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20. Abstract (continued)

I- Section 11 reviews the contributions of various natural factors which
Influence the inherent radiosensitivity of biological systems. Included in
the list of these factors are water, oxygen, thiols, vitamins and antioxi-
dants. Brief attention is given to the model describing competition between
oxygen and natural radloprotective substances (principally, thiols) In deter-
mining the net cellular radiosensitivity.

Several theories of the mechanism(s) of action of radioprotective drugs
are described in Section III. These mechanisms include the production of
hypoxia, detoxication of radiochemical reactive species, stabilization of the
radiobiological target and the enhancement of damage repair processes.
Section IV describes the current strategies for the treatment of radiation
injury. Likely areas in which fruitful research might be performed are
described In Section V.

Appendices are devoted to lists of currently-funded research projects
Involving chemical radi aion protection and a brief compendia of compounds
which have been tested t~r radioprotective activtty.
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PrefWAe

The field of radiation protection carries a certain anount of stigma from
the public about the sources of radiation, Its effects, and uses. Certainly,
few would fail to acknowledge the beneficial effects of diagnostic radiology and
radiation therapy. However, the public concern over low levels of radiation,
coupled with concern over nuclear issues in general, Is pressing and likely to
continue. In this atmosphere of concern, the topic of chemical protection
against ionizing radiation Is viewed by many people as a means of skirting or
minimizing the hazards of exposure to Ionizing radiation, or as a way to make
increased exposure more acceptable. However, radiation exposure is with us as a
fact of life, and accidents with ionizing radiation sources do occur, as recent-
ly happened in Juarez, Mexico (Marshall, E., Scence 1984 223, 1152-1154). The
presence of nuclear power plants, and their finite Tifetime, will result in
occupational exposure to radiation as they are decommissioned early in the next
century. As one looks at the types of radioprotectors and their effectiveness,

4 the notion that radiation exposure will Increase because of reliance on chemical
means of preventing the damage of ionizing radiation becomes quite Implausible.
Certainly, no chemical means can prevent or even significantly reduce the
horrors of strategic use of nuclear weaponry or the large scale accidential
emission of radiation from power sources. However, benefits from effective
radioprotectors can be realized. Some of the hazards of modest accidential
exposure to radioactive materials (such as the recent Juarez Incident) may be

*. lessened by the application of radloprotectors or effective treatments for
"radiation sickness.* Individuals who are genetically highly susceptible to
natural radiation sources may derive benefit from research on chemical radiopro-
tection. The clinical use of radioprotective agents as prophylactic adjunct
therapy in radiation oncology has been a continuing goal of radiation oncolo-
gists for many years. It is for these purposes that we have reviewed the liter-
ature on chemical protection against Ionizing radiation and submit this report
on our efforts.
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The scientific literature on radiation-protective drugs is reviewed.
Emphasis is placed on the mechanisms Involved in determining the sensitivity
of biological material to ionizing radiation and mechanisms of chemical
radioprotection. In Section 1, the types of radiation are described and the
effects of ionizing radiation on biological systems are reviewed. The
effects of ionizing radiation are briefly contrasted with the effects of
non-Ionizing radiation.

Section I reviews the contributions of various natural factors which
influence the inherent radiosensitivity of biological systems. Included in
the list of these factors are water, oxygen, thiols, vitamins and antioxi-
dants. Brief attention is given to the model describing competition between
oxygen and natural radioprotective substances (principally, thiols) In deter-
mining the net cellular radiosensitivity.

Several theories of the mechanism(s) of action of radioprotective drugs
are described In Section 111. These mechanisms include the production of
hypoxia, detoxication of radiochemical reactive species, stabilization of the
radiobiological target and the enhancement of damage repair processes.
Section IV describes the current strategies for the treatment of radiation
injury. Likely areas in which fruitful research might be performed are
described in Section V.

Appendices are devoted to lists of currently-funded research projects
Involving chemical radiation protection and a brief compendium of compounds
which have been tested for radioprotective activity.
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I. Effects of Radiation on Biological Sustems.

A. Introduction.
In this section, some of the general terms and concepts dealing with

radiation and with radiation injury to biological systems are introduced. In

Section II, radioprotection and radioprotective agents are discussed in more

detail. The related topics of radiosensitization and of non-Ionizing radia-

tion effects are considered only to the extent that such consideration is

relevant to chemical protection against ionizing radiation. Among the

reviews which have been published on the general subject of radiation biology

are those of Dertinger and Jung [120] and Pizzarello and Witcofski [352),

which were used as sources of much of the introductory material in this

section.

