University of the Pacific

1-1-2003

# A family of isomorphic fusion algebras of twisted quantum doubles of finite groups 

Christopher D. Goff<br>University of the Pacific, cgoff@pacific.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles
Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons

## Recommended Citation

Goff, C. D. (2003). A family of isomorphic fusion algebras of twisted quantum doubles of finite groups. Journal of Algebra, 259(2), 494-511. DOI: 10.1016/S0021-8693(02)00565-3
https://scholarlycommons.pacific.edu/cop-facarticles/268

# A Family of Isomorphic Fusion Algebras of Twisted Quantum Doubles of Finite Groups 

by

Christopher D. Goff

University of the Pacific<br>Department of Mathematics<br>3601 Pacific Avenue<br>Stockton, CA 95211

cgoff@uop.edu
proposed running head:

Isomorphic Fusion Algebras
send correspondence to:

Christopher Goff
Department of Mathematics
University of the Pacific
3601 Pacific Avenue
Stockton, CA 95211


#### Abstract

Let $D^{\omega}(G)$ be the twisted quantum double of a finite group, $G$, where $\omega \in Z^{3}\left(G, \mathbb{C}^{*}\right)$. For each $n \in \mathbb{N}$, there exists an $\omega$ such that $D(G)$ and $D^{\omega}(E)$ have isomorphic fusion algebras, where $G$ is an extraspecial 2-group with $2^{2 n+1}$ elements, and $E$ is an elementary abelian group with $|E|=|G|$.


## 1 Introduction

We aim to study the rules which determine how the tensor product of two irreducible algebra modules decomposes into a direct sum of irreducibles. Those algebras whose modules admit a tensor product are called quasi-bialgebras. We will denote a quasi-bialgebra $A$ over a field $k$ as $(A, \Delta, \epsilon, \Phi)$, where $A$ is a semisimple unital $k$-algebra, $\Phi \in A \otimes A \otimes A$ is invertible, and $\Delta: A \rightarrow A \otimes A$ and $\epsilon: A \rightarrow k$ are algebra homomorphisms. Moreover, $(\mathrm{id} \otimes \Delta)(\Delta)=\Phi(\Delta \otimes \mathrm{id})(\Delta) \Phi^{-1},(\mathrm{id} \otimes \epsilon \otimes \mathrm{id})(\Phi)=1 \otimes 1$, and $\Phi$ satisfies the pentagon condition

$$
(\mathrm{id} \otimes \mathrm{id} \otimes \Delta)(\Phi)(\Delta \otimes \mathrm{id} \otimes \mathrm{id})(\Phi)=(1 \otimes \Phi)(\mathrm{id} \otimes \Delta \otimes \mathrm{id})(\Phi)(\Phi \otimes 1)
$$

For simplicity, we set the field of scalars to be $\mathbb{C}$.

Definition 1.1 Let $(A, \Delta, \epsilon, \Phi)$ be a quasi-bialgebra where $A$ is a semisimple associative algebra (over $\mathbb{C})$. The fusion algebra of $A$ is an associative $\mathbb{Z}$-algebra with basis elements being the inequivalent irreducible A-modules (by abuse of notation) and with multiplication $(\otimes)$ on basis elements given below and extended bilinearly.

$$
\begin{equation*}
V \otimes W=\sum_{U} N_{V, W}^{U} U \tag{1}
\end{equation*}
$$

where $U$ ranges over all inequivalent irreducible $A$-modules and $N_{V, W}^{U}$ is the multiplicity of $U$ in the decomposition of $V \otimes W$.

We compare different quasi-bialgebras by comparing their corresponding fusion algebras. An isomorphism of fusion algebras arises whenever two quasi-bialgebras have tensor equivalent module categories. However, the converse is not necessarily true: while the dihedral group of order eight and the quaternion group of order eight have isomorphic fusion algebras, their module categories are not tensor equivalent [16].

Quantum groups, which arise in physics, constitute an important class of quasi-bialgebras. One class of quantum groups, called the quantum double of a finite group, $D(G)$, is constructed from a finite group and the dual of its group algebra [1], [14]. A generalization can be made to a twisted quantum double of $G$, denoted $D^{\omega}(G)$, where one includes certain constants arising from $\omega$, a 3-cocycle of $G$ with coefficients in the trivial $G$-module, $\mathbb{C}^{*}$. While such an algebra is in fact quasi-Hopf [12], we are only concerned with the quasi-bialgebra structures. Hence we will not consider antipodes or $R$-matrices in this work. Reasons for studying the fusion algebra of $D^{\omega}(G)$ can be found in the theory of vertex operator algebras (VOAs) and the conjectured monoidal equivalence between the module categories of a fixed point VOA $V^{G}$ and $D^{\omega}(G)$ [5]. Applications of twisted quantum doubles to conformal field theory and VOAs can be found in various works, including [2], [3], [4], and [13].

In Theorem 4.2, we prove the existence of a family of fusion algebra isomorphisms. In particular, we demonstrate the existence of $\omega \in Z^{3}\left(E, \mathbb{C}^{*}\right)$ such that the fusion algebras of $D(G)$ and $D^{\omega}(E)$ are isomorphic, where $G$ is an extraspecial 2-group, and $E$ is elementary abelian with $|E|=|G|$.

## 2 Quantum Double of a Finite Group

Let $e_{g}$ denote the functional on the group $G$ given by

$$
e_{g}(h)= \begin{cases}1 & \text { if } g=h \\ 0 & \text { if } g \neq h\end{cases}
$$

Then $\mathbb{C} G^{*}=\operatorname{span}\left\{e_{g} \mid g \in G\right\}$. If a delta has two subscripts, then it is the usual Kronecker delta. Also, $\delta_{x \in A}$ is equal to 1 if $x \in A$ and zero if not. All tensor products are over $\mathbb{C}$ unless otherwise noted.

### 2.1 Definition and Representation Theory

Let $G$ be a finite group with identity element 1 . The quantum double of a finite group, denoted $D(G)$, has $\mathbb{C} G \otimes \mathbb{C} G^{*}$ as its underlying vector space and the following linear operations which make it into a semisimple unital bialgebra.

$$
\begin{aligned}
m\left(\left(x \otimes e_{g}\right),\left(y \otimes e_{h}\right)\right) & =\delta_{g, x h x^{-1}}\left(x y \otimes e_{g}\right) \\
u(1) & =\sum_{h \in G}\left(1 \otimes e_{h}\right) \\
\Delta\left(x \otimes e_{g}\right) & =\sum_{\substack{k, l \in G \\
g=k l}}\left(x \otimes e_{k}\right) \otimes\left(x \otimes e_{l}\right) \\
\epsilon\left(x \otimes e_{g}\right) & =\delta_{g, 1}
\end{aligned}
$$

Representations of $D(G)$ are induced from representations of centralizers of $G$ [1], [14]. An irreducible right $D(G)$-module is isomorphic to $M \otimes_{C_{G}(g)} D(g)$ for some $g \in G$, where $M$ is an irreducible right module for $C_{G}(g)$ and $D(g)=\operatorname{span}\left\{\left(x \otimes e_{g}\right) \mid x \in G\right\} . D(g)$ is a left $C_{G}(g)$-module by letting $g^{\prime}$ act as left multiplication by $\left(g^{\prime} \otimes e_{g}\right)$. Choose an element $g_{K}$ from each conjugacy class $K$ of $G$ and denote $C_{G}\left(g_{K}\right)$ as $C_{K}$. By choosing one element from each class of $G$, we obtain a complete set of inequivalent irreducible modules [1]. We also fix one representative $r_{K, i}$ from each right coset of $C_{K}$ in $G$, but we drop the subscripts when when the conjugacy class and coset can be determined from context.

Assume that each $C_{K} \triangleleft G$. If $M$ is an irreducible $C_{K}$-module with character $\xi$, then we denote $M \otimes_{C_{K}} D\left(g_{K}\right)$ as $M(K, \xi)$. The irreducible character of $M(K, \xi)$ is $\widehat{\xi}_{K}\left(x \otimes e_{g}\right)=\delta_{g \in K} \delta_{x \in C_{K}} \xi^{(r)}(x)$, where $\xi^{(r)}(x)=\xi\left(r x r^{-1}\right)$ and $r$ satisfies $g=r^{-1} g_{K} r$. Note that $\xi^{(r)}$ is another character of $C_{K}$, possibly different from $\xi$.

### 2.2 Example - $G$ Extraspecial 2-group

For a definition of extraspecial groups and a catalog of properties we will need, see Section 5.1. Let $G$ be an extraspecial 2-group for the remainder of this section with $|G|=2^{2 n+1}$. Choose an element $g_{K}$ from each conjugacy class $K$ and coset representatives $r_{K, i}$ as before. Since $G$ is extraspecial, each $C_{K}$ is normal in $G$.

Let the center of $G$ be denoted $Z=\left\{1_{G}, z\right\}$. Since each of these elements has $G$ as its centralizer, we obtain an irreducible representation of $D(G)$ for every irreducible of $G$. Together, these elements account for $2 \cdot 2^{2 n}$ one-dimensional and two $2^{n}$-dimensional irreducible modules. Denote these one-dimensional modules as $M(1, \alpha)$ and $M(-1, \alpha)$ for $\alpha \in \widehat{G}$, the set of inequivalent one-dimensional characters of $G$. Here, 1 denotes the class of the identity and -1 the nonidentity central conjugacy class. The larger modules are $M(1, \Lambda)$ and $M(-1, \Lambda)$, where $\Lambda$ is the unique $2^{n}$-dimensional irreducible character of $G$.

