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Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain
Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme

Spencer Hill,a Joseph S. Harrison,b,c Steven M. Lewis,b Brian Kuhlman,b,c Gary Kleigera

Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada, USAa; Department of Biochemistry and Biophysics, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina, USAb; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USAc

Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the
biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface
and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the
structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite speci-
ficity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a
key electrostatic interaction between Arg 54 on ubiquitin and Asp 143 on Ube2R1/2. The validity of this interaction was con-
firmed through biochemical experiments. Since structural examples involving Arg 54 in protein-ubiquitin complexes are exceed-
ingly rare, these results provide additional insight into how ubiquitin-protein complexes can be stabilized. We discuss how these
findings relate to how other ubiquitin-conjugating enzymes direct the lysine specificity of polyubiquitin chains.

The assembly of polyubiquitin (poly-Ub) chains onto proteins
is a critical signaling process that is required for eukaryotic

cellular homeostasis. Polyubiquitin chain synthesis is initiated
when ubiquitin, a highly conserved 76-amino-acid protein, is ac-
tivated by ubiquitin-activating enzyme (E1). In an ATP-depen-
dent process, E1 forms a high-energy thioester bond, denoted with
“�,” to the C terminus of ubiquitin. Next, the ubiquitin is trans-
ferred from E1 to a ubiquitin-conjugating enzyme (E2). Finally, a
ubiquitin ligase (E3) recruits both the E2�ubiquitin complex and
a protein substrate. E3 enzymes in the RING family (1) stimulate
the transfer of ubiquitin from the E2 to a lysine residue on the
substrate (2–9), resulting in the formation of an isopeptide bond
between ubiquitin’s C terminus and the amino group on lysine
side chains.

During the process of RING class E3-catalyzed ubiquitylation,
ubiquitin serves two major roles: it serves as a donor when an E2
transfers the ubiquitin from its active site to a protein substrate
bound to an E3, and it serves as an acceptor when ubiquitin con-
jugated to substrate attacks an E2�donor ubiquitin. Ubiquitin
contains seven lysine residues located on its surface, and consec-
utive ubiquitins in a polyubiquitin chain are either covalently
linked between one of these lysines or the N-terminal amino
group on an acceptor ubiquitin and the C terminus of the donor.
The identity of the site that tethers ubiquitins in the chain is of
critical importance since different linkage types adopt unique
conformations that signal alternative biological outcomes (10).
For instance, a protein modified with Lys 48-specific polyubiqui-
tin chains is targeted to the 26S proteasome for its degradation
(11), whereas Lys 63-specific chains can promote intracellular
trafficking to endocytic vesicles or protein-protein interactions
(12, 13).

Lys 48-linked chains are the predominant chain type in human
cells that promote protein degradation (14), and the human E2s
Ube2K, Ube2G1/2, and Ube2R1/2 (which has historically been
referred to as Cdc34) are known to assemble polyubiquitin chains
onto protein substrates with Lys 48 specificity. Ubc1, the Saccha-
romyces cerevisiae ortholog of Ube2K, has three critical residues,
Thr 84, Gln 122, and Ala 124, that were identified on the E2 surface

that interact with an acceptor ubiquitin to direct Lys 48 to the
Ubc1 active site (15). More recently, it was found that Ube2K
forms an electrostatic interaction between Glu 51 on acceptor
ubiquitin and a Lys residue on the E2 surface (16). Ube2G2 has
been shown to form homodimers that may help direct Lys 48 to its
active site (17). Ube2R1/2 is a critical E2 that functions with the
cullin-RING ubiquitin ligases (1, 18), and, together, these en-
zymes may be responsible for 20% of all proteasome-dependent
degradation in human cells (19). Ube2R1/2 contains an atypical
insertion distal to its active site that contains several conserved
acidic residues (20–25), and this acidic loop has also been shown
to have an important role in Lys 48 selectivity (26, 27). More
recent work has identified a loop on acceptor ubiquitin that con-
tains residues that interact with the E2 in order to help place Lys 48
in the E2 active site (26). Despite these advances, a detailed mo-
lecular characterization showing how an E2 achieves Lys 48 spec-
ificity during polyubiquitin chain synthesis is lacking.

Here we show that human Ube2R1/2 forms a critical salt bridge
interaction between a conserved aspartic acid residue on Ube2R1/2
and acceptor ubiquitin residue Arg 54 and that perturbation of this
interaction leads to the severe loss of UbeR2 activity. Our results also
provide new insight into how the Ube2R1/2 acidic loop may par-
ticipate in catalysis, specifically through the formation of stabiliz-
ing interactions with the E3 as well as the donor ubiquitin.
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MATERIALS AND METHODS
Molecular modeling. (i) Building initial models. All of the molecular
modeling steps were carried out using protocols in the Rosetta molecular
modeling suite (28). To construct initial Ube2R1-Rbx1 models, Rbx1
(Protein Data Bank identifier [PDB ID] 2LGV [29]) and Ube2R1 (PDB ID
4MDK [30]) were aligned to the respective components from the
Ube2G2/Rnf45 cocrystal structure (PDB ID 2LXP [8]) and energy was
minimized with Rosetta algorithms relax (31) and fixbb (32). Next, an
initial conformation for the acidic loop (residues 97 to 115) was built onto
the top-scoring Ube2R1-Rbx1 model using the CCD algorithm with frag-
ments derived from the Ube2R1 amino acid sequence (33). This model of
the Ube2R1-Rbx1 complex was used to create initial models of the
Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 complex using the

UBQ_E2_thioester protocol (34), which allows the user to sequentially
model the orientation of the thioesterified donor ubiquitin and the ap-
proach of an acceptor ubiquitin and to perform standard loop modeling
on the acidic loop. To preorder the donor ubiquitin tail in a conformation
consistent with previous E2/RING-E3 structures, the ubiquitin molecule
was extracted from a cocrystal structure containing ubiquitin thioesteri-
fied to UbcH5b/Birc7 (PDB ID 4AUQ [4]). The acceptor ubiquitin was
based on an apo structure (PDB ID 1UBQ [35]). To generate models
consistent with the crystallized orientation of donor ubiquitin, a con-
straint was implemented between Leu 129 on Ube2R1 and both Ile 44 and
Val 70 on the donor ubiquitin. Using this procedure, 4,000 theoretical
models of Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 were gen-
erated yielding 286 low-scoring models. The executable protocol and flags

FIG 1 Results of the clustering analysis of the acceptor ubiquitin position in the initial modeling effort with the UBQ_E2_thioester protocol. This analysis
produced 14 clusters. The C� atoms for Ube2R1 Asp 143 and acceptor ubiquitin Arg 54 are depicted as red spheres. Cluster 3 permits the closest approach of Arg
54 and Asp 143, and models from that cluster were used for refinement. aUbiquitin, acceptor ubiquitin; dUbiquitin, donor ubiquitin.
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for running the protocol can be found at www.rosetta.org. The subse-
quent models were clustered upon the acceptor ubiquitin position using a
4-Å cutoff value, yielding 14 clusters of acceptor ubiquitin approach.

(ii) Refining the acceptor ubiquitin. To refine the acceptor ubiquitin
position, the refinement option of the rosettadock protocol (36) was used
with a constraint holding the ε-amino group on Lys 48 near the backbone
carbonyl carbon atom of Gly 76 on the donor ubiquitin. Additionally,
consistent with the experimental data, ambiguous constraints between
Arg 54’s three guanidinium nitrogen atoms in acceptor ubiquitin and
Asp143’s two carboxyl oxygen atoms in Ube2R1 were implemented. Us-
ing this procedure, 1,000 models were generated and the lowest scoring
1% were selected, yielding an ensemble of acceptor ubiquitin positions.
The flags used to execute the Rosetta docking protocol can be found at
www.rosetta.org.

(iii) Acidic-loop refinement. During the modeling efforts, a structure
of Rbx1 in complex with Ubc12 oxyesterified to Nedd8 was published
(PDB ID 4P5O [7]), and Rbx1 from this cocrystal was therefore used to
regenerate the Ube2R1-Rbx1 complex followed by more-extensive mod-
eling of the Ube2R1 acidic loop. Based on the results from the charge-
swapped mutations between Arg 91 on Rbx1 and Asp 102 on Ube2R1,
ambiguous constraints were implemented between Arg 91’s three guani-
dinium nitrogen atoms and Asp 102’s two carboxyl oxygen atoms. To
more effectively sample the conformational space, the “next-generation
KIC” options (37) were used, allowing backbone flexibility for Ube2R1
residues 100 to 115. These results produced a variety of possible orienta-
tions, and low-scoring representative models were selected from the en-
semble. The flags used to execute the next-generation KIC loop modeling
protocol can be found at www.rosetta.org.

