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Reversible Inhibition of Chlamydia trachomatis Infection in Epithelial
Cells Due to Stimulation of P2X4 Receptors

Matthew A. Pettengill,a Camila Marques-da-Silva,a,b Maria Luisa Avila,a Suellen d’Arc dos Santos Oliveira,b Verissa W. Lam,a

Ikechukwu Ollawa,a Ali A. Abdul Sater,a Robson Coutinho-Silva,b Georg Häcker,c and David M. Ojciusa

Molecular Cell Biology and Health Sciences Research Institute, University of California, Merced, California, USAa; Biophysics Institute Carlos Chagas Filho, Federal University
of Rio de Janeiro, Rio de Janeiro, Brazilb; and Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germanyc

Bacterial infections of the mucosal epithelium are a major cause of human disease. The prolonged presence of microbial patho-
gens stimulates inflammation of the local tissues, which leads to changes in the molecular composition of the extracellular mi-
lieu. A well-characterized molecule that is released to the extracellular milieu by stressed or infected cells is extracellular ATP
and its ecto-enzymatic degradation products, which function as signaling molecules through ligation of purinergic receptors.
There has been little information, however, on the effects of the extracellular metabolites on bacterial growth in inflamed tissues.
Millimolar concentrations of ATP have been previously shown to inhibit irreversibly bacterial infection through ligation of P2X7

receptors. We show here that the proinflammatory mediator, ATP, is released from Chlamydia trachomatis-infected epithelial
cells. Moreover, further stimulation of the infected cells with micromolar extracellular ADP or ATP significantly impairs the
growth of the bacteria, with a profile characteristic of the involvement of P2X4 receptors. A specific role for P2X4 was confirmed
using cells overexpressing P2X4. The chlamydiae remain viable and return to normal growth kinetics after removal of the extra-
cellular stimulus, similar to responses previously described for persistence of chlamydial infection.

Danger signals comprise a varied group of extracellular mole-
cules which indicate a potentially harmful physiological state

and for which specific sensory mechanisms exist (38, 40, 51, 55,
56). Well-known danger signals include extracellular ATP, adeno-
sine, uric acid crystals, the chromatin component HMGB1, and
heat shock proteins. However, the level of danger posed elicits
different cellular responses. For example, ATP is released from
resting cells (nanomolar range) (5, 37), stressed and dying cells
(micromolar range) (23), and physically compromised cells (mill-
imolar range), although actual concentrations depend heavily on
cell type and environment. Cells in the adjacent tissue must then
decide whether to modify their own behavior in response to the
extracellular signal, and whether to amplify the response by secret-
ing other signaling molecules such as cytokines.

The cells sense extracellular ATP and other nucleotides and
nucleosides via a family of membrane receptors called purinergic
receptors. These receptors are subdivided by function and homol-
ogy into three classes: P2X are ligand-gated ion channels sensitive
to ATP, P2Y are G-protein-coupled receptors stimulated by ade-
nine and uracil nucleotides, and P1 receptors are also G protein
coupled but are sensitive to adenosine (11, 45). The tissue distri-
bution and sensitivity to the ligands vary significantly within each
family (12), such that slightly different concentrations of ligand
can have different effects at a single cell type, and the same con-
centration of ligand can have contrasting effects on different cell
types.

While purinergic receptors have been best characterized in the
central nervous system, the receptors are expressed nearly ubiqui-
tously. The activity of purinergic receptors is also modulated by
ecto-enzymes such as nucleotidases and adenosine deaminase,
which regulate the concentration of extracellular nucleotides.
Thus, immunomodulatory adenosine is generated by regulatory T
cells (9, 22) and during inflammation-induced hypoxia (24) via
enzymatic processing of released nucleotides by CD39 (ecto-apyr-
ase, which processes ATP and ADP to AMP) and CD73 (ecto-5=-

nucleotidase, which converts AMP to adenosine). In fact, there is
accumulating evidence that purinergic signaling plays an essential
role in immune function (10). However, while the contribution of
purinergic signaling to the function of committed immune cells is
becoming well accepted, less is known about the direct effects of
extracellular ATP and other danger signals on infected host cells.
In this regard, it would be especially useful to understand the
effects of danger signals on the main cell types that are infected by
most pathogens, namely, mucosal epithelial cells. The expression
and tissue distribution of purinergic receptors has been described
for many kinds of epithelial cells (1, 2, 7, 19, 29, 30, 42, 54, 57, 62,
63, 66), but functional characterization of these receptors in the
context of infection of epithelial cells is lacking.