Let $K$ be a noncentral conjugacy class. Then Lemma 5.2 implies that each $C_{K}$ affords exactly two irreducibles of dimension $2^{n-1}$ (on which $z$ acts as the scalar -1 ) and $2^{2 n-1}$ one-dimensional irreducibles (on which $z$ acts as the identity).

Let $\chi$ be an irreducible character of $C_{K}$. If $\chi(z)=1$, then let $M(K, \chi)$ denote the irreducible module of $D(G)$ induced from $\chi$. If $\chi(z) \neq 1$, then $z$ acts as the scalar -1 . The two such irreducible representations will be denoted as $\rho_{\epsilon}$ where $\epsilon= \pm 1$. The value of $\epsilon$ depends on the scalar by which $g_{K}$ acts. In particular, if $g_{K}^{2}=1_{G}$, then $\rho_{\epsilon}\left(g_{K}\right)=\epsilon$. However, if $g_{K}^{2}=z$, then $\rho_{\epsilon}\left(g_{K}\right)=\epsilon i$ where $i$ is a square root of -1 . Let $\lambda_{\epsilon}$ be the character associated to $\rho_{\epsilon}$. We have established the following.

Lemma 2.1 Let $G$ be an extraspecial 2-group with $|G|=2^{2 n+1}$ and let $K$ be a noncentral conjugacy class of $G$. Then there are four types of irreducible modules of $D(G)$.

- $M(\epsilon, \alpha)$ of dimension 1 for $\alpha \in \widehat{G}, \epsilon= \pm 1$
- $M(\epsilon, \Lambda)$ of dimension $2^{n}$ with $\epsilon= \pm 1$
- $M(K, \chi)$ of dimension 2 for $\chi$ an irreducible character of $C_{K}$ with $\chi(z)=1$
- $M\left(K, \lambda_{\epsilon}\right)$ of dimension $2^{n}$ with $\epsilon= \pm 1$

The reader may verify the completeness of this list.
Pick a $C_{K} \neq G$ and choose coset representatives $1_{G}$ and $r \notin C_{K}$ for $C_{K}$ in $G$. Recall that $\xi^{(r)}(x)=$ $\xi\left(r x r^{-1}\right)$ for $\xi$ a character of $C_{K}$. Since $G$ is extraspecial, $r x r^{-1}=x$ or $x z$, depending on whether or not $r$ and $x$ commute. If $\xi$ comes from a $C_{K}$-representation where $z$ acts as the identity, then $\xi^{(r)}=\xi$. If instead $z$ acts as -1 , then $\xi^{(r)} \neq \xi$ because, for example, $\xi^{(r)}\left(g_{K}\right)=\xi\left(g_{K} z\right)=-\xi\left(g_{K}\right) \neq \xi\left(g_{K}\right)$ because $g_{K} \in Z\left(C_{K}\right)$ and must therefore act as a nonzero scalar. We have thus shown that $\chi^{(r)}=\chi$ for $\chi$ an irreducible character of $C_{K}$ with $\chi(z)=1$ and that $\lambda_{\epsilon}^{(r)}=\lambda_{-\epsilon}$.

### 2.3 Fusion Rules for $D(G)$

Theorem 2.2 Let $K$ and $L$ be distinct noncentral conjugacy classes of $G$. The fusion rules of $D(G)$ are given explicitly in the following formulas. Here, $\widehat{C_{K}}$ denotes the one-dimensional characters of $C_{K}$ in which $z$ acts as the identity and $Q=C_{K} \cap C_{L}$.

1. $M\left(\epsilon_{1}, \alpha\right) \otimes M\left(\epsilon_{2}, \beta\right)=M\left(\epsilon_{1} \epsilon_{2}, \alpha \otimes \beta\right)$
2. $M\left(\epsilon_{1}, \alpha\right) \otimes M\left(\epsilon_{2}, \Lambda\right)=M\left(\epsilon_{1} \epsilon_{2}, \Lambda\right)$
3. $M(\epsilon, \alpha) \otimes M(K, \chi)=M\left(K, \operatorname{Res}_{C_{K}}^{G} \alpha \otimes \chi\right)$
4. $M\left(\epsilon_{1}, \alpha\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)=M\left(K, \lambda_{\epsilon_{1} \epsilon_{2} \alpha\left(g_{K}\right)}\right)$
5. $M(K, \chi) \otimes M(K, \psi)=\bigoplus_{\operatorname{Res}_{C_{K}}^{G} \alpha=\chi \otimes \psi} M(1, \alpha) \oplus M(-1, \alpha)$
6. $M(K, \chi) \otimes M(L, \psi)=\bigoplus_{\operatorname{Res}_{Q} \xi=\operatorname{Res}_{Q} \chi \otimes \operatorname{Res}_{Q} \psi} M(K L, \xi)$
7. $M(K, \chi) \otimes M(\epsilon, \Lambda)=M\left(K, \lambda_{1}\right) \oplus M\left(K, \lambda_{-1}\right)$
8. $M(K, \chi) \otimes M\left(K, \lambda_{\epsilon}\right)=M(1, \Lambda) \oplus M(-1, \Lambda)$
9. $M(K, \chi) \otimes M\left(L, \lambda_{\epsilon}\right)=M\left(K L, \lambda_{1}\right) \oplus M\left(K L, \lambda_{-1}\right)$
10. $M\left(\epsilon_{1}, \Lambda\right) \otimes M\left(\epsilon_{2}, \Lambda\right)=\bigoplus_{\alpha \in \widehat{G}} M\left(\epsilon_{1} \epsilon_{2}, \alpha\right)$
11. $M\left(\epsilon_{1}, \Lambda\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)=\bigoplus_{\chi \in \widehat{C_{K}}} M(K, \chi)$
12. $M\left(K, \lambda_{\epsilon_{1}}\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)=\bigoplus_{\alpha\left(g_{K}\right)=\epsilon_{1} \epsilon_{2}} M(1, \alpha) \bigoplus_{\beta\left(g_{K}\right)=-\epsilon_{1} \epsilon_{2}} M(-1, \beta)$
13. $M\left(K, \lambda_{\epsilon_{1}}\right) \otimes M\left(L, \lambda_{\epsilon_{2}}\right)=\bigoplus_{\chi \in \widehat{C_{K L}}} M(K L, \chi)$

Proof: We will prove only a few cases to give the reader an idea of the straightforward proof. Full details require properties outlined in Section 5.1 and can also be found in [7].

Case 1: Consider the trace of the element $\left(x \otimes e_{g}\right)$ on the left hand side of the equation. Via the coproduct, $\Delta$, this element acts with trace zero unless $g=\epsilon_{1} \epsilon_{2}$. In this case, the trace becomes $\alpha(x) \beta(x)=(\alpha \otimes \beta)(x)$. Cases 2 and 10 are similar.

Case 4: Consider the trace of the element $\left(g_{K} \otimes e_{g_{K}}\right)$ on the left hand side. The only term in $\Delta\left(g_{K} \otimes e_{g_{K}}\right)$ that has nonzero action is $\left(g_{K} \otimes e_{\epsilon_{1}}\right) \otimes\left(g_{K} \otimes e_{\epsilon_{1} g_{K}}\right)$. Thus the trace is $\alpha\left(g_{K}\right) \lambda_{\epsilon_{2}}\left(g_{K}\right)$ if $\epsilon_{1}=1$ and $\alpha\left(g_{K}\right) \lambda_{-\epsilon_{2}}\left(g_{K}\right)$ if $\epsilon_{1}$ is -1.

Case 5: Consider the trace of $\left(x \otimes e_{1_{G}}\right)$ on the left hand side. There are two terms that have nonzero action. If $g_{K}$ has order 2 , then the terms are $\left(x \otimes e_{g_{K}}\right) \otimes\left(x \otimes e_{g_{K}}\right)$ and $\left(x \otimes e_{g_{K} z}\right) \otimes\left(x \otimes e_{g_{K}} z\right)$. Hence $\left(x \otimes e_{1_{G}}\right)$ acts as $2 \chi(x) \psi(x) \delta_{x \in C_{K}}$. This character thus decomposes into two representations, each of
which agree with $\chi \otimes \psi$ on $C_{K}$, but disagree on $G \backslash C_{K}$. If instead $g_{K}$ has order 4 , then the terms with nonzero action are $\left(x \otimes e_{g_{K} z}\right) \otimes\left(x \otimes e_{g_{K}}\right)$ and $\left(x \otimes e_{g_{K}}\right) \otimes\left(x \otimes e_{g_{K} z}\right)$. However, the trace is still $2 \chi(x) \psi(x) \delta_{x \in C_{K}}$. The argument for $\left(x \otimes e_{z}\right)$ is similar.

Case 11: Consider the trace of $\left(x \otimes e_{g_{K}}\right)$ on the left hand side. The only term with nonzero action is $\left(x \otimes e_{\epsilon_{1}}\right) \otimes\left(x \otimes e_{\epsilon_{1} g_{K}}\right)$, which yields $\Lambda(x) \lambda_{\epsilon_{1} \epsilon_{2}}(x) \delta_{x \in C_{K}}=2^{2 n-1} \delta_{x \in Z}$. Hence, it decomposes as a sum over all of the $2^{2 n-1}$ irreducible representations of $C_{K}$ in which $z$ acts as the identity.

