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An iron detection system 
determines bacterial swarming 
initiation and biofilm formation
Chuan-Sheng Lin1,2,3,4,*, Yu-Huan Tsai1,*, Chih-Jung Chang1,4, Shun-Fu Tseng3, Tsung-Ru Wu1, 
Chia-Chen Lu5, Ting-Shu Wu6, Jang-Jih Lu7, Jim-Tong Horng2, Jan Martel4, David M. Ojcius4,8, 
Hsin-Chih Lai1,3,4,7,9,10 & John D. Young4,11,12

Iron availability affects swarming and biofilm formation in various bacterial species. However, how 
bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia 
marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery 
comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-
dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron 
(Fe3+) availability to determine swarming initiation and biofilm formation. We demonstrate that 
the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe3+) and 
transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose 
production requires the pvc cluster. Addition of Fe3+, or loss of ICDH-Coumarin due to pvc deletion 
results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased 
biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe3+ to switch off RssAB 
signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular 
system that senses iron levels to regulate bacterial surface lifestyle.

Iron is essential for many cellular processes1. While low iron bioavailability is a limiting factor for cell survival in 
hostile environments, excess iron within the cell is toxic due in part to the formation of hydroxyl radicals through 
Fenton reactions2. Iron also serves as a stress signal that regulates microbial physiology, such as susceptibility to 
antibiotics3. Competition between the host and pathogens for limited iron resources may determine infections 
outcome4. Many homeostatic systems thus tightly control intracellular iron concentration in bacteria in order to 
allow adaptation to ever-changing environments5–7.

Swarming and biofilm formation are two typical multicellular behaviors of bacteria living on a surface8. 
Bacteria within biofilms embedded in an extracellular matrix undergo cellular differentiation and may acquire 
resistance to environmental stress and host immune responses9,10. On the other hand, swarming, which is 
observed in various bacterial species, represents a rapid, cell density-dependent, flagellum-driven movement of 
bacteria on a surface, and is closely associated with antibiotic resistance and production of virulence factors11–15. 
Swarming is characterized by a non-motile lag phase and an active migration phase associated with metabolic 
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and morphological changes11,16,17. Several studies have identified regulatory systems that accelerate swarming 
migration velocity by increasing flagella and biosurfactant production18–21. However, the cellular mechanism 
underlying initiation of swarming and biofilm formation remains incompletely understood.

Swarming initiation is associated with changes in the expression of genes involved in the metabolism, acquisi-
tion and transport of iron in various bacterial species14,22,23. Iron limitation induces cell differentiation in swarm-
ing24, and disruption of the iron acquisition system affects swarming25. Additionally, iron chelation reduces 
biofilm formation, whereas iron overloading promotes biofilm formation26–28. Further identification of the sensor 
in response to environmental iron and downstream signaling may help us to understand the transition between 
swarming and biofilm formation.

Two-component systems (TCSs), typically composed of histidine sensor kinases and cognate response regu-
lators, are among the most sophisticated signaling systems used by bacteria to sense and react to environmental 
stimuli. Control of phosphotransfer from membrane-bound histidine sensor kinases to response regulator in TCSs 
offers bacteria the ability to adapt to a wide range of environmental conditions29–31. We previously identified a TCS, 
called RssA-RssB (RssAB), whose activation is involved in coordinating the development of surface multicellu-
larity as well as virulence in Serratia marcescens32–36. Here we show that RssA directly senses ferric iron (Fe3+) via 
its periplasmic region, and that this interaction leads to RssB phosphorylation. The Fe3+ chelator 2-isocyano-6,7- 
dihydroxycoumarin (ICDH-Coumarin), whose biosynthesis is under transcriptional control of RssAB signaling, 
is shown to fine-tune RssAB-modulated swarming initiation and biofilm formation by controlling extracellular 
Fe3+ availability. Our results show that extracellular iron sensing by a TCS regulates multicellular behaviors in 
bacteria.

Results
Fe3+ regulates swarming initiation and biofilm formation. To examine whether iron regulates mul-
ticellular behavior, we used the wild-type (WT) S. marcescens CH-1 strain, which exhibits canonical swarming 
consisting of a non-motile lag phase and a motile migration phase35 on Luria-Bertani (LB) swarming plates. 
We observed that ferric iron (Fe3+) availability determines the timing of swarming initiation in the WT strain 
(Fig. 1a,b), without affecting swarming expansion rate (Supplementary Fig. 1). Fe3+ depletion by the Fe3+ chela-
tor deferoxamine mesylate (DFO) reduced lag phase duration and induced early swarming initiation (Fig. 1a,b). 
On the other hand, Fe3+ supplementation (100 μ M) prolonged the lag phase and delayed swarming initiation, 
which was restored by co-administration of Fe3+ and DFO (Fig. 1a,b). Of note, when growing on iron-limiting, 
defined minimal medium (DMM) swarming plates, no swarming lag phase was observed, while addition of Fe3+ 
dose-dependently extended the lag phase to 2 hrs in WT bacteria (Fig. 1c). These results suggest that Fe3+ may 
control swarming initiation.

Addition of divalent cations such as Mg2+, Ca2+, Zn2+ and Co2+ produced no significant impact on swarming 
in S. marcescens (Supplementary Fig. 2a). Similarly to the effects of Fe3+, Fe2+ inhibited swarming and restored 
swarming induced by the metal-ion-chelator EDTA (Supplementary Fig. 2a). These effects were abrogated by the 
Fe2+ chelator 2,2′ -dipyridyl (2,2′ -DP) and the Fe3+ chelator DFO, while the effects of Fe3+ were abolished only by 
DFO (Supplementary Fig. 2b). Furthermore, Fe3+ and Fe2+-mediated repression of swarming was eliminated by 
addition of the reducing reagent sodium ascorbate37 (Supplementary Fig. 2c; ASC), suggesting that Fe3+ rather 
than Fe2+ is the main factor that delays swarming initiation.

