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Abstract

We exhibit an isomorphism between the fusion algebra of the quantum double of an

extraspecial p-group, where p is an odd prime, and the fusion algebra of a twisted quantum

double of an elementary abelian group of the same order.
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Abstract

We exhibit an isomorphism between the fusion algebra of the quantum double of an

extraspecial p-group, where p is an odd prime, and the fusion algebra of a twisted quantum

double of an elementary abelian group of the same order.

Keywords: fusion algebra, twisted quantum double of finite group

1 Preliminaries

This article extends [3] to include odd primes. By demonstrating that D(G) and Dω(E) have

isomorphic fusion algebras, we provide another family of examples involving (untwisted) quan-

tum doubles of nonabelian groups and twisted quantum doubles of abelian groups with non-

abelian cocycles (in the sense of [8]). The existence of our isomorphism is a special case of a

more general theorem in [9]. We give one such isomorphism explicitly in Theorem 4.2 for its

potential use in applications (such as [2], e.g.).

For the entirety of this work, p is an odd prime. Fix ε to be a primitive p-th root of unity

and fix η so that ηp = ε. A delta with two indices will be the usual Kronecker delta. Also,

δx∈A = 1 if x ∈ A, 0 if not. All tensor products are over C unless otherwise noted.

2 Quantum Double of a Finite Group

Let G be a finite group with identity element 1G and let eg denote the functional on G given by

eg(h) = δg,h. Then CG∗ = span{eg | g ∈ G}. The quantum double of a finite group, denoted
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D(G) = (CG∗ ⊗ CG, u,∆, ε) is a bialgebra, where

(eg ⊗ x) · (eh ⊗ y) = δg,xhx−1 (eg ⊗ xy)

u(1) =
∑

h∈G

(eh ⊗ 1G)

∆ (eg ⊗ x) =
∑

h∈G

(eh ⊗ x)⊗ (eh−1g ⊗ x) , and

ε (eg ⊗ x) = δg,1G

for all g, h, x, y ∈ G.

Remark 2.1 D(G) becomes a braided Hopf algebra [6] by adding the antipode, S, and R-matrix

given below.

S (eg ⊗ x) =
(
ex−1 ⊗ x−1g−1x

)

R =
∑

g,h∈G

(eg ⊗ x)⊗ (eh ⊗ g)

Representations of D(G) are induced from representations of centralizers of G. See [1], [7],

[5], or [3] for details. Let K be a conjugacy class of G, gK ∈ K, and let CK = CG(gK). Assume

that CK � G. Let M be an irreducible CK-module with character ξ. Then M(K, ξ) is an

irreducible D(G)-module whose character is ξ̂K, given by

ξ̂K (eg ⊗ x) = δg∈Kδx∈CK
ξ(r)(x),

where ξ(r)(x) = ξ(rxr−1) and r satisfies g = r−1gKr.

2.1 Example - G Extraspecial

For a definition of extraspecial groups and a catalog of relevant properties, see [3, §A.1]. Let

G be an extraspecial p-group with |G| = p2n+1. Choose z ∈ Z = Z(G) such that Z = 〈z〉.
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Select an element gK from each conjugacy class K and (right) coset representatives {rK,i} of

CG(gK) = CK in G so that r−1
K,igKrK,i = zigK. We will omit subscripts when they can be

determined from context. Note that rigKr
−1
i = z−igK. Since G is extraspecial, each CK �G.

For each element of Z, we obtain an irreducible representation of D(G) for every irreducible

of G. Together, these elements account for p · p2n one-dimensional and p(p− 1) pn-dimensional

irreducible modules. The one-dimensional modules will be denoted M(i, α) for i ∈ Zp and α ∈

Ĝ, the set of inequivalent one-dimensional characters ofG. Here, i stands for the conjugacy class

of zi. The larger modules are M(i,Λa), where Λa is the pn-dimensional irreducible character of

G satisfying Λa(z) = pnεa. Note that a ∈ Z∗
p.

LetK be a noncentral conjugacy class. Then CK affords exactly p(p−1) irreducible represen-

tations of dimension pn−1 (on which Z acts nontrivially) and p2n−1 one-dimensional irreducibles

(on which Z acts trivially) [3, Lemma A.2].

Let ĈK denote the set of all irreducible characters χ of CK satisfying χ(z) = 1. For n > 1,

ĈK is exactly the set of one-dimensional characters of CK. Pick χ ∈ ĈK. Then M(K,χ) denotes

the irreducible module of D(G) induced from χ. Note that χ(r) = χ for all r ∈ G.