Protein expression and purification. Human E2s and ubiquitin con-
structs were expressed in Rosetta (DE3) bacterial cells (EMD Millipore).
Whereas Ube2R1 was used for structural modeling owing to the availabil-
ity of X-ray structures, Ube2R2 protein was used for the subsequent bio-
chemical analysis. Note that Ube2R1 and Ube2R2 share greater than 90%
amino acid sequence identity within the catalytic domain and that the
biochemical activities of these proteins are identical (G. Kleiger and R.
Deshaies, unpublished data). E1 and the �TrCP-Skp1 complex were ex-
pressed and purified from Hi5 insect cells as previously described (38, 39).

Cul1-Rbx1 was expressed and purified according to the “Split-n-Coex-
press” method (40). Proteins were purified with N-terminal polyhistidine
(His)6 or glutathione S-transferase (GST) tags on nickel-nitrilotriacetic
acid (NTA)-agarose beads (Qiagen) or glutathione-Sepharose 4B beads
(GE Healthcare), respectively. Acceptor ubiquitin and the ubiquitin con-
structs used in the Skp1-cullin-Fbox (SCF)-dependent ubiquitylation re-
actions had a noncleavable (His)6 affinity tag; otherwise, tags on the pro-
teins were removed prior to gel filtration with tobacco etch virus (TEV) or
thrombin protease. All ubiquitin and E2 proteins were subjected to gel
filtration on a Superdex 75 10/300 column (GE Healthcare). Cul1-Rbx1
proteins were first purified by cation exchange chromatography before gel
filtration was performed using a Superdex 200 10/300 column. All puri-
fied proteins were stored in a buffer containing 30 mM Tris-Cl (pH 7.5),
100 mM NaCl, 10% glycerol, and 1 mM dithiothreitol (DTT). Proteins
were flash frozen in liquid nitrogen prior to storage at �80°C and were
never subjected to multiple freeze-thaw cycles. All Cul1-Rbx1 proteins
were subjected to neddylation and purified as previous described (39).
�-Catenin peptide was purchased from New England Peptide and was
identical to peptides used in previous studies, and monoubiquitylated
peptides were also generated and purified using previously described
methods (39).

Diubiquitin synthesis assay. Diubiquitin synthesis was performed in
a reaction buffer containing 30 mM Tris-Cl (pH 7.5), 100 mM NaCl, 5
mM MgCl2, 2 mM ATP, and 2 mM DTT. 32P-labeled K48R donor ubiq-
uitin (5 �M) was first incubated with E1 enzyme (0.5 �M) for 2 min.
Ube2R2 (2 �M) was then added, and the reaction mixture was incubated
for a further 2 min. The reaction was initiated by the addition of acceptor
ubiquitin (50 �M) that contained an additional Asp residue at its C ter-
minus (this is referred to as D77 ubiquitin, which cannot be thioesterified
to Ube2R2). Samples were collected at several time points and quenched
by the addition of reducing SDS-PAGE loading buffer. Reaction mixtures
were resolved on 4% to 20% SDS-PAGE gels (Lonza), dehydrated, and
exposed to a phosphor screen. The reaction mixtures were imaged using a
Typhoon 9410 scanner, and the amounts of substrate and product were
quantified using ImageQuant software (GE Healthcare). Specifically, the
amount of product was quantified by dividing the amount of diubiquitin
by the total signal per lane and then the product was normalized by mul-

FIG 2 The double mutant cycle of R54D ubiquitin and D143K or D143R Ube2R2 demonstrates that each mutant is individually defective but that the mutants
complement each other in combination during Ube2R2 catalysis. (a) Schematic showing the components and order of addition for the diubiquitin synthesis
assay. UB, ubiquitin. (b) Time course (in hours) for the diubiquitin synthesis assay and all four combinations of the R54D ubiquitin and D143K Ube2R2 double
mutant cycle. Representative data are shown. (c) Graph plotting the quantitation of the amounts of diubiquitin product shown in panel b versus time. Ub,
ubiquitin. (d) Same as in panel b, except D143R Ube2R2 activity has been assessed in the presence of either WT or R54D acceptor ubiquitin. Error bars represent
the standard errors of measurements from duplicate data sets.
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tiplying by the ratio of the concentrations of donor ubiquitin and Ube2R2.
The rate of product formation was then determined by linear regression.

Multiturnover ubiquitylation assays. Multiturnover ubiquitylation
reactions were performed using �-catenin peptide as the substrate. Unla-
beled ubiquitin (60 �M) was charged with E1 (1 �M) for 2 min in a
reaction buffer that was identical to that used in the diubiquitin synthesis
assay. E2 (10 �M) was then added and the reaction mixture incubated for
2 min, followed by the addition of neddylated SCF�-TrCP (0.1 �M). 32P-
labeled substrate (5 �M) was added to the reaction mixture, and samples
were collected at several time points and quenched using reducing SDS-
PAGE loading buffer. Reaction mixtures containing Ube2D3/UbcH5c
were resolved on 15% SDS-PAGE gels, whereas all others were resolved on
4% to 20% gels.

The Km values of E2 constructs for SCF were determined as follows.
Ubiquitylation reaction mixtures were assembled to contain a 2-fold di-
lution series of each E2 protein, while the remaining reaction components
were identical to those described above. The highest concentration of a
given E2 construct and the time of incubation for the ubiquitylation re-
actions were determined to ensure that the amounts of substrate conver-
sion did not exceed 20%. The fractions of substrates converted to prod-
ucts were quantified by dividing all ubiquitylated products by the total
signal, including substrate, and were normalized by multiplying by the
ratio of the concentrations of �-catenin peptide and SCF. The reaction
rates were then estimated by dividing the normalized fractions of sub-
strates converted to products by the time of incubation. The reaction
velocities were plotted as a function of E2 concentration and were fitted to

the Michaelis-Menten equation using nonlinear curve fitting (GraphPad
Prism software).

Single-encounter quench flow. Single-encounter ubiquitylation as-
says were performed using a KinTek RQF-3 Rapid Quench-Flow instru-
ment. Ube2R2 (20 �M) was charged in the presence of (His)6-tagged
R54D ubiquitin (30 �M), E1 (1 �M), and reaction buffer, followed by the
addition of unlabeled �-catenin peptide (200 �M). This reaction mixture
was then mixed equally with SCF (1 �M) that had been preincubated with
32P-labeled Ub–�-catenin peptide (0.2 �M). Reaction mixtures were
quenched in reducing SDS-PAGE buffer and substrate, and products were
resolved on a 4% to 20% gradient SDS-PAGE gel. Reactions were run in
duplicate, and each product band was quantified as a percentage of the
signal from the total lane for each time point. The rates of ubiquitin
transfer and substrate dissociation from SCF were determined using both
KinTek Explorer global fitting software and nonlinear curve fitting to
analytical closed-form solutions as described by Pierce et al. (41).

RESULTS

To explore the molecular basis for Lys 48 polyubiquitin chain
synthesis, molecular models of Ube2R1 were generated in com-
plex with a donor ubiquitin thioesterified to the Ube2R1 active
site, an acceptor ubiquitin with Lys 48 constrained to the active
site, and the Rbx1 subunit of the Skp1-cullin-Fbox (SCF) ubiqui-
tin ligase. Ube2R1/2 was chosen for the following reasons: (i) it has
critical importance for cellular homeostasis; (ii) it forms polyu-
biquitin chains with exquisite Lys 48 specificity (27); and (ii) pre-
vious modeling efforts elucidated the conformation of the
Ube2R1-donor ubiquitin interface, which was subsequently con-
firmed by X-ray crystallography (30, 34). The orientation of the
acidic loop has been previously characterized by molecular dy-
namics (24) and was also included during the modeling proce-
dure.

Molecular modeling of the Ube2R1-donor ubiquitin/acceptor
ubiquitin-Rbx1 complex resulted in 14 distinct clusters of the
Ube2R1-acceptor ubiquitin conformation (Fig. 1). To distinguish
between the theoretical models, compensatory charge-swapped
mutations were introduced into Ube2R2 and ubiquitin that indi-
vidually should have disrupted the interface and resulted in de-
creased Ube2R2 activity; in combination, however, the mutant
Ube2R2 and ubiquitin proteins should have restored the interface
and product formation.

