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Abstract: A one-dimensional link-node model was used to simulate water quality conditions in the tidally-
influenced, deep water ship channel (DWSC) of the San Joaquin River located in Central California. The 
DWSC has been plagued with low dissolved oxygen (DO) conditions for decades and is currently a focus 
of restoration efforts. The model was calibrated using a six-year flow and water quality data set. Model 
simulations were run by removing the mass loads of each of the following major sources of oxygen 
depletion to determine the effects: elimination of the deepened ship channel (i.e., restore to its pre-
existing depth), elimination of import of oxygen-demanding substances (ODS) from the San Joaquin River 
watershed, elimination of import of ODS from the urban tributaries, and elimination of discharge of ODS 
from the City of Stockton regional wastewater control facility. The model results suggest that elimination 
of the deepened ship channel resulted in the best projected improvement relative to the modelled 
baseline with a predicted 55% improvement, while reducing ODS from the watershed would likely cause a 
44% improvement. These results demonstrate that there are multiple contributing factors causing low DO 
in the DWSC and that removal or elimination of any single variable will not result in a complete resolution 
of low DO events. 
 
Keywords: Water quality; TMDL; dissolved oxygen; eutrophication; waste load allocation   
 
 
1. INTRODUCTION 
 
1.1 Project Description 
 
Reoccurring low dissolved oxygen (DO) in the lower reaches of the San Joaquin River (SJR) of Central 
California has prompted a Total Maximum Daily Load (TMDL) regulatory effort for constituents 
contributing to these low DO conditions (CVRWQCB, 2005). As a result of anthropological inputs and 
modifications to the SJR system, native fisheries have drastically declined and water quality has been 
impaired beyond the river’s assimilative capacity. The upstream portion of the SJR is highly regulated by 
dams and diversions that convey water away from the river for agricultural and domestic uses. The 
watershed is dominated by irrigated agriculture although there are also industries (mostly related to 
agriculture) and some population centers. The lower SJR is a tidally-influenced estuary that has been 
channelized and deepened along a section referred to as the Deep Water Ship Channel (DWSC) that 
permits navigation of large vessels into Stockton, CA. Although water quality problems persist throughout 
the SJR, the DWSC is the location where the occurrence of low DO is most severe. To restore ecosystem 
services in the SJR and in the downstream Sacramento-San Joaquin River Delta and San Francisco Bay, 
the State of California has initiated a major rehabilitation effort and adopted an adaptive management 
approach to carrying out this effort (CVRWQCB, 2005). Currently, the regulatory standard for DO (5 mg/L 
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except during September, October, and November when the standard is increased to 6 mg/L) is 
frequently exceeded during the warm summer months. 
 
Low DO conditions in the DWSC are the result of physical, chemical, and biological processes that add 
and subtract DO in the water column. DO is added to the water column by photosynthesis, import from 
adjacent waters, and reaeration. DO is removed from the water column by degassing and reactions with 
reduced organic and inorganic compounds, collectively referred to as oxygen demanding substances 
(ODS). Types of ODS found in the SJR system include carbon associated with phytoplankton and 
inorganic ammonia-nitrogen associated with wastewater discharges and non-point sources. 
Phytoplankton grow abundantly in the SJR because it’s a eutrophic river, rich in nutrients, and because 
it’s warm, shallow, and exposed to abundant sunlight. In addition, channel geometry influences oxygen 
balance through mechanisms including the depth to which light penetrates (photic zone) and the surface 
to volume ratio, which is important for reaeration and degassing processes. Hydraulics also influence 
processes such as mixing and residence time, which affect biological processes and the balance between 
oxygen depletion, import, and reaeration. Temperature inversely affects DO saturation capacity and 
directly influences the rate of biological processes. 
 
To promote rehabilitation efforts and resolve low DO conditions in the DWSC, the sources of nutrients 
and ODS in the SJR as well as other factors contributing to low DO must be determined. Due to the 
complexity of the dynamic mechanisms adding and removing DO from the water column, the use of 
computer modelling has become an essential component of management and regulatory efforts in the 
Sacramento-San Joaquin River Delta. Previously, a watershed model was developed and adapted to 
better understand sources of pollution and in-water processes in the upstream portion of the SJR. In the 
SJR estuary, one-dimensional models are considered most appropriate for predicting low DO conditions 
in the DWSC (Jones and Stokes, 2006). Stratification in the DWSC is unstable and the DWSC mixes 
vertically on a daily basis, even during the summer (Lehman et al., 2004). To better understand the 
factors contributing to low DO in the DWSC, a one-dimensional Link-Node model was adapted and 
applied to the SJR estuary (Chen and Tsai, 2002).  
 