Let ρK be an irreducible representation of CK satisfying Tr(ρK) /∈ ĈK. Then ρK(z) = εa id

for some a ∈ Z∗
p. The p − 1 such irreducible representations will be denoted as ρK,a,γ, where

γp = 1. We know from [3, Lemma A.2] that gpK = zd for some d ∈ Zp. For consistency, we

must have ρK,a,γ(gK) = γηad id. Since the conjugacy class will be clear from context, we let λa,γ

denote the character associated to ρK,a,γ. The following lemma will help in calculations.

Lemma 2.2 Let K be a noncentral conjugacy class of G, and let gpK = zd. Then λ
(rm)
a,γ (zbgqK) =

pn−1εa(b−mq)γqηadq.
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Proof: We have

λ(rm)
a,γ (zbgqK) = λa,γ(z

brmg
q
Kr

−1
m )

= λa,γ(z
b(rmgKr

−1
m )q)

= λa,γ(z
b(z−mgK)q)

= λa,γ(z
b−mqgqK)

= pn−1εa(b−mq)(γηad)q,

where the last equality follows from the scalar actions of z and gK. 2.

We have established the following.

Lemma 2.3 Let G be an extraspecial p-group with |G| = p2n+1. Then there are four types of

irreducible D(G)-modules.

• M(i, α) of dimension 1 for i ∈ Zp, α ∈ Ĝ

• M(i,Λa) of dimension pn for i ∈ Zp, a ∈ Z∗
p

• M(K,χ) of dimension p for K 6⊂ Z, χ(z) = 1

• M(K, λa,γ) of dimension pn for K 6⊂ Z, a ∈ Z∗
p, γ

p = 1

For k ∈ Zp, define Kk = {gk | g ∈ K}, which is itself a conjugacy class for extraspecial G.

Theorem 2.4 The fusion rules of D(G) are given explicitly in the following formulas. Con-

jugacy classes K and L are noncentral with CK 6= CL. Let a2 6= −a1 and let k ∈ Z∗
p with

k 6= −1.

1. M(i1, α1)⊗M(i2, α2) = M(i1 + i2, α1 ⊗ α2)
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2. M(i1, α)⊗M(i2,Λa) = M(i1 + i2,Λa)

3. M(i1,Λa)⊗M(i2,Λ−a) =
⊕

α∈ĜM(i1 + i2, α)

4. M(i1,Λa1)⊗M(i2,Λa2) = pn ·M(i1 + i2,Λa1+a2)

5. M(i, α)⊗M(K,χ) = M(K,ResGCK
α⊗ χ)

6. M(i, α)⊗M(K, λa,γ) = M(K, λa,α(gK)γεai)

7. M(i,Λa)⊗M(K,χ) =
⊕

νp=1M(K, λa,ν)

8. M(i,Λa)⊗M(K, λ−a,γ) =
⊕

χ∈ĈK
M(K,χ)

9. M(i,Λa1)⊗M(K, λa2,γ) =
⊕

νp=1 p
n−1 ·M(K, λa1+a2,ν)

10. M(K,χ)⊗M(K−1, ψ) =
⊕p

i=1

⊕
ResG

CK
α=χ⊗ψM(i, α)

11. M(K,χ)⊗M(K−1, λa,γ) =
⊕p

i=1M(i,Λa)

12. M(K, λa,γ1)⊗M(K−1, λ−a,γ2) =
⊕p

i=1

⊕
α(gK)=γ1γ

−1
2 ε−ai M(i, α)

13. M(K, λa1,γ1)⊗M(K−1, λa2,γ2) =
⊕p

i=1 p
n−1 ·M(i,Λa1+a2)

14. M(K,χ)⊗M(Kk, ψ) = p ·M(Kk+1, χ⊗ ψ)

15. M(K,χ)⊗M(Kk, λa,γ) =
⊕

νp=1M(Kk+1, λa,ν)

16. M(K, λa,γ1)⊗M(Kk, λ−a,γ2) =
⊕

χ∈ĈK
M(Kk+1, χ)

17. M(K, λa,γ1)⊗M(Kk, λka,γ2) = pn ·M(Kk+1, λ
(k+1)a,γk+1

1 γ1+k−1

2

)

18. M(K, λa1,γ1)⊗M(Kk, λa2,γ2) =
⊕

νp=1 p
n−1 ·M(Kk+1, λa1+a2,ν), where a2 6= ka1
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19. M(K,χ)⊗M(L, ψ) =
⊕

ResQ ρ=ResQ χ⊗ResQ ψM(KL, ρ), where Q = CK ∩ CL

20. M(K,χ)⊗M(L, λa,γ) =
⊕

νp=1M(KL, λa,ν)

21. M(K, λa,γ1)⊗M(L, λ−a,γ2) =
⊕

χ∈ĈKL
M(KL, χ)

22. M(K, λa1,γ1)⊗M(L, λa2 ,γ2) =
⊕

νp=1 p
n−1 ·M(KL, λa1+a2,ν)

Proof:

1-4. These cases follow directly from the decomposition of irreducible representations of G.