Ube2R2 activity was characterized using a previously estab-
lished, simplified ubiquitylation assay in the absence of E3 (Fig.
2a). Ube2R2 was first thioesterified to radiolabeled donor ubiqui-
tin, and the reaction was initiated by the addition of unlabeled
acceptor ubiquitin, resulting in a diubiquitin product.

TABLE 1 Rates of diubiquitin formation (kobs) for mutant Ube2R2 and
acceptor ubiquitin proteins and comparison with wild-type components

Ube2R2 Ubiquitin kobs (h�1) Fold changea

WT WT 1.56 � 0.03
WT R54D 0.03 � 0.00 52
D143K WT 0.21 � 0.01 7
D143K R54D 0.36 � 0.01 4
D143R WT 0.24 � 0.01 7
D143R R54D 0.41 � 0.02 4
WT I44A 0.58 � 0.04 3
WT I44R 0.79 � 0.04 2
D91K WT 1.64 � 0.04 1
D91K R54D 0.04 � 0.01 44
WT D58R 0.02 � 0.01 65
D143K D58R NDb

WT R54A 0.08 � 0.01 20
D143A WT 0.34 � 0.02 5
a Value of the rate for the reaction mixture containing WT Ube2R2 and WT ubiquitin
divided by the rate of the reaction mixture containing mutant proteins.
b ND, not determined since product levels were too low for quantitation.

FIG 3 Diubiquitin synthesis assay demonstrating that ubiquitin chains generated by D143K Ube2R2 and R54D ubiquitin are predominantly linked through Lys
48. Time course data show that reaction mixtures containing K48R/R54D acceptor ubiquitin and WT or D143K Ube2R2 resulted in similar amounts of product
formation, whereas the reaction mixture containing R54D acceptor ubiquitin and D143K Ube2R2 resulted in far greater product formation than the reaction
mixture containing WT Ube2R2 and R54D ubiquitin. The acceptor ubiquitin concentration was 100 �M.
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A previous study had shown that acceptor ubiquitin residue
Arg 54 participated in Ube2R1-catalyzed Lys 48 polyubiquitin
chain formation (26), and, consistent with this, the mutation of
Arg 54 to an Asp residue in acceptor ubiquitin led to a 52-fold
reduction in Ube2R2 activity compared with wild-type (WT)
ubiquitin results (Fig. 2b and c and Table 1). Models from 1 of the
14 clusters were consistent with an interaction between Arg 54 and
Ube2R1 residue Asp 143. To experimentally validate this interac-
tion, D143K Ube2R2 protein was expressed and purified (note
that lysine was chosen for the charge swap instead of arginine since
the Rosetta algorithm identified this and R54D ubiquitin as the
most energetically favorable compensatory mutant pair). Consis-
tent with this, D143K Ube2R2 activity with WT acceptor ubiqui-
tin was reduced by 7-fold in comparison with WT Ube2R2 results
(Fig. 2b and c and Table 1). Impressively, the combination of
D143K Ube2R2 and R54D acceptor ubiquitin resulted in only a
4-fold loss of Ube2R2 activity compared to the results seen with
WT Ube2R2 and acceptor ubiquitin. Thus, the pairing of D143K
Ube2R2 and R54D acceptor ubiquitin restored Ube2R2 activity to
nearly WT levels despite the presence of the R54D mutation in
ubiquitin. Additionally, to determine whether Asp 143 can also be
charge swapped with arginine, D143R Ube2R2 was produced and
showed a loss of activity nearly identical to that seen with D143K
Ube2R2 as well as the ability to produce diubiquitin in the pres-
ence of R54D acceptor ubiquitin (Fig. 2d and Table 1).

To determine whether the Lys 48 chain linkage specificity of
the D143K Ube2R2 was compromised, SCF-independent Ube2R2
assays were conducted using a K48R ubiquitin variant that also
contained the R54D mutation. Note that while Ube2R1/2 shows
high fidelity for generating Lys 48-specific polyubiquitin chains, it
is capable of generating non-Lys 48 chain linkages in the presence
of K48R acceptor ubiquitin, albeit at a severely diminished rate
(22, 27). The activities of both WT and D143K Ube2R2 with
K48R/R54D acceptor ubiquitin were similar (Fig. 3), confirming
that the Lys 48 specificity of D143K Ube2R2 remained intact.

Based on these results, molecular models of the acceptor ubiq-
uitin approach were refined using a constraint between Ube2R1
residue Asp 143 and acceptor ubiquitin residue Arg 54. This effort
resulted in an ensemble of acceptor ubiquitin approaches (Fig. 4a
and b) and allowed several important observations. First, the ac-
ceptor ubiquitin orientation permits the side chains of acceptor
ubiquitin residue Arg 54 and Ube2R1 residue Asp 143 to adopt
several rotamers capable of forming hydrogen bonds or salt
bridges between side chain atoms while maintaining the Lys 48
side chain and the Ube2R1-donor ubiquitin thioester bond in
proximity to each other. Second, the highly conserved Ube2R1/2
residues Tyr 87, His 98, and Ser 138, which all had previously been
shown to have catalytic roles during polyubiquitin chain forma-
tion (22), were localized near Lys 48 on acceptor ubiquitin and the
Ube2R1 active site (Fig. 4c). Lastly, Ile 44 on acceptor ubiquitin, a
residue that typically is important in the stabilization of protein-
protein interactions involving ubiquitin, was not participating in
the Ube2R1-acceptor ubiquitin interface (Fig. 4c). Consistent
with the latter observation, mutation of Ile 44 in only acceptor
ubiquitin to either an Ala or Arg residue led to only a 3- or 2-fold
reduction in Ube2R2 activity, respectively (Fig. 5a and Table 1).
This result is all the more striking given that Ile 44 has been shown
to stabilize the docking of donor ubiquitin to Ube2R1/2 (34).

To further validate the Rosetta models, it was noticed that
Ube2R1 residue Asp 91 was located on the periphery of the

Ube2R1-acceptor ubiquitin interface and was not participating in
stabilization of the complex (Fig. 4c), and thus a charge-swapped
mutation at this position should not reduce Ube2R2 activity or
restore activity in the presence of R54D acceptor ubiquitin. Con-
sistent with the models, D91K Ube2R2 activity was both compa-

FIG 4 Molecular models of the Ube2R1-donor ubiquitin/acceptor ubiquitin
complex after constraining Arg 54 in ubiquitin and Asp 143 in Ube2R1 to be in
proximity. (a) Ribbon diagrams for 10 models randomly selected from an ensem-
ble derived from the acceptor ubiquitin refinement procedure. Nitrogen atoms on
Arg 54 and Lys 48 are blue; oxygen atoms on Asp 143 are red. (b) Ribbon diagram
of a representative model from the ensemble showing the entire Ube2R1-donor
ubiquitin/acceptor ubiquitin complex. (c) Closeup view of the Ube2R1-acceptor
ubiquitin interface highlighting the locations of key residues that have previously
been shown to participate in catalysis. Notice that Ube2R1 residue Asp 91 and
acceptor ubiquitin residue Ile 44 are not located at the predicted Ube2R1-ubiqui-
tin interface. Images were generated in Pymol.
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rable to that of WT Ube2R2 in the presence of WT acceptor ubiq-
uitin and similarly defective in the presence of R54D acceptor
ubiquitin (Fig. 5b and Table 1). Next, a charge-swapped mutation
to acceptor ubiquitin residue Asp 58, a residue in close proximity

to Arg 54, led to a 65-fold decrease in WT Ube2R2 activity, and
product formation was even more defective in the presence of
D143K Ube2R2 (Fig. 5c and Table 1). These results collectively
exclude the alternative hypothesis that the D143K mutation sup-
presses R54D ubiquitin by converting Ube2R2 into a promiscuous
enzyme and support the ab initio Rosetta model of Ube2R1/2 Lys
48 ubiquitin chain formation.

To further explore the nature of the putative Asp 143 Ube2R1/
2-Arg 54 ubiquitin interaction, D143A Ube2R2 and R54A accep-
tor ubiquitin proteins were expressed and purified. Specifically, if
the interaction was deterministic in stabilizing the complex be-
tween Ube2R1/2 and acceptor ubiquitin, both D143A Ube2R2
and R54A acceptor ubiquitin should be defective in activity,
whereas if the interaction was only permissive, these mutants
should not lead to defects in activity. Product formation was de-
fective in a reaction mixture containing WT Ube2R2 and R54A
acceptor ubiquitin, though less so than in the reaction mixture
containing charge-swapped R54D ubiquitin (Fig. 5d and Table 1).
Similarly, D143A Ube2R2 activity was compromised in the pres-
ence of WT ubiquitin and also to a lesser extent than for D143K
Ube2R2. Taken together, these results suggest that Asp 143 on
Ube2R1/2 and Arg 54 on ubiquitin interact to stabilize the
Ube2R1/2-acceptor ubiquitin complex.