The inverse relationship between swarming motility and biofilm formation8 led us to examine the effects of 
iron on biofilm formation. As expected, Fe3+ supplementation increased biofilm formation in a dose-dependent 
manner, and the effect of Fe3+ supplementation was inhibited by the addition of the Fe3+ chelator DFO (Fig. 1d). 
We concluded that extracellular Fe3+ concentration controls swarming initiation and biofilm formation in  
S. marcescens.

The TCS RssAB is required for Fe3+-mediated regulation of swarming initiation and biofilm 
formation in S. marcescens. We previously reported that the TCS RssAB is temporally activated during 
the swarming lag phase and delays swarming initiation in S. marcescens35. We thus investigated whether RssAB 
mediates the effect of Fe3+ on swarming initiation. Deletion of the rssBA locus in WT S. marcescens abolished the 
effects of both iron and iron chelators on swarming initiation, and the rssBA deletion mutant (Δ rssBA) constitu-
tively displayed early swarming initiation on LB swarming plates, 1 hr earlier than the WT strain (Fig. 1a,b and 
Supplementary Fig. 2; Δ rssBA). In addition, the ability of Fe3+ to prolong the swarming lag phase on iron-limiting 
DMM swarming plates and to induce biofilm formation were not detected in the Δ rssAB strain (Fig. 1c,d;  
ΔrssBA). Episomal expression of a wild-type RssB-RssA construct in Δ rssBA bacteria complemented the iron 
responsiveness for both swarming (Fig. 1e and Supplementary Fig. 3) and biofilm formation (Fig. 1f). However, 
expression of RssB-RssA constructs harboring mutations at conserved phosphorylation sites, either at aspartate 51  
(D51) for RssB or histidine 248 (H248) for RssA36, failed to rescue iron irresponsiveness in Δ rssBA bacteria, 
when either swarming (Fig. 1e and Supplementary Fig. 3) or biofilm formation was analyzed (Fig. 1f). These 
results demonstrate that RssAB signaling is responsible for the effects of Fe3+ on swarming initiation and biofilm 
formation in S. marcescens.

Fe3+ activates RssAB signaling during swarming and biofilm formation. To investigate whether 
environmental Fe3+ modulates RssAB, we monitored RssAB signaling in response to Fe3+ availability by examin-
ing the cytolocalization of enhanced green fluorescent protein (EGFP)-tagged RssB during swarming and biofilm 
formation (Fig. 2a)35. On LB swarming plates, dispersal of EGFP-RssB in the cytosol, which indicates activation 
of RssAB signaling (ON), was observed 2 hr in the swarming lag phase (Fig. 2b; LB-2 hr). During the surface 
migration phase of swarming, EGFP-RssB was detected at the cell membrane, which represents the resting state 
(OFF) of RssAB (Fig. 2b; LB-4, 6, 8 hr). While Fe3+ supplementation extended RssAB signaling activation to 4 hr 
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Figure 1. Fe3+ controls swarming initiation and biofilm formation in S. marcescens through the TCS 
RssAB. (a,b) Swarming pattern (a) and migration radius (b) of WT and Δ rssBA S. marcescens on LB swarming 
plates containing Fe3+ (100 μ M) and/or DFO (0.3 mM). (c) Swarming migration radius of WT and Δ rssBA on 
DMM swarming plates containing Fe3+ at the indicated concentration (0–10 μ M). The number in the lower 
right corner of each swarming plate image represents the duration of the lag phase in hours. Migration radius 
(mm) corresponds to mean ±  SEM (n =  3). ND, not detected. (d) As mentioned in Methods, biofilm of WT 
and Δ rssBA S. marcescens in LB broth containing the indicated concentration of Fe3+ and/or DFO (0.3 mM) 
was quantified by monitoring absorbance at 630 nm. (e,f) In LB condition with or without Fe3+ (100 μ M) and 
DFO (0.3 mM), swarming radius (e) and biofilm quantification (f) of Δ rssBA harboring the vector pACYC184 
or the recombinant pACYC184 plasmid containing different constructs of RssB and RssA driven by their 
native promoters. RssBD51E and RssAH248A: constructs with point mutations at conserved phosphorylation 
sites; RssAΔPPD: RssA with deletion in periplamic domain (PPD, amino acids 32–163; RssAchimeric: a chimeric 
RssA whose periplasmic domain was replaced with the periplasmic domain of QseC. The results represent 
means ±  SEM from three independent experiments (n =  3). Statistical analysis was performed using one-way 
ANOVA. For Fig. 1d, *, ** and *** represent P <  0.05, 0.01, 0.001, and 0.0001, respectively, compared to the 
untreated sample. # and ## represent P <  0.05 and 0.01, respectively, compared to the group treated with DFO but 
without Fe3+. For Fig. 1f, *P <  0.05; **P <  0.01 compared to LB group.
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(Fig. 2b; Fe3+), DFO-mediated Fe3+ depletion resulted in constitutive OFF signaling during the entire swarming 
period (Fig. 2b; DFO). Addition of both Fe3+ and DFO in LB swarming plates did not affect RssAB signaling 
state, indicating that the lag period was specifically extended by Fe3+ on LB swarming plates (Fig. 2b; Fe3+/DFO). 
In contrast to LB swarming plates, RssAB signaling was constitutively OFF on iron-limiting DMM swarming 
plates (Fig. 2c), where no lag phase was observed (Fig. 1c). Iron supplementation induced RssAB signaling and 
dose-dependently extended the duration of RssAB activation up to 2 hrs (Fig. 2c), which also prolonged the dura-
tion of the lag phase in swarming development (Fig. 1c).