B. TIes of Radiation.
Table 1 lists forms of radiation that are pertinent to this review.

Those forms which consist of energetic particles and certain of the electro-

magnetic spectrum rays (cosmic, gamma, and X-rays) are commonly designated as

ionizing radiation. When these types of radiation penetrate biological

tissue (or other forms of matter), some of the neutral atoms along the paths

of penetration are converted to ions. At the other end of the electromagne-

tic spectrum are microwaves and radiowaves which are characterized as non-
ionizing radiation. Ultraviolet wavelengths are intermediate, in both

$ frequency and biological effects, between ionizing and non-Ionizing radia-

tion.

C. Effects of Iomizies Radiation at the AtOmic and ,blecular Levels.
The physical and chemical lesions produced when Ionizing radiation

r penetrates biological tissue result from the transfer of radiation energy to

the tissue. The first tissue/radiation interaction is at the physical level

(energy transfer to some tissue component) with secondary and higher order
effects at the physico-chemical, chmical, and biological levels. As approx-

imate orders of magnitude the relative time required for these stages is:

physical a 10-11 sec., physico-chemical 10" 0 sec., chemical 10 6 sec.,

and biological s seconds to years.

Whether one considers direct effects (terminal absorption of the energy

of an Incoming particle or photon by DNA or another functional biomolecule,

with resultant chemical change of that mlecule) or indirect effects (dameg-
tig energy transfer to the biomolecule only after intermediate absorption

1



TABLE 1: SOME TYPES OF RADIATION

TYPE OF RADIATION SOURCES I/NI*

Part icul ate:

Electrons (0' particles) Radioactive decay I
Positrons (8* particles) Radioactive decay I
Protons Cyclotron; Van de Graft I

generator
Neutrons Nuclear fission, Cyclotron I
Helium nuclei (a particles) Radioactive decay I
Nuclei of heavier elements Particle Accelerators I
Electromagnetic (wavelength)

Cosmic rays (5 x 10- nm) Stars I
Ga rays 5 - 1.4 x 10- -) Radioactive decay I
X-rays x 102 - 10 nm) X-ray machine I

Ultraviolet ( - 280-400 nm) Sunlight, artificial Int i p
sources

Microwaves ( - 0.3-300 cm) Radio, television, other NI
transmitters, other
artificial EM fields

Radiowaves ( > 0.3 cm) Comunications; cosmic NI
sources

* I, Ionizing; NI, Nonionizing; Int, Intermediate.

and transfers by diffusible ions a&d radicals), the basic cause of radiation

damage is the same: disruptive absorption of the energy of photons and/or

energized subatomic particles.

1. "Wa Of gnay Tranfer.
For the most part, primary energy transfer occurs through ejection or

excitation of orbital electrons in atoms along the radiation path, although

some transfer occurs through direct collision with the nuclei of those

atoms. The paths of low-mass particles, such as electrons, will be Irregular

since these particles are subject to scattering and deflection by collisions

with electrons of the medium.

Ionization: In ionizing events, the passage of an energetic particle
i (or a photon) causes ejection of an electron from on atoo with the resultant

creation of a positive and negative Ion pair. This Is the principal means by

which the energy of ionizing radiation (whether particulate or electromgne-

tic) Is transferred to biological tissues. Water is most frequently the

molecule from which the electron Is expelled because of Its preponderance in

most biological tissues. The water radicals" that result awe the principal

2
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agents which re-transfer the absorbed radiation energy to "target" biomole-

cules.

Excitation: In addition to ionization, a significant fraction of the

energy of energetic particles or of electromagnetic radiation Is dissipated

by electron excitation. In this process, an outer electron of a target atom

absorbs enough energy to move to a higher energy state but remains associated

with the atom.

Collision: Whereas X-rays, y-rays, ultraviolet radiation, and charged

particles Interact chiefly with Intercepted atoms to eject or excite orbital

electrons from these atoms, the energy of neutron radiation is absorbed

chiefly by direct collision with nuclei, causing the ejection of disintegra-

tion fragments (such as neutrons, protons, or alpha particles) bearing the

transferred kinetic energy of the colliding neutrons. In biological tissue

with its preponderance of hydrogen atoms, the production of high-speed

protons (hydrogen nuclei) is the most frequent consequence of these colli-

sions. Nuclear disintegration can also be produced by high energy photons.

