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INHIBITION OF N8-ACETYLSPERMIDINE DEACETYLATION ACTIVITY OF 

RAT LIVER 

Abstract of Thesis 

An enzyme activity located in the soluble fraction of rat liver 

which is known to deacetylate N8-acetylspermidine is studied. Using a 

crude cytosol preparation from rat liver, tritium-labelled N8-acetyl-

spermidine ~cetyl-3H] was shown to undergo deacetylation which was 

·dependent upon both time of incubation and protein concentration. The 

Michalis constant for this deacetylation of N8-acetylspermidine is 

approximately 4.4 ~M. 

N1-Acetylspermidine showed a competitive inhibition of this N8-

acetylspermidine deacetylation activity, and was found to be the most 

potent inhibitor tested. Diamine and polyamine compounds were also 

shown to inhibit the deacetylation of N8-acetylspermidine. Spermidine 

was the most potent inhibitor of the naturally occurring polyamines 

tested, followed in order by spermine, putrescine, and cadaverine. Of 

numerous acetylated compounds studied, only acetylprocainamide showed 

any inhibition of this N8-acetylspermidine deacetylating activity at 

concentrations below 10.0 mM. 

Possible functions of the deacetylating activity are discussed 

·along with speculation of the role this enzyme activity may play in 

vivo. 

-----~~~~--~~~ -------
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INTRODUCTION 

Polyamines 

Antony van Leeuwenhoek first discovered spermine phpsphate 

crystals as components of human semen in 1678 (1). Within the next 

100 years, similar polyamine substances were detected in other body 

fluids and in tissues. In 1926 Dudly, Rosenheim, and Rosenheim (2) 

established the structure of spermine, and one year later these 

workers reported the presence of spermidine in animal tissues (3}. 

Interest in these so-called polyamines declined until the 1950's, 

when Rosenthal and Tabor (4) studied the pharmacology of both spermi-

dine and spermine. Since that time, research in the area of poly-

amines has expanded immensely. ) 

I 
The term polyamine today refers not only to spermidine and 

spermine, but also to the diamine putrescine. Other diamines such as 

1,3-diaminopropane and cadaverine (1,5-diaminopentane) are sometimes 

also included in this category of polyamines. Putrescine, spermidine, 

and spermine have been found in almost every living organism studied, 

including animals, plants, protozoa, and viruses '(1). Distribution 

studies of polyamines within humans have shown that these compounds 

occur in most tissues ·studied, and they appear in highest concentra

tion in the brain, adrenals, kidney, and liver (5}. Human blood and 

urine have also been shown to contain polyamines (6,7}. In animals, 

.1 



as in humans, these polyamines have been found in virtually all tissues 

studied (1,8,9). 

The observations cited above led to the natural question of the 

origin of these polyamines in the organisms studied. The biosynthetic 

pathway which has been elucidated shows that putrescine is a product 

of the decarboxylation of L-ornithine by the enzyme ornithine decar

boxylase (10). Spermidine is then formed by the enzyme spermidine 

synthase, which transfers a ro ylamino group from decarboxylated 

s-adenosylmethionine and links it to putrescine. A similar reaction 

can be catalyzed by spermine synthase using spermidine as the propyl

amino acceptor in place of putrescine, and spermine is the resultant 

product (11). Each enzyme mentioned above appears to be located in 

the cytoplasmic fraction of the cell. The biosynthetic pathway dis

cussed above was first demonstrated in the rat prostate gland, and has 

since been shown to occur in the developing chick embryo and the regener

ating rat liver (12,13). Details of this pathway are shown in Figure 1. 

Despite numerous studies, the physiological role of polyamines 

remains uncertain. Studies in vitro have shown that polyamines can 

stabilize the nucleic acids DNA and RNA (14), and this is demonstrated 

by the protection of these nucleic acids from thermal denaturation and 

enzymatic degredation (15,16). Polyamines have also been shown to 

stimulate RNA synthesis in intact rat liver nuclei (17). It has been 

'postulated that the stabilizing effect which polyamines have on RNA 

may be an explanation of this observation. The stimulation of RNA syn

thesis was later reported in two in vivo systems: the developing chick 

embryo and the regenerating rat liver (18,19). The observations dis

cussed above strongly suggest that polyamines lie in close association 

with nucleic acids in vivo. However; there is little direct evidence 

---~ 
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for this close association with the exception of experiments similar 

to the study by Ames and Dubin (20). This experiment used a coliphage 

to demonstrate that both putrescine and spermidine were indeed bound 

to the phage DNA. 

Recent work with polyamines has been focused on two areas: (i) 

their occurrence and physiologic function in growing tissues, and (ii) 

their presence and metabolism in the central nervous system (CNS). 

Polyamines have been shown to be essential for the growth of cer-

tain viruses and bacteria (21,22). In animal tissues, most of the at

tention has been focused on ornithine decarboxylase activity. Rapidly 

proliferating cells have been shown to have high levels of ornithine 

decarboxylase activity (23). This high level of ornithine decarbox

ylase activity seems to result in production of increased levels of 

putrescine and spermidine in tissues. Among those tissues which were 

used to demonstrate increases in ornithine decarboxylase activity and 

subsequent elevated polyamine levels were regenerating rat liver, rat 

uterus after estradiol administration, and tissue which had undergone 

malignant transformation (i.e., breast tumors) (23). The fact that 

neoplastic tissues contain high levels of polyamines led Russell (24) 

to attempt to show that elevated urinary output of polyamines in pa

tients could serve as a diagnostic indicator for cancer. However, 

recent reports indicate that urinary levels of polyamines are highly 

variable, and not a reliable marker for detecting cancer (11). 

Polyamine research in the central nervous system stems from the 

findings of relatively high polyamine concentrations in the brain tis

sue of a variety of animals. Within the CNS, spermidine is found 

associated mainly with the brain stem and spinal cord, whereas spermine 

is much more uniformly distributed (25). The idea of spermidine and 

--------------
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spermine acting as neurotransmitters or neuromodulators is a popular 

one, and this idea is certainly supported by the fact that these poly

amines are found in the synaptosomal fraction of in vitro brain cell 

preparations {_26). However, further research is necessary before any 

conclusions can be drawn as to the functions of these polyamines in 

the CNS. 