We previously showed35 that RssAB signaling is specifically activated during the early stage of biofilm for-
mation (Fig. 2d; LB-12 hr) and is deactivated in mature biofilms (Fig. 2d; LB-24, 36 and 48 hr). Here, we found 
that, while addition of Fe3+ did not change the timing of RssAB activation (Fig. 2d; Fe3+), Fe3+ depletion by DFO 
abrogated activation of RssAB signaling (Fig. 2d; DFO), and this effect could be restored by Fe3+ supplementation 
(Fig. 2d; Fe3+/DFO). Together with the observation that RssAB signaling is required for Fe3+-mediated modu-
latory effects on swarming and biofilm formation (Fig. 1e,f and Supplementary Fig. 3), we conclude that Fe3+ 
controls RssAB signaling to regulate swarming and biofilm formation.

RssAB directly senses Fe3+ at the nanomolar level. To examine how Fe3+ affects RssAB signaling, 
we first studied RssAB signaling in response to Fe3+ addition in iron-limiting DMM broth, which allowed us to 
assess the status of RssAB signaling in real time. While RssAB signaling was constitutively OFF in DMM broth 
(Supplementary Fig. 4a), addition of Fe3+ immediately activated RssAB signaling for at least 60 min, and this 
effect was reverted by DFO (Supplementary Fig. 4b). Of note, replacement of Fe3+-treated bacterial culture broth 

Figure 2. Fe3+ availability regulates RssAB signaling status during swarming and biofilm development.  
(a) Representative image of cytolocalization of EGFP-tagged RssB. Cytoplasmic and membrane location of 
EGFP-RssB indicates ON (activated) and OFF (inactivated) RssAB signaling status, respectively. Scale bar, 3 μ m.  
(b) WT S. marcescens harboring the pEGFP-RssBA::Sm plasmid encoding EGFP-RssB and RssA was used to 
evaluate the state of RssAB signaling during swarming (2–8 hr). Swarming assays were performed on LB plates 
containing 0.1% arabinose with or without Fe3+ (100 μ M) and DFO (0.3 mM). Cellular localization of EGFP-
RssB was monitored to quantify the percentage of activated and inactivated RssAB signaling. (c) Quantification 
of RssAB signaling status during swarming progression (1–4 hr) on DMM swarming plates supplemented with 
Fe3+ at the indicated concentration (0–10 μ M). (d) Quantification of RssAB signaling status during biofilm 
development (12–48 hr) in LB condition with or without Fe3+ (100 μ M) and DFO (0.3 mM). Percentage of cell 
type is shown as mean from three independent experiments performed in triplicate. At least 200 cells were 
counted for each assay condition.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:36747 | DOI: 10.1038/srep36747

with mock-treated culture broth deactivated RssAB signaling (Supplementary Fig. 4c), indicating that extracel-
lular Fe3+ alters the state of RssAB signaling. We further demonstrated that Fe3+ at a concentration of 50 nM was 
sufficient to activate RssAB signaling (Supplementary Fig. 4d), consistent with the observation that 50 nM Fe3+ 
could prolong the duration of the lag phase on DMM swarming plates (Fig. 1c; WT).

To address whether Fe3+ triggers RssAB transphosphorylation, we performed liposome-based radiography 
phosphorylation assays by reconstituting purified His-tagged RssA into liposomes under various iron condi-
tions. We found that as soon as 1 min after exposure to [γ 32P]ATP, autophosphorylation of RssA occurred in 
the presence of Fe3+, followed by phosphotransfer to RssB (Fig. 3a). Fe3+-induced RssAB transphorylation was 
inhibited by co-treatment with the Fe3+ chelator DFO (Fig. 3b). While the presence of Fe2+ triggered RssA auto-
phosphorylation, co-treatment with the reducing reagent ASC or the Fe3+ chelator DFO (but not the Fe2+ chelator 
2,2′-DP) prevented RssA autophosphorylation (Fig. 3b). Importantly, Fe3+-induced phosphorelay was largely 
dependent on the conserved phosphorylation sites of RssA and RssB (Fig. 3b), consistent with our observation 
that only the expression of functional RssAB could restore the effects of Fe3+ on swarming migration (Fig. 1e and 
Supplementary Fig. 3), biofilm formation (Fig. 1f), and signaling activation (Supplementary Fig. 5) in Δ rssBA 
bacteria.

