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Abstract

We exhibit an isomorphism between the fusion algebra of the quantum double of an
extraspecial p-group, where p is an odd prime, and the fusion algebra of a twisted quantum
double of an elementary abelian group of the same order.
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Abstract

We exhibit an isomorphism between the fusion algebra of the quantum double of an
extraspecial p-group, where p is an odd prime, and the fusion algebra of a twisted quantum

double of an elementary abelian group of the same order.

Keywords: fusion algebra, twisted quantum double of finite group

1 Preliminaries

This article extends [3] to include odd primes. By demonstrating that D(G) and D“(E) have
isomorphic fusion algebras, we provide another family of examples involving (untwisted) quan-
tum doubles of nonabelian groups and twisted quantum doubles of abelian groups with non-
abelian cocycles (in the sense of [8]). The existence of our isomorphism is a special case of a
more general theorem in [9]. We give one such isomorphism explicitly in Theorem 4.2 for its
potential use in applications (such as [2], e.g.).

For the entirety of this work, p is an odd prime. Fix € to be a primitive p-th root of unity
and fix 7 so that n” = e. A delta with two indices will be the usual Kronecker delta. Also,

0zea =1if x € A, 0 if not. All tensor products are over C unless otherwise noted.

2 Quantum Double of a Finite Group

Let G be a finite group with identity element 14 and let e, denote the functional on G given by

eg(h) = 64. Then CG* = span{e, | g € G}. The quantum double of a finite group, denoted



D(G) = (CG* ® CG,u, A, ¢) is a bialgebra, where

(eg ® SL’) ’ (eh ® y) = 5g,:(:hx*1 (eg ® .Ty)
u(l) = ) (en®1la)

heG

Ale,@x) = Z (en ® ) ® (ep-1, @), and
hea

eleg,@x) = 414
for all g, h,z,y € G.

Remark 2.1 D(G) becomes a braided Hopf algebra [6] by adding the antipode, S, and R-matriz

given below.

Sleg@z) = (1@ g 'x)

R o= 3 (o) (no9)

g,heG

Representations of D(G) are induced from representations of centralizers of G. See [1], [7],
[5], or [3] for details. Let K be a conjugacy class of G, gx € K, and let Cx = C(gr). Assume
that Cx < G. Let M be an irreducible Cx-module with character £. Then M(K,§) is an

irreducible D(G)-module whose character is E;, given by

51; (eg ® 7) = Sgerbocc €7 (1),

where £ (z) = £(rar™!) and r satisfies g = r~ggr.

2.1 Example - G Extraspecial

For a definition of extraspecial groups and a catalog of relevant properties, see [3, §A.1]. Let

G be an extraspecial p-group with |G| = p*"™'. Choose z € Z = Z(G) such that Z = (z).



Select an element gx from each conjugacy class K and (right) coset representatives {rg;} of
Ca(gx) = Ck in G so that r[_(}igKrK,i = z'gx. We will omit subscripts when they can be
determined from context. Note that r;gxr; 1 = 277gg. Since G is extraspecial, each Cx <1 G.

For each element of Z, we obtain an irreducible representation of D(G) for every irreducible
of G. Together, these elements account for p - p?® one-dimensional and p(p — 1) p"-dimensional
irreducible modules. The one-dimensional modules will be denoted M (i, «) for i € Z, and « €
G , the set of inequivalent one-dimensional characters of G. Here, ¢ stands for the conjugacy class
of 2*. The larger modules are M (i, A,), where A, is the p"-dimensional irreducible character of
G satisfying Ay(z) = p"e®. Note that a € Z;.

Let K be a noncentral conjugacy class. Then Ck affords exactly p(p—1) irreducible represen-

2n=1 gne-dimensional irreducibles

tations of dimension p"~! (on which Z acts nontrivially) and p
(on which Z acts trivially) [3, Lemma A.2].