Case 12: Consider the trace of $\left(g_{K} \otimes e_{1_{G}}\right)$ on the left hand side. If $g_{K}$ has order two, then there are two terms in $\Delta\left(g_{K} \otimes e_{1_{G}}\right)$ with nonzero action, namely $\left(g_{K} \otimes e_{g_{K}}\right) \otimes\left(g_{K} \otimes e_{g_{K}}\right)$ and $\left(g_{K} \otimes e_{g_{K} z}\right) \otimes$ $\left(g_{K} \otimes e_{g_{K}} z\right)$. Thus $\left(g_{K} \otimes e_{1_{G}}\right)$ acts with trace $\left(\epsilon_{1} 2^{n-1}\right)\left(\epsilon_{2} 2^{n-1}\right)+\left(-\epsilon_{1} 2^{n-1}\right)\left(-\epsilon_{2} 2^{n-1}\right)=2^{2 n-1} \epsilon_{1} \epsilon_{2}$. Lemma 5.4 implies that $\left(x \otimes e_{1_{G}}\right)$ acts with trace zero for all $x$ not in the subgroup generated by $g_{K}$ and $z$. So this character decomposes into a sum over all one-dimensional characters in which $g_{K}$ acts as $\epsilon_{1} \epsilon_{2}$. This comprises half of the $2^{2 n}$ one-dimensional characters of $G$. If $g_{K}$ instead has order four, then the terms of $\Delta\left(g_{K} \otimes e_{1_{G}}\right)$ acting with nonzero trace are $\left(g_{K} \otimes e_{g_{K} z}\right) \otimes\left(g_{K} \otimes e_{g_{K}}\right)$ and $\left(g_{K} \otimes e_{g_{K}}\right) \otimes\left(g_{K} \otimes e_{g_{K} z}\right)$. In this case, the trace is $\left(-i \epsilon_{1} 2^{n-1}\right)\left(i \epsilon_{2} 2^{n-1}\right)+\left(i \epsilon_{1} 2^{n-1}\right)\left(-i \epsilon_{2} 2^{n-1}\right)=2^{2 n-1} \epsilon_{1} \epsilon_{2}$, as before. The trace of $\left(g_{K} \otimes e_{z}\right)$ is handled similarly.

## 3 Twisted Quantum Double of a Finite Group

### 3.1 Definition and Representation Theory

Let $G$ be a finite group. The twisted quantum double of $G$, denoted $D^{\omega}(G)$, has the same underlying vector space as the ordinary quantum double, but some of the operations involve a cocycle $\omega \in Z^{3}\left(G, \mathbb{C}^{*}\right)$.

The maps $u$ and $\epsilon$ are unchanged.

$$
\begin{gathered}
m\left(\left(x \otimes e_{g}\right),\left(y \otimes e_{h}\right)\right)=\delta_{g, x h x^{-1}} \theta_{g}(x, y)\left(x y \otimes e_{g}\right) \\
\Delta\left(x \otimes e_{g}\right)=\sum_{h \in G} \gamma_{x}\left(h, h^{-1} g\right)\left(x \otimes e_{h}\right) \otimes\left(x \otimes e_{h^{-1} g}\right) \\
\Phi=\sum_{g, h, k \in G} \omega(g, h, k)^{-1}\left(1 \otimes e_{g}\right) \otimes\left(1 \otimes e_{h}\right) \otimes\left(1 \otimes e_{k}\right),
\end{gathered}
$$

where

$$
\theta_{g}(x, y)=\frac{\omega(g, x, y) \omega\left(x, y,(x y)^{-1} g x y\right)}{\omega\left(x, x^{-1} g x, y\right)}
$$

and

$$
\gamma_{x}(g, h)=\frac{\omega(g, h, x) \omega\left(x, x^{-1} g x, x^{-1} h x\right)}{\omega\left(g, x, x^{-1} h x\right)} .
$$

These equations make $D^{\omega}(G)$ into a semisimple unital quasi-bialgebra. Note that $D^{1}(G)=D(G)$. If we replace $\omega$ by a cohomologous 3-cocycle $\omega(\delta \mu)$, then $D^{\omega(\delta \mu)}(G)$ is equal to the twist of $D^{\omega}(G)$ by a gauge transformation [1], and so $D^{\omega}(G)$ and $D^{\omega(\delta \mu)}(G)$ have tensor-equivalent module categories [12, Section XV.3]. Thus, while various structures of $D^{\omega}(G)$ depend on the specific cocycle $\omega$, the fusion algebra depends only on the cohomology class $[\omega] \in H^{3}\left(G, \mathbb{C}^{*}\right)$. Without loss of generality, then, we choose $\omega$ to be normalized. Note also that, on the subgroup $C_{G}(g), \theta_{g}=\gamma_{g}$ and $\theta_{g} \in Z^{2}\left(C_{G}(g), \mathbb{C}^{*}\right)$.

Representations of $D^{\omega}(G)$ are induced from projective representations of $C_{G}(g)$ with cocycle $\theta_{g}$ for some $g \in G$ [1]. If $G$ is abelian, then an irreducible $\theta_{g}$-representation of $G$ is also an irreducible representation of $D^{\omega}(G)$. In this case, we let $M(g, \lambda)$ denote the irreducible $D^{\omega}(G)$-module which equals the irreducible $\theta_{g}$-representation $\lambda$ of $G$. The following specialization will be helpful in establishing Theorem 3.4.

Lemma 3.1 Let $r, s \in E$, a finite elementary abelian group (written additively). Let $M(r, \lambda)$ and $M(s, \mu)$ be irreducible right $D^{\omega}(E)$-modules. Then

$$
\operatorname{Tr}_{M(r, \lambda) \otimes M(s, \mu)}\left(g \otimes e_{t}\right)=\delta_{t, r+s} \delta_{g \in F_{r} \cap F_{s}} \gamma_{g}(r, s) \operatorname{Tr}_{M(r, \lambda)}(g) \cdot \operatorname{Tr}_{M(s, \mu)}(g)
$$

where $F_{x}=\pi\left(Z\left(X_{x}\right)\right)$ and $X_{x}$ is the central extension of $E$ with associated 2-cocycle $\theta_{x}$, as in Theorem 5.5.

Proof: Let $m_{1} \in M(r, \lambda), m_{2} \in M(s, \mu)$.

$$
\begin{aligned}
\left(m_{1} \otimes m_{2}\right) \circ\left(g \otimes e_{t}\right) & =\sum_{\substack{k, l \in G \\
t=k+l}}\left(m_{1} \otimes m_{2}\right)\left(\left(g \otimes e_{k}\right) \otimes\left(g \otimes e_{l}\right)\right) \gamma_{g}(k, l) \\
& =\sum_{\substack{k, l \in G \\
t=k+l}} \delta_{k, r}\left(g \cdot m_{1}\right) \otimes \delta_{l, s}\left(g \cdot m_{2}\right) \gamma_{g}(k, l) \\
& =\delta_{t, r+s} \gamma_{g}(r, s)\left(g \cdot m_{1}\right) \otimes\left(g \cdot m_{2}\right),
\end{aligned}
$$

which is zero if $t \neq r+s$. But Corollary 5.6 implies that it is also zero when $g$ is not in $F_{r}$ or $F_{s}$.

### 3.2 Example - E Elementary Abelian 2-group

For an explicit determination of the projective representations of an elementary abelian 2-group, and for an explanation of some of the notation used in the sequel, consult Section 5.2. Let $E$ denote an elementary abelian group of order $2^{2 n+1}$ for the remainder of this section. Then $E$ is isomorphic to a vector space over $\mathbb{Z}_{2}$. Let $H$ be a subspace of $E$ of index 2 . Then $H$ admits a nondegenerate symplectic form $\langle$,$\rangle . Select such a form and choose a symplectic basis of H,\left\{b_{1}, b_{2}, \ldots, b_{2 n-1}, b_{2 n}\right\}$. Pick $b_{0} \in E \backslash H$ and extend the form to $E$ by placing $b_{0}$ in the radical. To avoid confusion, we will use $h^{+}$to denote the radical of the extended form on $E$. That is, $h^{\perp}=h^{+} \cap H$. Let $r, s, t \in E$ and write $r=\sum_{i=0}^{2 n} r_{i} b_{i}$, where each $r_{i} \in \mathbb{Z}_{2}$. Define $s_{i}$ and $t_{i}$ similarly. Define a 3 -cocycle $\omega$ by

$$
\begin{equation*}
\omega(r, s, t)=(-1)^{r_{0}\left(s_{1} t_{2}+s_{3} t_{4}+\ldots+s_{2 n-1} t_{2 n}\right)} . \tag{2}
\end{equation*}
$$

Notice that $\omega$ is normalized and that if $r \in H$, then $\omega(r, s, t) \equiv 1$. Since $\omega$ is trilinear, it is a 3-cocycle on $E$.

Lemma 3.2 Let $\omega$ be given by (2) and let $r \in E$. Let $X$ be a central extension of $E(=\pi(X))$ by $\mathbb{C}^{*}$ with cocycle $\theta_{r}$. Let $F_{r}=\pi(Z(X))$.

1. If $r=0$, then $F_{r}=E$.
2. If $r \in H \backslash\{0\}$, then $F_{r}=r^{\perp}=r^{+} \cap H$.
3. If $r \notin H$, then $F_{r}=\langle r\rangle$.