The significance of the Asp 143 Ube2R1/2-Arg 54 acceptor
ubiquitin ion pair was examined next in the context of a fully
reconstituted, ubiquitylation reaction mixture containing both
ubiquitin ligase SCF and a physiologically relevant substrate
bound to SCF. Multiturnover ubiquitylation reaction mixtures
were assembled with combinations of WT or mutant Ube2R2 and
ubiquitin and a 32P-labeled �-catenin peptide containing a single
N-terminal lysine residue. The combination of WT Ube2R2 and
ubiquitin in the SCF-dependent ubiquitylation reaction resulted
in the formation of long polyubiquitin chains onto the �-catenin
peptide substrate, and the combination of WT Ube2R2 with
R54D ubiquitin led to a substantial reduction in the number of
ubiquitins contained within the chains (Fig. 6). The combina-
tion of D143K Ube2R2 and WT ubiquitin also led to a reduc-
tion in the average lengths of the polyubiquitin chains com-
pared to WT Ube2R2, although to a lesser extent than was seen
with WT Ube2R2 and R54D ubiquitin. Finally, the combination

FIG 5 Experimental validation of the Ube2R1/2-acceptor ubiquitin complex
confirming that Ile 44 on ubiquitin and Asp 91 on Ube2R2 do not help stabilize the
interaction. (a) Time courses for diubiquitin synthesis comparing product forma-
tion for WT components with reaction mixtures containing WT Ube2R2 and
I44R acceptor ubiquitin. (b) Same as in panel a, except D91K Ube2R2 activity has
been assessed in the presence of WT or R54D acceptor ubiquitin. (c) Same as in
panel a, except D58R acceptor ubiquitin activity has been assessed in the presence
of either WT or D143K Ube2R2. (d) Same as in panel a, except R54A acceptor
ubiquitin activity has been assessed in the presence of WT Ube2R2 or D143A
Ube2R2 activity has been assessed in the presence of WT ubiquitin. Each experi-
ment was performed in duplicate, and representative data are shown.

FIG 6 Multiturnover ubiquitylation reactions with SCF demonstrate that the presence of R54D ubiquitin diminishes the lengths of the polyubiquitin chains on
product compared with WT ubiquitin and that the introduction of D143K Ube2R2 with R54D ubiquitin substantially increases the lengths of the chains. Data
represent time courses for the ubiquitylation of �-catenin (�-Cat) peptide for the entire double mutant cycle. Notice that some of the polyubiquitin chains in the
reaction mixture containing WT Ube2R2 and ubiquitin migrated as high-molecular-weight smears, and while these were still present in the reaction mixtures
containing D143K Ube2R2, the intensities had shifted significantly lower in the direction of the substrate band.
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of D143K Ube2R2 and R54D ubiquitin resulted in polyubiquitin
chains attached to substrate that were longer than those seen with
the reaction mixture containing WT Ube2R2 and R54D ubiquitin.

While polyubiquitin chain lengths were significantly reduced
in reaction mixtures containing WT Ube2R2 and R54D ubiquitin

in comparison with reaction mixtures containing WT ubiquitin, it
was surprising that polyubiquitin chains with as many as 10 R54D
ubiquitins were formed on the substrate, especially considering
that, in the absence of SCF, WT Ube2R2 activity was reduced by
52-fold in the presence of R54D ubiquitin (Fig. 2 and Table 1). It

FIG 7 Pre-steady-state single-encounter ubiquitylation reactions allow the estimation of the individual rates of ubiquitin transfer from Ube2R2 to substrate-
modified ubiquitins bound to SCF, indicating that the rate of R54D ubiquitin transfer is substantially higher in the presence of D143K Ube2R2 than in the
presence of WT Ube2R2. (a) Time course showing the stepwise transfer of R54D ubiquitin to SCF-bound substrate in the presence of WT Ube2R2. S, substrate.
(b) Same as in panel a, except with D143K Ube2R2. (c) Graph plotting either the disappearance of monoubiquitylated substrate (above) or the appearance of
diubiquitylated product (below) over time. Error bars represent the standard errors of measurements. (d) Same as in panel c, except with D143K Ube2R2. (e)
Schematic showing the rates of ubiquitin transfer to substrate as well as the rates of substrate and product dissociation from SCF with WT Ube2R2 and R54D
acceptor ubiquitin. (f) Same as in panel e, except with D143K Ube2R2.
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would be ideal to estimate the individual rates of ubiquitin trans-
fer from Ube2R2 to one or more ubiquitins on a SCF-bound
substrate for comparison with the rates derived from the SCF-
independent assay; however, this is not possible using the re-
sults from the multiturnover reactions. To address in detail
how the R54D mutation affects ubiquitin’s activity as an accep-
tor on a SCF-bound substrate, the pre-steady-state kinetics of
the SCF-dependent ubiquitylation reaction were measured us-
ing a quenched-flow instrument in the presence of WT Ube2R2
and a monoubiquitylated �-catenin peptide substrate contain-
ing the R54D mutation.

Single-encounter ubiquitylation reactions were initiated in the
presence of WT Ube2R2 and R54D ubiquitin, and the rates of
ubiquitin transfer were estimated (Fig. 7a, c, and e). The rates for
the first and second events of ubiquitin transfer to substrate-mod-
ified ubiquitins were 1.1 s�1 and 0.4 s�1, respectively, which were
considerably lower than the previously measured rates of ubiqui-
tin transfer for WT proteins (4 s�1 to 6 s�1) (41). Single-encounter
ubiquitylation reactions using mixtures containing an identical
substrate were then repeated in the presence of D143K Ube2R2
and R54D ubiquitin (Fig. 7b, d, and f). In this case, the rates for the
first, second, and third transfers of ubiquitin to SCF-bound sub-
strate (10.3 s�1, 3.6 s�1, and 2.9 s�1, respectively) were now com-
parable with the rates of ubiquitin transfer for WT components.
Also note that in the presence of SCF and WT Ube2R2, the reduc-
tion in the average rate of ubiquitin transfer comparing WT and
R54D ubiquitin was 8-fold; this is significantly less than the 52-
fold reduction observed in the SCF-independent assay (Table 1).
This key observation provides additional evidence supporting the
notion that the R54D mutation in acceptor ubiquitin affects bind-
ing to Ube2R2; this point is elaborated on further in the Discus-
sion.

The Ube2R1/2 acidic loop participates in Lys 48-specific
polyubiquitin chain formation by binding to SCF. Ube2R1/2
contains a conserved 12-amino-acid insertion distal to the active
site referred to as the acidic loop (owing to its four invariably
conserved acidic residues), and previous studies have suggested an
important role for the acidic loop in controlling Lys 48 specificity
(22, 27). The conformation of the acidic loop is highly flexible, and
loop residues are disordered in all X-ray structures of Ube2R1
analyzed to date (30, 42, 43). We reasoned that the presence of
both donor and acceptor ubiquitins and Rbx1 may limit the con-
formational space afforded to the acidic loop, and the models of
the Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 complex
were analyzed to explore how the acidic loop participates in Lys 48
specificity.

Despite the presence of both ubiquitins and Rbx1, the model-
ing effort resulted in multiple conformations of the Ube2R1 acidic
loop. Nevertheless, many of these models resulted in an interac-
tion between Rbx1 residue Arg 91 and acidic-loop residue Asp 102
and/or Asp 103 (Fig. 8). Indeed, the previous structural character-
ization of the Ube2R1-Rbx1 interface by NMR had identified Arg
91 as a critical residue in promoting Ube2R1 interaction with SCF
(29). To determine whether acidic-loop residues might contact
Arg 91 in Rbx1, charge-swapped mutations were generated in
Ube2R2 residues Asp 102 and Asp 103 as well as in Rbx1 residue
Arg 91.