Photons or electrons can interact with target nuclei to produce secondary

X-ray emissions.

Indirect Energy Transfer: Whether the radiation energy is initially

absorbed by ionization, excitation, or collision, a secondary production of

free protons, electrons, Ions, free radicals, or photons can occur as the

energy is re-transferred to other atoms and molecules. The disintegration of

target nuclei which have become unstable due to ejection or absorption of

particles also contributes to the secondary production of ions by releasing a

shower of energetic particles.

Among the products of the energy-absorption process, *free radicals" are

of particular significance. A free radical is an atom with a single unpaired

orbital electron, atomic hydrogen being the simplest exuple. A free radical
is more long-lived than an ion pair and has a high probability of reacting

with another atom either by pairing of its unpaired electron with an electron

of that other atom, by releasing its unpaired electron to the other atom, or

by capturing an electron from the other atom. Each of these Interactions can

In turn create additional Ions or free radicals. Nst of the radiation

dmage to organic molecules Is associated with such chains of secondary

free-radical Interactions.

3
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2. Significant Variables.
The nature of the effects which will occur when ionizing radiation

penetrates tissue depends upon a multiplicity of variables. Some of the more

significant ones are listed here.
Type of radiation: The results of the interaction between radiation and

tissue will be influenced by whether the radiation Is particulate or non-

particulate and, if the former, by the size and charge of the energetic

particle. For exmple, because neutrons are not slowed or deflected by the

negative charge or the much smaller mass of encountered electrons, their

energy is more likely to be absorbed by direct nuclear collisions. The
energy of the smaller charged particles of $-rays, on the other hand, will be

largely dissipated in ionization or excitation interactions with orbital

electrons. Interactions of heavy ions from particle accelerators are Influ-

enced by both their charge and their mass. The more highly charged a parti-

cle is, the more frequent will be Its interactions and the greater will be

the density of ions produced along its track. The more massive it is, the

slower it will be (at a given energy level) and the greater will be the den-

sity of Ionization events. The energy of massless ultraviolet, X- and

v-rays Is transferred in photon/electron collisions and biological damage

produced by this radiation is due almost entirely to the action of the free

radicals and Ions produced.

Particle velocity: The density of ions produced along the track of an
ionized particle Is influenced by Its velocity. The slower it is, the

greater will be the naber of ions produced per millimeter of track. For

this reason, ionization density increases continually along a particle track

as the particle is gradually slowed by Incremental energy transfers. The
most abundant ion production occurs Just before the particle comes to rest.

Wavelength: For non-particulate radiation, the greater its energy
(I.e., the shorter its wavelength), the greater is its potential to support
damaging energy transfer events in tissue.

!LET/R: Linear Energy Transfer, or LET, is a measure of the mount of
energy released (by my mechanism) per afcron of track of any ionizing radia-
tion and iS an Indicator of the level of biological disruption to be expec-

ted. Biological dosage is greater and postirradiation recovery is slow
[324] for high-LET than for low-LET radiation. LET Is determined In part by
the variables already mentioned: It varies with the kinetic nergy level

4



(velocity and size) and charge of radiation particles and with the wavelength

(energy) of electromagnetic radiation. Since particle velocity decreases

continuously along the particle path, LET also changes continuously, increas-

ing as the particle slows until it falls abruptly to zero when the particle

comes to rest. Because LET varies for different types of radiation, biologi-

cal effect Is sometimes expressed in terms of relative biological effective-

ness (RBE), which Is a ratio of the biological disruption from the radiation

in question to that from some reference radiation (usually y-rays).

Dose: Biological dmage from Ionizing radiation increases with the dose

(i.e. the amount of radiation energy absorbed). Standard units of absorbed

dose Include:

the red (R) (deposition of 100 ergs per grim of tissue),

the Sray (Gy) (100 reds, or I Joule per kilogram of medlim),

the ran (the red corrected for the radiation quality under

consideration), and

the Sievert (100 rem).

Dose rate: The extent of biological damage can also vary with the rate

it which a given dose is administered (absorbed), especially for low-LET

radiations. As will be discussed below, biological tissues possess some

capability of repairing sub-lethal demage from Ionizing radiation. For low-

LET radiation (that tends to produce sub-lethal dosage to cells) and low dose

rates or divided doses, repair mechanisms my to some extent counteract

radiation damage as it occurs whereas at low-LET/high dose-rates, the repair

* capacity can be overwhelmed. With high-LET radiation, where damage is more

4likely to be non-repairable, dose rate is less influential.