Proof: Let $s \in E$ with $s \neq 0$. If $s \in F_{r}$, then $(s, \mu)$ is in the center of $X$ for all $\mu \in \mathbb{C}^{*}$. Hence the ratio $\theta_{r}(s, t) / \theta_{r}(t, s)=1$ for arbitrary $t \in E$. This means

$$
\begin{aligned}
\frac{\theta_{r}(s, t)}{\theta_{r}(t, s)} & =\frac{\omega(r, s, t) \omega(s, t, r)}{\omega(s, r, t)} \cdot \frac{\omega(t, r, s)}{\omega(r, t, s) \omega(t, s, r)} \\
& =(-1)^{r_{0}\langle s, t\rangle+s_{0}\langle r, t\rangle+t_{0}\langle r, s\rangle} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
r_{0}\langle s, t\rangle+s_{0}\langle r, t\rangle+t_{0}\langle r, s\rangle=0 \tag{3}
\end{equation*}
$$

for all $t \in E$. Conversely, if (3) holds for all $t \in E$, then $s \in F_{r}$.

1. $r=0$. Since $\omega$ is normalized, $\theta_{r} \equiv 1$. Thus $X$ is abelian and $F_{r}=E$.
2. $r_{0}=0 \neq r$. If $t \in H$ and $t \notin r^{+}$, then (3) implies that $s \in H$ (i.e. $s_{0}=0$ ). If $t \notin H$, then (3) implies that $s \in r^{+}$. Hence $F_{r}=r^{+} \cap H=r^{\perp}$.
3. $r_{0}=1$; i.e., $r=b_{0}+h$ for some $h \in H$. If $h=0$, then $r$ is in the radical of the form. Hence (3) holds if and only if $s=b_{0}=r$. Symmetrically, if $s=b_{0}$, then (3) implies $r=b_{0}$. On the other hand, if $h \neq 0$, then $s \neq b_{0}$. Thus we can find $t \in H$ such that $t \notin s^{+}$, in which case (3) becomes $1+s_{0}\langle r, t\rangle=0$, implying $s_{0}=1$. So (3) now simplifies to $\langle r+s, t\rangle=0$ for all $t \in H$. Since the form is nondegenerate on $H, s=r$. Therefore $F_{r}=\langle r\rangle$ in either case.

By Corollary 5.7, the size of $F_{r}$ determines the size and number of projective representations of $E$ with cocycle $\theta_{r}$. If $r=0$, then we obtain $2^{2 n+1}$ inequivalent irreducible $D^{\omega}(E)$-modules, each of dimension
one. Denote the module arising from the representation $\beta$ on $E$ as $N(0, \beta)$. If $r \in H, r \neq 0$, then we obtain $2^{2 n-1}$ inequivalent irreducible two-dimensional $D^{\omega}(E)$-modules. Each such $\lambda$ corresponds to a one-dimensional representation of $F_{r} \leq H$ via the bijection of Corollary 5.7. If $\mathcal{R}(\lambda)=\psi$, then denote the $D^{\omega}(E)$-module as $N(r, \psi)$. Fix $t \notin H$. If $r \notin H$ then $r=t+h^{\prime}$ for some $h^{\prime} \in H$. We have two inequivalent irreducible $D^{\omega}(E)$-modules of dimension $2^{n}$. Denote these modules by $N(r, \epsilon)$ for $\epsilon= \pm 1$, where the value of $\epsilon$ is determined by the scalar action of $r$. If $\lambda$ is a projective representation of $E$, then

$$
\mathrm{id}=\lambda\left(r^{2}\right)=\lambda(r) \lambda(r) \theta_{r}(r, r)^{-1}
$$

which implies that $\lambda(r)^{2}=\theta_{r}(r, r)$. So $r$ acts as the complex scalar $\epsilon \sqrt{\theta_{r}(r, r)}$. We have established the following.

Lemma 3.3 There are three types of irreducible representations of $D^{\omega}(E) . \widehat{A}$ denotes a set of inequivalent one-dimensional characters of the subgroup $A$.

- $N(0, \beta)$ of dimension 1 where $\beta \in \widehat{E}$
- $N(h, \psi)$ of dimension 2 where $h \in H, h \neq 0$, and $\psi \in \widehat{h^{\perp}}$
- $N\left(t+h^{\prime}, \epsilon\right)$ of dimension $2^{n}$ where $h^{\prime} \in H$ and $\epsilon= \pm 1$

Again, the reader may verify the completeness of this list.

### 3.3 Fusion Rules for $D^{\omega}(E)$

Theorem 3.4 Pick $\omega$ as in (2). The fusion rules of $D^{\omega}(E)$ are given explicitly in the following formulas, which hold for all $h, h^{\prime} \in H$ with $h \neq 0$.

1. $N(0, \beta) \otimes N(0, \gamma)=N(0, \beta \otimes \gamma)$
2. $N(0, \beta) \otimes N(h, \psi)=N\left(h, \operatorname{Res}_{h^{\perp}}^{E} \beta \otimes \psi\right)$
3. $N(0, \beta) \otimes N\left(t+h^{\prime}, \epsilon\right)=N\left(t+h^{\prime}, \epsilon \cdot \beta\left(t+h^{\prime}\right)\right)$
4. $N(h, \psi) \otimes N(h, \chi)=\bigoplus_{\operatorname{Res}_{h \perp}^{E} \perp=\psi \otimes \chi} N(0, \beta)$
5. $N\left(h_{1}, \psi\right) \otimes N\left(h_{2}, \chi\right)=\bigoplus_{\operatorname{Res}_{P} \xi=\operatorname{Res}_{P} \psi \otimes \operatorname{Res}_{P} \chi} N\left(h_{1}+h_{2}, \xi\right)$

$$
\text { where } h_{1}, h_{2} \in H \backslash\{0\}, h_{1} \neq h_{2} \text {, and } P=h_{1}^{\perp} \cap h_{2}^{\perp}
$$

6. $N(h, \psi) \otimes N\left(t+h^{\prime}, \epsilon\right)=N\left(t+h+h^{\prime}, 1\right) \oplus N\left(t+h+h^{\prime},-1\right)$
7. $N\left(t+h^{\prime}, \epsilon_{1}\right) \otimes N\left(t+h^{\prime}, \epsilon_{2}\right)=\bigoplus_{\beta\left(t+h^{\prime}\right)=\epsilon_{1} \epsilon_{2}} N(0, \beta)$
8. $N\left(t+h_{1}, \epsilon_{1}\right) \otimes N\left(t+h_{2}, \epsilon_{2}\right)=\bigoplus_{\psi \in\left(h_{1}+h_{2}\right)^{\perp}}^{\bigoplus} N\left(h_{1}+h_{2}, \psi\right)$, where $h_{1}, h_{2} \in H, h_{1} \neq h_{2}$

Proof: As in Theorem 2.2, we will only establish a handful of the cases in order to describe the manner of proof. Complete details can be found in [7].

Case 5: Let $P=h_{1}^{\perp} \cap h_{2}^{\perp}$. Since any elements orthogonal to $h_{1}$ and $h_{2}$ are also orthogonal to their sum, $P \leq\left(h_{1}+h_{2}\right)^{\perp}$. Lemma 3.1 implies

$$
\operatorname{Tr}\left(x \otimes e_{h_{1}+h_{2}}\right)=\theta_{x}\left(h_{1}, h_{2}\right) \operatorname{Tr}_{N\left(h_{1}, \psi\right)}(x) \operatorname{Tr}_{N\left(h_{2}, \chi\right)}(x) \delta_{x \in P}
$$

If $x \in P \subset H$, then $x$ acts as the scalar $\psi(x) \chi(x)$ on the tensor product module, making the trace equal to $4 \psi(x) \chi(x)$. So $x$ must act as the scalar $\psi(x) \chi(x)$ on each of the modules appearing in the decomposition. Since $P$ has index two in $\left(h_{1}+h_{2}\right)^{\perp}$, there are two elements $\xi_{1}, \xi_{2} \in\left(h_{1}+h_{2}\right)^{\perp}$ such that $\operatorname{Res}_{P} \xi_{1}=\operatorname{Res}_{P} \xi_{2}=\operatorname{Res}_{P} \psi \otimes \operatorname{Res}_{P} \chi$. We claim that each of these appears in the decomposition once.

Consider the trace of $\left(x \otimes e_{h_{1}+h_{2}}\right)$ on $N\left(h_{1}+h_{2}, \xi_{i}\right) \oplus N\left(h_{1}+h_{2}, \xi_{j}\right)$ where $i$ and $j$ are possibly equal elements of $\{1,2\}$. We have

$$
\operatorname{Tr}\left(x \otimes e_{h_{1}+h_{2}}\right)=2 \delta_{x \in\left(h_{1}+h_{2}\right)^{\perp}}\left(\xi_{i}(x)+\xi_{j}(x)\right),
$$

If $x \in P$, then this simplifies to $2(2 \psi(x) \chi(x))=4 \psi(x) \chi(x)$, as desired, independent of the choice of $i$ and $j$. But if $x \in\left(h_{1}+h_{2}\right)^{\perp} \backslash P$ and $i=j$, the trace becomes $4 \xi_{i}(x)$, which is a nonzero constant for either choice of $i$. Thus $i \neq j$.

Case 6: Lemma 3.1 implies that $\operatorname{Tr}\left(x \otimes e_{t+h+h^{\prime}}\right)=\theta_{x}\left(h, t+h^{\prime}\right) \operatorname{Tr}_{N(h, \psi)}(x) \operatorname{Tr}_{N\left(t+h^{\prime}, \epsilon\right)}(x) \delta_{x \in h^{\perp} \cap\left\langle t+h^{\prime}\right\rangle}$. But $h^{\perp}$ and $\left\langle t+h^{\prime}\right\rangle$ have trivial intersection, implying that every nonidentity element acts with trace zero. This occurs only if both $N\left(t+h+h^{\prime}, 1\right)$ and $N\left(t+h+h^{\prime},-1\right)$ occur in the sum.