The affinities of Ube2R2 proteins for WT or mutant SCF were
assessed in ubiquitylation assays by estimating the Km of Ube2R2
for SCF. The Km of WT Ube2R2 for WT SCF was 0.15 �M,

whereas the Km of Ube2R2 for SCFR91E Rbx1 was 5.4 �M, indicating
a large decrease in the affinity of Ube2R2 for mutant SCF (Fig. 9a
and Table 2). To determine whether the defect in Ube2R2 binding
by the R91E mutation in Rbx1 was specific to the acidic-loop
region, the Km of WT Ube2D3/UbcH5c, an E2 that does not
contain an acidic loop, was determined for WT SCF as well as
SCFR91E Rbx1, and in this case only a 2-fold difference was ob-
served (Fig. 9b and Table 2). Finally, the Km of D102K Ube2R2
for WT SCF was 0.49 �M, whereas the Km of D102K Ube2R2 for
SCFR91E Rbx1 was 1.8 �M (Fig. 9c and Table 2). While the affinity of
D102K Ube2R2 for SCFR91E Rbx1 is approximately 10-fold weaker
than the affinity of WT Ube2R2 for SCF, the affinity of D102K
Ube2R2 for SCFR91E Rbx1 is nevertheless 3-fold greater than that of
WT Ube2R2 for mutant SCF, demonstrating a modest but signif-
icant restoration of D102K Ube2R2’s affinity for SCFR91E Rbx1.

The possibility of an electrostatic interaction between Ube2R2
residue Asp 103 and Rbx1 residue Arg 91 was also predicted by the
modeling effort (Fig. 8b); however, the Km values of WT and
D103K Ube2R2 for WT SCF and for SCFR91E Rbx1 were similar
(Fig. 9d and Table 2). Taken together, these results suggest that
Ube2R1/2 acidic-loop residue Asp 102 forms an interaction with
Rbx1 residue Arg 91 during Ube2R1/2-SCF complex formation,
although it remains likely that Arg 91 forms additional interac-
tions with other residues in the acidic loop since only a partial

FIG 8 Molecular modeling suggests that the Ube2R1/2 acidic loop interacts
with the Rbx1 subunit of SCF. (a) Ribbon diagram of a representative model of
the Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 complex where
Ube2R1 residue Asp 102 and Rbx1 residue Arg 91 are in close proximity. (b)
Same as in panel a, except Ube2R1 residue Asp 103 and Rbx1 residue Arg 91 are
predicted to be in close proximity.
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FIG 9 The Ube2R1/2 acidic loop interacts with the Rbx1 subunit of SCF specifically through Asp 102 on Ube2R1/2 and Arg 91 on Rbx1. (a) Multiturnover ubiquity-
lation reactions comparing the activities of WT SCF and SCFR91E Rbx1 in the presence of increasing concentrations of WT Ube2R2. Each lane represents a single
ubiquitylation reaction mixture that was incubated for 2 min prior to quenching. The graph plots the rates of substrate ubiquitylation as a function of WT Ube2R2
concentration. Error bars represent the standard errors of measurements from duplicate data sets. (b) Same as in panel a, except titrations of Ube2D3/UbcH5c were
performed in the presence of either WT SCF or SCFR91E Rbx1. (c) Same as in panel a, except titrations of D102K Ube2R2 were performed in the presence of either WT SCF
or SCFR91E Rbx1. (d) Same as in panel a, except titrations of D103K Ube2R2 were performed in the presence of either WT SCF or SCFR91E Rbx1.
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restoration in the affinity of D102K Ube2R2 for SCFR91E Rbx1 was
observed.

Ube2R1/2 acidic-loop residue Glu 108 or Glu 112 may partic-
ipate in Lys 48-specific polyubiquitin chain formation by inter-
acting with donor ubiquitin. We next wanted to address the
structural roles of the other 2 conserved acidic residues in the
Ube2R1/2 acidic loop, Glu 108 and Glu 112, and to determine how
they may affect Lys 48 specificity. Some 5,000 models of the
Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 complex were
generated in which Ube2R1 residue Asp 102 and Arg 91 in Rbx1
were constrained to be in proximity; however, the position of the
acidic loop was variable despite the constraint (Fig. 10). The top
15% scoring structures were analyzed; only 8 of the 750 models
predicted an interaction between Glu 108 and acceptor ubiquitin,
and none of the models predicted an interaction between Glu 112
and acceptor ubiquitin. Instead of interacting with acceptor ubiq-
uitin, approximately 50% of the top models predicted an interac-
tion between either Glu 108 or Glu 112 and donor ubiquitin.
Thus, molecular modeling suggests that Ube2R1/2 residues Glu
108 and Glu 112 may promote Ube2R1/2 function by interacting
with the donor ubiquitin without directly influencing the confor-
mation of the Ube2R1/2-acceptor ubiquitin complex.

DISCUSSION

A combined molecular modeling and double mutant cycle analy-
sis has been used to elucidate the mechanism of Lys 48 specificity
during polyubiquitin chain formation by the Ube2R1/2 ubiqui-
tin-conjugating enzyme. These results uncover a potential electro-
static interaction between Arg 54 on acceptor ubiquitin and Asp
143 on Ube2R1/2; however, we acknowledge that more-intricate
models cannot be ruled out. For instance, Asp 143 and/or Arg 54
may form additional intermolecular interactions at the complex
interface, which potentially explains why the double mutant com-
bination does not fully restore Ube2R2 activity. It is not surprising
that Asp 143 may have an important role in Ube2R1/2 function, as
it is invariably conserved in Ube2R1/2 ortholog sequences. Fur-
thermore, there is evidence that Arg 54 on ubiquitin is also impor-
tant, since the replacement of endogenous ubiquitin with a R54D
mutant in S. cerevisiae resulted in a mild slow-growth phenotype
(44), and, when introduced into mammalian cells, expression of
the double R54A/Y59A ubiquitin mutant led to cellular apoptosis
(26). Taking those findings in combination with the results pre-
sented here, the importance of ubiquitin residue Arg 54 has been
demonstrated both in vivo and in vitro.

Careful consideration of the rates of Ube2R2-catalyzed ubiq-
uitin transfer in either the absence or the presence of SCF further
supports the notion that acceptor ubiquitin residue Arg 54 partic-
ipates in promoting ubiquitin binding to Ube2R1/2. Mutations

in ubiquitin that negatively affect binding to Ube2R1/2 (and
not catalysis) can in principle be compensated for by increasing
the ubiquitin concentration to a level high enough to saturate
Ube2R1/2. During analysis of the results of the SCF-dependent
reactions, it was noted that the difference in the average rates of
ubiquitin transfer in the presence of either WT or R54D ubiquitin
was approximately 8-fold (Fig. 7), significantly less than the dif-
ference in the rates of ubiquitin transfer in the SCF-independent
assay (52-fold) (Table 1). One critical difference between these
two assays is the acceptor ubiquitin concentration: in the SCF-
independent assay (Fig. 2a), the concentration of ubiquitin was 50
�M. In the SCF-dependent reaction, the simultaneous binding of
both a substrate modified with an acceptor ubiquitin and Ube2R2
to SCF results in a substantial increase in the effective concentra-
tion of acceptor ubiquitin and Ube2R2 (previously estimated to be
in the low millimolar range [27]). Considering that the Km of
acceptor ubiquitin for Ube2R2 is approximately 1 mM (25), the
increase in the effective concentration of acceptor ubiquitin for
Ube2R2 most likely suppresses the reduced affinity of Ube2R2 for
R54D ubiquitin in the SCF-dependent assay. Thus, these results
help explain why substantial polyubiquitin chains are formed on a
SCF-bound substrate in the presence of R54D ubiquitin during
performance of the multiturnover reaction scheme (Fig. 6).

Does the presence of an acidic residue on E2s at structurally
equivalent positions to Ube2R1/2 residue Asp 143 determine
lysine specificity during catalysis? Approximately one-half of hu-
man E2 protein sequences contain either an aspartic or glutamic
acid residue at positions that are aligned to Asp 143 in Ube2R1/2
in a multiple-sequence alignment of E2 paralogs. However, the
presence of an acidic residue at this position does not necessarily
determine the lysine specificity of polyubiquitin chains. For in-
stance, Ube2S is an E2 that forms polyubiquitin chains with Lys 11
specificity, and though Glu 132 in Ube2S is structurally equivalent
to Asp 143 in Ube2R1/2, a mutation in Glu 132 was not shown to
disrupt Ube2S activity (45). Furthermore, the E2s that modify
protein substrates with the ubiquitin-like proteins Nedd8 and
SUMO also contain acidic residues at positions that are structur-
ally equivalent to that of Ube2R1/2 residue Asp 143; however,
these E2s do not assemble chains of Nedd8 or SUMO.

A survey of the Protein Data Bank for structures of proteins in

FIG 10 Lowest-scoring Ube2R1 acidic-loop orientations from 10 models of
the Ube2R1-donor ubiquitin/acceptor ubiquitin-Rbx1 complex randomly se-
lected from 5,000 trajectories. The acidic loops have been colored by a gray-
scale gradient. These low-scoring structures result in a variety of possible con-
formations that can make contacts with both Rbx1 and the donor ubiquitin,
but the acidic loop can contact the acceptor ubiquitin only rarely.