Chlamydiae are obligate intracellular bacteria that initially in-
fect mainly epithelial mucosa and are inherently sensitive to the
regulatory mechanisms and metabolism of the host cell (31, 64).
Different strains of Chlamydia trachomatis are responsible for in-
fections of genital and ocular tissue in humans (27, 52, 59), and
Chlamydia pneumoniae is a common cause of community-ac-
quired pneumonia in humans and is associated with an increased
risk for atherosclerosis (13). All Chlamydia species are thought to
initiate infection by entering into, surviving within, and multiply-
ing within mucosal epithelial cells by conserved mechanisms in-
volving a unique biphasic developmental cycle (3, 31, 44, 50, 64).
The extracellular form of Chlamydia, the elementary body (EB), is
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infectious and is considered to be metabolically inactive. The EBs
are internalized into host epithelial cells via small vacuoles which
resemble endosomes, the majority of which evade fusion with host
cell lysosomes. The EBs differentiate into metabolically active re-
ticulate bodies (RBs), which are not infectious. The RBs prolifer-
ate within the same membrane-bound vacuole and, after several
divisions, differentiate back into EBs. After 48 to 72 h, the EBs are
released from the infected cell and can begin a new cycle of infec-
tion.

We have previously demonstrated that P2X7 receptor ligation
in Chlamydia-infected macrophages with millimolar ATP con-
centrations leads to fusion of chlamydial vacuoles with lysosomes
and irreversible reduction in infectious activity (20) and that P2X7

ligation in infected epithelial cell lines also inhibits infection (21).
Inflammation and the intensity of infection of in vivo lower-gen-
ital-tract infections were also increased in P2X7-deficient mice,
suggesting a role for this receptor during the host response to
infection (21). More recently, we showed that prolonged exposure
to adenosine dramatically inhibited growth of C. trachomatis in
epithelial cells, which was mediated by the P1 purinergic receptor
A2b (47). We demonstrate here that stimulation with micromolar
concentrations of adenine nucleotides (ADP or ATP) induces sig-
nificant reversible inhibition of C. trachomatis development in
cervical epithelial cells through stimulation of the purinergic re-
ceptor P2X4.

MATERIALS AND METHODS
Cells, bacteria, and reagents. HeLa 229 cervical epithelial cells (American
Type Culture Collection, Manassas, VA) or HEK293 expressing mouse
P2X7 (28) or HEK293 cells transfected with TransIT-293 (Mirus) express-
ing human P2X4 (Invitrogen) were cultured in a humidified incubator at
37°C with 5% CO2 in Dulbecco modified Eagle medium (DMEM–F-12;
Invitrogen) supplemented with 10% heat-inactivated fetal calf serum. The
LGV/L2 strain of C. trachomatis was from Roger Rank (University of
Arkansas, Little Rock, AR). Adenosine, EHNA, AMP, ADP, ATP, UDP,
UTP, ATP�S, AMP-CPP (��-methylene ATP), apyrase, PPADS,
suramin, U73122, and ivermectin were from Sigma (St. Louis, MO).

Cell culture and infection. HeLa cells growing at 70% confluence in
tissue culture plates (Costar) were infected with the LGV/L2 serovar of C.
trachomatis as previously described (46). Unless otherwise noted, cells
were infected at a multiplicity of infection (MOI) of 1.0 and incubated at
37°C under 5% CO2 with treatments and medium changes at the indi-
cated times. The infectious activity was determined by titrating chlamyd-
iae obtained from infection on a fresh monolayer of HeLa cells and quan-
tifying inclusions, as previously described (46).

ATP measurement. ATP release was quantified using an ATP biolu-
minescent assay kit (Sigma) according to the manufacturer’s instructions
with a 10-fold dilution of ATP assay mix solution. Whole supernatant (1
ml) from cells grown in 12-well plates, and infected as indicated, were
diluted 3-fold and mixed in molecular biology-grade water, and the sam-
ple was analyzed within 30 s on a Sirius luminometer (Berthold Detection
Systems, Pforzhold, Germany). Standards and sample ATP concentra-
tions were determined by fit to a standard curve.