Case 7: $\operatorname{Tr}\left(x \otimes e_{0}\right)=\theta_{x}\left(t+h^{\prime}, t+h^{\prime}\right) \operatorname{Tr}_{N\left(t+h^{\prime}, \epsilon_{1}\right)}(x) \operatorname{Tr}_{N\left(t+h^{\prime}, \epsilon_{2}\right)}(x) \delta_{x \in\left\langle t+h^{\prime}\right\rangle}$. If $x=t+h^{\prime}$, then the trace is

$$
2^{2 n}\left(\epsilon_{1} \sqrt{\theta_{t+h^{\prime}}\left(t+h^{\prime}, t+h^{\prime}\right)}\right)\left(\epsilon_{2} \sqrt{\theta_{t+h^{\prime}}\left(t+h^{\prime}, t+h^{\prime}\right)}\right) \theta_{t+h^{\prime}}\left(t+h^{\prime}, t+h^{\prime}\right)=2^{2 n} \epsilon_{1} \epsilon_{2}
$$

Taking the inner product with an arbitrary character $\beta \in \widehat{E}$ gives

$$
\frac{1}{|E|}\left(2^{2 n} \beta(1)+2^{2 n} \epsilon_{1} \epsilon_{2} \beta\left(t+h^{\prime}\right)\right)=\frac{1}{2}\left(1+\epsilon_{1} \epsilon_{2} \beta\left(t+h^{\prime}\right)\right)
$$

Thus, $\beta$ appears in the decomposition if and only if $\beta\left(t+h^{\prime}\right)=\epsilon_{1} \epsilon_{2}$.
Case 8: $\operatorname{Tr}\left(x \otimes e_{h_{1}+h_{2}}\right)=\theta_{x}\left(t+h_{1}, t+h_{2}\right) \operatorname{Tr}_{N\left(t+h_{1}, \epsilon_{1}\right)}(x) \operatorname{Tr}_{N\left(t+h_{2}, \epsilon_{2}\right)}(x) \delta_{x \in\left\langle t+h_{1}\right\rangle \cap\left\langle t+h_{2}\right\rangle}$. As in Case 6 , this is zero for all $x \neq 0$ because the intersection of $\left\langle t+h_{1}\right\rangle$ and $\left\langle t+h_{2}\right\rangle$ is trivial. Thus, it is exactly the character of the regular representation of the group $\left(h_{1}+h_{2}\right)^{\perp}$.

## 4 An Isomorphism of Fusion Algebras

Let $G$ be an extraspecial 2-group with $|G|=2^{2 n+1}$ and $Z=\left\{1_{G}, z\right\}$. Let $E$ be an elementary abelian 2-group with $|E|=|G|$. We now link these two groups. Pick $H \leq E$ of index 2 and choose $t \in E \backslash H$. Both $G / Z$ and $H$ admit nondegenerate symplectic forms as $\mathbb{Z}_{2}$-spaces. Choose the form on $G / Z$ given by (8) and identify it with a form on $H$ by choosing $\phi: G / Z \rightarrow H$ to be a linear isomorphism and an isometry. Thus $\phi(Z)=0$. Other elements of $G / Z$ will be denoted simply by the corresponding conjugacy
class $K$. Since $G$ is extraspecial, one-dimensional representations of $G$ (and thus of $G / Z$ ) are in one-to-one correspondence with one-dimensional representations of $H$ via the isomorphism $\phi$. Similarly, one-dimensional representations of a centralizer $C_{K}$ of $G$ in which $z$ acts as the identity can be paired with one-dimensional representations of the subgroup $\phi\left(C_{K} / Z\right)=\phi(K)^{\perp}$ of $H$.

Let $\epsilon= \pm 1$. If $\alpha$ is a one-dimensional representation of $G$, then define $\bar{\alpha}_{\epsilon}$ to be the representation of $E$ arising from the representation $\alpha \circ \phi^{-1}$ of $H$ with $t$ acting as $\epsilon$. That is, $\bar{\alpha}_{\epsilon}(a t+h)=\alpha\left(\phi^{-1}(h)\right) \epsilon^{a}$ for $a \in \mathbb{Z}_{2}$.

Pick $\omega \in Z^{3}\left(E, \mathbb{C}^{*}\right)$ as in equation (2). Then $D(G)$ and $D^{\omega}(E)$ have the same number of onedimensional, two-dimensional, and $2^{n}$-dimensional modules, respectively. Let $\mathcal{F}$ be the map from the fusion algebra of $D(G)$ to the fusion algebra of $D^{\omega}(E)$ such that

$$
\begin{align*}
\mathcal{F} M(\epsilon, \alpha) & =N\left(0, \bar{\alpha}_{\epsilon}\right)  \tag{4}\\
\mathcal{F} M(\epsilon, \Lambda) & =N(t, \epsilon)  \tag{5}\\
\mathcal{F} M(K, \chi) & =N\left(\phi(K),\left.\chi \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right)  \tag{6}\\
\mathcal{F} M\left(K, \lambda_{\epsilon}\right) & =N(t+\phi(K), \epsilon) . \tag{7}
\end{align*}
$$

Lemma 4.1 $\mathcal{F}$ is a bijection on the irreducible modules.

Proof: We will show that $\mathcal{F}$ maps onto irreducible $D^{\omega}(E)$-modules of the three types given in Lemma 3.3.
Using (4), we have that $\mathcal{F} M\left(\beta(t), \operatorname{Res}_{H}^{E} \beta \circ \phi\right)=N\left(0, \overline{\operatorname{Res}}_{H}^{E} \beta \circ \phi_{\beta(t)}\right)$. But by definition of $\bar{\alpha}_{\epsilon}$, we have

$$
\overline{\operatorname{Res}}_{H}^{E} \beta \circ \phi_{\beta(t)}(a t+h)=\operatorname{Res}_{H}^{E} \beta \circ \phi\left(\phi^{-1}(h)\right) \beta(t)^{a}=\beta(h) \beta(t)^{a}=\beta(a t+h)
$$

for all $a \in \mathbb{Z}_{2}, h \in H$. So $N(0, \beta)$ is in the image of $\mathcal{F}$. Now let $\phi(K)=h$. Then we have

$$
\begin{aligned}
\mathcal{F} M\left(K,\left.\psi \circ \phi\right|_{C_{K} / Z}\right) & =N\left(\phi(K),\left.\left.\psi \circ \phi\right|_{C_{K} / Z} \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right) \\
& =N(h, \psi) .
\end{aligned}
$$

From (5) and (7), modules of type $N(t+h, \epsilon)$ are also in the image of $\mathcal{F}$.

Theorem 4.2 $\mathcal{F}$ extends to an isomorphism of $\mathbb{Z}$-algebras.

Proof: We can extend $\mathcal{F} \mathbb{Z}$-additively on these irreducible elements in order to obtain a bijection from the fusion algebra of $D(G)$ to that of $D^{\omega}(E)$. We now show that $\mathcal{F}$ preserves the tensor product multiplication, using the fusion rule numbering from Theorem 2.2.

1. $\mathcal{F}\left[M\left(\epsilon_{1}, \alpha\right) \otimes M\left(\epsilon_{2}, \beta\right)\right]=\mathcal{F} M\left(\epsilon_{1} \epsilon_{2}, \alpha \otimes \beta\right)=N\left(0, \overline{\alpha \otimes \beta}_{\epsilon_{1} \epsilon_{2}}\right)$. $\mathcal{F} M\left(\epsilon_{1}, \alpha\right) \otimes \mathcal{F} M\left(\epsilon_{2}, \beta\right)=N\left(0, \bar{\alpha}_{\epsilon_{1}}\right) \otimes N\left(0, \bar{\beta}_{\epsilon_{2}}\right)=N\left(0, \bar{\alpha}_{\epsilon_{1}} \otimes \bar{\beta}_{\epsilon_{2}}\right)$.

To see these are equal, let $a \in \mathbb{Z}_{2}$. Then $\left(\bar{\alpha}_{\epsilon_{1}} \otimes \bar{\beta}_{\epsilon_{2}}\right)(a t+h)=\bar{\alpha}_{\epsilon_{1}}(a t+h) \cdot \bar{\beta}_{\epsilon_{2}}(a t+h)=$ $\alpha\left(\phi^{-1}(h)\right) \epsilon_{1}^{a} \cdot \beta\left(\phi^{-1}(h)\right) \epsilon_{2}^{a}=\alpha \otimes \beta\left(\phi^{-1}(h)\right)\left(\epsilon_{1} \epsilon_{2}\right)^{a}=\overline{\alpha \otimes \beta}_{\epsilon_{1} \epsilon_{2}}(a t+h)$.
2. $\mathcal{F}\left[M\left(\epsilon_{1}, \alpha\right) \otimes M\left(\epsilon_{2}, \Lambda\right)\right]=\mathcal{F} M\left(\epsilon_{1} \epsilon_{2}, \Lambda\right)=N\left(t, \epsilon_{1} \epsilon_{2}\right)$.

$$
\mathcal{F} M\left(\epsilon_{1}, \alpha\right) \otimes \mathcal{F} M\left(\epsilon_{2}, \Lambda\right)=N\left(0, \bar{\alpha}_{\epsilon_{1}}\right) \otimes N\left(t, \epsilon_{2}\right)=N\left(t, \epsilon_{2} \bar{\alpha}_{\epsilon_{1}}(t)\right)=N\left(t, \epsilon_{2} \epsilon_{1}\right) .
$$