TABLE 2 Michaelis constants for wild-type and mutant E2-E3 pairs

E2 Rbx1 Km (�M)

WT Ube2R2 WT 0.15 � 0.03
WT Ube2R2 R91E 5.40 � 0.40
WT Ube2D3/UbcH5c WT 0.33 � 0.06
WT Ube2D3/UbcH5c R91E 0.84 � 0.12
D102K Ube2R2 WT 0.49 � 0.05
D102K Ube2R2 R91E 1.83 � 0.27
D103K Ube2R2 WT 0.22 � 0.04
D103K Ube2R2 R91E 5.79 � 0.83
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complex with ubiquitin indicates that electrostatic interactions
between a protein and ubiquitin residue Arg 54 are highly atypical
(46). Indeed, only 3 examples were found, each involving the in-
teraction of a deubiquitylating enzyme and ubiquitin (PDB ID
3IHP, 4DHJ, and 4BOZ) (47, 48). On the other hand, electrostatic
interactions involving other charged residues have been shown to
have important roles in determining the lysine specificity of
polyubiquitin chains by also stabilizing protein-ubiquitin interac-
tions. For instance, Ube2S forms polyubiquitin chains with Lys 11
specificity by stabilizing the Ube2S-ubiquitin interaction through
a salt bridge between Lys 6 on ubiquitin and Glu 131 on Ube2S
(45). Interestingly, the yeast E2 Ubc1, which, like Ube2R1/2,
forms Lys 48-specific polyubiquitin chains, utilizes a polar cluster
of residues near its active site that are not conserved in Ube2R1/2
(15), and the human ortholog Ube2K forms an electrostatic inter-
action between Glu 51 on ubiquitin and a Lys residue on Ube2K
(16). Thus, it appears that Ube2R1/2 and Ubc1/Ube2K generate
Lys 48-linked polyubiquitin chains through distinct mechanisms.

In addition to Lys 48- and Lys 11-specific polyubiquitin chains,
the mechanism describing how Lys 63 specificity is achieved by an
E2 has also been elucidated (2, 49). In this case, the E2 Ubc13
forms a heterodimer with its binding partner Mms2. Ubc13 con-
tains the active site that participates in catalysis, while Mms2 has a
ubiquitin binding site that places Lys 63 within close proximity of
the Ubc13 active site. In summary, it is clear that, while only a
small number of examples of how E2s determine lysine specificity
during polyubiquitin chain formation are known, a diverse reper-
toire of mechanisms exists in nature.

We also used our modeling approach to help ascertain how the
four highly conserved Ube2R1/2 acidic-loop residues participate
in determining lysine specificity during polyubiquitin chain for-
mation. Rather than forming direct interactions with the acceptor
ubiquitin, it appears that the acidic-loop residues interact either
with SCF or with the donor ubiquitin. In support of this, note that
we had previously generated a human Ube2R2 mutant protein in
which all four acidic residues were mutated to alanine, and while
the activity of this mutant was severely defective, it was still capa-
ble of forming polyubiquitin chains on a SCF-bound substrate
with Lys 48 specificity (25). Also, models of the Ube2R1-donor
ubiquitin/acceptor ubiquitin-Rbx1 complex predicted an interac-
tion between Ube2R1 residue Asp 102 and SCF subunit Rbx1 res-
idue Arg 91 that was supported by functional binding experi-
ments. Finally, acidic-loop residues Glu 108 and Glu 112 are not in
proximity of acceptor ubiquitin in nearly all of the models that
were generated. In summary, these results are most consistent
with a model where SCF controls the conformation of the
Ube2R1/2 acidic loop which may serve to optimize stabilizing
interactions between residues Glu 108 and Glu 112 and the donor
ubiquitin. One notable exception may be Asp 103, for which some
of the models predicted an interaction between this residue and
acceptor ubiquitin, a result that is consistent with previous protein
cross-linking experiments (26).

While this work provides the most detailed molecular insight
into the mechanism of Ube2R1/2 and SCF function to date, there
are still many issues that need to be addressed. For instance, the
modeling effort here suggests that the Ube2R1/2 acidic loop can
adopt many different conformations, and it is possible that mul-
tiple conformations exist during Ube2R1/2 function (potentially
explaining how both Glu 108 and Glu 112 may simultaneously
participate in catalysis by interacting with donor ubiquitin). An-

other topic of interest involves an essential step during catalysis,
the deprotonation of Lys 48 on acceptor ubiquitin. We had previ-
ously speculated that a conserved histidine (His 98 in Ube2R1/2)
may participate in deprotonation (25), and while our models
show that His 98 is in proximity to Lys 48 on acceptor ubiquitin
and may therefore play some role in lysine activation, it is likely
that the mechanism also involves Ube2R1/2 residue Ser 138,
which is structurally equivalent to an aspartic acid residue present
in most E2s that has been shown to be critical in promoting lysine
deprotonation on the substrate (50).

Collectively, these data demonstrate the effectiveness of using
computational tools to gain structural insights into transient pro-
tein complexes as well as into flexible regions within those struc-
tures. Using an iterative procedure of computational modeling
and biochemical experiments that distinguish between theoretical
models, the refinement of the initial models based on the experi-
mental results provides a glimpse into protein function that may
be inaccessible through more traditional structural biology meth-
odologies. We believe that these procedures can be generally ap-
plied to a number of other protein complexes for which tradi-
tional methodologies have presented problems that have proved
difficult or intractable.

ACKNOWLEDGMENTS

S.H. performed the ubiquitylation assays. J.S.H. performed all molecular
modeling and helped with the experimental design. S.M.L. modified the
Rosetta protocols. B.K. helped design and supervised the molecular mod-
eling efforts. G.K. helped with the experimental design and wrote the
manuscript with contributions from all of the other authors.

FUNDING INFORMATION
This work, including the efforts of Spencer Hill and Gary Kleiger, was
funded by HHS | National Institutes of Health (NIH) (P20 GM103440).
This work, including the efforts of Spencer Hill and Gary Kleiger, was
funded by HHS | National Institutes of Health (NIH) (R15 GM117555-
01). This work, including the efforts of Brian Kuhlman, was funded by
HHS | National Institutes of Health (NIH) (R01 GM073960).

J.S.H. was supported through the Lineberger Comprehensive Cancer
Center postdoctoral fellowship (T32-CA009156). The funders had no role
in study design, data collection and interpretation, or the decision to
submit the work for publication.

REFERENCES
1. Deshaies RJ, Joazeiro CA. 2009. RING domain E3 ubiquitin ligases. Annu

Rev Biochem 78:399 – 434. http://dx.doi.org/10.1146/annurev.biochem
.78.101807.093809.

2. Branigan E, Plechanovova A, Jaffray EG, Naismith JH, Hay RT. 2015.
Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin
chains. Nat Struct Mol Biol 22:597– 602. http://dx.doi.org/10.1038/nsmb
.3052.

3. Calabrese MF, Scott DC, Duda DM, Grace CR, Kurinov I, Kriwacki
RW, Schulman BA. 2011. A RING E3-substrate complex poised for ubiq-
uitin-like protein transfer: structural insights into cullin-RING ligases.
Nat Struct Mol Biol 18:947–949. http://dx.doi.org/10.1038/nsmb.2086.

4. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. 2012. BIRC7-E2
ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer
by a RING dimer. Nat Struct Mol Biol 19:876 – 883. http://dx.doi.org/10
.1038/nsmb.2379.

5. Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. 2012.
Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catal-
ysis. Nature 489:115–120. http://dx.doi.org/10.1038/nature11376.

6. Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ, Brzovic
PS, Klevit RE. 2012. Structure of an E3:E2�Ub complex reveals an allo-
steric mechanism shared among RING/U-box ligases. Mol Cell 47:933–
942. http://dx.doi.org/10.1016/j.molcel.2012.07.001.

Hill et al.

1730 mcb.asm.org June 2016 Volume 36 Number 11Molecular and Cellular Biology

 on N
ovem

ber 20, 2018 by guest
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://www.rcsb.org/pdb/explore/explore.do?structureId=3IHP
http://www.rcsb.org/pdb/explore/explore.do?structureId=4DHJ
http://www.rcsb.org/pdb/explore/explore.do?structureId=4BOZ
http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809
http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809
http://dx.doi.org/10.1038/nsmb.3052
http://dx.doi.org/10.1038/nsmb.3052
http://dx.doi.org/10.1038/nsmb.2086
http://dx.doi.org/10.1038/nsmb.2379
http://dx.doi.org/10.1038/nsmb.2379
http://dx.doi.org/10.1038/nature11376
http://dx.doi.org/10.1016/j.molcel.2012.07.001
http://mcb.asm.org
http://mcb.asm.org/


7. Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW,
Schulman BA. 2014. Structure of a RING E3 trapped in action reveals
ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157:1671–
1684. http://dx.doi.org/10.1016/j.cell.2014.04.037.