Previous studies have determined that DO impairment in the DWSC is caused by three main factors: low 
flow, modified channel geometry and ODS in the DWSC (CVRWQCB, 2005). To our knowledge, this 
TMDL is unique in the nation in that it assigns responsibility for control of DO below assimilative capacity 
jointly between those parties collectively responsible for the DWSC geometry, reduced flow, and 
contribution of ODS. Historically, the City of Stockton Regional Wastewater Control Facility (RWCF) has 
been identified as a major contributor of ODS that leads to low DO conditions. Other sources of ODS 
include non-point source urban runoff and discharges from irrigated agricultural land that is abundantly 
present in the SJR watershed. Diversions and system exports contribute to low flow rates that also 
exacerbate low DO conditions. 
 
1.2 Site Description 
 
The SJR is located in Central California and originates in the Sierra Nevada Mountains, descending west 
to the San Joaquin Valley floor, and draining north to the Sacramento-San Joaquin Delta (Figure 1). 
Downstream of Vernalis, the SJR is tidally influenced. The DWSC is the portion of the SJR between the 
City of Stockton and the confluence with the Sacramento River that has been dredged to allow for the 
navigation of ocean-going vessels to the Port of Stockton. Effluent from the City of Stockton RWCF is 
discharged into the SJR just upstream of the DWSC, while urban runoff from the city is conveyed directly 
into the channel. 
 
1.3 Project Objectives 
 
The objective here was to use the SJR-Link-Node model to determine the relative contributions of DO 
deficit in the DWSC for the following four sources and conditions: 1) dredging of the DWSC to deepen the 
channel beyond its natural, pre-existing depth, 2) ODS from the upstream SJR, 3) ODS from the City of 
Stockton RWCF, and 4) ODS from the urban tributaries from the City of Stockton directly discharging into 
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the DWSC. The work here is supportive of TMDL efforts and is intended to engage stakeholders by 
presenting practical modelling results that are beneficial for environmental decision-making. 
 
 

 
Figure 1. San Joaquin River watershed, located in Central California. 

 
 
2 METHODS 
 
2.1 Model Description  
 
The SJR-Link-Node is a one-dimensional model that simulates flow and water quality in the tidally-
influenced SJR estuary between Old River and Disappointment Slough (Figure 2). In the model, the river 
is divided into segments (nodes) that have bi-directional connections (links), simulating the tidally-
influenced back and forth flow and mass transport. An Euler grid system is used. Numerical dispersion is 
calculated using the computational fluid dynamics approach of Roache (1972) with the UPWIND scheme. 
An anti-numerical dispersion term is used to prevent pollutants from advancing too fast from one node to 
another, which can be problematic in link-node models. The model now allows for the use of different 
reaction rates at different nodes (Systech Water Resources Inc., 2008). 
 
The model was originally developed by Chen and Orlob (1975) and was integrated into the U.S. EPA 
model WASP5 DYNHYD5. The Link-Node model was subsequently adapted and applied to the SJR 
estuary (referred to here as SJR-Link-Node) for the City of Stockton (Schanz and Chen, 1993), and later 
used as part of the Interim South Delta Program (Chen and Tsai, 1997). The model was again used and 
calibrated as part of the CALFED program (Chen and Tsai, 2002). Next, SJR-Link-Node was used as part 
of the TMDL program (Systech Water Resources Inc., 2008), and was integrated with the SJR-WARMF-
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2008 watershed model complete with a graphical user interface (Herr and Chen, 2006). As part of the 
TMDL project, WARMF model output and observed data were used to create flow and water quality input 
files to represent inflows to the Link-Node domain from tributaries entering the SJR in the vicinity of 
Stockton (Figure 2). 
 

 
Figure 2. SJR-Link-Node model domain, located in the lower San Joaquin River. The monitoring station 
located near Rough & Ready Island (RRI) is located at Node 40. The Stockton RWCF outfall is located 

between Nodes 25 and 26. 
 