3. $\mathcal{F}[M(\epsilon, \alpha) \otimes M(K, \chi)]=\mathcal{F} M\left(K, \operatorname{Res}_{C_{K}}^{G} \alpha \otimes \chi\right)=N\left(\phi(K),\left.\left(\operatorname{Res}_{C_{K}}^{G} \alpha \otimes \chi\right) \circ \phi^{-1}\right|_{\phi(K)}\right)$.

$$
\begin{aligned}
\mathcal{F} M(\epsilon, \alpha) \otimes \mathcal{F} M(K, \chi) & =N\left(0, \bar{\alpha}_{\epsilon}\right) \otimes N\left(\phi(K),\left.\chi \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right) \\
& =N\left(\phi(K), \operatorname{Res}_{\phi(K)^{\perp}}^{E} \bar{\alpha}_{\epsilon} \otimes\left(\left.\chi \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right)\right) \\
& =N\left(\phi(K),\left(\left.\alpha \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right) \otimes\left(\left.\chi \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right)\right) \\
& =N\left(\phi(K),\left.\left(\operatorname{Res}_{C_{K}}^{G} \alpha \otimes \chi\right) \circ \phi^{-1}\right|_{\phi(K)^{\perp}}\right) .
\end{aligned}
$$

4. $\mathcal{F}\left[M\left(\epsilon_{1}, \alpha\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)\right]=\mathcal{F} M\left(K, \lambda_{\epsilon_{1} \epsilon_{2} \alpha\left(g_{K}\right)}\right)=N\left(t+\phi(K), \epsilon_{1} \epsilon_{2} \alpha\left(g_{K}\right)\right)$.

$$
\mathcal{F} M\left(\epsilon_{1}, \alpha\right) \otimes \mathcal{F} M\left(K, \lambda_{\epsilon_{2}}\right)=N\left(0, \bar{\alpha}_{\epsilon_{1}}\right) \otimes N\left(t+\phi(K), \epsilon_{2}\right)=N\left(t+\phi(K), \epsilon_{2} \epsilon_{1} \alpha\left(g_{K}\right)\right) .
$$

5. 

$$
\begin{aligned}
\mathcal{F}[M(K, \chi) \otimes M(K, \psi)] & =\bigoplus_{\operatorname{Res}_{C_{K}}^{G}}^{\alpha=\chi \otimes \psi} \mathcal{F} M(1, \alpha) \oplus \mathcal{F} M(-1, \alpha) \\
& =\bigoplus_{\operatorname{Res}_{C_{K}}^{G}} \bigoplus_{\alpha=\chi \otimes \psi} N\left(0, \bar{\alpha}_{1}\right) \oplus N\left(0, \bar{\alpha}_{-1}\right) \\
& =\bigoplus_{\operatorname{Res}_{\phi(K)^{\perp}}^{H}\left(\alpha \circ \phi^{-1}\right)=(\chi \otimes \psi) \circ \phi^{-1}} N\left(0, \bar{\alpha}_{1}\right) \oplus N\left(0, \bar{\alpha}_{-1}\right) \\
& =\bigoplus_{\operatorname{Res}_{\phi(K)}^{E}} \bigoplus_{\beta=(\chi \otimes \psi) \circ \phi^{-1}}\left(\bigoplus_{\beta(t)=1} N(0, \beta) \bigoplus_{\beta(t)=-1} N(0, \beta)\right) \\
& =\bigoplus_{\operatorname{Res}_{\phi(K)}^{E}} \bigoplus_{\beta=(\chi \otimes \psi) \circ \phi^{-1}} N(0, \beta),
\end{aligned}
$$

where the penultimate equality holds because $\bar{\alpha}_{\epsilon}=\alpha \circ \phi^{-1}=\beta$ on any subgroup of $H$.
$\mathcal{F} M(K, \chi) \otimes \mathcal{F} M(K, \psi)=N\left(\phi(K), \chi \circ \phi^{-1}\right) \otimes N\left(\phi(K), \psi \circ \phi^{-1}\right)=$

$$
\bigoplus_{\operatorname{Res}_{\phi(K)}^{E}} \bigoplus_{\beta=\left(\chi \circ \phi^{-1}\right) \otimes\left(\psi \circ \phi^{-1}\right)} N(0, \beta) .
$$

6. 

$$
\begin{aligned}
\mathcal{F}[M(K, \chi) \otimes M(L, \psi)] & =\bigoplus_{\operatorname{Res}_{Q} \xi=\operatorname{Res}_{Q} \chi \otimes \operatorname{Res}_{Q} \psi} \mathcal{F} M(K L, \xi) \\
& =\bigoplus_{\operatorname{Res}_{Q} \xi=\operatorname{Res}_{Q} \chi \otimes \operatorname{Res}_{Q} \psi} N\left(\phi(K L), \xi \circ \phi^{-1}\right) \\
& =\bigoplus_{\operatorname{Res}_{P}\left(\xi \circ \phi^{-1}\right)=\operatorname{Res}_{P}\left(\chi \circ \phi^{-1}\right) \otimes \operatorname{Res}_{P}\left(\psi \circ \phi^{-1}\right)} N\left(\phi(K)+\phi(L), \xi \circ \phi^{-1}\right)
\end{aligned}
$$

because $P=\phi(Q)$.

$$
\begin{aligned}
\mathcal{F} M(K, \chi) \otimes \mathcal{F} M(L, \psi) & =N\left(\phi(K), \chi \circ \phi^{-1}\right) \otimes N\left(\phi(L), \psi \circ \phi^{-1}\right) \\
& =\bigoplus_{\operatorname{Res}_{P} \sigma=\operatorname{Res}_{P}\left(\chi \circ \phi^{-1}\right) \otimes \operatorname{Res}_{P}\left(\psi \circ \phi^{-1}\right)} N(\phi(K)+\phi(L), \sigma) .
\end{aligned}
$$

7. $\mathcal{F}[M(K, \chi) \otimes M(\epsilon, \Lambda)]=\mathcal{F} M\left(K, \lambda_{1}\right) \oplus \mathcal{F} M\left(K, \lambda_{-1}\right)=N(t+\phi(K), 1) \oplus N(t+\phi(K),-1)$.
$\mathcal{F} M(K, \chi) \otimes \mathcal{F} M(\epsilon, \Lambda)=N\left(\phi(K), \chi \circ \phi^{-1}\right) \otimes N(t, \epsilon)=N(t+\phi(K), 1) \oplus N(t+\phi(K),-1)$.
8. $\mathcal{F}\left[M(K, \chi) \otimes M\left(K, \lambda_{\epsilon}\right)\right]=\mathcal{F} M(1, \Lambda) \oplus \mathcal{F} M(-1, \Lambda)=N(t, 1) \oplus N(t,-1)$.
$\mathcal{F} M(K, \chi) \otimes \mathcal{F} M\left(K, \lambda_{\epsilon}\right)=N\left(\phi(K), \chi \circ \phi^{-1}\right) \otimes N(t+\phi(K), \epsilon)=N(t, 1) \oplus N(t,-1)$.
9. $\mathcal{F}\left[M(K, \chi) \otimes M\left(L, \lambda_{\epsilon}\right)\right]=\mathcal{F} M\left(K L, \lambda_{1}\right) \oplus \mathcal{F} M\left(K L, \lambda_{-1}\right)=N(t+\phi(K L), 1) \oplus N(t+\phi(K L),-1)$.
$\mathcal{F} M(K, \chi) \otimes \mathcal{F} M\left(L, \lambda_{\epsilon}\right)=N\left(\phi(K), \chi \circ \phi^{-1}\right) \otimes N(t+\phi(L), \epsilon)=N(t+\phi(K L), 1) \oplus N(t+\phi(K L),-1)$.
10. $\mathcal{F}\left[M\left(\epsilon_{1}, \Lambda\right) \otimes M\left(\epsilon_{2}, \Lambda\right)\right]=\bigoplus_{\alpha \in \widehat{G}} \mathcal{F} M\left(\epsilon_{1} \epsilon_{2}, \alpha\right)=\bigoplus_{\alpha \in \widehat{G}} N\left(0, \bar{\alpha}_{\epsilon_{1} \epsilon_{2}}\right)=\bigoplus_{\beta(t)=\epsilon_{1} \epsilon_{2}} N(0, \beta)$.
$\mathcal{F} M\left(\epsilon_{1}, \Lambda\right) \otimes \mathcal{F} M\left(\epsilon_{2}, \Lambda\right)=N\left(t, \epsilon_{1}\right) \otimes N\left(t, \epsilon_{2}\right)=\bigoplus_{\beta(t)=\epsilon_{1} \epsilon_{2}} N(0, \beta)$.
11. $\mathcal{F}\left[M\left(\epsilon_{1}, \Lambda\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)\right]=\bigoplus_{\chi \in \widehat{C_{K}}} \mathcal{F} M(K, \chi)=\bigoplus_{\chi \circ \phi^{-1} \in \widehat{\phi(K)^{\perp}}} N\left(\phi(K), \chi \circ \phi^{-1}\right)$.
$\mathcal{F} M\left(\epsilon_{1}, \Lambda\right) \otimes \mathcal{F} M\left(K, \lambda_{\epsilon_{2}}\right)=N\left(t, \epsilon_{1}\right) \otimes N\left(t+\phi(K), \epsilon_{2}\right)=\bigoplus_{\psi \in \widehat{\phi(K)^{\perp}}} N(\phi(K), \psi)$.
12. $\mathcal{F}\left[M\left(K, \lambda_{\epsilon_{1}}\right) \otimes M\left(K, \lambda_{\epsilon_{2}}\right)\right]=\bigoplus_{\alpha\left(g_{K}\right)=\epsilon_{1} \epsilon_{2}} \mathcal{F} M(1, \alpha) \bigoplus_{\beta\left(g_{K}\right)=-\epsilon_{1} \epsilon_{2}} \mathcal{F} M(-1, \beta)=$

$$
\bigoplus_{\alpha\left(g_{K}\right)=\epsilon_{1} \epsilon_{2}} N\left(0, \bar{\alpha}_{1}\right) \bigoplus_{\beta\left(g_{K}\right)=-\epsilon_{1} \epsilon_{2}} N\left(0, \bar{\beta}_{-1}\right) .
$$