8. Das R, Liang YH, Mariano J, Li J, Huang T, King A, Tarasov SG,
Weissman AM, Ji X, Byrd RA. 2013. Allosteric regulation of E2:E3
interactions promote a processive ubiquitination machine. EMBO J http:
//dx.doi.org/emboj2013174 [pii] 10.1038/emboj.2013.174.

9. Vittal V, Stewart MD, Brzovic PS, Klevit RE. 2015. Regulating the
regulators: recent revelations in the control of E3 ubiquitin ligases. J Biol
Chem 290:21244 –21251. http://dx.doi.org/10.1074/jbc.R115.675165.

10. Komander D, Rape M. 2012. The ubiquitin code. Annu Rev Biochem 81:
203–229. http://dx.doi.org/10.1146/annurev-biochem-060310-170328.

11. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK,
Varshavsky A. 1989. A multiubiquitin chain is confined to specific lysine
in a targeted short-lived protein. Science 243:1576 –1583. http://dx.doi
.org/10.1126/science.2538923.

12. Dikic I, Wakatsuki S, Walters KJ. 2009. Ubiquitin-binding domains—
from structures to functions. Nat Rev Mol Cell Biol 10:659 – 671. http://dx
.doi.org/10.1038/nrm2767.

13. Hicke L, Schubert HL, Hill CP. 2005. Ubiquitin-binding domains. Nat
Rev Mol Cell Biol 6:610 – 621. http://dx.doi.org/10.1038/nrm1701.

14. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME,
Rad R, Rush J, Comb MJ, Harper JW, Gygi SP. 2011. Systematic and
quantitative assessment of the ubiquitin-modified proteome. Mol Cell
44:325–340. http://dx.doi.org/10.1016/j.molcel.2011.08.025.

15. Rodrigo-Brenni MC, Foster SA, Morgan DO. 2010. Catalysis of lysine
48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol
Cell 39:548 –559. http://dx.doi.org/10.1016/j.molcel.2010.07.027.

16. Middleton AJ, Day CL. 2015. The molecular basis of lysine 48 ubiquitin
chain synthesis by Ube2K. Sci Rep 5:16793. http://dx.doi.org/10.1038
/srep16793.

17. Liu W, Shang Y, Zeng Y, Liu C, Li Y, Zhai L, Wang P, Lou J, Xu P, Ye
Y, Li W. 2014. Dimeric Ube2g2 simultaneously engages donor and accep-
tor ubiquitins to form Lys48-linked ubiquitin chains. EMBO J 33:46 – 61.
http://dx.doi.org/10.1002/embj.201385315.

18. Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin-RING
ubiquitin ligases. Nat Rev Mol Cell Biol 6:9 –20. http://dx.doi.org/10.1038
/nrm1547.

19. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S,
Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A,
Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A,
Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak
MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu
J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP.
2009. An inhibitor of NEDD8-activating enzyme as a new approach to
treat cancer. Nature 458:732–736. http://dx.doi.org/10.1038/nature07884.

20. Arrigoni A, Bertini L, De Gioia L, Papaleo E. 2014. Inhibitors of the
Cdc34 acidic loop: a computational investigation integrating molecular
dynamics, virtual screening and docking approaches. FEBS Open Bio
4:473– 484. http://dx.doi.org/10.1016/j.fob.2014.04.011.

21. Choi YS, Lee YJ, Lee SY, Shi L, Ha JH, Cheong HK, Cheong C, Cohen
RE, Ryu KS. 2015. Differential ubiquitin binding by the acidic loops of
Ube2g1 and Ube2r1 enzymes distinguishes their Lys-48-ubiquitylation
activities. J Biol Chem 290:2251–2263. http://dx.doi.org/10.1074/jbc
.M114.624809.

22. Gazdoiu S, Yamoah K, Wu K, Pan Z-Q. 2007. Human Cdc34 employs
distinct sites to coordinate attachment of ubiquitin to a substrate and
assembly of polyubiquitin chains. Mol Cell Biol 27:7041–7052. http://dx
.doi.org/10.1128/MCB.00812-07.

23. Papaleo E, Casiraghi N, Arrigoni A, Vanoni M, Coccetti P, De Gioia L.
2012. Loop 7 of E2 enzymes: an ancestral conserved functional motif in-
volved in the E2-mediated steps of the ubiquitination cascade. PLoS One
7:e40786. http://dx.doi.org/10.1371/journal.pone.0040786.

24. Papaleo E, Ranzani V, Tripodi F, Vitriolo A, Cirulli C, Fantucci P,
Alberghina L, Vanoni M, De Gioia L, Coccetti P. 2011. An acidic loop
and cognate phosphorylation sites define a molecular switch that modu-
lates ubiquitin charging activity in Cdc34-like enzymes. PLoS Comput
Biol 7:e1002056. http://dx.doi.org/10.1371/journal.pcbi.1002056.

25. Ziemba A, Hill S, Sandoval D, Webb K, Bennett EJ, Kleiger G. 2013.
Multimodal mechanism of action for the Cdc34 acidic loop: a case study
for why ubiquitin-conjugating enzymes have loops and tails. J Biol Chem
288:34882–34896. http://dx.doi.org/10.1074/jbc.M113.509190.

26. Chong RA, Wu K, Spratt DE, Yang Y, Lee C, Nayak J, Xu M, Elkholi R,
Tappin I, Li J, Hurwitz J, Brown BD, Chipuk JE, Chen ZJ, Sanchez R,
Shaw GS, Huang L, Pan ZQ. 2014. Pivotal role for the ubiquitin Y59-E51
loop in lysine 48 polyubiquitination. Proc Natl Acad Sci U S A 111:8434 –
8439. http://dx.doi.org/10.1073/pnas.1407849111.

27. Petroski MD, Deshaies RJ. 2005. Mechanism of lysine 48-linked ubiqui-
tin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-
Cdc34. Cell 123:1107–1120. http://dx.doi.org/10.1016/j.cell.2005.09.033.

28. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R,
Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S,
Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim
DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Ka-
ranicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker
D, Bradley P. 2011. ROSETTA3: an object-oriented software suite for the
simulation and design of macromolecules. Methods Enzymol 487:545–
574. http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6.

29. Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. 2012. Selective recruit-
ment of an E2�ubiquitin complex by an E3 ubiquitin ligase. J Biol Chem
287:17374 –17385. http://dx.doi.org/10.1074/jbc.M112.353748.

30. Huang H, Ceccarelli DF, Orlicky S, St-Cyr DJ, Ziemba A, Garg P,
Plamondon S, Auer M, Sidhu S, Marinier A, Kleiger G, Tyers M, Sicheri
F. 2014. E2 enzyme inhibition by stabilization of a low-affinity interface
with ubiquitin. Nat Chem Biol 10:156 –163.

31. Conway P, Tyka MD, DiMaio F, Konerding DE, Baker D. 2014. Relax-
ation of backbone bond geometry improves protein energy landscape
modeling. Protein Sci 23:47–55. http://dx.doi.org/10.1002/pro.2389.

32. Kuhlman B, Baker D. 2000. Native protein sequences are close to optimal
for their structures. Proc Natl Acad Sci U S A 97:10383–10388. http://dx
.doi.org/10.1073/pnas.97.19.10383.

33. Canutescu AA, Dunbrack RL, Jr. 2003. Cyclic coordinate descent: a
robotics algorithm for protein loop closure. Protein Sci 12:963–972. http:
//dx.doi.org/10.1110/ps.0242703.

34. Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. 2011. Essential role
for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin dis-
charge from Cdc34 to substrate. Mol Cell 42:75– 83. http://dx.doi.org/10
.1016/j.molcel.2011.03.016.

35. Vijay-Kumar S, Bugg CE, Cook WJ. 1987. Structure of ubiquitin refined
at 1.8 A resolution. J Mol Biol 194:531–544. http://dx.doi.org/10.1016
/0022-2836(87)90679-6.

36. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray
JJ. 2011. Benchmarking and analysis of protein docking performance in
Rosetta v3.2. PLoS One 6:e22477. http://dx.doi.org/10.1371/journal.pone
.0022477.