5. ∆ (egK
⊗ x) =

∑
g∈G (eg ⊗ x)⊗ (eg−1gK

⊗ x). The only nonzero contribution to the trace

occurs when x ∈ CK and g = zi. So, Tr (egK
⊗ x) = α(x)χ(x)δx∈CK

.

6. Let gpK = zd. ∆ (egK
⊗ gK) =

∑
g∈G (eg ⊗ gK)⊗ (eg−1gK

⊗ gK). The only nonzero contri-

bution to the trace occurs when g = zi. So,

Tr (egK
⊗ gK) = α(gK)λ(r−i)

a,γ (gK)

= pn−1α(gK)εaiγηad

= λa,α(gK)γεai(gK).

7. Tr (egK
⊗ z) = pnεa and Tr (egK

⊗ gK) = 0. Hence M(K, λa,ν) must occur exactly once in

the decomposition for each ν. Cases 8 and 9 are similar.

10. Pick i ∈ Zp. ∆ (ezi ⊗ x) =
∑

g∈G (eg ⊗ x) ⊗
(
eg−1zi ⊗ x

)
. We get a nonzero contribution

to the trace for every g ∈ K. So Tr (ezi ⊗ x) = pχ(x)ψ(x), which means that the tensor

product module decomposes into precisely those p M(i, α) for which the restriction of α

to CK(= CK−1) is χ ⊗ ψ. Cases 11, 12, and 13 are obtained by considering Tr (ezi ⊗ z)

and Tr (ezi ⊗ gK).
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14. ∆
(
eg

Kk+1
⊗ x

)
=

∑
g∈G (eg ⊗ x)⊗

(
eg−1g

Kk+1
⊗ x

)
. We get a nonzero contribution to the

trace for every g ∈ K. Thus Tr
(
eg

Kk+1
⊗ x

)
= pχ(x)ψ(x) for all x ∈ CK (= CKk). Cases

15 and 16 are similar.

17-18. Consider the conjugacy classes K i, where i ∈ Zp. Note that each gKi belongs to the

(abelian) supgroup generated by z and gK. Choose d ∈ Zp so that gpK = zd. Then

gpKi = zdi for all i.

Fix k and let J = Kk+1. There exist j, b, c ∈ Zp satisfying gKgKk = zjgJ , gJ = zbgk+1
K ,

and gJ = zcg1+k−1

Kk . So,

zj(k+1)gk+1
J = gk+1

K gk+1
Kk

= (z−bgJ)(z
−ckgkJ)

= z−b−ckgk+1
J ,

which implies that j(k + 1) + b + ck ≡ 0 mod p.

Since ∆ (egJ
⊗ gJ) =

∑
g∈G (eg ⊗ gJ)⊗ (eg−1gJ

⊗ gJ), we get a nonzero contribution to the
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trace for every g ∈ K. So, ∆ (egJ
⊗ gJ) =

∑p
m=1 (ezmgK

⊗ gJ)⊗
(
ez−mg−1

K
gJ
⊗ gJ

)
.

Tr (egJ
⊗ gJ) =

p∑

m=1

λ(rK,m)
a1,γ1

(gJ)λ
(r

Kk,−j−m
)

a2,γ2 (gJ)

=

p∑

m=1

λ(rK,m)
a1,γ1

(zbgk+1
K )λ

(r
Kk,−j−m

)
a2,γ2 (zcg1+k−1

Kk )

= p2n−2

p∑

m=1

εa1(b−m(k+1))γk+1
1 ηa1d(k+1)εa2(c+(j+m)(1+k−1))γ1+k−1

2 ηa2kd(1+k
−1)

= p2n−2

p∑

m=1

εk
−1[m(a2−ka1)(k+1)+ka1b+a2(j(k+1)+ck)]γk+1

1 γ1+k−1

2 η(a1+a2)(k+1)d

= p2n−2

p∑

m=1

εk
−1[m(a2−ka1)(k+1)+b(ka1−a2)]γk+1

1 γ1+k−1

2 η(a1+a2)(k+1)d

= p2n−2

p∑

m=1

εk
−1(a2−ka1)(m(k+1)−b)γk+1

1 γ1+k−1

2 η(a1+a2)(k+1)d

Now, if a2 = ka1, then the epsilon factor drops out, leaving p2n−1γk+1
1 γ1+k−1

2 η(k+1)a1(k+1)d,

which implies case 17. On the other hand, if a2 6= ka1, then (since k+1 6= 0) Tr (egJ
⊗ gJ) =

0, which implies case 18.