Let 5’;{ denote the set of all irreducible characters y of Ck satisfying x(z) = 1. For n > 1,
C/Z'; is exactly the set of one-dimensional characters of C'x. Pick x € 5’; Then M (K, x) denotes
the irreducible module of D(G) induced from x. Note that ™ = y for all r € G.

Let px be an irreducible representation of Cx satisfying Tr(px) ¢ Cr. Then pr(z) = €*id
for some a € Z;. The p — 1 such irreducible representations will be denoted as pg 4, Where
7 = 1. We know from [3, Lemma A.2] that g% = 2¢ for some d € Z,. For consistency, we

must have pr o~ (grc) = yn*?id. Since the conjugacy class will be clear from context, we let A,

denote the character associated to pg . The following lemma will help in calculations.

Lemma 2.2 Let K be a noncentral conjugacy class of G, and let gh = z%. Then Agfgl)(zbg%) =

pn— 1 6a(b—mq) ,yqnadq )



Proof: We have

M (2g%) = Aan(Prmghrt)
= Aan (' (rmgrr,)?)
= Xap (2"(z7"gx)")
= )‘aﬁ(zb_mqgg{)

— pn—lea(b—mq) (,}/T/ad)q’

where the last equality follows from the scalar actions of z and gx.  O.

We have established the following.

2n+1

Lemma 2.3 Let G be an extraspecial p-group with |G| = p . Then there are four types of

irreducible D(G)-modules.

o M(i,a) of dimension 1 fori € Z,,a € G

M(i, A,) of dimension p™ fori € Zy,,a € Zj

M(K, x) of dimensionp for K ¢ Z,x(z) =1

M (K, Xayy) of dimension p" for K ¢ Z,a € Z3,7* =1
For k € Z,, define K* = {¢g* | g € K}, which is itself a conjugacy class for extraspecial G.

Theorem 2.4 The fusion rules of D(G) are given explicitly in the following formulas. Con-

Jugacy classes K and L are noncentral with Cx # Cr. Let ay # —ay and let k € Z; with

k# 1.

1. M(’il,Oé1> &® M(i2,a2) = M(’Ll +’i2,0&1 ®062)

bt



10.

11.

12.

15.

14.

15.

16.

17.

18.

M (i, @) @ M(iy, Ay) = M(iy + i3, Ay)

M (i1, Ng) @ M(ia, A_g) = B e M (i1 + ia, )

M (iy, Nay) @ M(ig, Nay) = p™ - M (i1 + i2, Mgy tay)
M(i,a) @ M(K,x) = M(K,Res_a® )

M (i, a) @ M(K, Aayy) = MK, Mg a(gic)yeet)

M(Zv Aa) ® M(K7 X) = @szl M(K7 )\a,u)

M(i,Ay) @ M(K,\_,,) =D M(K,x)

xeCxk
M (i, Aay) @ M(K, Az y) = Doy P71 MK, Nayraz)
M(K,x) ® M(K~'9) = @i, Oresg, amyey M (i, @)
M(K,x)® M(K~', \y) = @), M(i,A,)

MK, Xapy) @ MK Aas) = D1 Daggre)mming oot M (i)
M(EK, Ay ) @ MK Ay ) = D5 P71 M (i, Aay 4a)
M(K,x) @ M(K*,¢) =p- M(K*', x @)

M(K,x) ® M(K*, Xoy) = @,y MKM, A0y)

M(K, )\am) & M(K’f’ )\_am) - @XEGE M(Kk“, X)

MK, Aany) @ MK ko) = p" - MOEEN )

M(K= )‘alﬂﬂ) ® M(Kkv >‘a2,’72) = @upzl pn_l ' M(Kk+17 )‘a1+a2,1/)f where a2 7£ kal



19. M(K,x) ® M(L,¥) = @res,, peresq xeResg w M (KL, p), where Q@ = Cx N Ty,

20. M(Kv X) ® M(La )\a,'y) - @szl M(KL, )\a,u)

21. M(K, Nayyy) @ M(L, Aayy) = €D, car, M(KL, X)

xX€CKL

22 M(K7 )\alvﬁfl) ® M(L7 >\a27'\/2) = @IJPZI pn_l ’ M(KL7 )\a1+a27l’)

1-4.