Polyamine metabolism studies in the CNS show that spermine be-

Kakimoto (28) discovered the new polyamine,·putreanine fiJ.-( 4-aminobutyl )-

3-aminopropionic acic[l in mammalian CNS, thought to be another metabo

lite of polyamines. Seiler (29) has demonstrated using brains of 

trout and mice that putrescine can become metabolized to ~-aminobutyric 

acid (GABA). This same study further demonstrated that putrescine may 

also become acetylated. Seiler and Al-Therib (30) showed that this 

monacetylputrescine can undergo oxidative deamination both in vitro 

and in vivo by monoamine oxidase (MAO) to form N-acetyl-¥-aminobutyric 

acid and eventually GABA via a deacetylation reaction. 

Acetylated Polyamines 

Research on polyamine metabolism outside the CNS has primarily 

centered around the oxidation of these amines. Diamine oxidase has 

been reported to deaminate putrescine (11). Non-specific amine oxi

dases from plasma and semen have been shown to metabolize polyamines 

(1). Furthennore, Holtta {_31) has recently shown that a specific poly

amine oxidase can be found in rat liver. 

In contrast to the above studies, the acetylation of polyamines 

has received relatively little attention. Polyamines were shown to 

become acetylated in Esherichia coli by Dubin and Rosenthal (32). 

5 



Perry (33) reported that acetylputrescine was found 1n human brain 

tissue, and Seiler (34) later revealed that putrescine can be acety

lated in vitro by rat brain as well as kidney and liver preparations. 

Moreover, this acetylation was found to be associated with the nuclei 

of the liver cell. Acetylspermidine was reported by Walle (35) to be 

present in the urine of cancer patients. More recently, acetyl putres

cine, acetylcadaverine, and two naturally occuring acetylated spermi

dines (N 1- and N8-acetylspermidines) were found to be present in the 

urine of normal patients (36}. N1-Acetylspermidine has also been 

shown to occur in normal human serum (37). 

Blankenship studied the in vitro acetylation of spermidine and 

spermine using chromatin from rat liver and kidney cells (38). 

This acetylation activity was found to be due to an acetyltransferase 

which required acetyl-CoA for the donation of the acetate group. 

Libby (39) studied two acetyltransferases from calf liver nuclei 

which were able to acetylate both spermidine and the histones. There 

has been disagreement as to which group of compounds, the polyamines 

or the histones, are the natural substrates for these acetylating 

enzymes (Blankenship, personal communication). 

While studying the in vitro acetylation of polyamines, Blankenship 

(38) noticed that the addition of the lOO,OOOg supernatent fraction 

from rat liver caused the disappearance of both N1-and N8-acetylspermi

dine. Libby (40) found this disappearance to be due to a deacetylating 

enzyme which occurs in rat liver cytosol. This enzyme was partially 

purified and was found to deacetylate N1-and N8-acetylspermidine along 

with acetylspermine, but not acetylputrescine. In addition, all three 

polyamines inhibited this deacetylation competitively. Blankenship (41) 

showed that this deacetylation activity was the highest in the liver 

6 
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but was also present in spleen, kidney, and lung. Using a crude 

cytosol preparation, N8-acetylspermidine was found to be deacetylated 

much more readily than N1-acetylspermidine. This lack of N1-acetyl

spermidine deacetylation was possibly due to an alternate route of 

metabolism, perhaps that of polyamine oxidase, which is known to 

metabolize N1-acetylspermidine (_42}. In order to fully understand the 

deacetylation of polyamines, a brief review of the known deacetylating 

enzymes is necessary. 

Deacetylating Enzymes 

Acetylation of drugs occurs primarily in the soluble fraction of 

the 1 i ver by acetyltransferases (43}. Acetyl-CoA has been found to 

donate the acetate group, and drugs which are acetylated are almost 

exclusively the aromatic amines (44}. Deacetylation, on the other 

hand, is a term which can be taken to include an enormous number of 

reactions. For instance, an acetylcholinesterase certainly does 

deacetylate acetylcholine. Also, it is known that aspirin is deacetyl

ated by numerous esterases, some of which are located in the liver 

(45}. However, the esterase group of enzymes has been exhaustively 

studied (46} and will not be dealt with in this report. Concern here 

is for the hydrolysis of the amide bond to form the corresponding 

free amine and acetic acid. 

Deacetylation studies on aliphatic amines have been primarily 

confined to acetylated amino acids. Michel {_47} showed that rat 

liver and kidney were capable of deacetylating various amino acids, 

such as N-acetylglycine and N-acetyl-DL-leucine. Bray {_48} demon

strated that this amino acid deacetylating activity was different 

than the deacetylation activity associateEI with the metabolism of 



acetanilid. Recently, Endo (49) has dem-onstrated that there is a 

specific enzyme located in rat kidney which deacetylates only acetylated 

aromatic amino acids, but not a aliphatic amino acids. 

Acetanilid has been the prototype drug used in deacetylation 

studies of acetylated aromatic compounds (47,48). Michel {47) reported 

the deacetylation of acetanilid by liver homogenates, and Kirsch {50) 

demonstrated that acetanilid deacetylase activity was located in hog 

liver microsomes. Nimmo-Smith used chick-kidne mitochondria to.demon-

strate the deacetylation of acetanilid and over 20 derivatives of this 

molecule, suggesting that the deacetylase in the chick kidney was rather 

non-specific. However, Keise (52) performed an extensive study which 

used acetanilid to compare the deacetylation activities of different 

animals, different tissues, and different subcellular preparations. The 

conclusions from this study were that the liver seemed to be the organ 

with the highest acetanilid deacetylation activity, that this activity 

was found predominately in the soluble fraction of the liver cell, and 

that there is an enormous variation among species with respect to their 

ability to deacetylate acetanilid. 