19. Let x ∈ Q = CK ∩ CL. Then ∆ (egKL
⊗ x) =

∑
g∈G (eg ⊗ x) ⊗ (eg−1gKL

⊗ x). We get a

nonzero contribution to the trace for each g ∈ K. So Tr (egKL
⊗ x) = pχ(x)ψ(x). There

are exactly p representations ρ of CKL for which ResQ ρ = ResQ χ⊗ ResQ ψ.

20-22. These cases follow from the fact that Tr (egKL
⊗ gK) = Tr (egKL

⊗ gL) = 0 [3, Lemma

A.4].

2
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3 Twisted Quantum Double of a Finite Group

Let G be a finite group and let ω ∈ Z3(G,C∗). Without loss of generality, we choose ω to

be normalized. The twisted quantum double of G, Dω(G) = (CG∗ ⊗ CG, u,∆, ε,Φ) is a quasi-

bialgebra with structure maps given below. The maps u and ε are the same as in the untwisted

case.

(eg ⊗ x) · (eh ⊗ y) = δg,xhx−1θg(x, y) (eg ⊗ xy)

∆ (eg ⊗ x) =
∑

h∈G

γx(h, h
−1g) (eh ⊗ x)⊗ (eh−1g ⊗ x)

Φ =
∑

g,h,k∈G

ω(g, h, k)−1 (eg ⊗ 1)⊗ (eh ⊗ 1)⊗ (ek ⊗ 1) ,

where

θg(x, y) =
ω(g, x, y)ω(x, y, (xy)−1gxy)

ω(x, x−1gx, y)

and

γx(g, h) =
ω(g, h, x)ω(x, x−1gx, x−1hx)

ω(g, x, x−1hx)

for all g, h, x, y ∈ G. Notice that if ω ≡ 1, then we recover the definition of D(G). It is

well known that the fusion algebra of Dω(G) depends only on G and the cohomology class

[ω] ∈ H3(G,C∗) [6], [1].

Remark 3.1 Dω(G) is actually a braided quasi-Hopf algebra. See [6, §XV.5] for the additional

structures.

3.1 Example - E Elementary Abelian

Let E be an elementary abelian p-group with |E| = p2n+1 and let θ ∈ Z2(E,C∗). Projective

θ-representations of E are in one-to-one correspondence with (linear) representations of X, a
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central extension of E by C∗ with associated 2-cocycle θ.

Let θ /∈ B2(E,C∗) and let X be defined by the short exact sequence

1 → C∗ → X
π
→ E → 1.

By [3, Theorem A.5], there exists a subgroup F = π(Z(X)) � E and an extraspecial p-group

G such that

X ∼= F ⊕ (C∗ ∗G),

where the central product identifies the subgroup {ν ∈ C∗ | νp = 1} with the center of G via

the isomorphism ε 7→ z for fixed z ∈ Z(G). Note that |F | · |G| = p|E|.

Let ψ be an irreducible θ-representation of E and let Ψ be the associated linear represen-

tation of X. Since θ /∈ B2(E,C∗), dimψ = dim Ψ > 1. By Clifford’s Theorem, ResXF Ψ =

(dim Ψ)β for some one-dimensional irreducible representation β ∈ F̂ . Thus ResXG Ψ must be

irreducible. If |G| = p2k+1, then dim ResXG Ψ = pk = dimψ. We have just shown the following.

Lemma 3.2 Let θ /∈ B2(E,C∗). Then all irreducible θ-representations have the same dimen-

sion. Indeed,

dimψ =

√
|E|

|F |
.

We now identify F with its isomorphic copy (as a direct summand) in X.

Lemma 3.3 The map R : ψ 7→ β is a natural bijection between (inequivalent) irreducible

θ-representations of E and (inequivalent) irreducible linear representations of F .

Proof: This was proved in [3] for p = 2, but much of that proof holds here. In particular, the

two sets in question still have the same cardinality. We will show that R is surjective.

11



Choose β ∈ F̂ and recall Λ1 : G → EndV is the pk-dimensional irreducible representation

of G satisfying Λ1(z) = ε id. Define Ψβ,Λ1 : X → EndV via Ψβ,Λ1(fνg) = νβ(f)Λ1(g) for all

f ∈ F , ν ∈ C∗, g ∈ G. The choice of Λ1 guarantees that Ψβ,Λ1 respects the central product

identification. Furthermore,

Ψβ,Λ1(f1ν1g1)Ψβ,Λ1(f2ν2g2) = ν1β(f1)Λ1(g1)ν2β(f2)Λ1(g2)

= ν1ν2β(f1f2)Λ1(g1g2)

= Ψβ,Λ1(f1f2ν1ν2g1g2).