10.

Proof:

These cases follow directly from the decomposition of irreducible representations of G.

Aleg, @) =3 cq(eg @) ® (€414, ®x). The only nonzero contribution to the trace

occurs when 2 € Cx and g = z'. So, Tr (ey, ® 2) = a(z)x(@)drecy -

Let gf = 2% A(ey, @ gx) = > gec (€9 @ gr) @ (e4-14, ® gic). The only nonzero contri-

bution to the trace occurs when g = z%. So,
Tr(eg ®gr) = a(gK)AEZf;”(gK)
= p"a(gr)eyn™

Aaagic)reei (9)-

Tr (eg,, ® 2z) = p"e® and Tr (ey,, ® gx) = 0. Hence M (K, \,,) must occur exactly once in

the decomposition for each v. Cases 8 and 9 are similar.

Pick i € Zp. Alei ®x) =3 cc(e,®@1)® (eg-1.: ® z). We get a nonzero contribution
to the trace for every g € K. So Tr(e,: ® x) = px(x)¥(z), which means that the tensor
product module decomposes into precisely those p M (7, «) for which the restriction of «
to Cx(= Cg-1) is x ® ¥. Cases 11, 12, and 13 are obtained by considering Tr (e,: ® z)

and Tr (e, ® gk ).



14.

17-18.

A (egK]Hl ® :5) = dec (e, ® ) ® <6g*19Kk+1 ® :L') We get a nonzero contribution to the
trace for every g € K. Thus Tr (69Kk+1 ® x) = px(x)¢(z) for all z € Ck (= Ckr). Cases

15 and 16 are similar.

Consider the conjugacy classes K, where i € Z,. Note that each gg: belongs to the

(abelian) supgroup generated by z and gx. Choose d € Z, so that g = z% Then

Gh = 2% for all 4.

Fix k and let J = K**'. There exist j,b, ¢ € Z, satisfying grxgxr = /g5, g7 = 2°g5,

_ e, 14k
and g; = 2°g;%" . So,

Gk+1) k+1 _ k+1 k1
z 7 =

= (=7"gs)(=""g})

—b—ck k+1
< gJ )

which implies that j(k+ 1) + b+ ck =0 mod p.

Since A (eg, ® g7) = D, (€4 @ 97) @ (eg-14, ® g), We get a nonzero contribution to the



19.

20-22.

trace for every g € K. So, A(e,, ® g5) = 251:1 (Exmgy @ gy) ® (ez mg—1g, & gJ)
T — 7m)
Tr (69(] ® gJ) = Z )\alK'y;n azl,{Y]; ! (gJ)

o T, b ki Tk —jom) e 14k~1
= E >\a1'y71n 29K ) Aaz.ys (2 2 9k )

_ p2n—2 Z eal(b—m(k-i—l)),yic—i—lnald(k—l—l)eaz(c+(j+m)(1+k*1))7%+k7177a2kd(1+k*1)

m=1

p
_ p2n—2 Z Ek*1[m(az—kal)(k+1)+ka1b+a2(j(k—i—l)—&—ck)]fyf—i-lfbl—i—k*ln(al—i-ag)(k—l-l)d

m=1

k+1_ 1+k~Y (a1+a2)(k+1)d

p
2n—2 Z Ek’1[m(ag—kal)(k—i—l)—i-b(kal —az)},yl V2 n

m=1

=P

p
_ p2n—2 Z Ekfl(ag—kal)(m(k—i-l)—b)7{@—}—1721-1—]6’1n(al—i-ag)(k—i—l)d

m=1
Now, if as = ka;, then the epsilon factor drops out, leaving p? =1y +1yd+k™" plk+Dar(k+1)d

which implies case 17. On the other hand, if ay # kay, then (since k+1 # 0) Tr (ey, ® g5) =

0, which implies case 18.