Microscopy. HeLa cells were grown on coverslips, and after the indi-
cated experimental conditions were fixed with ice-cold methanol for 10
min. Cells were stained with C. trachomatis genus antibodies from Argene
(North Massapequa, NY) and Hoechst (Sigma) and were observed on a
wide-field fluorescence microscope (Leica, Deerfield, IL). For intracellu-
lar Ca2� observation, the cells were loaded with Fluo-4 AM (Invitrogen)
to a final concentration of 5 �M with a 0.02% final concentration of
Pluronic (Invitrogen) for 1 h at 37°C before rinsing and the addition of
fresh phenol-red free Dulbecco modified Eagle medium with or without

U73122 (PLC inhibitor) for 10 min before observation on a wide-field
fluorescence microscope.

Quantitative PCR with SYBR green. Total RNA was extracted using
TRIzol reagent (Invitrogen) according to the manufacturer’s instructions.
The total RNA was quantified by measuring optical density with an ND-
1000 spectrophotometer (NanoDrop, Wilmington, DE). A total of 400 ng
of total RNA was reverse transcribed at 42°C using TaqMan reverse trans-
criptase (Applied Biosystems) and oligo(dT) according to the manufac-
turer’s recommendations.

For each transcript, a standard curve was constructed using the puri-
fied PCR product generated for each specific primer pair. Each PCR uti-
lized Brilliant SYBR Green master mix (Stratagene) and consisted of 25 �l
containing 1 �l of cDNA and a 100 nM final concentration of each primer.
A nontemplate negative control to check for primer dimerization was run
for each primer pair. The real-time qPCR was run on an MX3000p (Strat-
agene). The cycling conditions were 1 cycle of denaturation at 95°C for 10
min, followed by 40 cycles of amplification (95°C for 30 s, 55°C for 1 min,
and 72°C for 30 s), where the fluorescence was automatically measured
during PCR, and finally 1 cycle of product melting (95°C for 1 min, 55°C
for 30 s, and 95°C for 30 s). The baseline adjustment method of the
Mx3000 software was used to determine the threshold cycle (CT) in each
reaction. A melting curve was constructed for each primer pair to verify
the presence of one gene-specific peak and the absence of primer
dimerization. All samples were amplified in triplicates, and the mean was
used for further analysis. The primer sequences for C. trachomatis 16S
rRNA the primers were 5=-CCCGAGTCGGCATCTAATAC-3= for the
forward primer and 5=-CTACGCATTTCACCGCTACA-3= for the reverse
primer.

Statistical analysis. The statistical analysis was performed using Instat
software (GraphPad Software, Inc., La Jolla, CA) utilizing the Student t
test and was considered significant at P � 0.05.

RESULTS
ATP is released from infected epithelial cells. ATP is released
from cells in a variety of circumstances (5, 23, 37, 39), but the
possibility that the extracellular ATP concentration may increase
during Chlamydia infection in vitro has not been previously inves-
tigated. We thus used a luciferase/luciferin bioluminescence de-
tection assay to determine whether epithelial cells release ATP
during infection with C. trachomatis. Cells infected with C. tracho-
matis at an MOI of 1.0 released significant amounts of ATP by 12
and 24 h postinfection (hpi), whereas higher amounts were found
at 36 hpi (Fig. 1) when there were no measurable levels of host cell
apoptosis (trypan blue exclusion assay [data not shown]). Much
higher levels of ATP were released at 48 hpi, at which time fewer
than 5% of the cells were dying (not shown). The volumes ana-
lyzed were from whole supernatant (1 ml) over 350,000 infected
HeLa cells, showing that nanomolar concentrations of extracellu-
lar ATP were produced. However, concentrations at the cell sur-
face near release would be expected to be considerably higher,
especially in the denser cellular matrix found in tissues.