Hence Ψβ,Λ1 is a linear representation of X. Moreover Ψβ,Λ1 is irreducible because Λ1 is. So,

there exists ψ, an irreducible θ-representation of E corresponding to Ψβ,Λ1. Thus, R(ψ) =

ResXF Ψβ,Λ1 = β. 2

Now consider E as a (2n+1)-dimensional vector space over Zp and let H be a 2n-dimensional

subspace of E. Then H admits a nondegenerate symplectic form 〈 , 〉. Select such a form and

choose a symplectic basis of H, {b1, b2; . . . ; b2n−1, b2n}. Pick b0 ∈ E \H. For r ∈ E, we write

r =
∑2n

i=0 ribi. Let

ω(r, s, t) = εr0(s1t2+s3t4+...+s2n−1t2n) (1)

for all r, s, t ∈ E. Since ω is trilinear, it is a 3-cocycle on E. Note that ω is normalized.

Lemma 3.4 Pick r ∈ E. Let X be a central extension of E (= π(X)) by C∗ with 2-cocycle θr

and let Fr = π(Z(X)).

1. If r = 0, then Fr = E.

2. If r ∈ H \ {0}, then Fr = r⊥ (⊆ H).

12



3. If r /∈ H, then Fr = span{r}.

Proof: Note that s ∈ Fr if and only if θr(s, t) = θr(t, s) for all t ∈ E. Direct calculation gives

θr(s, t)

θr(t, s)
= εr0〈s,t〉+s0〈t,r〉+t0〈r,s〉.

Here, 〈a, b〉 = 〈PH(a), PH(b)〉, where PH is orthogonal projection onto H.

1. Assume r = 0. Then r0 〈s, t〉+ s0 〈t, r〉+ t0 〈r, s〉 ≡ 0 for all s, t ∈ E. So Fr = E.

2. Assume r ∈ H, r 6= 0. Let s ∈ Fr and pick t ∈ H, t /∈ r⊥. Then s0 〈t, r〉 = 0, implying

s ∈ H. So we have t0 〈r, s〉 = 0 for all t ∈ E. Thus s ∈ r⊥. Conversely, pick s ∈ r⊥. Then

s0 〈t, r〉+ t0 〈r, s〉 ≡ 0 for all t ∈ E. So Fr = r⊥.

3. Assume r /∈ H. Then r0 6= 0. Let s ∈ Fr and pick t ∈ H. Then

0 = r0 〈s, t〉+ s0 〈t, r〉

= 〈r0s, t〉 − 〈s0r, t〉

= 〈r0s− s0r, t〉 .

Since t was arbitrary, r0PH(s) = s0PH(r), implying s = s0
r0
r. Thus s ∈ span{r}. Con-

versely, let s = ar for some a ∈ Zp. Then we have r0 〈ar, t〉 + ar0 〈t, r〉 + t0 〈r, ar〉 =

ar0 〈r, t〉 − ar0 〈r, t〉 + at0 〈r, r〉 ≡ 0 for all t ∈ E. Thus Fr = span{r}.

2

Lemma 3.5 Let r ∈ E, k ∈ N. If ρ is a θr-representation of E, then

ρ(kr) = ρ(r)kω(r, r, r)−
k(k−1)

2 .

Moreover, ρ(r) = µ id, where µp = 1.
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Proof: It is clear that the result holds if k = 1. By induction,

ρ(kr + r) = ρ(kr)ρ(r)θ−1
r (kr, r)

= ρ(r)kω(r, r, r)−
k(k−1)

2 ρ(r)ω(r, kr, r)−1

= ρ(r)k+1ω(r, r, r)−
k(k−1)

2 ω(r, r, r)−k

= ρ(r)k+1ω(r, r, r)−
(k+1)k

2 .

Also, id = ρ(pr) = ρ(r)pω(r, r, r)−
p(p−1)

2 = ρ(r)p, because p is odd. Since r ∈ Fr, ρ(r) must be a

nonzero scalar. 2

Irreducible modules of Dω(E) are induced from irreducible θr-representations of E as r

ranges over the conjugacy classes (elements) of E.

If r = 0, then we obtain p2n+1 inequivalent irreducible one-dimensional Dω(E)-modules. Let

N(0, β) denote the module arising from the representation β on E.

If r ∈ H, r 6= 0, then we obtain p2n−1 inequivalent irreducible p-dimensional Dω(E)-modules.

Each such projective representation corresponds to a one-dimensional representation ψ of Fr ≤

H via the bijection of Lemma 3.3. Denote this Dω(E)-module as N(r, ψ).

If r /∈ H then we have p inequivalent irreducible Dω(E)-modules of dimension pn. Denote

these modules by N(r, µ) for µp = 1, where λ(r) = µ id. We have established the following.

Lemma 3.6 There are three types of irreducible representations of Dω(E).