Let € @ = Cx N Cp. Then Afey,, ®x) = Y (6, @) @ (eg-14,, ®x). We get a
nonzero contribution to the trace for each g € K. So Tr(ey,, ® z) = px(z)¢(x). There

are exactly p representations p of Cx, for which Resg p = Resg x ® Resg 9.

These cases follow from the fact that Tr(e,,, ® gx) = Tr(ey, ® gr) = 0 [3, Lemma

Adl.



3 Twisted Quantum Double of a Finite Group

Let G be a finite group and let w € Z3(G,C*). Without loss of generality, we choose w to
be normalized. The twisted quantum double of G, D¥(G) = (CG* @ CG,u, A ¢, ®) is a quasi-

bialgebra with structure maps given below. The maps u and € are the same as in the untwisted

case.
(eg ® .CL’) : (eh ® y) = 6g,th*19g(x7 y) (eg ® .C(Iy)
Ale, @) = Z Ye(h,h7'g) (e @ 2) ® (ep-1, @ )
heG
o = Z w(g,h, k) e, 1)@ (e ®1) @ (e, ® 1),
e
where
_w(g,z,y)w(x,y, (vy) gry)
eg(x’y) B w(x,x_lgx,y)
and
w(g, h, x)w(x, v gz, 2~ ha
Ya(g,h) = SAE S )

w(g,x,x"thr)
for all g,h,x,y € G. Notice that if w = 1, then we recover the definition of D(G). It is

well known that the fusion algebra of D“(G) depends only on G and the cohomology class

[w] € H3(G, C) [6], [1].

Remark 3.1 D¥(G) is actually a braided quasi-Hopf algebra. See [6, §XV.5] for the additional

structures.

3.1 Example - £ Elementary Abelian

Let FE be an elementary abelian p-group with |E| = p***! and let § € Z*(FE,C*). Projective
O-representations of E are in one-to-one correspondence with (linear) representations of X, a

10



central extension of £/ by C* with associated 2-cocycle 6.

Let 6 ¢ B*(E,C*) and let X be defined by the short exact sequence
1-C"-X5FE— 1.

By [3, Theorem A.5], there exists a subgroup F' = 7n(Z(X)) < E and an extraspecial p-group
G such that

X=2Fa& (CxG),

where the central product identifies the subgroup {v € C* | v» = 1} with the center of G via
the isomorphism € — z for fixed z € Z(G). Note that |F| - |G| = p|E].

Let 1 be an irreducible f-representation of E and let ¥ be the associated linear represen-
tation of X. Since § ¢ B%*(E,C*), dimvy = dimV¥ > 1. By Clifford’s Theorem, Resj ¥ =
(dim W) for some one-dimensional irreducible representation [ € F. Thus Resy ¥ must be

irreducible. If |G| = p**! then dim Resyy ¥ = p* = dim. We have just shown the following.

Lemma 3.2 Let 0 ¢ B*(E,C*). Then all irreducible 0-representations have the same dimen-
sion. Indeed,

dimvy = | —.
We now identify F' with its isomorphic copy (as a direct summand) in X.

Lemma 3.3 The map R : b — [ is a natural bijection between (inequivalent) irreducible

O-representations of E and (inequivalent) irreducible linear representations of F.

Proof: This was proved in [3] for p = 2, but much of that proof holds here. In particular, the

two sets in question still have the same cardinality. We will show that R is surjective.

11



Choose ( € F and recall A; : G — EndV is the p*-dimensional irreducible representation
of G satisfying A;(z) = eid. Define Wg 5, : X — EndV via Uga, (frg) = vB(f)A1(g) for all
feF, veC* ge G. The choice of Ay guarantees that Wg,, respects the central product

identification. Furthermore,

Vsa, (f1i1191) Vs, (farege) = v1B(f1)A1(g1)v2B(f2)A1(g2)
= V1V26(f1f2)/\1(91g2)

= Vg (frfori29192).