Extracellular nucleotides inhibit C. trachomatis develop-
ment. We next evaluated the effect of various agonists of puriner-
gic receptors on the development of Chlamydia within infected
host cells. Single applications of the P1 receptor agonist adenosine
did not influence chlamydial 16S rRNA accumulation, and nei-
ther did AMP for which a receptor has not been identified, al-
though cotreatment with an adenosine deaminase inhibitor,
erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA), allowed aden-
osine to modify the growth of Chlamydia, as we reported previ-
ously (47). Similarly, uracil nucleotides, which stimulate P2Y re-
ceptors on epithelial cells (P2Y2, P2Y4, and P2Y6) (11, 63) did not
modulate chlamydial growth. However, exposure to extracellular
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ADP, or ATP, dramatically influenced the ability of Chlamydia to
grow in epithelial cells (Fig. 2A). Application of the less-hydroly-
sable form of ATP (ATP�S) had a similar effect, and the adminis-
tration of apyrase (2 U/ml) largely abrogated the effect of extra-
cellular ATP (Fig. 2B), indicating that the adenine nucleotides
were responsible for inhibition of chlamydial infection, and not
products of their extracellular metabolism. Adding lower quanti-
ties of extracellular ATP repeatedly to mimic prolonged exposure
(2 to 20 �M, 30 min apart, six additions) also induced significant
inhibition of intracellular chlamydial growth at concentrations as
low as 5 �M (Fig. 2C).

The purinergic receptor P2X4 mediates the response to mi-
cromolar ATP. We previously reported that millimolar concen-
trations of extracellular ATP inhibit chlamydial infection in mac-
rophages and epithelial cells through ligation of P2X7 (20, 21). We
therefore used HEK cells, which do not normally express P2X
receptors, and P2X7-overexpressing HEK cells to show that liga-
tion of P2X7 by millimolar concentrations of ATP during infec-
tion leads to significant reductions in the reinfectious yield (Fig.
3A), a finding consistent with our previous results. However, ad-
ministration of low concentrations of ATP to these cells did not
influence the course of infection (Fig. 3B), suggesting that the
P2X7 receptor was not involved in the response to micromolar
ATP in cervical epithelial cells. Conversely, when P2X4-overex-
pressing HEK cells were treated with low concentrations of ATP,
we observed an inhibition of infection (Fig. 3B), implying that
P2X4 can mediate effects of low ATP on chlamydial infection. The

inhibition of infection disappeared at higher concentrations of
ATP (Fig. 3B), for reasons which were not investigated, although
functional saturation at high ATP concentrations has been previ-
ously observed for P2X7 (18).

To investigate the possibility that an ADP- or ATP-sensitive
P2Y receptor might also be involved, we evaluated the effect of
phospholipase C (PLC) inhibition on chlamydial infection in cells
treated with ADP or ATP. P2Y receptors mediate intracellular
calcium release primarily via activation of PLC (16), but epithelial
cells pretreated with the PLC inhibitor U73122 (10 �M) were fully
responsive to extracellular ADP or ATP (Fig. 4A). To confirm that
PLC activation by P2Y receptors was sensitive to U73122 under
these conditions, epithelial cells were loaded with the nonratio-
metric Ca2� sensitive dye Fluo-4 AM, and calcium responses to
nucleotides were observed on a fluorescence microscope. A large
release of intracellular Ca2� occurred after stimulation with UTP
(100 �M), which was completely inhibited in cells pretreated with
U73122 (not shown).

Pyridoxal-phosphate-6-azophenyl-2=,4=-disulfonicacid(PPADS)
and suramin antagonize most members of the P2X receptor fam-
ily efficiently, although their activity at the P2X4 receptor is less
clear (45). Neither PPADS (Fig. 4B) nor suramin (data not shown)
pretreatment of cervical epithelial cells (100 �M each) inhibited
the effect of ATP or ADP on infection. In fact, PPADS seemed to
slightly potentiate the response, which has been reported previ-
ously for the mouse P2X4 receptor (60), but not for the human
P2X4 receptor. The most distinguishing pharmacological ap-
proach to investigating P2X4 receptors is potentiation by the mac-
rocyclic lactone ivermectin (45). A single applications of 20 �M
ATP to infected cells did not impact chlamydial development, but
pretreatment with 5 �M ivermectin rendered the cells sensitive to
20 �M ATP (Fig. 4C), inducing a significant reduction in chla-
mydial growth. These results further strengthen the interpretation
that low concentrations of ATP inhibit chlamydial growth in cer-
vical epithelial cells through ligation of P2X4.