• N(0, β) of dimension 1 for β ∈ Ê

• N(h, ψ) of dimension p for h ∈ H, h 6= 0, and ψ ∈ ĥ⊥

• N(t, µ) of dimension pn for t /∈ H and µp = 1 2

14



Theorem 3.7 The fusion rules of Dω(E) are given explicitly in the following formulas. Below,

h1 and h2 are linearly independent, as are t1 and t2. Let k ∈ Z∗
p with k 6= −1.

1. N(0, β1)⊗N(0, β2) = N(0, β1 ⊗ β2)

2. N(0, β)⊗N(h, ψ) = N(h,ResEh⊥ β ⊗ ψ)

3. N(0, β)⊗N(t, µ) = N(t, β(t)µ)

4. N(h, ψ)⊗N(−h, χ) =
⊕

ResE

h⊥
β=ψ⊗χN(0, β)

5. N(h, ψ)⊗N(kh, χ) = p ·N((k + 1)h, ψ ⊗ χ)

6. N(h1, ψ)⊗N(h2, χ) =
⊕

ResP ζ=ResP ψ⊗ResP χN(h1 + h2, ζ), where P = h⊥1 ∩ h
⊥
2

7. N(h, ψ)⊗N(t, µ) =
⊕

νp=1N(t + h, ν)

8. N(t, µ1)⊗N(−t, µ2) =
⊕

β(t)=µ1µ
−1
2
N(0, β)

9. N(t, µ1)⊗N(kt, µ2) = pn ·N((k + 1)t, µk+1
1 µ1+k−1

2 )

10. N(t1, µ1)⊗N(t2, µ2) =
⊕

ψ∈ ̂(t1+t2)⊥
N(t1 + t2, ψ), if t1 + t2 ∈ H

11. N(t1, µ1)⊗N(t2, µ2) =
⊕

νp=1 p
n−1 ·N(t1 + t2, ν), if t1 + t2 /∈ H

Proof:

1. ∆ (e0 ⊗ x) =
∑

g∈E γx(g,−g) (eg ⊗ x) ⊗ (e−g ⊗ x). The only term with nonzero trace

occurs when g = 0. So Tr (e0 ⊗ x) = β1(x)β2(x). Cases 2 and 3 are similar.

4. ∆ (e0 ⊗ x) =
∑

g∈E γx(g,−g) (eg ⊗ x) ⊗ (e−g ⊗ x). The only term with nonzero trace

occurs when g = h. So Tr (e0 ⊗ x) = p2δ
x∈ĥ⊥

γx(h,−h)ψ(x)χ(x). Note that γx(h,−h) = 1

15



for x, h ∈ H. Therefore, the tensor product module must decompose into precisely those

N(0, β) where the restriction of β to ĥ⊥ is ψ ⊗ χ. Since |ĥ⊥| = |h⊥| = p2n−1, there are

exactly p2 distinct such β ∈ Ê. Cases 5 and 6 are similar.

7. ∆ (eh+t ⊗ (h+ t)) =
∑

g∈E γh+t(g,−g+h+ t) (eg ⊗ (h + t))⊗ (e−g+h+t ⊗ (h+ t)). Again,

the only term with nonzero trace occurs when g = h. So Tr (eh+t ⊗ (h+ t)) = pn+1γh+t(h, t)ψ(h+

t)µ = 0 because h+t /∈ H. Since h+t acts as a scalar p-th root of unity in each N(h+t, ν),

we must have each one appearing once to guarantee a trace of zero. Cases 10 and 11 are

similar because the linear independence of t1 and t2 guarantees that Ft1 ∩ Ft2 = 1.

8. ∆ (e0 ⊗ x) =
∑

g∈E γx(g,−g) (eg ⊗ x) ⊗ (e−g ⊗ x). The only term with nonzero trace

occurs when g = t. Note that if t acts as the scalar µ, then −t acts as µ−1ω(t, t, t)−1 by

Lemma 3.5. Hence, if x = t, then the trace is

p2nµ1µ
−1
2 ω(−t,−t,−t)−1γt(t,−t) = p2nµ1µ

−1
2 ω(t, t, t)ω(t, t, t)−1 = p2nµ1µ

−1
2 .

Moreover, Tr (e0 ⊗ x) = 0 if x /∈ span{t}. So we must have every N(0, β) appearing in

which β(t) = µ1µ
−1
2 . There are p2n distinct such β ∈ Ê.

9. ∆
(
e(k+1)t ⊗ (k + 1)t

)
=

∑
g∈E γ(k+1)t(g,−g+(k+1)t) (eg ⊗ (k + 1)t)⊗

(
e−g+(k+1)t ⊗ (k + 1)t

)
.

The only term with nonzero trace occurs when g = t. Using Lemma 3.5, we can determine

how (k + 1)t acts on each tensor factor.