Other studies on compounds which become deacetylated are remark

ably scarce. Reasons for this apparent lack of interest are that {i) 

the amide bond can usually undergo hydrolysis in an acid media, which 

allows for hydrolysis by the stomach when these compounds are ingested, 

and {ii) the fact that many of the early researchers showed that these 

amidohydrolases were quite non-specific {53). However, there have been 

other deacetylation studies conducted which deserve mention here. 

Phenacetin was reported by Brodie and Axelrod (54) to undergo deacetyla

tion in human liver. Although only a minor fraction of the entire 

amount of phenacetin is deacetylated by the liver, the product formed by 
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deacetylation has been shown to be involved in the oxidation of hemo-

globin to methemoglobin. This phenacetin deacetylation activity is lo

cated in the microsomal fraction of liver cell homogenates as reported 

by _Ber hammer (55). Kampffmeyer (56) further demonstrated that pre

treating dogs with phenobarbital caused an induction of these microsomal 

deacetylating enzymes. 

Walasezek (57) showed that colchicine becomes deacetylated by mouse 

and rat liver. Acetylaminofluorine, a known carcinogen, has been report-

ed to be deacetylated by rat liver slices (58). Krebs (59) has sho.·m 

that sulfonamide drugs are acetylated and subsequently deacetylated by 

sheep liver and kidney. Unfortunately, there has been no follow-up 

research which would show whether these deacetylating activities repre

sent the same enzyme activity or if the enzymes responsible are distinct 

and specific for their particular substrate. 

Today it is generally agreed that there are many different 

N-deacetylating enzymes, most of which are found in the soluble fraction 

of liver cells, and some of which have broad substrate specificities 

The purpose of the present study is to determine the specificity of the 

observed N8-acetylspermidine deacetylating activity, and to report an 

apparent Michalis constant, or ~' for N8-acetylspermidine. Acetylated 

compounds which are known to undergo deacetylation will be used to deter

mine if they may cause inhibition of this N8-acetylspermidine deacetyla

tion activity. Finally, parent,polyamine compounds will be used to exa-

. mine the possibility that they may also cause an inhibition of this de

acetylation activity. 
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MATERIALS AND METHODS 

Chemicals and reagents used were purchased from J.T. Baker Chemical 

Company, Phillipsburg, New Jersey. Drugs were obtained commercially 

anhydride (5.0 mCi, Lot #1147-080, 10.2 mg, activity 47.3 mCi/mmole) was 

purchased through New England Nuclear, Boston, Massachusetts. 

Synthesis of N8-Acetylspermidine [acetyl- 3~ 
3H-Acetic anhydride (1x10-4 moles) was reacted with a tenfold excess 

of spermidine in 1 ml of acetonitrile. The reaction was carried out for 

1 hour in a dry ice bath. After the reaction was complete, 10 ml of 

distilled water was added and this mixture was applied to the column 

described below for separation. 

Purification of N8-Acetylspermidine ~cetyl- 3~ 
A 25 em x 1.5 em column packed with Amberlite ion exchange resin 

CG-50 (100-200 mesh) was prepared with a pH of 9.5 by washing with 3N 

NH 40H and distilled water. This column was then used to separate un

reacted spermidine, N1- and N8-monoacetylated spermidines, and other 

acetylated spermidine products, as described by Blankenship (38). 

After adding 10 ml of the reacted mixture to the column, elution was 

carried out with 50 ml distilled water followed by 100 ml of 0.5M 

NH40H and 100 ml of 2.0M NH40H. Fractions containing 2.0 ml were 

10 
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collected during the 2.0M NH40H elution, and each odd fraction was analyzed 

by thin-layer chromatography~ The fractions were then checked for radio

active content by liquid scintillation spectrometry. Fractions found to 

contain only the N8-acetylspermidine were pooled and the NH40H was re

moved by evaporation. The vi~ous solution remaining after evaporation 

was taken up in 10 ml distilled water and the pH was adjusted to 2.0 with 

IN HCl. This product was found to remain stable when kept refrigerated. 

Purity Determination of N8-Acetylspermidine Gcetyl-3~ 
Purity of the final N8-acetylspermidine dihydrochloride was checked 

using thin-layer chromatography (TLC) and high-pressure liquid chromato

graphy (HPLC). For TLC, 5 ul of the final product was spotted onto a 

20 em x 5 em silica gel plate (type 60F-254, 0.25 mm thickness, Brinkman) 

along with 5 pl of standard N8-acetylspermidine. Chromatography was 

carried out with chloroform-methanol-NH40H (2:2:1), and polyamines were 

identified with ninhydrin (20 mg/ml ninhydrin in butanol). The silica 

gel was then scraped for the area corresponding to the Rf value of N8-

acetylspermidine, and this was placed into a scintillation vial. The 

remainder of the material on the plate was then scraped into a separate 

scintillation vial, and both vials counted for radioactivity. Purity 

was estimated by the ratio of counts of N8-acetylspermidine/ total counts 

on the entire plate. 

Methods of sample preparation for HPLC are described under 11 Quanti

tation of N8-acetylspermidine by HPLC. 11 N8-Acetylspermidine was checked 

for contamination by N1-acetylspermidine by collection of a·.S'-ml frac

tions with retention times corresponding to that of the N1-acetylsperm

idine peak. These 0.8-ml fractions were placed in separate scintillation 

vials and counted. Fractions (0.8 ml) were also collected corresponding 



to the N8-acetylspermidine peak and these were placed in separate 

scintillation vials and counted. Contamination was estimated from the 

ratio of total counts corresponding to the N1-acetylspermidine peak/ 

total counts in all fractions collecteda 

Cytosol Preparation 

Naive male Wistar rats (~imonsen Labs, Gilroy, California}, 140-180 

pended in cold 0.25M sucrose ... 50mM NaH2Po4-5mM. MgC1 2 buffer (SPM buffer), 

pH 7.4 .. Three grams of liver were then placed in 12 ml of SPM buffer 

and homogenized for 15 seconds at the maximum setting of a Brinkman 

Polytron (_model PCU-2) homogenizer. The homogenate was centrifuged in 

a Beckman Ultracentrifuge (rnodel L3-40) at 105,000 x g for 60 minutes .. 