Hence Wgs 5, is a linear representation of X. Moreover Wy 5, is irreducible because A; is. So,
there exists v, an irreducible #-representation of E corresponding to Wg,,. Thus, R(¢) =
Resp Ugp, =3 O

Now consider E as a (2n+1)-dimensional vector space over Z, and let H be a 2n-dimensional
subspace of E. Then H admits a nondegenerate symplectic form (). Select such a form and
choose a symplectic basis of H, {by,bs;...;bg,_1,b9,}. Pick by € E\ H. For r € E, we write
r=32"rib;. Let

w(r s t) — 67’0(51t2+53t4+---+82n71t2n) (1)
) )

for all r,s,t € E. Since w is trilinear, it is a 3-cocycle on E. Note that w is normalized.

Lemma 3.4 Pickr € E. Let X be a central extension of E (= w(X)) by C* with 2-cocycle 0,

and let F, = w(Z(X)).
1. If r =0, then F, = F.

2. Ifr € H\ {0}, then F, =r+ (C H).

12



3. Ifr ¢ H, then F, = span{r}.

Proof: Note that s € F,. if and only if 0,.(s,t) = 0,(t, s) for all t € E. Direct calculation gives

— "o (s,t)+s0{t,r)+to(r,s)

Here, (a,b) = (Py(a), Pg(b)), where Py is orthogonal projection onto H.
1. Assume r = 0. Then rq (s,t) + so (t,r) +to (r,s) =0 for all s,t € E. So F, = E.

2. Assume r € H, r # 0. Let s € F, and pick t € H,t ¢ r-. Then s¢(t,r) = 0, implying
s € H. So we have ty (r,s) = 0 for all t € E. Thus s € r+. Conversely, pick s € r+. Then

so(t,r) +to{r,sy=0forallt € E. So F, = rt.
3. Assume r ¢ H. Then ry # 0. Let s € F, and pick ¢t € H. Then

0 = 71o(s,t) +so(t,r)
= (ros,t) — (sor,t)
= (ros — sor, t) .
Since t was arbitrary, roPp(s) = soPu(r), implying s = 22r. Thus s € span{r}. Con-

versely, let s = ar for some a € Z,. Then we have ro (ar,t) + ary (t,r) + to (r,ar) =

arg (r,t) — arg (r,t) + ato (r,r) =0 for all t € E. Thus F, = span{r}.

Lemma 3.5 Letr € E,k € N. If p is a 0,-representation of E, then

 k(k—1)

p(kr) = p(r) w(r,r,r)™

Moreover, p(r) = pid, where u? = 1.

13



Proof: It is clear that the result holds if £ = 1. By induction,

plkr+r) = p(kr)p(r)6, " (kr,7)

& k(k—1)

wr,r,r)~ "2z p(r)w(r, kr,r)™!

= p(r)

w(r,rr)” e w(r,rr)”

k+1 k

= p(r)

_ (k+Dk

Hlo(rr,r)™

= p(r)

_p(-1)
2

Also, id = p(pr) = p(r)Pw(r,r,r) = p(r)P, because p is odd. Since r € F,., p(r) must be a
nonzero scalar. O

Irreducible modules of D¥(FE) are induced from irreducible 6,-representations of E as r
ranges over the conjugacy classes (elements) of E.

2n+1 3

If » = 0, then we obtain p inequivalent irreducible one-dimensional D (F)-modules. Let

N(0, 3) denote the module arising from the representation 3 on E.

Ifr € H,r # 0, then we obtain p**~! inequivalent irreducible p-dimensional D*(E)-modules.
Each such projective representation corresponds to a one-dimensional representation ¢ of F, <
H via the bijection of Lemma 3.3. Denote this D¥(E)-module as N(r, ).