Tr
(
e(k+1)t ⊗ (k + 1)t

)
= p2nµk+1

1 ω(t, t, t)−
(k+1)k

2 µ1+k−1

2 ω(kt, kt, kt)−
(1+k−1)(k−1)

2 γ(k+1)t(t, kt)

= p2nµk+1
1 µ1+k−1

2 ω(t, t, t)−
(k+1)k

2
−

(1+k−1)(k−1)k3

2 ω(t, t, t)k(k+1)

= p2nµk+1
1 µ1+k−1

2 ω(t, t, t)−
(k+1)k

2
− (k+1)k

2
+(k+1)k

= p2nµk+1
1 µ1+k−1

2 .
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Therefore, the tensor product module must decompose into pn copies ofN((k+1)t, µk+1
1 µ1+k−1

2 ).

2

4 An Explicit Fusion Algebra Isomorphism

For the remainder of this work, G will denote an extraspecial p-group with |G| = p2n+1 and E an

elementary abelian group with |E| = |G|. Pick H ≤ E of index p and fix t ∈ E \H. Both G/Z

and H admit nondegenerate symplectic forms as Zp-spaces. Choose the form on G/Z given in

[3, (A.1)], and identify it with a form on H by requiring the linear isomorphism φ : G/Z → H

to be an isometry. Elements of G/Z will be denoted either by Z or by the corresponding

noncentral conjugacy class K. Since G is extraspecial, one-dimensional representations of G

(and thus of G/Z) are in one-to-one correspondence with one-dimensional representations of

H via φ. Similarly, elements of ĈK can be paired with one-dimensional representations of the

subgroup φ(CK/Z) = φ(K⊥) = φ(K)⊥ of H.

Let i ∈ Zp. If α ∈ Ĝ, then define αi to be the representation of E arising from the

representation α ◦ φ−1 of H with t acting as εi. That is, αi(bt + h) = α(φ−1(h))εbi for b ∈ Zp.

Pick ω ∈ Z3(E,C∗) as in (1). Then D(G) and Dω(E) have the same number of one-

dimensional, p-dimensional, and pn-dimensional modules, respectively. Let F be the map from
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the irreducibles of D(G) to the irreducibles of Dω(E) such that

FM(i, α) = N(0, αi) (2)

FM(i,Λa) = N(at, εai) (3)

FM(K,χ) = N(φ(K), χ ◦ φ−1|φ(K)⊥) (4)

FM(K, λa,γ) = N(at + φ(K), γ). (5)

Lemma 4.1 F is a bijection.

Proof: Recall the three types of Dω(E)-modules given in Lemma 3.6. Pick β ∈ Ê. Using (2),

we have that FM(β(t),ResEH β ◦ φ) = N(0,ResEH β ◦ φβ(t)). But

ResEH β ◦ φβ(t)(bt + h) = ResEH β ◦ φ(φ−1(h))β(t)b = β(h)β(t)b = β(bt + h)

for all b ∈ Zp, h ∈ H. So N(0, β) is in the image of F .

Now pick h ∈ H and ψ ∈ ĥ⊥. Let K denote the conjugacy class of G that satisfies φ(K) = h.

Then we have

FM(K,ψ ◦ φ|CK/Z) = N(φ(K), ψ ◦ φ|CK/Z ◦ φ
−1|φ(K)⊥) = N(h, ψ).

From (3) and (5), modules of type N(at+h, µ) are also in the image of F for all a ∈ Z∗
p, h ∈

H. Hence F is a bijection. 2

Theorem 4.2 F extends to an isomorphism of fusion algebras.

Proof: We can extend F additively on the irreducible elements in order to obtain a bijection

from the fusion algebra of D(G) to that of Dω(E). We now show that F preserves the tensor

product multiplication, using the fusion rule numbering from Theorem 2.4. Most of the proof
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involves straightforward checking and so will be omitted. A few of the less clear rules are shown

below.

1.

FM(i1, α1)⊗ FM(i2, α2) = N(0, α1i1)⊗N(0, α2i2) = N(0, α1i1 ⊗ α2i2).

FM(i1 + i2, α1 ⊗ α2) = N(0, (α1 ⊗ α2)i1+i2).

Note that

(α1i1 ⊗ α2i2)(bt+ h) = α1 ◦ φ
−1(h)εbi1α2 ◦ φ

−1(h)εbi2

= (α1 ⊗ α2) ◦ φ
−1(h)εbi1+bi2

= (α1 ⊗ α2)i1+i2(bt + h).

2.

FM(i1, α)⊗ FM(i2,Λa) = N(0, αi1)⊗N(at, εai2)

= N(at, αi1(at)ε
ai2)

= N(at, εai1εai2).

FM(i1 + i2,Λa) = N(at, εa(i1+i2)).

3.