The resulting supernatant was diluted 1:1 with SPM buffer and used in 

the deacetylation assay. All cytosol samples were prepared fresh 

at 4° C. 

Enzyme Assays 

The procedure for assaying N8-acetylspermidine deacetylation was 

carried out by the methods of B 1 an kens hi. p (~ 11.. A fin a 1 vo 1 ume of 

0.5 ml consisted of 0 . .125 mmoles of sucrose, 29 pmoles of NaH2Po4, 

0.3-0.7 n~oles of N8-acetylspermidine, and 0 •. 5 ... 1..3 mg protein Cfrom 

liver cytosol preparation}.. The reaction was initiated by the addition 

of 1:1 cytosol-SPM mixture. This was incubated at 37° C for 10 minutes 

while shaking using a Dubnoff incubator.. The reaction was stopped at 

4° C by the addi_tion of 100 ,ul 1N HC1-0 •. 05M aceti.c acid. For the 

inhibition studies, inhibiting substances were added in SPM buffer in 

concentrations ranging from 0.10mM to 10,0mM. 

---·------------- ----------------------
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Extraction Procedure 

Ethyl acetate (3.0 ml} was added to each of the tubes containing 

the completed reaction mixture. The tubes were then shaken vigorously 

for 1 hour, and centrifuged at 1500 ~ g for 5 minutes. Two ml of the 

organic layer was transferred to a counting vial containing 10 ml of 

scintillation fluid, and radioactivity was determined by liquid scintil

lation spectrometry using a Beckman CPM 100 scintillation counter. The 

13 

grams/liter of 2,5-diphenoxazole and 0.66 grams/liter of Q-bis@

(5-phenoxazoleil-benzene. Counts per minute were converted to disintegra

tions per minute using a quench-correction curve. The standard used for 

the quench-correction contained ~~-toluene (Lot #697-199-3; activity 2.19 

x 106 dpm/ml, calibrated 6/16/78}, quenched with an acetone-chloroform 

mixture (1:1} in increasing amounts. 

Protein Determination 

The amount of protein used in each assay was determined by the method 

of Lowry (60}. A standard curve was plotted using bovine serum albumin 

(300 ug/ml} in 15 pg, 30 pg, and 60 pg amounts. The 1:1 cytosol-SPM mix

ture from each assay was then diluted 1:9 with SPM buffer (to achieve 

values within the range of the standard curve} and 50 pl of this dilution 

was assayed at the same time as the standard curve was obtained. After 30 

minutes absorption was measured on a double-beam spectrophotometer (model 

ACTA C11} using a blank which lacked only protein. Measurements were 

taken at A of 750 mp and a slit width value of 0.5. 

Quantitation of N8-Acetylspermidine by HPLC 

Acetylated polyamines were prepared for HPLC analysis by the methods 



described by Lettes (61). N8 -Acetyl spermidine Gcetyl-3~ and acetyl a ted 

polyamine standards were diluted with perchloric acid giving a final con

centration of 0.2N perchloric acid. Aliquots of 0.5 ml were saturated 

with sodium bicarbonate, three volumes of dansyl chloride in acetone were 

added (lO mg/ml, 56 pmoles), and this mixture was shaken overnight. 

Proline was added (_to remove excess dansyl chloride), and the dansylated 

amines were extracted with toluene. The extract was evaporated to dry-

analysis. Separation of dansylated derivatives was achieved on a Perkin 

Elmer Silica B/5 (0.46 x 25 em) column with a Silica A (0.26 x 25 em) 
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precolumn. A Perkin Elmer Series 2 HPLC system utilizing a fluorescence 

detector (model 204-A) was used with a solvent of chloroform: isopropanol 

(75:2) at a flow rate of 0.4 ml/min. 

Quantitation was established by structuring a standard curve of 

chromatograph peak areas vs. amount of standard N8-acetylspermidine (0.5 

nmole - 10.0 nmole range) present. Three 100 pl samples of synthesized 

N8- acetylspermidine ~cetyl-3~. were prepared as above and injected onto 

the column separately, the area of each peak determined, and the nmoles 

of N8-acetylspermidine present calculated from the standard curve using 

the average peak area of the three trials. 

-
~ 



RESULTS 

Purification and Quantitation of N8-Acetylspermidine ~cetyl- 3H] 

Radioactivity of the fractions which eluted off the column with 2.0 

M NH40H is shown in Figure 2. Fractions 7-21 were pooled and 97.2% of 

total radioactivity had an Rf value corresponding to N8-acetylspermidine 

on TLC. Contamination of this N8-acetylspermidine by N1-acetylspermidine 

was estimated by HPLC to be less than 2.6% of total radioactivity. 

Pooled fractions containing N8-acetylspermidine (3.6 x 105 dpm) were 

injected into the HPLC system, the peak area corresponded to approximately 

6.9 nmoles of standard N8-acetylspermidine, which represents a specific 

activity of 5.26 x 104 dpm/nmole. 

Time and Protein Dependence of N8-Acetylspermidine Deacetylation 

N8-Acetylspermidine deacetylation activity was shown to be linear 

for at least 15 minutes using 3.4 nmoles of N8-acetylspermidine and 1.0 

mg protein, as shown in Figure 3. This N8-acetylspermidine deacetyla

tion was found to be linear with respect toprctein concentration up to 

3.0 mg/assay as described in Figure 4, where 3.4 nmoles N8-acetylsperm

idine were used with a 10-minute incubation time. 