Chlamydiae remain viable after stimulation with extracellu-
lar nucleotides, persisting in cells until nucleotide stimulation is
removed. Immunofluorescence microscopy confirmed that chla-
mydial growth is severely retarded by exposure to extracellular
ADP or ATP (Fig. 5). Single application of these nucleotides led to
nearly complete suppression of chlamydial inclusion growth by 24
hpi, and no inclusions were apparent through 24 h in cells exposed
to repeated applications. Chlamydiae were able to return to nearly
full growth by 48 hpi after single applications of ADP or ATP, but
not in cells that had undergone repeated exposure to nucleotides,
unless the cell culture medium was changed at 24 hpi. In addition,
in cells treated repeatedly with nucleotides, and for which no in-
clusions were apparent at 48 hpi, a medium change at 48 hpi
allowed the growth of chlamydiae by 72 hpi (data not shown).
Repeated stimulation with adenosine also diminished growth sig-
nificantly through 24 h, but not to the same extent as ADP or ATP.
These data suggest that C. trachomatis remains viable within host
cells for extended times following extracellular ADP or ATP stim-
ulation and are able to reengage their developmental program
when growth conditions are no longer prohibitive. Reversible in-
hibition of chlamydial infection through P2X4 ligation thus re-
sembles responses previously described for persistence of chla-
mydial infection (4, 15, 43, 53).

FIG 1 ATP release from Chlamydia-infected cells. Supernatants from HeLa
cells infected with Chlamydia at an MOI of 1.0 at indicated time points were
evaluated with a bioluminescent ATP detection assay, and the values represent
the ATP concentration in 1 ml of supernatant over approximately 350,000
cells. Infected cells release ATP at significantly elevated levels throughout the
course of infection. The means � the standard errors of the mean (SEM) of
three independent experiments are shown. ***, P � 0.001 for infected cells
compared to uninfected cells.

Pettengill et al.
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DISCUSSION

Chlamydia species infect primarily epithelial cells, eliciting tissue-
damaging inflammatory responses from human hosts (6). An
adaptive immune response is critical for ultimately controlling
infection, but innate immune cells and the response of the infected
epithelium play critical roles in directing the host response (48, 49,
58). C. trachomatis-infected epithelial cells can produce proin-
flammatory cytokines such as interleukin-6 (IL-6), IL-8, tumor
necrosis factor alpha, and granulocyte-macrophage colony-stim-
ulating factor (33, 48), and here we show that C. trachomatis-
infected epithelial cells release significant amounts of extracellular
ATP, which is also a proinflammatory mediator (10, 26, 41). Fur-

thermore, we found that increasing the concentration of extracel-
lular ATP can negatively modulate the growth kinetics of Chla-
mydia during infection of epithelial cells. Thus, epithelial cells
are active players in limiting secondary cycles of infection while
an adaptive response is established by secreting both cytokines
and ATP.

Extracellular ATP has been thoroughly characterized as a sig-
naling molecule in the central nervous system (11) and is begin-
ning to attract increasing attention due to its contribution to sig-
naling in committed immune cells (10, 26, 61). However, few
studies have investigated a potential role of ATP in modulating
directly the response of the preferred target of many important

FIG 2 Extracellular ADP and ATP inhibit chlamydial growth. (A) HeLa cells were infected with Chlamydia, followed by treatment with indicated purinergic
receptor agonists (100 �M each) at 1 hpi. (B) The cells were treated or not with 2.5 U of apyrase/ml at 1 hpi, followed by ATP (100 �M) or not 15 min later. (C)
The cells were treated with the indicated ATP concentrations starting at 1 hpi every half-hour through six additions. The total RNA was harvested at 24 hpi in each
experiment for quantification of chlamydial 16S rRNA. The values shown are relative to control values for each experiment and are means � the SEM of three
independent experiments (n � 3; *, P � 0.05; **, P � 0.01; ***, P � 0.001).
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pathogens, mucosal epithelial cells. P2X7 stimulation in Chlamyd-
ia-infected macrophages leads to inhibition of chlamydial growth,
in part by inducing fusion of chlamydial inclusions with lyso-
somes (20). Treatment of C. trachomatis-infected epithelial cells
extracellular ATP and P2X7 agonists likewise leads to the inhibi-
tion of intracellular growth (21). Of interest, P2X7 has also been
reported to mediate inhibition of growth of another critically im-
portant intracellular bacterium, Mycobacterium tuberculosis, in
macrophages (34–36). However, other evidence already suggested
the involvement of other purinergic receptors besides P2X7. The
most potent P2X7 agonist, 2=(3=)-O-(4-benzoylbenzoyl)adenos-
ine-5=-triphosphate (BzATP), was less effective than ATP in in-
hibiting mycobacterial infection (34), and the antimicrobial ef-
fects of ATP were amplified by addition of extracellular Zn2� (36),
which has been subsequently shown to potentiate stimulation of
P2X4 receptors and partially block signaling through P2X7 (45).
Given the expression of P2X4 and likely other ATP-sensitive re-
ceptors in macrophages (17), it would not be surprising to dis-
cover that cooperation between various purinergic receptors may
have contributed to the final effect of ATP in cervical epithelial
cells.