$\mathcal{F} M\left(K, \lambda_{\epsilon_{1}}\right) \otimes \mathcal{F} M\left(K, \lambda_{\epsilon_{2}}\right)=N\left(t+\phi(K), \epsilon_{1}\right) \otimes N\left(t+\phi(K), \epsilon_{2}\right)=\bigoplus_{\gamma(t+\phi(K))=\epsilon_{1} \epsilon_{2}} N(0, \gamma)=$

$$
\bigoplus_{\substack{\gamma(t)=1 \\ \gamma(\phi(K))=\epsilon_{1} \epsilon_{2}}} N(0, \gamma) \bigoplus_{\substack{\gamma(t)=-1 \\ \gamma(\phi(K))=-\epsilon_{1} \epsilon_{2}}} N(0, \gamma)
$$

13. $\mathcal{F}\left[M\left(K, \lambda_{\epsilon_{1}}\right) \otimes M\left(L, \lambda_{\epsilon_{2}}\right)\right]=\bigoplus_{\chi \in \widehat{C_{K L}}} \mathcal{F} M(K L, \chi)=\bigoplus_{\chi \circ \phi^{-1} \in \phi \widehat{(K L)^{\perp}}} N\left(\phi(K L), \chi \circ \phi^{-1}\right)$.

$$
\mathcal{F} M\left(K, \lambda_{\epsilon_{1}}\right) \otimes \mathcal{F} M\left(L, \lambda_{\epsilon_{2}}\right)=N\left(t+\phi(K), \epsilon_{1}\right) \otimes N\left(t+\phi(L), \epsilon_{2}\right)=\bigoplus_{\psi \in \phi(\widehat{K L})^{\perp}} N(\phi(K L), \psi) .
$$

Together with Lemma 4.1, we have shown that $\mathcal{F}$ is a $\mathbb{Z}$-algebra isomorphism.

## 5 Appendix

### 5.1 Extraspecial p-groups

Let $p$ be a prime number, and let $G$ be a finite $p$-group. Denote the center of $G$ as $Z$, the commutator subgroup as $G^{\prime}$, and the Frattini subgroup as $\Xi(G)$. Then $G$ is extraspecial if $Z=G^{\prime}=\Xi(G) \cong \mathbb{Z}_{p}$. As a consequence, $G / Z \cong\left(\mathbb{Z}_{p}\right)^{n}[8]$.

Let $G$ be extraspecial and consider $G / Z$ to be a vector space over the field $\mathbb{Z}_{p}$. Let $Z=\langle z\rangle$ and define a function $\langle\rangle:, G \times G \rightarrow \mathbb{Z}_{p}$ as follows:

$$
\begin{equation*}
\langle x, y\rangle=\alpha, \tag{8}
\end{equation*}
$$

where $x y x^{-1} y^{-1}=z^{\alpha}$. This function passes to the quotient group $G / Z$, where it becomes a symplectic, nondegenerate, bilinear form [9]. If $p=2$, then the form is also symmetric. It is immediate that $G / Z$ is even-dimensional. If $x \in Z$, then $(x Z)^{\perp}=Z^{\perp}=G / Z$. Otherwise, if $x \notin Z$, then $x$ is in some noncentral conjugacy class $K$, and $x Z=K$ because $G$ is extraspecial. Thus we can define $K^{\perp}$ to be $(x Z)^{\perp}$ if $x \in K$.

Lemma 5.1 Let $G$ be an extraspecial $p$-group of order $p^{2 n+1}$. Let $x \in K$ and $y \in L$, where $K$ and $L$ are noncentral conjugacy classes of $G$.

1. $\left|C_{G}(x)\right|=p^{2 n}$. In particular, $C_{G}(x)$ is a normal subgroup of $G$.
2. If $K \neq L$, then $\left|C_{G}(x): C_{G}(x) \cap C_{G}(y)\right|=p$.

## Proof:

1. By definition, $C_{G}(x) / Z=K^{\perp}$, a subspace of $G / Z$ of dimension $2 n-1$.
2. Part 1 implies that $\left|G: C_{G}(x)\right|=p$. If $C_{G}(x)=C_{G}(y)$, then $K^{\perp}=L^{\perp}$. But the nondegeneracy of the form implies that $K=L$, contrary to hypothesis. Thus $C_{G}(x) \neq C_{G}(y)$. Therefore $G=$

$$
C_{G}(x) C_{G}(y), \text { implying }
$$

$$
G / C_{G}(x) \cong C_{G}(x) / C_{G}(x) \cap C_{G}(y) .
$$

Lemma 5.2 Let $G_{n}$ denote an extraspecial group of order $p^{2 n+1}$ for each $n \in \mathbb{N}$ and let $G_{0}=\mathbb{Z}_{p}$. Let $x \in G_{n} \backslash Z\left(G_{n}\right)$. Then $C_{G_{n}}(x) \cong \mathbb{Z}_{p} \times G_{n-1}$ if $x^{p}=1$ and $C_{G_{n}}(x) \cong \mathbb{Z}_{p^{2}} * G_{n-1}$ if $x^{p} \neq 1$, where $*$ denotes the central product. In each case, the first factor is generated by $x$.

Proof: The result follows inductively from the fact that any extraspecial $p$-group can be expressed as a central product of extraspecial $p$-groups of order $p^{3}$ [8, Theorem 5.5.2].

Let $G$ be extraspecial with $|G|=p^{2 n+1}$. Then $G$ has $p^{2 n}$ inequivalent one-dimensional irreducible representations and $p-1$ inequivalent $p^{n}$-dimensional irreducible representations [8, Theorem 5.5.5].

Lemma 5.3 Let $G$ be extraspecial with $|G|=p^{2 n+1}$ and let $\chi$ be an irreducible character of $G$ of dimension greater than one. Then $\chi(g)=0$ if and only if $g \notin Z$.

Proof: This result follows from the character table of $G$.
Choose a generator $z$ of the center $Z$ of extraspecial $G$. Let $x \in G \backslash Z$. Then Lemma 5.2 implies that $C_{G}(x)$ affords exactly $p(p-1)$ inequivalent irreducible representations of dimension $p^{n-1}$ in which $z$ acts as a scalar different from one. Pick an irreducible representation $\rho$ of $C_{G}(x)$ such that $\rho(z) \neq \mathrm{id}$.

Lemma 5.4 Let $x \in G \backslash Z$. Then $\operatorname{Tr} \rho(y)=0$ for all $y$ not contained in the subgroup generated by $x$ and $z$.

Proof: If $|G|=p^{3}$, then the statement is vacuously true. Let $|G|=p^{2 n+1}$ with $n>1$ and choose $y$ not in the subgroup generated by $x$ and $z$. Then Lemma 5.2 implies that $y$ can be expressed as $x^{a} g$ for some $a \in \mathbb{Z}_{p}$ and some $g \in G_{n-1} \backslash Z$. Hence

$$
\rho(y)=\rho\left(x^{a}\right) \rho(g)=\zeta^{a} \rho(g),
$$

where $\zeta$ is a scalar because $x \in Z\left(C_{G}(x)\right)$. Lemma 5.3 now implies that $\operatorname{Tr} \rho(y)=0$.

### 5.2 Group Cohomology and Projective Representations

Let $G$ be a finite group, $V$ a complex vector space, and $\theta \in Z^{2}\left(G, \mathbb{C}^{*}\right)$ where $\mathbb{C}^{*}$ is a trivial $G$-module. Then a projective representation of $G$ on $V$ with 2-cocycle $\theta$ (a $\theta$-representation) is equivalent to a linear representation of the central extension $X$ of $G$ by $\mathbb{C}^{*}$ with associated 2-cocycle $\theta$ [10, Exercise 6.10]. Recall that $X=G \times \mathbb{C}^{*}$ as a set, but has a group operation given by

$$
\left(g_{1}, a_{1}\right)\left(g_{2}, a_{2}\right)=\left(g_{1} g_{2}, \theta\left(g_{1}, g_{2}\right) a_{1} a_{2}\right)
$$

for all $g_{i} \in G$ and $a_{i} \in \mathbb{C}^{*}$. If $(\psi, \theta)$ is a projective representation of $G$, then one defines a linear representation $\Psi$ of $X$ via $\Psi(g, a)=a \psi(g)$ for all $g \in G, a \in \mathbb{C}^{*}$. Conversely, given a linear representation $\Psi$ of $X\left(\right.$ with $\left.\Psi(1, a)=a \in \mathbb{C}^{*}\right)$, one constructs a projective representation $(\psi, \theta)$ of $G$ via $\psi(g)=\Psi(g, 1)$. Choosing a cohomologous cocycle $\theta^{\prime}$ instead of $\theta$ naturally leads to an isomorphic central extension. Hence, equivalence classes of central extensions by $\mathbb{C}^{*}$ are in bijective correspondence with $H^{2}\left(G, \mathbb{C}^{*}\right)$ [11, Theorem 2.1.2].