Determination of the Km for Deacetylation of N8-Acetylspermidine 

Figure 5 represents the relationship between deacetylation veloc1ty 

and N8-acetylspermidine concentration (mM). The reaction is shown to 

.~ 



FIGURE 2. SEPARATION OF N1- AND N8-ACETYLSPERMIDINE BY COLUMN CHR0~1ATOGRAPHY 

An elution profile is shown for N1- and N8-acetylspermidine [acetyl- 3~using 

a chromatographic system of Amberlite CG-50, eluted with 2 N NH
4

0H. The first 

peak corresponded upon further analysis to N8-acetylspermidine Co--lo) while 

the second peak corresponded to N1-acetylspermidine (----.). 
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FIGURE 3. TIME DEPENDENCE OF N8-ACETYLSPERMIDINE DEACETYLATION 

Exper;ments were run under standard ;ncubat;on cond;t;ons at a conc~ntrat;on 

of 6.8 nmoles/ml of N8-acetylspermidine ~cetyl-3H]. Each point (•
1
--11) 

represents the average of triplicate determinations. 
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FIGURE 4. PROTEIN DEPENDENCE OF N8-ACETYLSPERMIDINE DEACETYLATION 

Experiments were run under standard incubation conditions at a 

concentration of 6.8 nmoles/ml of N8-acetylspermidine ~cetyl-3~. 

Each point (o--o) represents the average of triplicate deter-

minations. 
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FIGURE 5. RELATIONSHIP OF N8-ACETYLSPERMIDINE CONCENTRATION AND D~ACETYLATION 
ACTIVITY 

Experiments were run under standard incubation conditions while va1:ing the 

concentration of N8-acetylspennidine ~cetyl-3H]. Each point (o--
1

o) 

represents the mean of triplicate determinations. 
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FIGURE 6. DOUBLE-RECIPROCAL PLOT OF N8 -ACETYLSPERMIDINE CONCENTRATIION . . . 

VERSUS DEACETYLATION ACTIVITY 

Experiments were run under standard incubation conditions at varyin~ con

centrations of N8-acetylspermidine ~cetyl-3~ .. Each point Co--ol) repre

sents the mean of triplicate determinations.. This line has been fi~ted by 

linear regression analysis Cr=0.99}. 
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proceed from a rate which follows first-order kinetics (which represent 

substrate concentration as the limiting factor) to a rate which follows 

mixed first-order and zero-order kinetics, and finally proceeding to a 

rate which follows zero-order kinetics (which represent enzyme concentra

tion as the rate-limiting factor). Figure 6 shows a Lineweaver-Burk 

plot from which the value of Km for N8-acetylspermidine is estimated to 

be 4.4 ~M. To insure that deacetylation of N8-acetylspermidine was being 

measured, non-radioactive N8-acetylspermidine standard was added to this 

reaction and was shown to inhibit this deacetylation competitively, with 

a Ki value of 4.5 pM. 

Inhibition of N8-Acetylspermidine Deacetylation by Various Compounds 

Double-reciprocal plots were used to show inhibition of the N8-

acetylspermidine deacetylation by certain compounds (Figures 7-14). 

These graphs represent only the compounds which inhibited deacetyl ati on 

when used at concentrations less than 10 mM. N1-Acetylspermidine 

showed the most inhibition of any compound tested, and was the only 

substance which appeared to produce a purely competitive inhibition, as 

seen in Figure 7. Of the non-acetylated diamines and polyamines tested, 

spermidine showed the greatest ability to inhibit the deacetylation 

reaction (Figure 8). Spermine, putrescine, cadaverine, and 1,6-diamino

hexane all showed inhibition to a lesser extent as seen in Figures 9-12. 

Interestingly, 1,3-diaminopropane showed only slight inhibition at con

centrations less than 10 mM. Acetylprocainamide (Figure 13) and aspirin 

(Figure 14) were the only drugs tested which caused inhibition of the 

deacetylating reaction at concentration less than 10 mM. 

Acetanilid and sodium salicylate showed no inhibition at any of the 

concentrations tested (0.5-10.0 mM), whereas colchicine, phenacetin, 
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FIGURE 7. DOUBLE-RECIPR CAL PLOT OF THE INH1BlT_lOJILOF_N!_8.._-________ _ 

ACETYLSPERMIDINE DEACETYLATION BY N1-ACETYLSPERMIDINE 

Experiments were run under standard incubation conditions. The 

three plots represent activity in the absence of N1 ~acetylspermidine 

(o--o) and in the presence of 0.1 mM (6--6) or 1.0 mM (o-o) 

N1-acetylspermidine. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values=0.99, 0.99, and 0.99). 
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---------~----------------~~~~-

FIGURE 8. DOUBLE-RECIPROCAL PLOT OF THE INHIBITION OF N8-

ACETYLSPERMIDINE DEACETYLATION BY SPERMIDINE 

Experiments were run under standard incubation conditions. The 

three plots represent activity in the absence of spermidine (o---o) 

and in the presence of 0.1 mM (6--6) and 0.3 mM (o-a) spermidine. 

Each point represents the average of triplicate determinations. All 

lines were fitted by linear regression analysis (respective r values= 

0.99, 0.99, and 0.99) • 
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ACETYLSPERMIDINE DEACETYLATION BY SPERMINE 

Experiments were run under standard incubation conditions.. The 

three plots represent activity in the absence of spermine (_o--o) 

and in the presence of 0.1 mM (A-i!.) or 0. 5 mM (o--o) spermine. 

Each point represents the average of triplicate determinations. All' 

lines were fitted by linear regression analysis (_respective r values= 

0.99, 0.99, 0.99). 
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ACETYLSPERMIDINE DEACETYLATION BY PUTRESCINE 

Experiments were run under standard incubation conditions. The 

three plots represent activity in the absence of putrescine (o--o} 

and in the presence of 0.1 mM 9 (~} or 0.5 mM (o--o} 

putrescine. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values=0.99, 0.99, and 0.99}. 
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ACETYLSPERMIDINE DEACETYLATION BY CADAVERINE 

Experiments were run under standard incubation conditions. The 

three plots represent activity in the absence of cadaverine (o--o) 

and in the presence of 0.5 mM (Lr--C.) or 1.0 mM (o-o) cadaverine. 