37. Stein A, Kortemme T. 2013. Improvements to robotics-inspired confor-
mational sampling in Rosetta. PLoS One 8:e63090. http://dx.doi.org/10
.1371/journal.pone.0063090.

38. Kleiger G, Saha A, Lewis S, Kuhlman B, Deshaies RJ. 2009. Rapid E2-E3
assembly and disassembly enable processive ubiquitylation of cullin-
RING ubiquitin ligase substrates. Cell 139:957–968. http://dx.doi.org/10
.1016/j.cell.2009.10.030.

39. Saha A, Deshaies RJ. 2008. Multimodal activation of the ubiquitin ligase
SCF by Nedd8 conjugation. Mol Cell 32:21–31. http://dx.doi.org/10.1016
/j.molcel.2008.08.021.

40. Li T, Pavletich NP, Schulman BA, Zheng N. 2005. High-level expression
and purification of recombinant SCF ubiquitin ligases. Methods Enzymol
398:125–142. http://dx.doi.org/10.1016/S0076-6879(05)98012-9.

41. Pierce NW, Kleiger G, Shan SO, Deshaies RJ. 2009. Detection of sequen-
tial polyubiquitylation on a millisecond timescale. Nature 462:615– 619.
http://dx.doi.org/10.1038/nature08595.

42. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V,
Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J,
Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A,
Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M,
Sicheri F. 2011. An allosteric inhibitor of the human Cdc34 ubiquitin-
conjugating enzyme. Cell 145:1075–1087. http://dx.doi.org/10.1016/j.cell
.2011.05.039.

43. Sheng Y, Hong JH, Doherty R, Srikumar T, Shloush J, Avvakumov GV,
Walker JR, Xue S, Neculai D, Wan JW, Kim SK, Arrowsmith CH,
Raught B, Dhe-Paganon S. 2012. A human ubiquitin conjugating enzyme
(E2)-HECT E3 ligase structure-function screen. Mol Cell Proteomics 11:
329 –341. http://dx.doi.org/10.1074/mcp.O111.013706.

44. Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. 2013.

Mechanism of Lysine 48 Selectivity

June 2016 Volume 36 Number 11 mcb.asm.org 1731Molecular and Cellular Biology

 on N
ovem

ber 20, 2018 by guest
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1016/j.cell.2014.04.037
http://dx.doi.org/emboj2013174%20[pii]%2010.1038/emboj.2013.174
http://dx.doi.org/emboj2013174%20[pii]%2010.1038/emboj.2013.174
http://dx.doi.org/10.1074/jbc.R115.675165
http://dx.doi.org/10.1146/annurev-biochem-060310-170328
http://dx.doi.org/10.1126/science.2538923
http://dx.doi.org/10.1126/science.2538923
http://dx.doi.org/10.1038/nrm2767
http://dx.doi.org/10.1038/nrm2767
http://dx.doi.org/10.1038/nrm1701
http://dx.doi.org/10.1016/j.molcel.2011.08.025
http://dx.doi.org/10.1016/j.molcel.2010.07.027
http://dx.doi.org/10.1038/srep16793
http://dx.doi.org/10.1038/srep16793
http://dx.doi.org/10.1002/embj.201385315
http://dx.doi.org/10.1038/nrm1547
http://dx.doi.org/10.1038/nrm1547
http://dx.doi.org/10.1038/nature07884
http://dx.doi.org/10.1016/j.fob.2014.04.011
http://dx.doi.org/10.1074/jbc.M114.624809
http://dx.doi.org/10.1074/jbc.M114.624809
http://dx.doi.org/10.1128/MCB.00812-07
http://dx.doi.org/10.1128/MCB.00812-07
http://dx.doi.org/10.1371/journal.pone.0040786
http://dx.doi.org/10.1371/journal.pcbi.1002056
http://dx.doi.org/10.1074/jbc.M113.509190
http://dx.doi.org/10.1073/pnas.1407849111
http://dx.doi.org/10.1016/j.cell.2005.09.033
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1074/jbc.M112.353748
http://dx.doi.org/10.1002/pro.2389
http://dx.doi.org/10.1073/pnas.97.19.10383
http://dx.doi.org/10.1073/pnas.97.19.10383
http://dx.doi.org/10.1110/ps.0242703
http://dx.doi.org/10.1110/ps.0242703
http://dx.doi.org/10.1016/j.molcel.2011.03.016
http://dx.doi.org/10.1016/j.molcel.2011.03.016
http://dx.doi.org/10.1016/0022-2836(87)90679-6
http://dx.doi.org/10.1016/0022-2836(87)90679-6
http://dx.doi.org/10.1371/journal.pone.0022477
http://dx.doi.org/10.1371/journal.pone.0022477
http://dx.doi.org/10.1371/journal.pone.0063090
http://dx.doi.org/10.1371/journal.pone.0063090
http://dx.doi.org/10.1016/j.cell.2009.10.030
http://dx.doi.org/10.1016/j.cell.2009.10.030
http://dx.doi.org/10.1016/j.molcel.2008.08.021
http://dx.doi.org/10.1016/j.molcel.2008.08.021
http://dx.doi.org/10.1016/S0076-6879(05)98012-9
http://dx.doi.org/10.1038/nature08595
http://dx.doi.org/10.1016/j.cell.2011.05.039
http://dx.doi.org/10.1016/j.cell.2011.05.039
http://dx.doi.org/10.1074/mcp.O111.013706
http://mcb.asm.org
http://mcb.asm.org/


Analyses of the effects of all ubiquitin point mutants on yeast growth rate.
J Mol Biol 425:1363–1377. http://dx.doi.org/10.1016/j.jmb.2013.01.032.

45. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. 2011. The
mechanism of linkage-specific ubiquitin chain elongation by a single-subunit
E2. Cell 144:769 –781. http://dx.doi.org/10.1016/j.cell.2011.01.035.

46. Harrison JS, Jacobs TM, Houlihan K, Van Doorslaer K, Kuhlman B.
2015. UbSRD: The ubiquitin structural relational database. J Mol Biol
http://dx.doi.org/10.1016/j.jmb.2015.09.011.

47. Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis
MJ, Wolberger C. 2013. E2 ubiquitin-conjugating enzymes regulate the
deubiquitinating activity of OTUB1. Nat Struct Mol Biol 20:1033–1039.
http://dx.doi.org/10.1038/nsmb.2655.

48. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M,
Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM,
Ovaa H, Komander D. 2013. OTU deubiquitinases reveal mechanisms of
linkage specificity and enable ubiquitin chain restriction analysis. Cell
154:169 –184. http://dx.doi.org/10.1016/j.cell.2013.05.046.

49. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. 2006.
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of
linkage-specific polyubiquitin chain formation. Nat Struct Mol Biol 13:
915–920. http://dx.doi.org/10.1038/nsmb1148.

50. Yunus AA, Lima CD. 2006. Lysine activation and functional analysis of
E2-mediated conjugation in the SUMO pathway. Nat Struct Mol Biol
13:491– 499. http://dx.doi.org/10.1038/nsmb1104.

Hill et al.

1732 mcb.asm.org June 2016 Volume 36 Number 11Molecular and Cellular Biology

 on N
ovem

ber 20, 2018 by guest
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1016/j.jmb.2013.01.032
http://dx.doi.org/10.1016/j.cell.2011.01.035
http://dx.doi.org/10.1016/j.jmb.2015.09.011
http://dx.doi.org/10.1038/nsmb.2655
http://dx.doi.org/10.1016/j.cell.2013.05.046
http://dx.doi.org/10.1038/nsmb1148
http://dx.doi.org/10.1038/nsmb1104
http://mcb.asm.org
http://mcb.asm.org/

	University of the Pacific
	Scholarly Commons
	6-1-2016

	Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme
	Spencer Hill
	Joseph S. Harrison
	Steven M. Lewis
	Brian Kuhlman
	Gary Kleiger
	Recommended Citation


	MATERIALS AND METHODS
	Molecular modeling. (i) Building initial models.
	(ii) Refining the acceptor ubiquitin.
	(iii) Acidic-loop refinement.
	Protein expression and purification.
	Diubiquitin synthesis assay.
	Multiturnover ubiquitylation assays.
	Single-encounter quench flow.

	RESULTS
	The Ube2R1/2 acidic loop participates in Lys 48-specific polyubiquitin chain formation by binding to SCF.
	Ube2R1/2 acidic-loop residue Glu 108 or Glu 112 may participate in Lys 48-specific polyubiquitin chain formation by interacting with donor ubiquitin.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