If r ¢ H then we have p inequivalent irreducible D*(E)-modules of dimension p"™. Denote

these modules by N(r, u) for p? = 1, where A(r) = pid. We have established the following.
Lemma 3.6 There are three types of irreducible representations of D¥(E).

e N(0,0) of dimension 1 for 3 € E

e N(h,v) of dimension p forh € H, h# 0, and i) € hi

o N(t,u) of dimension p"™ fort ¢ H and pp =1 O

14



Theorem 3.7 The fusion rules of D¥(E) are given explicitly in the following formulas. Below,

hy and hy are linearly independent, as are ty and ty. Let k € Z,, with k # —1.

1. N(0,51) @ N(0, 32) = N(0, 81 ® 3)

2. N(0,) ® N(h,¢)) = N(h,ResZ. 3 ®1))

3. N(0,8) ® N(t, ) = N(t, B(t)n)

4 N(h,9)) @ N(=h, X) = Dresr, gy V(0. 7)

5. N(h,1) @ N(kh,x) =p- N((k+1)h, ¢ ® x)

6. N(h1,¥) @ N(h2, X) = @resp c=Resp phespx V(1 + ha, C), where P = hi- N hy

7. N(h,¢) @ N(t, ) = @yo_y Nt + h,v)

8. N(t 1) ® N(=t, p2) = D gy, ;2 N (0, 5)

9. N(t,m) @ N(kt, ) = p" - N((k + 1)t, g 3™ )
10. Nty pn) @ Nto, pa) = @y Nt +t2,0), if tr + 1 € H
11. N(ty, 1) @ N(ta, pa) = @B, 0" N(t1 + to,v), if i +t2 ¢ H

Proof:

L Aleo®@x) = > cp(9,—9) (¢, ®7) ® (e-g ®x). The only term with nonzero trace

occurs when g = 0. So Tr (eg ® z) = [1(x)F2(x). Cases 2 and 3 are similar.

4. Aleo®@x) = Y cp:(9,—9) (e ®x) ® (e-y ®x). The only term with nonzero trace
occurs when g = h. So Tr (ey ® x) = p25x€ht%(h, —h)Y(x)x(x). Note that v, (h, —h) =1

15



for x,h € H. Therefore, the tensor product module must decompose into precisely those
N(0, 3) where the restriction of 3 to hE s 1 ® x. Since |i/zI| = |ht] = p?~!, there are

exactly p? distinct such 3 € E. Cases 5 and 6 are similar.

A(ense ® (h+ 1)) = Xyep Wae(9, g+ h+1) (6 ® (b +8)) & (e_gnse ® (h + ). Again,
the only term with nonzero trace occurs when g = h. So Tr (ep4¢ @ (b +t)) = p" M yne (b, )1 (h+
t)p = 0 because h+t ¢ H. Since h+t acts as a scalar p-th root of unity in each N(h+t,v),
we must have each one appearing once to guarantee a trace of zero. Cases 10 and 11 are

similar because the linear independence of ¢; and ¢, guarantees that F;, N Fy, = 1.

Aleg®x) = 3 cpV2(9:—9) (6, ® 1) @ (e-y ®x). The only term with nonzero trace
occurs when g = t. Note that if ¢ acts as the scalar u, then —t acts as p~*w(t,t,t)~* by

Lemma 3.5. Hence, if z = t, then the trace is

PP pty w(=t, —t, =) Tyt —t) = pP py w(t t w(t, )T = pT g

Moreover, Tr (ep ® ) = 0 if = ¢ span{t}. So we must have every N (0, ) appearing in

which 3(t) = pip5 . There are p?* distinct such 3 € E.