As the periplasmic region of sensor kinases is generally responsible for sensing environmental cues31, we 
prepared a plasmid construct harboring RssA without the periplasmic domain (RssAΔPPD) to test its function. 
Expression of RssA without the periplasmic domain (RssAΔPPD) failed to rescue the phenotypes of Δ rssBA to 
Fe3+ in swarming initiation (Fig. 1e and Supplementary Fig. 3), biofilm formation (Fig. 1f), and RssAB signaling 
(Supplementary Fig. 5). Using the 55FeCl3 binding assay, we observed that full-length RssA could bind to Fe3+, 
whereas RssAΔPPD could not (Fig. 3c,d). Additionally, free Fe3+, in the absence of DFO or ASC, could directly 

Figure 3. RssA binds Fe3+ through its periplasmic domain and transphosphorylates RssB. (a) His-tagged 
RssA and RssB reconstituted in liposomes with or without Fe3+ was supplemented with [γ 32P]ATP (50 μ Ci), 
collected at the indicated time points, and examined by radiography imaging. (b) Liposomes containing His-
tagged RssA, RssB, nonphosphorylatable RssA or RssB were harvested 30 min after addition of [γ 32P]ATP 
and examined by radiography imaging. (c) His-tagged RssA, RssAH248A (His248 mutated to Ala), RssAΔPPD 
(RssA with deletion in periplasmic domain), and RssAchimeric (a chimeric RssA whose periplasmic domain was 
replaced with the periplasmic domain of QseC) were reconstituted in liposomes containing 500 nM 55FeCl3. 
After incubation, disrupted liposomes passed through NTA column to remove unbound 55FeCl3. Iron-bound 
membrane proteins were eluted and subjected to radioactivity analysis of liquid scintillation counting (counts 
per min, CPM). (d) His-tagged periplasmic domain of RssA was incubated with 55FeCl3 and mock (distilled 
water), DFO (0.3 mM), ASC (0.3 mM), or 2,2′ -DP (0.3 mM). Radioactivity was determined in the periplasmic 
domain eluted from Ni2+-NTA column. Statistical analysis was performed using one-way ANOVA. For Fig. 1c, 
****P-value <  0.0001, compared to RssA group. For Fig. 1d, *** and **** correspond to P-values <  0.001 and  
<0.0001, respectively, compared to mock group.
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bind to the purified periplasmic domain of RssA, indicating that the periplamic domain of RssA is responsible for 
Fe3+ binding (Fig. 3d). To test the specificity of the RssA periplasmic domain to Fe3+, we constructed a chimeric 
RssA (RssAchimeric) in which the periplasmic region of RssA was replaced by the corresponding region of QseC, a 
sensor kinase not involved in iron sensing38. RssAchimeric did not interact with Fe3+ (Fig. 3c) and failed to restore 
the swarming lag period (Fig. 1e, Supplementary Fig. 3), biofilm formation (Fig. 1f), or Fe3+ responsiveness 
(Supplementary Fig. 5) in Δ rssBA bacteria. Collectively, these results indicate that Fe3+ directly and specifically 
binds to the periplasmic region of RssA, thereafter triggering RssAB signaling and regulating swarming initiation 
and biofilm formation.

Identification of the RssAB-regulated pvc cluster and its involvement in swarming and biofilm 
formation. To investigate whether RssAB signaling regulates extracellular Fe3+ availability, we performed 
an in vitro protein-DNA pull-down screening assay to identify genes involved in iron metabolism. We iden-
tified the promoter of the gene sma0021, annotated as pvcA, which is the first gene of the putative pvc cluster 
(Fig. 4a). The pvc cluster in S. marcescens is a homologue of the pvc operon in Pseudomonas aeruginosa, which 
was previously found to be involved in biosynthesis of pseudoverdine, a metabolite that possesses Fe3+ chelation 
activity39. Clarke-Pearson et al. observed that the pvc operon is responsible for the production of 2-isocyano-6,
7-dihydroxycoumarin (ICDH-Coumarin), named by the authors as paerucumarin40,41, which regulates biofilm 
formation in P. aeruginosa42. Using an electrophoretic mobility shift assay (EMSA), we confirmed direct binding 
of the pvcA promoter to phosphorylated GST-RssB-P, instead of unphosphorylated GST-RssBD51E or GST protein 
(Fig. 4b). We further showed that expression of pvcA in WT S. marcescens is down-regulated during the lag phase 
(2 hr), whereas it increases during the migration phase (4 hr) (Fig. 4c and Supplementary Fig. 7), in agreement 
with our previous observation that RssAB signaling is specifically activated in the lag phase to act as a transcrip-
tional repressor (Fig. 2b). During swarming development, iron supplementation prolonged downregulation of the 
RssAB downstream genes flhDC34 and pvcA in an RssAB-dependent manner (Fig. 4c and Supplementary Fig. 7).

To understand the function of the pvc cluster in multicellular behavior, we constructed a whole pvc cluster 
deletion mutant (Fig. 4a). Compared to the WT strain, the pvc cluster deletion mutant (Δ pvc) showed delayed 
swarming initiation (Fig. 4d) and increased biofilm formation (Fig. 4e), with both processes being reversed by epi-
somal expression of the pvc cluster (Fig. 4d,e; Δ pvc/pPvc). In contrast, the rssBA and pvc cluster double-deletion 
mutant exhibited early swarming initiation and reduced biofilm formation as observed in Δ rssBA (Fig. 4d,e; 
Δ rssBA-pvc). These data suggest that a metabolite produced by the pvc cluster may inhibit RssAB activation.

The pvc cluster is responsible for ICDH-Coumarin production in S. marcescens. To determine 
whether the pvc cluster in S. marcescens is responsible for the production of a molecule similar to pseudover-
dine or paerucumarin identified in P. aeruginosa, we used liquid chromatography-mass spectrometry (LC-MS) 
(Fig. 5a, Supplementary Fig. 8a) and nuclear magnetic resonance (NMR) (Supplementary Fig. 8b) to identify the 
compounds that were enriched in S. marcescens over-expressing the pvc cluster (pPvc). A compound correspond-
ing to 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) (with the same structure as paerucumarin) was 
identified (Fig. 5a; highlighted as *; Supplementary Fig. 8)40; the ICDH-Coumarin compound was not observed in 
Δ pvc bacteria expressing the vector only. The purified ICDH-Coumarin harbored Fe3+ chelation activity similar 
to that of DFO but to a lesser extent (Fig. 5b). ICDH-Coumarin prevented direct binding of Fe3+ to the periplas-
mic domain of RssA (Fig. 5c). These findings demonstrate that the pvc cluster is implicated in ICDH-Coumarin 
production and that ICDH-Coumarin can chelate Fe3+ to abolish RssA-Fe3+ binding.