Each point represents the average of triplicate determinations. All 

lines were fitted by linear regression analysis (respective r values= 

0.99, 0.99, and 0.99). 
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ACETYLSPERMIDINE DEACETYLATION BY 1,6-DIAMINOHEXANE 

Experiments were run under standard incubation conditions~ The 

three plots represent activity in the absence of 1,6-diaminohexane 

(o--o) and in the presence of 0.5-mM (.~--~) or 1.0 mM (_o-:-o) 

diaminohexane. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values= 0.99, 0.99, and 0.99). 
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ACETYLSPERMIDINE DEACETYLATION BY ACETYLPROCAINAMIDE 

Experiments were run under standard incubation conditions. The 

three plots represent activity in the absence of acetylprocainamide 

(o--o) and in the presence of 1~0 mM (~) or 10 .. 0 mM (_o-a) 

acetylprocainamide. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values=0.99, 0.99, and 0.99)~ 
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FIGURE 14. DOUBLE-RECIPROCAL PLOT OF THE INHIBITION OF N8-

ACETYLSPERMIDINE DEACETYLATION BY ASPIRIN 

Experiments were run under standard incubation conditions.. The 

three plots represent activity in the absence of aspirin (o---o) 

and in the presence of LO mM (~} or 10,0 mM (o--o) aspirin •. 

Each point represents the average of triplicate determi.nations ._ 

All lines were fitted by linear regression analysis (respective 

r values=0.99, 0.99, and 0.99)a 
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Table I. Inhibition of N8-Acetylspermidine Deacetylati.on by Variou~ Compoundsa 
. . . I 

CCMPOUND 
I 

CONCENTRATIONS TESTED, mM Ki, m
1

M 

N1-Acetylspermidine 0.1, 1.0 0.16 

Spermidine 0.1, 0.3 0.31 

Spermine 0.1, 0.5 1.15 

Putrescine 0.1, 0.5 1.45 

Cadaverine 0.5, 1.0 1. 50 

1,6-Diaminohexane 0.5, 1.0 1.50 

Acetylprocainamide 1.0' 10.0 1.90 

Aspirin 1.0, 10.0 >2.00 

!compounds are listed in the order of decreasing inhibition of N8-acetyl!spermidine 

deacetylation activity. The value for Ki is obtained from the Dixon plof, which 

is a graph of the concentration of inhibitor vs the reciprocal of the ve'l1ocity of 

deacetylation. The intersection of the lin~s which represent different concentra

tions of N8-acetylspermidine corresponds to the negative Ki of that partj1icular 

inhibitor for this deacetylation reaction. 
+=:> 
w 

I , 'I i , 'J1l:lli11' , 'nmm ' I I ·1' n "llf'"I'T'"'"'"I:'n·' ·::J::n :T)lilJrr-:;:r:~F~- r:: -~~~H:-rr:J:!rr:ornrr-:·lFir~~-~--:J=:::T-r::·r.=-::::fR:~ · 
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11 ______ __L_,IcGURE__l_5___._______0 IX ON PLOT OF THE EFFECJ_Q_E_f'J l_ ACEJ_'£lSJ:>ERMlDINE-ON, ________ ~ 

N8-ACETYLSPERMIDINE DEACETYLATION ACTIVITY 

Experiments were run under standard incubation conditions. The 

three plots represent deacetylation activity using Q69 nmoles (----.), 

1.72 nmoles (~), or 3.45 nmoles (_o--a) of N8-acetylspermidine 

[acetyl-3H]. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values=0.99, 0.99, and 0,99). 
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FIGURE 16. DIXON PLOT OF THE EFFEil_O_E_ACETYLPRO_Cl-\lN8MlDLO,il_N__LNl_8=-------~ 

ACETYLSPERMIDINE DEACETYLATION ACTIVITY 

Experiments were .run under standard incubation conditions. The 

three plots represent deacetylation activity using 0 .. 69 nmoles (11--11), 

1.72 nmoles (~},or 3.45 nmoles (o--o) of N8-acetylspermidine 

[;cetyl- 3~. Each point represents the average of triplicate 

determinations. All lines were fitted by linear regression analysis 

(respective r values=0.99, 0.99, and 0.99}. 



30 

25 

c: 

E 
0 20 

' c: ~ ·- ~ Q) ... ]::; 

0 i '- -c. I 5 
0' 

-

" 

E -

' 1/) 
Q) - I 0 0 
E 
~ ~· 

~ 

~ 

"' !1' 

-4.0 -2.0 2.0 4.0 6.0 8.0 10.0 

[ Acetylprocainamide] mM 



48 

neostigmine, acetylpenicillamine, and acetylacetone all showed slight 

inhibition of N8-acetylspermidine deacetylation activity at 10.0 mM con

centrations. Also, naturally occurring compounds such as acetylornithine, 

acetylcysteine, and acetylglycine showed inhibition only at 10 mM con

centrations, and acetylgalactosamine was found not to inhibit this deacety

lation activity, even at 10 mM concentrations. 

To detennine the amount of inhibition. of N8-acetylspermidine 

deacetylation produced by each compound, Dixon plots (62) were used to 

estimate Ki for each compound. The Dixon plot .is a graph of concentration 

of inhibitor vs. the reciprocal of the velocity of the reaction (in this 

case, the velocity of deacetylation). Each line represents a concentra

tion of substrate used (N8 -acetyl spermidine concentration). The point 

where these lines intersect is approximately the negative Ki of that par

ticular reaction being carried out. Figure 15 shows a Dixon plot with 

N1-acetylspermidine as the inhibitor, which was found to have the lowest 

Ki value of all the compounds tested. The results obtained with acetyl

procainamide are shown in Figure 16, and this is the only drug tested 

which showed a Ki below 2.0mM. Table I 1 ists all compounds tested which 

showed Ki values lower than 2.0mM. Each of the Ki values was determined 

graphically from Dixon plots as shown for N1-acetylspermidine in Figure 

15. It should be pointed out that only the diamines and polyamines were 

seen to inhibit N8-acetylspermidine deacetylation activity with values 

for the K; 1 ess than 2. Om~1. 

-
t....:. 