Theorem 5.5 Let $E$ be an elementary p-group and let $\theta$ be an element of $Z^{2}\left(E, \mathbb{C}^{*}\right)$ that is not a coboundary. Let $X$ be a central extension of $E$ by $\mathbb{C}^{*}$ with associated 2-cocycle $\theta$. Then there exists a subgroup $F \lesseqgtr E$ and an extraspecial $p$-group $G$ such that

$$
X \cong F \times\left(\mathbb{C}^{*} * G\right)
$$

In the central product, the subgroup $\left\{\nu \in \mathbb{C}^{*} \mid \nu^{p}=1\right\}$ is identified with the center of $G$.

Proof: We begin with the exact sequence defining $X$,

$$
1 \rightarrow \mathbb{C}^{*} \rightarrow X \xrightarrow{\pi} E \rightarrow 1 .
$$

Let $F=\pi(Z(X))$. Since $\theta$ is not a coboundary, $X$ is not abelian. Thus $F=Z(X) / \mathbb{C}^{*} \lesseqgtr X / \mathbb{C}^{*} \cong E$. Note that $Z(X) \cong F \times \mathbb{C}^{*}$ by the injectivity of $\mathbb{C}^{*}[10$, Section 3.11$]$. Since $E$ is elementary abelian, we can choose a complementary subgroup $B$ of $E$ such that $E \cong F \times B$. Let $Y=\pi^{-1}(B) \leq X$. Then

$$
X=\pi^{-1}(F \times B)=\pi^{-1}(F) \pi^{-1}(B)=Z(X) Y .
$$

Hence $Z(Y) \leq Z(X)$. If $y \in Z(Y)$, then $\pi(y) \in F \cap B=1$, implying $Z(Y)=\mathbb{C}^{*}$. We have just shown that $X \cong Z(X) *_{\mathbb{C}} Y$ where $*_{\mathbb{C}}$ means that the central product identifies the $\mathbb{C}^{*}$ contained in each of these subgroups.

Without loss of generality, assume that $\theta$ only takes values that are $p$-th roots of unity [6]. Therefore, we have that $G=\left\{(b, \nu) \mid b \in B, \nu^{p}=1\right\}$ is a subgroup of $Y$. Let $C=\left\{(1, \nu) \mid \nu^{p}=1\right\} \leq Z(Y)=\mathbb{C}^{*}$. Direct computation shows that $G$ is an extraspecial $p$-group with center $C$. Identifying $C$ with the subgroup $\left\{\nu \in \mathbb{C}^{*} \mid \nu^{p}=1\right\}$ of $\mathbb{C}^{*}$, we obtain $Y \cong \mathbb{C}^{*} * G$. Hence,

$$
X \cong Z(X) * \mathbb{C}\left(\mathbb{C}^{*} * G\right) \cong\left(F \times \mathbb{C}^{*}\right) * \mathbb{C}\left(\mathbb{C}^{*} * G\right) \cong F \times\left(\mathbb{C}^{*} * G\right)
$$

As an immediate consequence,

$$
\begin{equation*}
|F| \cdot|G|=p|E| . \tag{9}
\end{equation*}
$$

Corollary 5.6 Let $E, \theta, X, F$, and $G$ be as in Theorem 5.5. Let $(\psi, \theta)$ be an irreducible projective representation of $E$. Then $x \in F$ if and only if $\operatorname{Tr} \psi(x) \neq 0$.

Proof: First, note that $\operatorname{dim} \psi>1$. Let $\mu \in \mathbb{C}^{*}$. Assume $x \in F$. Then $(x, \mu) \in Z(X)$. Hence $(x, \mu)$ acts as a nonzero scalar in all its irreducible representations, including $\Psi$. So $\operatorname{Tr} \psi(x) \neq 0$. On the other hand, if $x \notin F$, then $(x, \mu) \notin Z(X)$. Theorem 5.5 implies the existence of $f$ in the isomorphic copy of $F$ contained in $X, \nu \in \mathbb{C}^{*}$, and $g \in G \backslash Z(G)$ such that $f \nu g=(x, \mu)$. We have

$$
\Psi(f \nu g)=\Psi(f \nu) \Psi(g)
$$

Since $f \nu \in Z(X), \Psi(f \nu)$ is a scalar matrix $\kappa$ id, making the trace of $\Psi(f \nu g)$ equal to $\kappa \operatorname{Tr} \Psi(g)$. Lemma 5.3 now implies that $\operatorname{Tr} \psi(x)=0$.

Let $p=2$ and let $|G|=2^{2 k+1}$. Choose an irreducible projective representation $(\psi, \theta)$ of $E$ with $\operatorname{dim} \psi=\operatorname{dim} \Psi$ greater than one. Then $\operatorname{Res}_{G}^{X} \Psi$ is the unique irreducible representation of $G$ of dimension $2^{k}$. Hence $(\psi, \theta)$ is $2^{k}$-dimensional.

Corollary 5.7 Let $E, \theta, X, F$, and $G$ be as in Theorem 5.5 with $|E|=2^{2 n+1}$. Identify $F$ with its isomorphic copy in $X$ and let $|G|=2^{2 k+1}$ for some $k$ between 1 and $n$. Then there is a natural bijection between inequivalent irreducible projective $\theta$-representations of $E$ and inequivalent irreducible linear representations of $F$.

Proof: Let $(\psi, \theta)$ be an irreducible projective representation of $E$ on a complex vector space $V$. Construct the associated irreducible linear representation $\Psi$ of $X$. By Clifford's Theorem [10, Section 5.2], we have that $\operatorname{Res}_{F}^{X} \Psi$ decomposes into conjugate irreducible representations, each occurring with the same multiplicity. Since $F$ is abelian, $\operatorname{Res}_{F}^{X} \Psi$ is a direct sum of copies of a unique one-dimensional irreducible representation $\beta \in \widehat{F}$. We show that $\mathcal{R}:(\psi, \theta) \mapsto \beta$ is the desired natural bijection.

Let $\left(\psi^{\prime}, \theta\right)$ be another projective representation of $E$ which is projectively equivalent to $(\psi, \theta)$. Then there exists an invertible linear transformation $f$ of $V$ such that $\psi^{\prime}=f \psi f^{-1}$. In other words,

$$
\operatorname{Res}_{F}^{X} \Psi^{\prime}=f\left(\operatorname{Res}_{F}^{X} \Psi\right) f^{-1}=(\operatorname{dim} \Psi) f \beta f^{-1}=(\operatorname{dim} \Psi) \beta
$$

Therefore, $\mathcal{R}$ respects projective equivalence.
Let $\left(\psi_{0}, \theta\right)$ be an irreducible projective representation of $E$ which is not equivalent to $(\psi, \theta)$. Then $\Psi_{0}$ and $\Psi$ are also inequivalent. However, since $\Psi_{0}$ and $\Psi$ agree in their restrictions to $G$, they must differ in their restrictions to $F$. Thus $\mathcal{R}$ is injective.

Let $m$ be the number of inequivalent projective $\theta$-representations of $E$. Since each has dimension $2^{k}$, we have $|E|=2^{2 n+1}=m\left(2^{k}\right)^{2}=2^{2 k} m$. Hence $m=2^{2 n+1-2 k}=|\widehat{F}|=|F|$.

This allows us to determine the dimension of projective $\theta$-representations from the size of $F$ via

$$
\operatorname{dim} \psi=2^{k}=\sqrt{\frac{|E|}{|F|}} .
$$

## References

[1] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi-Quantum Groups Related to Orbifold Models, Modern Quantum Field Theory, World Scientific Publishing Company, Inc., River Edge, New Jersey, 1991, 375-383.
[2] R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, The Operator Algebra of Orbifold Models, Comm. Math. Phys. 123, 1989, 485-526.
[3] L. Dolan, P. Goddard, P. Montague, Conformal Field Theory of Twisted Vertex Operators, Nuclear Phys. B 338, 1990, 529-601.
[4] C. Dong, Vertex Algebras Associated with Even Lattices, J. Algebra 161, 1993, 245-265.
[5] C. Dong and G. Mason, Vertex Operator Algebras and Moonshine: A Survey, Adv. Stud. Pure Math. 24, 1996, 101-136.
[6] L. Evens, The Cohomology of Groups, Oxford University Press, New York, 1991.
[7] C. Goff, Isomorphic Fusion Algebras of Twisted Quantum Doubles of Finite Groups, Ph.D. dissertation, University of California at Santa Cruz, 1999.
[8] D. Gorenstein, Finite Groups, Chelsea Publishing Company, New York, 1980.
[9] B. Huppert, Geometric Algebra, University of Illinois at Chicago Circle Lecture Notes, 1970.
[10] N. Jacobson, Basic Algebra II, W. H. Freeman and Company, New York, 1989.
[11] G. Karpilovsky, Projective Representations of Finite Groups, Marcel Dekker, Inc., New York, 1985.
[12] C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.
[13] T.H. Koornwinder, B.J. Schroers, J.K. Slingerland, F.A. Bais, Fourier transform and the Verlinde formula for the quantum double of a finite group, J. Phys. A 32, 1999, 8539-8549.
[14] G. Mason, The Quantum Double of a Finite Group and its Role in Conformal Field Theory, London Math. Soc. Lecture Note Ser. 212, v.2, 1995, 405-417.
[15] J.-P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977.
[16] D. Tambara and S. Yamagami, Tensor Categories with Fusion Rules of Self-Duality for Finite Abelian Groups, J. Algebra 209, 1998, 692-707.

