9294 
40 9251 80 9512 
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TABLE II 

r1AGNETIC HYPERFINE s·rRUC,.t'URE 
NATURAL IRON ABSORBEH 

56 

__ ,.._.__ ........... ---....... .. ______ .......... ~ .. - -·'""'"--Channel_____ channel---·· · --· Ch.ann'ei ---~ -~ .. 
Number Counts Number Counts Number Counts 
--~·1~----9-25-g-- -Lj:'l9ozs-- ·--~-81--9i83 

2 9148 42 8836 82 9377 
3 9201 43 9105 83 9435 
4 9128 44 9202 84 9318 
5 8990 45 9103 85 9348 
6 9076 46 9096 86 9610 
7 9127 47 9183 87 9659 
8 9009 48 8819 88 9486 
9 9149 49 8893 89 9480 

10 9183 50 9016 90 9469 
11 8974 51 8963 91 9552 
12 9026' 52 9130 92 9228 
13 9184 53 9074 93 9344 
14 9227 54 9083 94 9133 
15 9053 55 8949 95 9265 
16 9043 56 8896 96 9304 
17 9132 57 9003 97 9211 
18 9211 58 8783 98 9206 
19 9208 59 8970 99 9214 
20 9200 60 9183 100 9158 
21 9017 61 9102 101 9272 
22 9177 62 9088 102 9235 
23 9217 63 9328 103 9313 
24 9080 64 9193 104 9240 
25 8949 65 9172 105 9226 
26 8770 66 9023 106 9390 
27 8633 67 8936 107 9322 
28 8641 68 8740 108 9609 
29 8828 69 8795 109 9464 
30 8794 70 9088 110 9491 
31 9117 71 9233 111 9542 
J2 8964 72 9199 112 9454 
33 9055 73 9302 113 9582 
34 8994 74 9296 114 9528 
35 9046 75 9552 115 9580 
36 8997 76 9284 116 9456 
37 8785 77 8977 117 9363 
38 8560 78 8762 118 9623 
39 8760 79 8897 119 9368 
40 8597 80 8891 120 9473 -----
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TABLE III 

QUADRUPOLE COUPLING 
F'ec12 ABSORBER 

Ch;;n-n~e-1"~=- ·-cha--~nni"l;::=..::::::. === 
Number Counts Number Counts 
-f--7b041} -~-·Yol95 

2 83991 42 73352 
3 79984 43 69935 
4 78361 44 66234 
5 74881 45 66117 
6 72824 46 67158 
7 70498 47 65839 
8 72801 48 67840 
9 72945 49 69033 

10 74475 50 69814 
11 76240 51 69251 
12 76254 52 70528 
13 75301 . 53 70427 
14 75936 54 72950 
15 74849 55 68268 
16 74151 56 68963 
17 73784 57 66468 
l8 73753 58 68220 
19 74457 59 68716 
20 72489 60 69878 
21 72662 61 70846 
22 73019 62 72324 
23 72926 63 71950 
24 72806 64 73158 
25 73126 65 71263 
26 73120 66 71912 
27 73710 67 73635 
28 72862 68 73652 
29 72190 69 71427 
30 72394 70 72308 
31 71129 71 72487 
32 71173 72 73155 
33 70028 73 73069 
34 72977 74 72866 
35 70984 75 72166 
36 70864 76 72290 
37 70593 77 72747 
38 72059 78 73507 
39 70343 79 72959 
40 72576 80 72699 
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Number Counts 
--81~1903 

82 73891 
83 74138 
84 74439 
85 74091 
86 73512 
87 71878 
88 73045 
89 7~-027 
90 7lW03 
91 73716 
92 75394 
93 7.3822 
94 74174 
95 75316 
96 75127 
97 74179 
98 75871 
99 77562 

100 76139 
101 '?4899 
102 75982 
103 76317 
104 76810 
105 74847 
106 81703 
107 83210 
108 73461 
109 40908 
110 16156 
111 53058 
112 33813 
113 35835 
11~· 15010 
115 69 
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CHAP':PER VI 

CONCLUSION 

This project, which was of an engineering nature, was 

to build a I'1ossbauer Drive System to be used for classroom 

demonstration, and.as a tool for upper division or graduate 

research. The results obtained using this drive system are 

clear and show a very pronounced drop at points of resonance. 

'l1he center:i.ng of the drive unit is easily accomplished 

and he,s good stabil_i ty. The unit is capable of a larger 

range of velocity amplitudes than was expected. At any 

given amplitude, it operates with very good linearity. Little 

or no difficulty was encountered ·with this particular drive 

unit design. 

When working with the entire system it is essential that 

each part be carefully balanced to provide proper operation 

during the many hours that are necessary to tally sufficient 

counts. Balance is especially critical in the operational 

amplifiers to minimize drift, and produce a flat nonabsorp

tion spectrum. In the spectrum taken by John Roscelli, 

Figure 20 ( pg. 59 ) ; 1 t appears ·from the sloping nonabsorp

tion regions that the system \'Tas not adjusted for good 

linearity. 

In the single channel analyzer, adjustment of the windmJ

width to allow only a narrow peak, containing the 14.4 kev 
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· gamma pulses, leads to better spectrums in that there "trill 

be less spurlous ·counts and thus the per cent absorption 

will be greater. 

In general, the complete system was found to operate 

in a very satisfactory lUc'l.nner with a minimum of difficulties. 
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In the determination of the form of the voltage needed 

by the loud speaker driver, it becomes necessary to knOi>J 

the time dependance of x, x, x, and x. For a recycling 

constant acceleration drive system, the acceleration would be 

a square wave, except for switching time. This wave form is 

better approximated by the trapizodial form 

Whose Fourier analysis components are given by: 

I 
!t. s z.. • .2.wrrt ). bYI ,. T 0 ·fl:t) .4--.1-1.1,. T 1:: 



Combining like terms and simplifying 

b - ~ ( J- l-rrJ-)? 11') ~ j.~€ 
>I - 6. ll 2-ffZ. I 

i
~ ~ ;J.ni1'_E. 

= GJt .. rt.. 1 

0 ') 

therefore 

., 
X 

integrating gives 

It = S x d.t 

integrating agaln 

X = ) i d.& 
3 

.,.. _ <; doT_.~ 1/.,.,n-e 
L ~6 ,~~ f/"11 T 

)1 ,J,). 
I 

differentiating x gives 

~ =it- x 


	The design and construction of a constant acceleration drive system for Mössbauer experiments
	Recommended Citation

	tmp.1536894545.pdf.DQrE7