ICDH-Coumarin controls RssAB signaling and multicellular behaviors by modulating extracel-
lular Fe3+ availability. We aimed to determine whether ICDH-Coumarin might alter extracellular iron 
availability and subsequently regulate RssAB signaling as well as multicellular behaviors. While addition of 30 μ M  
ICDH-Coumarin restored the delayed swarming migration phenotype of Δ pvc and induced early swarming 
migration in WT S. marcescens similar to DFO (Fig. 6a; 30 μ M), supplementation of 300 μ M ICDH-Coumarin 
induced early swarming migration even in Δ pvc bacteria (Fig. 6a; 300 μ M ICDH-Coumarin for Δ pvc). Moreover, 
early swarming initiation induced by ICDH-Coumarin was accompanied by deactivation of RssAB signaling 
in both WT and Δ pvc bacteria (Fig. 6b). The effects of ICDH-Coumarin supplementation on swarming initia-
tion and RssAB signaling could also be observed by overexpression of the pvc cluster (Supplementary Fig. 9a,b).  
Conversely, regulation of swarming initiation by ICDH-Coumarin or pvc overexpression was completely 
abolished in the absence of rssBA (Fig. 6a and Supplementary Fig. 9a,b). On the other hand, addition of 
ICDH-Coumarin induced early swarming initiation (Fig. 6c) and impaired biofilm formation similar to DFO 
treatment (Fig. 6d), and these effects could be restored by addtion of Fe3+. Taken together, our results demonstrate 
that ICDH-Coumarin is produced by the RssAB-regulated pvc cluster and that it regulates swarming and biofilm 
formation by altering extracellular Fe3+ availability and RssAB signaling.

Discussion
Swarming and biofilm formation are two opposite but inter-related bacterial behaviors that are also among the 
most ancient features of living cells10. Here, we demonstrate that environmental Fe3+ availability controls the 
transition between swarming initiation and biofilm formation through an RssAB signaling system in S. marc-
escens. We further determine that the RssAB-modulated pvc cluster produces the Fe3+ chelator ICDH-Coumarin 
to regulate extracellular iron availability and RssAB signaling (Fig. 7). Our results show that RssAB signaling is 
off at low Fe3+ concentrations, during which the pvc cluster is expressed to produce ICDH-Coumarin and chelate 
extracellular Fe3+ (Fig. 7a). In an environment in which Fe3+ is abundant, Fe3+ directly binds to RssA, leading to 
RssA autophosphorylation and RssAB transphosphorylation, resulting in downregulated expression of the pvc 
cluster, reduced ICDH-Coumarin production, and decreased extracellular Fe3+ chelation (Fig. 7b).
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Figure 4. pvc cluster regulated by RssB is involved in regulating swarming and biofilm formation.  
(a) Schematic map of the pvc cluster, RssB-P binding site, and pvc cluster deletion mutant. Red dash lines 
represent RssB-P binding sites (− 349 to + 38) of the pvcA promoter region. For construction of pvc cluster 
deletion mutants (Δ pvc), genomic region between two asterisks (*) was replaced with Smr cassette. (b) EMSA 
was employed to confirm the interaction between phosphorylated RssB (RssB-P) and promoter region of pvcA 
(PpvcA). Digoxigenin (DIG)-labeled DNA fragments were incubated with purified GST, GST-RssBD51E or GST-
RssB-P, followed by analysis by non-denaturing PAGE. Negative control (NC) was performed by incubating 
GST-RssB-P with the DNA sequence between M13F/M13R in the plasmid pBIISK. (c) During swarming 
progression (2–6 hr) with different iron conditions, relative expression of RssB downstream genes (flhDC and 
pvcA), normalized to 16S rRNA, in WT and Δ rssBA was respectively determined by qRT-PCR. (d,e) Swarming 
migration radius (d) and biofilm formation (e) of each strain of S. marcescens. Strain harboring pPvc encoding 
pvc cluster under pBAD promoter with 0.01% arabinose. The results shown represent means ±  SEM from three 
independent experiments (n =  3). Statistical analysis was performed using one-way ANOVA. For Fig. 4c, * and 
** corresponding to P-value <  0.05 and < 0.01 in comparison with LB group of each strain, respectively. For  
Fig. 4e, * corresponding to P-value <  0.05 compared to WT.
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Bacteria utilize a broad array of strategies to control the timing and duration of TCS signaling events 
in order to precisely control cellular processes based on extracellular signals43. In the context of the 
RssAB-ICDH-Coumarin-iron regulation circuit (Fig. 7), S. marcescens actively regulates extracellular iron avail-
ability through RssAB-modulated production of ICDH-Coumarin. Upon sensing high extracellular Fe3+ con-
centration, the decrease in ICDH-Coumarin production by transcriptional repression of phosphorylated RssB in 
turn maintains active RssAB signaling, which restricts bacterial migration and promotes biofilm formation. Of 
note, we previously reported that RssAB activation suppresses bacterial swarming motility by repressing flhDC 
expression34, whereas overexpression of flhDC reduces biofilm formation33. Together with the results presented in 
this study that functional RssAB signaling is required for iron to downregulate flhDC expression, restrict swarm-
ing migration and promote biofilm formation, we highlight the pivotal role of iron-RssAB-FlhDC signaling in 
regulation of swarming and biofilm formation (Fig. 7). These results also indicate that tight regulation of fla-
gellum production by RssAB-ICDH-Coumarin-iron is crucial for the development of multicellular behavior in  
S. marcescens.