A (eerne @ (k+1)t) = 30 cp Va9 —g+(E+1DE) (e ® (b + D)@ (e—gy iy © (k+ 1)t).
The only term with nonzero trace occurs when g = ¢t. Using Lemma 3.5, we can determine
how (k + 1)t acts on each tensor factor.

a+e~HE—h

R okt kDT 2 Ayt kt)

(k+1)k

Tr (egriy ® (k+1)t) = p"uiHw(t, t,t)”

= Pl st ()

(k+1)k A+~ Yk He3
2

2n , k+1, 1+k~

= T ()

_ 2nk+11+k1
= P M1 He
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k+1, 14+k~ 1

Therefore, the tensor product module must decompose into p™ copies of N ((k+1)t, ui™" s

4 An Explicit Fusion Algebra Isomorphism

2+l and F an

For the remainder of this work, G will denote an extraspecial p-group with |G| = p
elementary abelian group with |E| = |G|. Pick H < F of index p and fix t € £\ H. Both G/Z
and H admit nondegenerate symplectic forms as Z,-spaces. Choose the form on G/Z given in
[3, (A.1)], and identify it with a form on H by requiring the linear isomorphism ¢ : G/Z — H
to be an isometry. Elements of GG/Z will be denoted either by Z or by the corresponding
noncentral conjugacy class K. Since G is extraspecial, one-dimensional representations of G
(and thus of G/Z) are in one-to-one correspondence with one-dimensional representations of
H via ¢. Similarly, elements of C/Z'; can be paired with one-dimensional representations of the
subgroup ¢(Cx/Z) = ¢(K*) = ¢(K)* of H.

Let i« € Z,. If a € G, then define @; to be the representation of E arising from the
representation oo ¢~ of H with ¢ acting as €'. That is, @;(bt + h) = a(¢~1(h))e" for b € Z,.

Pick w € Z3(E,C*) as in (1). Then D(G) and D*(E) have the same number of one-

dimensional, p-dimensional, and p"-dimensional modules, respectively. Let F' be the map from

17
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the irreducibles of D(G) to the irreducibles of D“(F) such that

FM(i,a) = N(0,a@) (2)
FM(i,A,) = Nlat,e%) (3)
FM(E,x) = N(6(K),x0¢ o)) (4)
FM(K,Aay) = Nlat+¢(K), 7). ()

Lemma 4.1 F is a bijection.

Proof: Recall the three types of D*(E)-modules given in Lemma 3.6. Pick 8 € E. Using (2),

we have that F'M(3(t), Rest; 30 ¢) = N(0,Rest, 3o D). But

Resh 50 65 (bt + h) = Resly B0 6(67 () B(t)" = B(W)B(t)" = B(bt + h)

forall b€ Z,, h € H. So N(0, ) is in the image of F.
Now pick h € H and ¢ € hi. Let K denote the conjugacy class of G that satisfies ¢(K) = h.

Then we have

FM(K, ¥ 0 ¢|cyjz) = N(O(K), o dlegz 0 ¢ gurr) = N(h, ).

From (3) and (5), modules of type N(at + h, j1) are also in the image of F for all a € Z7, h €

H. Hence F'is a bijection. O
Theorem 4.2 [ extends to an isomorphism of fusion algebras.

Proof: We can extend F' additively on the irreducible elements in order to obtain a bijection
from the fusion algebra of D(G) to that of D¥(E). We now show that F' preserves the tensor
product multiplication, using the fusion rule numbering from Theorem 2.4. Most of the proof

18



involves straightforward checking and so will be omitted. A few of the less clear rules are shown

below.
1.
FM(iy, 1) ® FM iy, ) = N(0,@1;,) ® N(0,a3,,) = N(0,ar,;, @ az;, ).
FM(iy + iz, 00 @ ag) = N(0, (a1 @ )iy 14)-
Note that
(a1, @ @g,) (bt +h) = ayod  (h)ayo0 ¢~ (h)e"™
= (o1 @ ag) o~ ' (k)T
= (o1 @ ag)iy1i, (bt + R).
2.
FM(iy,a) ® FM(ig, As) = N(0,a;,) ® N(at,e™?)
= N(at, @ (at)e™)
= N(at, " e™?).
FM{(iy + iy, Ay) = N(at, e +%2)),
3.