Previous studies investigating the effects of extracellular ATP
on pathogens have utilized very high concentrations of ATP, while
micromolar extracellular ATP could be a more consistent feature
of infection-induced inflammation. We show here that micromo-
lar concentrations of ATP do reversibly inhibit C. trachomatis
growth in cervical epithelial cells. This effect was not sensitive to
receptor antagonization by PPADS or suramin or the inhibition of
PLC and was potentiated by ivermectin, which suggests a role for

the P2X4 receptor. This interpretation was strengthened by the
observation that low concentrations of ATP inhibit chlamydial
infection in HEK overexpressing P2X4, but not in HEK cells over-
expressing P2X7. Given the prominent expression profile of P2X4

in mucosal epithelial cells and that elevated extracellular ATP is a
key feature of many pathologies, it would be of interest to deter-
mine whether P2X4 modulates the host response to infection by
other intracellular pathogens. Although ADP is not commonly
associated with stimulation of P2X receptors, it has been shown to
have activity at P2X4 receptors (14, 32). Since ADP induces revers-
ible morphological changes in Chlamydia-infected cells that are
similar to those observed with ATP (Fig. 5), it is likely that ADP-
mediated inhibition of infection could also take place via P2X4.

RNA interference (RNAi) of P2X4 receptor expression has
been previously shown to mediate inhibition of P2X4-character-

FIG 3 Stimulation of P2X7 mediates chlamydial inhibition at high, but not
low, ATP concentrations, but P2X4 ligation inhibits infection at low ATP con-
centrations. HEK-293 cells overexpressing, or not expressing, P2X7 or P2X4

were infected with C. trachomatis serovar L2 at an MOI of 1, followed by
treatment with high (A) or low (B) concentrations of ATP at 24 hpi. The
medium was changed at 28 hpi, and the samples were harvested at 30 hpi for
quantification of reinfectious yield (IFU/ml) on new cell monolayers. The
histogram values show means � the SEM from three independent experiments
(n � 3; **, P � 0.01).

FIG 4 P2X4-like profile for ATP-mediated chlamydial inhibition. (A) HeLa
cells were infected with Chlamydia, followed by treatment with the PLC inhib-
itor U73122 (10 �M) at 1 hpi, followed 10 min later by treatment with 100 �M
ATP or ADP. (B) HeLa cells were infected with Chlamydia, followed by treat-
ment with the P2X receptor antagonist PPADS (100 �M) at 1 hpi, followed 10
min later by treatment with 100 �M ATP. (C) HeLa cells were infected with
Chlamydia, followed by treatment with ivermectin (5 �M) at 1 hpi, followed
10 min later by treatment with 20 �M ATP. Total RNA was harvested at 24 hpi
in each experiment for quantification of chlamydial 16S rRNA. The values
shown are relative to control values for each experiment and are means � the
SEM of at least three independent experiments (n � 3 for panels A and B and
n � 5 for panel C; **, P � 0.01).
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istic sustained phases of Ca2� influx in response to low extracel-
lular ATP stimulus (�4 �M) but not in response to higher levels
of extracellular ATP (�10 �M) (65), which could indicate that
reduced populations of these receptors would still be functional at
the moderate extracellular ATP concentrations that were used in
the present study (5 to 100 �M). In fact, partial RNAi depletion of
P2X4 in cervical epithelial cells did not show an effect on the ability
of low concentrations of ATP to inhibit chlamydial infection (not
shown). P2X7 depletion by RNAi was not attempted in the cervical
epithelial cells due to the expression of a truncated, partially inac-
tive form of P2X7 in HeLa cells (25).

Finally, in the context of chlamydial infection, it is worthwhile
noting the tissue distribution of P2X4: vaginal epithelia had the
greatest abundance of P2X4 among rat tissues (8), and P2X4 was
the most abundantly expressed purinergic receptor in a cancer cell
line of human cervical epithelial cells (63).
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