Based on LC-MS and NMR analyses, ICDH-Coumarin secreted by S. marcescens (Fig. 5 and Supplementary 
Fig. 8) and identified in this study has the same molecular structure (2-isocyano-6,7-dihydroxycoumarin) as 
paerucumarin in P. aeruginosa40,41. While ICDH-Coumarin (paerucumarin) enhances biofilm formation in 
P. aeruginosa by upregulating the fimbrial synthesis pathway42, we demonstrated here that ICDH-Coumarin 
reduces biofilm formation in S. marcescens. The different roles of this iron-chelating molecule in controlling mul-
ticellular behavior in P. aeruginosa and S. marcescens indicate that different cellular machineries may have evolved 
in response to a specific extracellular signal. Conservation of the pvc cluster across various bacterial species40 and 
the function of ICDH-Coumarin in regulating bacterial behavior suggest that ICDH-Coumarin may be involved 
in interspecies communication.

Competition for iron between microbes in the environment usually involves the coordination of various 
bacterial activities, including oxidative stress response, antibiotics resistance, virulence and multicellular behav-
ior44–47. Previously, the TCS PmrA-PmrB was found to be vital for survival of Salmonella enterica under high iron 
stress through direct sensing of extracellular iron29. It was further shown that high iron resistance is mediated 
by lipopolysaccharide modifications48. Here we show that RssAB participates in a sophisticated control system 
to regulate multicellular behavior without conferring iron resistance since rssBA deletion does not affect growth 
in either iron-abundant or iron-limiting conditions. The presence of multiple sensing systems in deciphering 
iron availability may provide flexibility for bacteria to thrive under changing environments. In summary, this 
study identifies a cellular mechanism underlying the transition between bacterial motility and static colonization, 

Figure 5. ICDH-Coumarin produced from pvc gene cluster chelates Fe3+ and blocks iron binding to 
RssA. (a) LC-MS chromatogram of ethyl acetate extracts from WT, Δ pvc, Δ rssBA, and Δ rssBA-pvc bacteria 
harboring pBAD33 (vector) or pPvc encoding pvc cluster under DMM broth with arabinose (0.3%). *Indicates 
the peak and structure of ICDH-Coumarin as determined by NMR. (b) Fe3+ chelation activity of DFO, 
ICDH-Coumarin, and 2,2′ -DP at the indicated concentration. (c) His-tagged periplasmic domain of RssA was 
incubated with 55FeCl3 and distilled water (mock), DFO (0.3 mM), ICDH-Coumarin (0.3 mM), or 2,2′-DP  
(0.3 mM). Radioactivity was determined from the eluted periplasmic domain. One-way ANOVA with *** 
corresponding to P-value <  0.001 compared to mock group.
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which are associated with acute and chronic infection, respectively, in response to extracellular iron availability. 
Our findings should prove helpful to understand the factors that determine bacterial acute or chronic infection as 
well as for the development of novel treatments against pathogenic bacteria.

Methods
Bacterial strains and culture conditions. S. marcescens strains were derived from S. marcescens CH-1 
(WT). Bacteria were routinely cultured with agitation in LB broth (BD DifcoTM, U.S.A.) at 30 °C or 37 °C. M9 salt 
(BD DifcoTM, U.S.A.) solution49 was used to make defined minimal medium (DMM) containing 1×  M9 salts, 
2 mM magnesium sulfate, 100 μ M calcium chloride, 0.8% glycerol, and 0.2% casamino acid. DMM was used as 
iron-limiting medium. When strains harboring pBAD series of plasmids were used, arabinose was added into the 
medium at the indicated concentrations. Bacterial strains and plasmids are summarized in Supplementary Table 
1 and Supplementary Methods.

Swarming assay. Swarming assay was performed on swarming plates in the presence or absence of metal 
ions, metal chelators, ICDH-Coumarin, or reducing agent at the indicated concentrations. S. marcescens strains 
were cultured on swarming plates (0.8% Eiken agar, EIKEN Chemical, Japan) consisting of LB (BD Difco™ , 
U.S.A.) or DMM medium. The swarming lag phase was defined as the static period prior to migration.

Figure 6. ICDH-Coumarin induces swarming initiation and represses biofilm formation by modulating 
extracellular Fe3+ availability and RssAB signaling. (a) Migration radius of WT, Δ rssBA, Δ pvc, and Δ rssBA-
pvc strains on LB swarming plates supplemented with ICDH-Coumarin (0–300 μ M). (b) Quantified RssAB 
signaling of WT and Δ pvc carrying pEGFP-RssBA::Gm during swarming progression (2–8 hr) on LB swarming 
plates containing arabinose (0.1%) and ICDH-Coumarin (0–300 μ M) is shown. (c) Migration radius of WT and 
Δ pvc on LB swarming plates supplemented with or without Fe3+ (100 μ M) and ICDH-Coumarin (300 μ M).  
(d) Biofilm of WT and Δ pvc in LB condition supplemented with or without Fe3+ (100 μ M) and ICDH-Coumarin 
(300 μ M) was determined by monitoring absorbance at 630 nm. The results shown represent means ±  SEM from 
three independent experiments (n =  3). One-way ANOVA with * and ** represent P values <  0.05 and < 0.01 
compared to LB group; # represents P-value <  0.05 compared to ICDH-Coumarin group.
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Biofilm assay. Biofilm formation assay was performed based on a previous study35. Briefly, overnight cul-
tures were diluted 1:100 in LB medium containing 1% (w/v) sucrose in Petri dish with sterile glass coverslips for 
incubation at 30 °C with agitation at 50 rpm. For iron modification, 10-hr-old biofilm cultures were supplemented 
with ferric chloride (Sigma-Aldrich, U.S.A.), DFO (final concentration: 0.3 mM) (Sigma-Aldrich, U.S.A.) and/or 
ICDH-Coumarin at the indicated concentration. Biofilm mass was quantified on glass coverslips at maturation 
stage (24 hr) using crystal-violet staining and spectrophotometery detection at 630 nm (OD630). Results are shown 
as means ±  standard error of the mean (SEM) based on three independent experiments.