 
The sources of DO in SJR-Link-Node are algal photosynthesis, point sources and tributary inflows, and 
reaeration, while sinks consist of BOD decay, nitrification, sediment oxygen demand, algal respiration, 
and decay of detritus (represented by volatile suspended solids, or VSS). The model is used to simulate 
the hydrologic parameters of flow, water depth, and velocity as well as the water quality parameters of 
DO, temperature, carbonaceous biochemical oxygen demand (CBOD), VSS, total suspended solids 
(TSS), ammonia, nitrate, phosphate, algae (as Chlorophyll-a), and pheophytin (dead algae). Light 
intensity is calculated using Beer’s Law. Light limitation in the water column is calculated using Monod 
kinetics. Link-Node has been adapted to simulate real time tides that follow natural spring and neap tide 
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cycles. Zooplankton modelling capability has also been added, although further refinement (data) is 
needed to fully develop this capability. Reaeration is calculated using the empirical approach of O’Connor 
and Dobbins with an added term to account for the effects of wind. Five types of settlable particles are 
modelled in Link-Node: chlorophyll-a, pheophytin, detritus (VSS), inorganic solids (fine silt and clay), and 
sand. The sedimentation, resuspension, and sediment oxygen demand (SOD) associated with detritus is 
also modelled. As a result of the 1-D nature of the model, light intensity is averaged over the entire depth 
of the water column, which results in essentially no available light in deep areas such as the DWSC. To 
account for algae growth and photosynthesis, phytoplankton growth in the DWSC is simulated in the top 
two feet of the water column. Model output is hourly. 
2.2 Model Inputs 
 
A variety of inputs are needed to run SJR-Link-Node. Here, tidal boundary input files were created using 
data from the California Data Exchange Center (CDEC). Water surface elevation data was obtained for 
the stations of Turner Cut near Holt, Rough & Ready Island (RRI), and Venice Island. Tidal exchange was 
assumed to be 3% for every hour outside of the tidal boundary and approximately 10% over a tidal cycle. 
Flow data was also collected from CDEC, including flow data for the Garwood Bridge station (maintained 
by USGS) that was used for model calibration. Hourly meteorological data (temperature, dew point 
temperature, cloud cover, air pressure, wind speed) originated from a Stockton weather station, as 
reported by the California Irrigation Management Information System (CIMIS). In addition to flow data, 
continuous water quality monitoring data was obtained from CDEC for the Vernalis, Mossdale, and RRI 
monitoring stations. River channel dimensions were calculated using a combination of satellite imagery 
available in Google Earth and a GIS-based digital elevation model (DEM). The DEM was created by 
USGS, and has a horizontal resolution of 10 m and a vertical resolution of 0.1 feet. Flow and water quality 
data, consisting of compliance reports for the City of Stockton RWCF effluent, was collected from the 
facility managers. Grab sample data for water quality parameters originated from the TMDL projects. 
Model coefficients were used to simulate various processes affecting DO in the DWSC (Table 1). 
 
 

Table 1. Link-Node model coefficients. 
 

Model Coefficient Value Units 
BOD5 decay coefficient 0.30 per day 
Ultimate BOD/BOD5 2.54 mg/mg 
Ammonia decay coefficient 0.05 per day 
DO/ammonia ratio 4.57 mg/mg 
Detritus decay coefficient 0.01 per day 
DO/detritus ratio 1.6 mg/mg 
N/detritus ratio 0.08 mg/mg 
P/detritus ratio 0.012 mg/mg 
Algae maximum growth rate 1.80 per day 
Algae half-saturation constant of light 4.3 cal/m2/sec 
Algae half-saturation constant of P 0.003 mg/l 
Algae half-saturation constant of N 0.1 mg/l 
Algae respiration rate 0.25 per day 
Algae settling rate 0.15 m/day 
DO/algae ratio 1.6 mg/mg 
Chlorophyll-a to pheophytin rate 0.13 per day 
Pheophytin decay coefficient 0.1 per day 
Aeration adjustment factor 1.8 unitless 
Theta Values for Temperature Correction   
Nitrification   1.08 unitless 
BOD decay   1.04 unitless 
SOD decay   1.04 unitless 
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2.3 Model Calibration 
 
Here, SJR-Link-Node was calibrated for the time period 1/1/2005 to 12/31/2010. Calibration was 
performed to minimize mean and absolute error, and to maximize the r-squared statistic for water surface 
elevation and DO, as measured at the RRI monitoring station. To improve the model fit for the observed 
data, a series of simulations were run to evaluate the sensitivity of the model to each of the parameters 
affecting DO concentration (temperature, ammonia, CBOD, and phytoplankton). The sensitivity analysis 
revealed that the reaeration and BOD decay rates had the greatest effects on simulated DO 
concentrations. Therefore, these parameters were used to fit the simulated DO concentrations with 
observed values at RRI. The mean error for DO is shown in Eqn. 1, where xi is the DO concentration 
(mg/L) predicted by the model, ci is the observed DO concentration (mg/L), and n is the number of paired 
data points. 
 