FM(i1,Λa)⊗ FM(i2,Λ−a) = N(at, εai1)⊗N(−at, ε−ai2)

=
⊕

β(at)=εai1 (ε−ai2)−1

N(0, β)

=
⊕

β(t)=εi1+i2

N(0, β).

⊕

α∈Ĝ

FM(i1 + i2, α) =
⊕

α∈Ĝ

N(0, αi1+i2).
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4.

FM(i1,Λa1)⊗ FM(i2,Λa2) = N(a1t, ε
a1i1)⊗N(a2t, ε

a2i2)

= pn ·N(a1t+ a2t, ε
a1i1(k+1)εa2i2(1+k

−1)) where k = a2a
−1
1

= pn ·N((a1 + a2)t, ε
a2i1+a1i1+a2i2+a1i2)

= pn ·N((a1 + a2)t, ε
(a1+a2)(i1+i2)).

pn · FM(i1 + i2,Λa1+a2) = pn ·N((a1 + a2)t, ε
(a1+a2)(i1+i2)).

6.

FM(i, α)⊗ FM(K, λa,γ) = N(0, αi)⊗N(at + φ(K), γ)

= N(at + φ(K), αi(at+ φ(K))γ)

= N(at + φ(K), α(gK)εaiγ).

FM(K, λa,α(gK)γεai) = N(at + φ(K), α(gK)γεai).

10.

FM(K,χ)⊗ FM(K−1, ψ) = N(φ(K), χ ◦ φ−1|φ(K)⊥)⊗N(−φ(K), ψ ◦ φ−1|φ(K)⊥)

=
⊕

ResE

φ(K)⊥
β=(χ◦φ−1)⊗(ψ◦φ−1)

N(0, β)

=

p⊕

i=1

⊕

β(t)=εi

ResE

φ(K)⊥
β=(χ⊗ψ)◦φ−1

N(0, β).

p⊕

i=1

⊕

ResG
CK

α=χ⊗ψ

FM(i, α) =

p⊕

i=1

⊕

ResG
CK

α=χ⊗ψ

N(0, αi).

20



12.

FM(K, λa,γ1)⊗ FM(K−1, λ−a,γ2) = N(at + φ(K), γ1)⊗N(−at − φ(K), γ2)

=
⊕

β(at+φ(K))=γ1γ
−1
2

N(0, β)

=

p⊕

i=1

⊕

β(t)=εi

β(φ(K))=ε−aiγ1γ
−1
2

N(0, β).

p⊕

i=1

⊕

α(gK)=γ1γ
−1
2 ε−ai

FM(i, α) =

p⊕

i=1

⊕

α(gK)=γ1γ
−1
2 ε−ai

N(0, αi).

17.

FM(K, λa,γ1)⊗ FM(Kk, λka,γ2) = N(at + φ(K), γ1)⊗N(kat + kφ(K), γ2)

= pn ·N((k + 1)(at+ φ(K)), γk+1
1 γ1+k−1

2 ).

pn · FM(Kk+1, λ
(k+1)a,γk+1

1 γ1+k−1

2

) = pn ·N((k + 1)at+ (k + 1)φ(K), γk+1
1 γ1+k−1

2 ).

18.

FM(K, λa1,γ1)⊗ FM(Kk, λa2,γ2) = N(a1t+ φ(K), γ1)⊗N(a2t+ kφ(K), γ2)

=
⊕

νp=1

pn−1 ·N((a1 + a2)t+ (k + 1)φ(K), ν).

⊕

νp=1

pn−1 · FM(Kk+1, λa1+a2,ν) =
⊕

νp=1

pn−1 ·N((a1 + a2)t + (k + 1)φ(K), ν).

Therefore, F is a homomorphism. Together with Lemma 4.1, this implies that F is an

isomorphism of fusion algebras. 2

5 Appendix - Fusion Rules for Extraspecial Groups

Let G be an extraspecial p-group. Fix z ∈ G so that 〈z〉 = Z(G)(∼= Zp). Recall that |G| = p2n+1

for some positive integer n and that G/G′ ∼= Z2n
p . Hence G admits p2n inequivalent one-
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dimensional irreducible representations. Let Ĝ denote the set of these irreducibles. Then

Ĝ ∼= Z2n
p , and for all α ∈ Ĝ, α(z) = id. The remaining p − 1 irreducible representations

have dimension pn and can be distinguished by their action on z. Let ρi(z) = εi. Further

explanations can be found in [4] and [3, Appendix A].

The fusion rules of G are given by the following and hold for all α, β ∈ Ĝ, and i, j ∈ Zp.

• α⊗ β = αβ

• α⊗ ρi = ρi

• ρi ⊗ ρj =





p · ρi+j i 6= −j

⊕

α∈Ĝ

α i = −j

Note that these rules hold even if p = 2; the rule with multiplicity p would not occur.
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