Imaging and quantification of RssAB signaling using fluorescence microscopy. RssAB signal-
ing was determined by localization of EGFP-tagged RssB as before35. Briefly, EGFP-RssB and RssA either from 
pEGFP-RssBA::Sm35 or pEGFP-RssBA::Gm (Supplementary Table 2) were co-expressed under the PBAD promoter 
control and induced by 0.1% arabinose. At the indicated time points of swarming and biofilm assay, cells were 
harvested to determine the percentage of population showing EGFP-RssB localized at the cell membrane (OFF) 
or in the cytoplasm (ON). Fluorescence microscopy was conducted with a Leica DM2500 microscope under 
a Leica I3 filter set and observed at 100x using an oil immersion objective. Images were taken with a SPOT 
RT3 CCD camera (Diagnostic Instruments, U.S.A) and adjusted using the SPOT Advanced software (Diagnostic 
Instruments, U.S.A.). At least 200 cells were counted for each assay condition. Results are shown as the average of 
percentage of two populations from three independent experiments.

Figure 7. Proposed model for the control of swarming and biofilm formation by the RssAB-ICDH-
Coumarin-iron pathway. (a) Low extracellular Fe3+ deactivates RssAB signaling and relieves transcription of 
the pvc cluster and flhDC, which encodes the master regulator of flagellum biosynthesis This in turn increases 
flagellum and production of ICDH-Coumarin which subsequently chelates Fe3+ to maintain low availability 
of free Fe3+. These processes induce swarming and repress biofilm formation. (b) High extracellular Fe3+ 
activates RssAB signaling, leading to phosphorylation of RssB, repression of pvc cluster and flhDC transcription, 
and reduced ICDH-Coumarin and flagellum production. High Fe3+ availability sustains activation of RssAB 
signaling. These processes lead to biofilm formation and inhibit swarming migration by restraining bacteria in 
the swarming lag phase.
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Liposome-based phosphorelay of RssAB signaling cascade. Liposome-based resconstitution38 of 
purified RssA and RssB, either untreated or supplemented with the indicated concentration of iron, reducing 
agent, or iron chelators, was subjected to radioisotope [γ 32P]ATP (PerkinElmer, U.S.A.) phosphorelay.

Iron binding assay. Purified His-tagged RssA periplasmic domain was incubated with 500 nM 55FeCl3 and 
0.3 mM of DFO, 2,2′ -DP (Sigma-Aldrich, U.S.A.), ASC (Sigma-Aldrich, U.S.A.), or ICDH-Coumarin. After 
passing through Ni2+-nitrilotriacetic acid (NTA) affinity chromatography (GE Healthcare Lifesciences, U.S.A.), 
the protein was eluted and subjected to liquid scintillation counting to measure radioactivity of 55Fe, expressed 
as counts per min (CPM ×  103). For His-tagged membrane proteins, including RssA, RssAH248A, RssAΔPPD, and 
RssAchimeric, each of them was reconstituted in liposome containing 500 nM 55FeCl3, followed by removal of 
unbound 55FeCl3 and elution of iron using NTA column. The resulting eluents were subjected to liquid scintilla-
tion counting.

In vitro protein-DNA pull-down assay. The assay used was modified from Dietz et al.50. Briefly, WT  
S. marcescens chromosomal DNA was digested by Sau3AI and resuspended in 1 ml of interaction buffer (20 mM 
Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM KCl) containing 25 mM acetyl-phosphate, 5 mM EDTA and 10 μ g/ml  
BSA. GST-RssB was phosphorylated by 50 mM acetyl-phosphate at 37 °C for 1 hr, prior to addition into the mix-
ture containing WT S. marcescens chromosomal DNA fragments. After incubation at room temperature for 
20 min, 30 μ L glutathione sepharose-4B beads equilibrated with PBS were added into the mixture. The whole 
mixture was placed at 4 °C with constant shaking for 30 min. The beads bound to GST-RssB with binding DNA 
fragments were recovered by low-speed centrifugation. After three washing steps with 500 μ l of interaction buffer, 
the DNA was purified by phenol extraction and precipitated with isopropanol. Following precipitation, the bound 
DNA was analyzed on 2% agarose gel, and cloned into the BamHI site of pBluscriptIISK. The GenBank accession 
number of pvcABC is KC291199.