DISCUSSION 

The present study is an attempt to characterize the deacetylating 

enzyme activity from rat liver cytosol for the deacetylation of N8-

acetylspermidine. The Km for deacetylation of NB-acetylspermidine 

is estimated to be 4.4 pM as determined from the double-reciprocal plot 

in Figure 6. Libby (40) reported that the partially purified deacet

ylating enzyme which he studied showed a Km for Nl-acetylspermidine of 

approximately 3.0 pM. This is quite close to the value reported here of 

4.4 pM for N8-acetylspermidine, and it seems reasonable to assume that 

the deacetylating activities are one and the same. The fact that N8-

acetylspermidine has a Km value in the pM range suggests that the 

deacetylating activity present in rat liver cytosol is quite specific 

for NB-acetylspermidine as a substrate. In compartson, N-acetyl- -

alanine is reported to have a Km of 2.5 mM when hydrolyzed by an enzyme 

located in hog kidney (63), and N-acetylgalactosamine is deacetylated 

by an enzyme found in bovine liver with a Km of 10.8 mM (64). 

The Km is a rate constant which represents the relationship be

tween the rate of enzyme-substrate formation and degradation during 

a reaction (62). Reporting the Km of a substrate for a particular 

enzyme-catalyzed reaction is important for a number of reasons: (i) 

the ~establishes an approximate value for the intracellular level 

of the substrate, (jj_) since the Km is constant for a given enzyme 

and substrate, its value provides a means of comparing and identifying 

enzymes from different organisms, or from different tissues within 

the same organism, and (iii) a change in the apparent~ by the 
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addition of certain compounds during a ~eaction can lead to information 

about possible activators or inhibitors of the enzyme being studied. 

A second important aim of this study is to examine the effects of 

various potential inhibitors on this enzyme activity. An inhibitor is 

descri'bed by Segel (62} as any substance which reduces the velocity of 

an enzyme-catalyzed reaction. This reduction in velocity is manifested 

on a double-reciprocal plot (1/v ~· 1/[s]} as a new line with an in-

r.-
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intersection with the central line. The point at which this new line 

intercepts the x-axis is the negative 1/~ apparent, or the negative 

reciprocal of the newly observed ~· A further analysis and quantita-

tion of the inhibition can be made with a replot o~ ~apparent vs 

concentration of inhibitor. This plot provides a rate constant referred 

to as the Ki of the inhibitor for the particular reaction being mea-

sured, and this Ki is analagous to the Km of the substrate for a 

particular reaction. A more practical and accurate method of determining 

the K
1
• of an inhibitor than the replot of K apparent vs. concentration m -

of inhibitor is the Dixon plot (64} which is used in this report. Using 

several concentrations of inhibitor, a Dixon plot displays 1/v ~ [r] 
and the negative Ki is read directly from the value on the x-axis which 

corresponds to the point where the lines intersect. The Dixon plot can 

be used even if the nature of the inhibition is unknown (i.e., competitive, 

non-competitive, or mixed} and if the maximum velocity of the reaction 

(Vmax} is also unknown. 

The present study showed that various compounds were able to inhibit 

the deacetylation of N8-acetylspermidine when added to the standard incuba

tion mixture. Only N1-acetylspermidine was seen to inhibit this deacetyla-

tion competitively; as shown in Figure-7 by the intersection of the lines 



at the y-axis. This competitive inhibition would suggest that both N1-

and N8-acetylspermidine are deacetylated by the same enzyme activity. 

However, the value for the Ki of N1-acetylspermidine is approximately 
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160 uM, which is nearly 40 times the ~ of N8-acetylspermidine reported 

here. This finding would tend to suggest that N8-acetylspermidine is the 

preferred substrate among the compounds tested in this system. Libby {40) 

reported the ~ of 3.0 pM for N1-acetylspermidine using a partially 

purified enzyme preparation from rat liver. The difference in purity of 

these enzyme. systems may account for the differences in these two studies. 

It is also important to point out that Blankenship (42) reported that 

N1-acetylspermidine does not undergo deacetylation as a major metabolic 

route as does N8-acetylspermidine when using a crude cytosol preparation. 

Since N1-acetylspermidine is known to undergo oxidative cleavage, it is 

possible that oxidazing enzymes such as polyamine oxidase may be present 

in the lOO,OOOg fraction of liver used here. It therefore seems reason

able that although the inhibition by N 1 ~acetylspermidine is competitive, 

the approximate Ki of N1-acetylspermidine in this crude cytosol prepara

tion is larger than in a partially purified system due to other major 

pathways of metabolism which are present. 

The parent polyamine compounds showed the greatest inhibition of 

N8-acetylspermidine deacetylation aside from N1-acetylspermidine. Spermi

dine, spermine, and putrescine inhibited this deacetylation reaction 

although the type of inhibition (i.e., competitive or mixed) was not 

determined. An interesting point is that spermidine was found to be the 

most potent inhibitor of N8-acetylspermidine deacetylation of these 

three polyamines with a Ki of 310 pM, followed by spermine at 1.15 mM, 

and putrescine at 1.45 mM (Table I). This differs from the report by 

Libby (40) in which spermine was found to be the most potent inhibitor 
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of N1-acetylspermidine deacetylation followed by spermidine and putrescine. 

Again it must be emphasized that these polyamines were added to different 

enzyme systems when comparing this study to the study by Libby (40). 

In addition to putrescine, three other diamino compounds, 1,3-diamino

propane, cadaverine and 1,6-diaminohexane were shown to inhibit the 

deacetylation of N8-acetylspermidine, but not to as great an extent as did 

putrescine. Also, 1,3-diaminopropane inhibited the reaction only slightly 

unless used at a concentration of 10.0 mM. The K. for both cadaverine and 

1,6-diaminohexane are approximately the same at 1.5 mM. These results 

suggest that the length of the carbon change between amino groups is one 

factor affecting the affinity of a compound for the deacetylating enzyme, 

along with other factors such as number of amino groups on the molecule. 

This may explain why spermidine and spermine have lower Ki values than 

putrescine or other diamines tested. 