 

mean DO error (mg/L) =
1
𝑛
�(𝑥𝑖 − 𝑐𝑖)
𝑛

𝑖=1

  (1) 

 
 
3 RESULTS AND DISCUSSION 
 
3.1 Model Calibration 
 
The model calibration results indicate that the model errors (residuals) of the model, as calculated using 
Eqn. 1 without calculating the mean, follow a fairly normal distribution although there are some extreme 
values (Figure 3). The annual variability in model errors is not markedly different although model errors 
from the year 2007 demonstrated the most variability. The year 2007 had much less precipitation than the 
two previous years, which may have been influential in the outcome. The balanced model residuals 
indicate that the model is not significantly over-predicting or under-predicting DO except in the cases of 
2007 where the model is over-predicting DO and in 2009 where the model is under-predicting DO. Over 
the six year observation period, the mean error was -0.110 mg/L. Although the model was very effective 
in predicting mean DO concentrations, the model was less effective in predicting DO violations. During 
the observation period, 13% of days had DO violations while the model only predicted violations on 5% of 
days. 
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Figure 3. Error in SJR-Link-Node model predictions of dissolved oxygen (DO), as compared with 

observed data collected from a stationary continuous monitoring device (sonde) at Rough & Ready Island 
(RRI). The red line represents the overall mean error, while the blue line represents the annual mean 

error. 
 
 

3.2 Model Simulations for Dissolved Oxygen 
 
Following model calibration, simulations were run to predict the effect of altered management and control 
strategies. Although the results of the four simulations did not yield appreciably different average DO 
concentrations at RRI (no greater than 0.5 mg/L), the occurrence of predicted DO standard violations 
were reduced (Table 2). The model predictions suggest that the “No DWSC” scenario had the largest 
impact on DO, and that this scenario resulted in 55% fewer violations when compared with the model 
baseline.  The improvements for the “No SJR”, “No RWCF”, and “No Tribs” scenarios were 44%, 20%, 
and 10% relative to the model baseline.  
 
 

Table 2. Observations and model results for dissolved oxygen (DO) concentrations and days with 
violations at Rough & Ready Island (RRI). Mean ± standard deviation is reported for DO. 

 
Basis of result DO (mg/L) Days with violations (%) 

Observations at RRI 7.63 ± 1.37 13.0 
Model baseline 7.53 ± 1.13 5.0 
No DWSC scenario 8.03 ± 1.15 2.3 
No SJR scenario 7.63 ± 1.24 2.8 
No RWCF scenario 7.63 ± 1.12 4.0 
No urban tributaries scenario 7.61 ± 1.13 4.5 

 
 
The model results indicate that all scenarios resulted in some improvement in DO concentrations (Figure 
4). While the “No DWSC” and “No SJR” scenarios resulted in the most improvement in DO concentration, 
the most significant improvements for the two scenarios did not always occur simultaneously. For 
example, the “No SJR” scenario was most beneficial early in 2008 while the “No DWSC” was more 
influential in DO concentrations in the latter part of 2008. Mass loads from the SJR are significant in the 
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winter when flows are higher and the transport of materials down the SJR is more significant. In the 
summer river flows are reduced, which suggests that a shallow estuary would be beneficial since 
residence times would be reduced and algal decay would be reduced by increased cycling of nutrients.  
 
 

 
Figure 4. Predicted improvements in dissolved oxygen (DO) using the SJR-Link-Node model. 

Improvements are shown relative to a baseline (shown as the dashed line) that replicates observed 
conditions, while the four scenarios represent management alternatives. 

 
 
4. CONCLUSIONS 
 
The one-dimensional SJR-Link-Node model was successfully applied to the SJR Estuary to predict DO 
concentrations and examine the effects of altered management and control approaches. Characterizing 
such a complex river/estuary system as this is difficult due to the expansive nature of this system as well 
as the variability in flows and loadings that are more strongly connected to agricultural activities and 
reservoir releases than to natural hydrology. However, the results of the simulations suggest that the 
management alternatives considered would result in decreased DO violations and that alteration of the 
deepened ship channel had the largest impact, followed by the reduction of ODS from the upstream SJR. 
The urban tributaries and wastewater discharge had a less dramatic effect on DWSC DO concentrations. 
The results here demonstrate the effective use of modelling to assist in policy and management decisions 
to support TMDL and restoration efforts that engage stakeholders in decision-making processes.  
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