Electrophoretic mobility shift assay (EMSA). Promoter region of pvcA (PpvcA) and rssB (PrssB) was 
cloned into the BamHI site on pBluescript II SK+  to generate pBSK-PpvcA and pBSK-PrssB, respectively. DNA 
fragments for electrophoretic mobility shift assay were amplified by PCR using the M13F-DIG/M13R primer 
pairs using pBSK-PpvcA, pBSK-PrssB or pBluescript II SK+  (negative control, NC) as a template. GST, GST-RssB 
and GST-RssBD51E protein purification, and GST-RssB phosphorylation using acetyl-phosphate (Sigma-Aldrich, 
U.S.A.) were performed as described in our previous report35. Phosphorylated GST-RssB or GST-RssBD51E 
was diluted in binding reaction buffer (20 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM KCl) before bind-
ing assay. The binding reaction was performed in binding reaction buffer, comprising the protein as indicated 
and 0.5 ng DIG labeled DNA fragments supplemented with 30 μ g/ml poly (dI-dC) and 1 μ g/μ l bovine serum 
albumin. The reaction mixtures were incubated for 30 min at room temperature before being loaded onto 6% 
nondenaturing polyacrylamide gels containing 0.5×  TBE buffer. Electrophoresis was performed at 100 V for 
1–4 hr. The DNA-protein complexes were then electroblotted onto a positively charged Hybond-N nylon mem-
brane (Amersham, U.S.A.) and detected using alkaline phosphatase conjugated anti-DIG antibodies (Roche Life 
Science, U.S.A.). CSPD (Roche Life Science, U.S.A.) was used for substrate as described by the manufacturer. 
Membranes were exposed to X-ray film at room temperature for 2 to 30 min.

Evaluation of gene expression. Total bacterial RNA was extracted using a Trizol kit (Invitrogen). 
After verifying the quality (A260/A280 =  1.8–2.0) and concentration, 200 ng of RNA was subjected to 
reverse-transcription into cDNA with a SuperScript III First-Strand Synthesis System kit (Invitrogen, U.S.A.) 
according to the manufacturer’s instructions. 5 ng of cDNA was then applied to KAPA SYBR FAST Master Mix 
(2X) qPCR kit (Kapa Biosystems, South Africa). Expression level of target genes tested was verified by real-time 
quantitative PCR detection system (Roche LightCycler 480, U.S.A.). Melting curves and Ct values were analyzed 
using the LightCycler®  480 SW version 1.5 (Roche, U.S.A.). The data were analyzed using the 2−ΔΔCT method51. 
Relative expression of target genes was normalized to 16S rRNA (Fig. 4c) or rpoD (Supplementary Fig. 7). The 
procedures used for qRT-PCR followed the MIQE guidelines52. The primers used in this study are summarized 
in Supplementary Table 2.

Detection and purification of 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin).  
ICDH-Coumarin was detected and purified according to the procedures described previously40 with minor 
modifications. Briefly, S. marcescens harboring pBAD33 (vector) or pPvc containing the full-length pvc clus-
ter was grown in DMM broth with arabinose (0.3%) at 30 °C for 8 hr. Ethyl acetate extraction of each super-
natant was collected by mixing the supernatant (50 ml) with ethyl acetate containing 2% methanol (100 ml). 
ICDH-Coumarin from ethyl acetate extract was purified using silica gel flash columns (CHCl3:MeOH at 9:1 fol-
lowed by CH2Cl2:MeOH:AcOH at 93:7:0.1). The resultant filtrate was applied to LC-MS (negative-ion electrospray 
ionization, Waters, U.S.A.) and NMR (Bruker Avance III-HD 600 MHz NMR Spectrometer, U.S.A.). For LC-MS, 
25 μ l of a 10-fold dilution of the resultant filtrate was subjected to LC-MS (XBridge C18 column of 5 μ m, 4.6× 
100 mm). UV absorbance from 210 to 600 nm was measured on a Waters Photodiode Array Detector. Spectrum 
of ESI-LC-MS was plotted as intensity (y axis) against m/z (Da). The m/z of ICDH-Coumarin is 204.03023. 
For NMR conditions, vacuum-dried samples were dissolved in 600 μ l of methanol-d4/dichloromethane-d2 
(CD3OD/CD2Cl2), followed by vortexing (1 min), sonication (5 min), and vortexing (1 min). After centrifugation 
(13,200 rpm), the supernatant was transferred to a NMR tube (5 mm). NMR spectra were recorded at 600 MHz on 
a Bruker Avance III spectrometer. 1H-NMR (CD3OD/CD2Cl2) proton spectrum of ICDH-Coumarin was ploted 
as intensity (y axis) against chemical shift (x axis) (δ , ppm). The identified chemical shift of ICDH-Coumarin 
includes 9.50 (s, 1H), 8.39 (s, 1H), 7.67 (s, 1H), 6.87 (s, 1H), and 6.87 (s, 1H).
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Determination of Fe3+ chelation activity. Fe3+ chelation activity was determined using the chrome 
azurol sulfonate (CAS, Sigma-Aldrich, U.S.A.) solution assay53 with minor modifications. Briefly, 100 μ l of 
ICDH-Coumarin (in ethyl acetate), DFO (in water), and 2,2′ -DP (in dimethyl sulfoxide) at the indicative con-
centration (μ m) or the respective solvent (as blank) were mixed with 100 μ l of CAS solution and 10 μ l of 0.2 M  
5′ -sulfosalicylic acid, prior to incubation at room temperature for 15 min. Absorbance at a wavelength of 630 nm 
for sample (As) and blank (Ab) was determined using a spectrophotometer. Fe3+ chelation activity was expressed 
as the ratio of (Ab −  As)/Ab.

Statistical analysis. Data were expressed as means ±  SEM from three independent experiments (n =  3). 
Statistical difference was calculated by one-way analysis of variance (ANOVA) by comparing the groups indi-
cated. P-value <  0.05 was considered statistically significant.
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