FM(il,Aa) ®FM(Z.2,A_&) — N(a/t7 6ail) ® N(_at,G_aiQ)

= P  Nop

B(at)=e*"1 (e—272)~1

= @ N©5).

B(t)=ei1Fi2

@FM(M + ’ig,Oé) = @N(O,aiﬁ_i?).

aeé ae@
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10.

FM (i1, Ngy) ® FM(iz, Aoy) =

N(ait, ™) @ N(agt, €™)
P N(agt + agt, €100 220470y where | = ggay!
p" . N((al + a2>t7 €a2i1+a1i1+a2i2+a1i2>

p" - N((a1 + a)t, e(“1+“2)(i1+i2)).

pn ' FM(ZI + i27 Aa1+a2) = pn : N((al + axg)t, €(a1+a2)(i1+i2)),

FM(i,a) ® FM(K,

Aay) = N(0,0:) ® N(at + ¢(K),7)
= N(at + ¢(K), i(at + ¢(K))7)

= N(at + ¢(K), a(gr)e™).

FM(K7 Aa,a(gK)’yE‘”) = N(a’t + ¢<K)7 a(gK>7€ai)'

FM(K,x) ® FM(K™",4) =

o

=1 ReSgK a=xQY

N(¢(K), x o ¢_1|¢(K)i) @ N(—¢(K),¥o ¢_1|¢(K)l)

b N(0, 3)

Res? )1 B=(xod~1)@(woo1)

% . N(0, ).

Blt)=c
ResZ |1 B=(x@)op™!

FM(i,o)= & NO.@).

=1 Reng a=xQY
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12.

FM(K, X)) ® FM(K™ A qy) = N(at +¢(K), 1) ® N(—at — ¢(K),7)

= b N

Blat+¢(K))=y17; "

B(S(K))=e¥yiy5
p

& & FM(i,a) = @ & N(0,@,).

=1 a(gr)=yiv; e a(gr )=y e

17.
FM(K, M) ® FM(E* M) = Nlat + 6(K), 1) ® N(kat + ko(K),7)
= N+ Do+ 9(K)) A )
p"- FM(KkJ"l, )\(k+1)(l,‘yf+1“{21+k71) =p" - N((k+ 1at+ (k+ 1)op(K), 7f+1fy21+k71),
18.

FM(K7)\a1,'y1)®FM(Kk>)\a2;Yz) = N(alt+¢(K)v’yl)®N(a2t+k¢(K)v’Y2)

= @pn_l . N((a1 + (Ig)t + (kf + 1)@5([()71/),

vP=1
Dr ™ FME X)) = D Nl +a)t + (k+ DK, )
wp—=1 vP=1

Therefore, F' is a homomorphism. Together with Lemma 4.1, this implies that F' is an

isomorphism of fusion algebras. O

5 Appendix - Fusion Rules for Extraspecial Groups

Let G be an extraspecial p-group. Fix z € G so that (z) = Z(G)(= Z,). Recall that |G| = p****
for some positive integer n and that G/G’ = Zf,". Hence G admits p?® inequivalent one-

21



dimensional irreducible representations. Let G denote the set of these irreducibles. Then
G =~ Zf,", and for all a € @, a(z) = id. The remaining p — 1 irreducible representations
have dimension p" and can be distinguished by their action on z. Let p;(z2) = €. Further

explanations can be found in [4] and [3, Appendix A].

The fusion rules of G are given by the following and hold for all a, 5 € @, and i, j € Z,.

* a®f=ap
® a®p;=p;
P pitj F =]
® pi®pj=
Do i=-
ael

Note that these rules hold even if p = 2; the rule with multiplicity p would not occur.
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