Acetylprocainamide was the only drug found to inhibit N8-acetyl

~permidine deacetylation, with a Ki of less than 2.0 mM (approximately 

1.9 mM from Figure 16). There is no available literature which dis

cusses the in vivo deacetylation of this compound, and it is therefore 

very difficult to speculate on the enzyme(s) normally involved in the 

deacetylation of acetylprocainamide. One factor to consider is that a 

concentration of nearly 1.9 mM acetylprocainamide would have to be pre

sent in the soluble fraction of the liver before the deacetylation acti

vity would metabolize a significant amount of acetylprocainamide. More

over, it must be pointed out that the structure of acetylprocainamide con

tains thre.e amino groups.,. .. two of which are in an aliphatic portion of the 

molecule separated by two carbon atoms. This structure may play a role 

in inhibiting this enzyme activity. Certainly it is not possible to 

determine from the present inhibition studies whether acetylprocainamide 

,. 
: 
:. 
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can actually serve as a substrate for this deacetyl ating enzyme. 

Aspirin was the only other compound tested which inhibited N8-

acetylspermidine deacetylation activity at concentrations less than 10.0 

mM. However, this inhibition is probably due to aspirin lowering the pH 

of the final standard incubation mixture, which in turn may decrease the 

deacetylating activity. This finding is consistent with the findings of 

Blankenship (41) that deacetylation activity of N8-acetylspermidine is 

reduced when the pH of the standard incubation mixture is dropped below 

7.3. Other compounds were shown either to inhibit deacetylation activity 

of N8-acetylspermidine slightly or not at all. Acetylacetone was expected 

and was found to be inhibiting the N8-acetylspennidine deac·etylation activ

ity since its hydrolysis involves the breaking of an ester bond rather than 

an amide bond. Neostigmine is known to be an inhibitor of esterase$, 

especially acetylcholinesterase (65), and was also found to inhibit the 

observed deacetylation activity only slightly. The major deacetylating 

enzymes for phenacetin are found in the microsomes (55), and the observa

tion here t~at phenacetin is not effective in inhibiting N8-acetylspermi

dine deacetylation is consistent with this finding. Colchicine and 

acetylgalactosamine, both of which are known to be deacetylated in the 

liver (57,64) also showed no inhibition of this deacetylation activity 

which metabolizes N8-acetylspermidine. 

An interesting observation made in the present report is that acetan

ilid and the acetylated amino acids, acetylglycine and acetylcysteine, 
-

each produced only slight inhibition of N8-acetylspermidine deacetylation 

at 10.0 mM concentrations. Since Bray (48) showed that the amidohydro

lases which metabolize acetanilid and the acetylated amino acids are 

different, these present data indicate the presence of an additional 

amidohydrolase enzyme activity which deacetylates N8-acetylspermidine 

l~ 
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and is different from the enzymes which ,deacetylate acetanilid and the 

acetylated amino acids. This is especially interesting since acetanilid 

deacetylation is known to occur primarily in the soluble fraction of the 

liver (52). The fact that neither acetylated amino acids nor acetyl

galactosamine caused an inhibition of N8-acetylspermidine deacetylation 

activity agrees with the deacetylation data for N1-acetylspermidine 

reported by Libby (40). 

Finally, two acetylated compounds which have not been studied as to 

their routes of deacetylation in mammalian systems are acetylpenicillamine 

and acetylornithine. Both of these compounds showed only slight inhibition 

of N8-acetylspermidine deacetylation activity at high concentration. It 

is of interest that acetylornithine is the acetylated precursor of putres

cine but showed no inhibition of deacetylating activity at concentrations 

less than 10.0 mM. 

The above data indicate that the enzyme activity from rat liver 

which deacetylates N8-acetylspermidine is different from many other 

deacetylating activities known, including amidohydrolases which metabolize 

endogenous compounds as well as enzymes which deacetylate exogenous com

pounds. This observation along with findings that the ~ for N8-acetyl

spermidine in this deacetylation reaction is in the uM range suggests that 

the enzyme may be specific for N8-acetylspermidine and other acetylated 

polyamines as substrates for deacetylation. A possible function of this 

N8-acetylspermidine deacetylation is to regulate the intracellular levels 

of polyamines. The acetylated polyamines which are produced in the 

nucleus by an acetyltransferase can become deacetylated in the cytosol by 

an amidohydrolase (41). The finding that non-acetylated polyamine com

pounds show an inhibition of this deacetylating activity allows for the 

possibility of a feedback inhibition by the product of the reaction, 

h 



which could shut down the N8-acetylspermidine deacetylating activity 

when the appropriate concentration of spermidine was reached. Further, 

investigation is needed to confirm or disprove this proposed role for 

acetylpolyamine deacetylation. 
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CONCLUSIONS 

An apparent ~ of 4.4 pM was determined for the deacetylation of 

N8-acetylspermidine by the soluble fraction of rat liver. This suggests 

a relatively high degree of specificity for N8-acetylspermidine and 

possibly other acetylated polyamines by this deacetylating activity. 

N1-Acetylspermidine was the only compound used in this study which 

clearly showed a pure competitive antagonism of the observed N8-acetyl

spermidine deacetylation activity. Of all the compounds which were 

found to inhibit N8-acetylspermidine deacetylation, N1-acetylspermidine 

was the most potent inhibitor with a Ki in this system of 160 pM. 
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Various diamine and polyamine compounds were also shown to inhibit 

N8-acetylspermidine deacetylation activity in this study. Of the naturally 

occurring polyamines, spermidine was found to be the most potent inhibitor, 

followed in decreasing order of potency by spermine, putrescine, and cadav-

erine. 

Acetylprocainamide inhibited the N8-acetylspermidine deacetylation 

at relatively low concentrations and was found to have a Ki comparable 

to those of the diamines. Other acetylated compounds (including acetylated 

amino acids, acetylaminosugars, and acetylated aromatic amines) showed no 

significant inhibition of the deacetylating activity in the range of con

centrations studied. 

;;_ 
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