Tissue and field: Some tissues are more radlosensitive than others.

Proliferating cells (.. hemopoletic stem cells) are more sensitive than

non-proliferating cells, with the period of chromom formation being most

sensitive and the period of onset of DNA synthesis being relatively resis-

tint. Some types of damage are produced at lower doses than are others, and

the dose required for a given effect is Influenced by the proportion of the
tissue or organim (the Ofieldm) that Is irradiated. There Is also a genetic

cmponent to radioresistanceP. For instance, same types of microorganisms

show much greater radioresistance than others. Repair capability Is one of

many factors that contribute te variations In sensitivity aOn tissues or

organisms.

ImI



Modifiers: Modifiers of the radiobiological response to ionizing radii-

tion must be included in the list of variables governing the nature of radia-

tion injury. Both sensitizers (e.9., oxygen) and protectors (e.9., gluta-

thione, tocopherol) may be present and the net effect of the presence of

modifiers will be determined by the type of modifier present, their concen-

tration and relative potency. These topics are discussed more fully in §I1.

3. Critical Radiatlo. Targts.

Much effort in the field of radioblology has been devoted to the identi-

fication of the critical radiation target whose inactivation leads to cell

death. Whereas recent observations on this problem suggest that the critical

factor may be the interrelationships between several targets [106], some

evidence is presented below for the idea that Individual targets can be Iden-

tified as being of overriding importance for cell inactivation.

Nucleic Acids: A number of lines of evidence show that DNA is a critical

target for radiation damage. Whereas other molecules and structures, such as

enzymes and membranes, can be damaged by radiation, effects on DNA are more

likely to have negative consequences for the organism. A radietion-induced

defect in only one molecule of DNA can theoretically bring about the death of

the cell, the death of the entire organism (if the defect Is a carcinogenic
one) or a severe abnormality In the progeny of the damaged cell or organism
(if the defect Is a mutagenic one). One would not expect the effects of a

single lesion in a non-nucleic acid molecule or structure to have such signi-
ficant effects.

Reasons for the identification of DNA as the critical target molecule

for ionizing radiation are briefly sumarized In Chapter 14 of the monograph

by Dertinger and Jung [120]. Perhaps the most persuasive evidence Is the

correlation of radiation sensitivity (in viruses, bacteria, yeast, cultured

cells, and plants) with DNA content, rather than with the size of the cell or
.N some other variable.

Ionizing radiation brings about changes in both the physical/chemical

and functional characteristics of OM (216]. Radiation-induced free radicals

end Ions chemically disrupt the ONA molecule In a nmor of ways. Aomic

h)drogen produced by water radiolysis attacks the double bonds of the purine

and pyriaidine bases, and can thus prodvce altered DNA structures. Under

aerobic conditions, the hydroxyl radical attacks the S-4 purine double bonds
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to produce unstable hydroxy peroxides. Radicals produced during water radio-

lysis (hydrogen and hydroxyl free radicals and the aqueous electron) also

attack the deoxyribosyl component of DNA, producing chain breaks. Other

chemical effects include 6reaking of hydrogen bonds which produce conforma-

tional changes, crosslinking of DNA with DNA or protein, and the removal of

the bases.

Functional evidence of radiation-induced degradation of DNA is also

seen, not only in the DNA-mediated production of mutations, birth defects,
arrested cell division, and cancer (see below) but also with the loss of a

* number of other basic DNA functions as summarized by Dertinger and Jung

[120]. These effects include radiation-induced decrease or cessation of

DNA/R A synthesis, loss of infectivity of irradiated bacterlophage, loss of

bacterial transformation ability, dose dependent failure of irradiated DNA in

its action as a primer for nucleic acid synthesis when Incubated with DNA or

RNA polymerase, diminished In-vitro hybridization between irradiated DNA and

messenger RNA. loss of enzyme induction capacity in bacteria, and inactiva-

tion of viruses.
Ionizing radiation has also been shown to disrupt RNA functions in whole

cells and cell-free preparations. The functions of messenger RNA, transfer

RNA, and ribosomal RNA ae inhibited, as was reviewed briefly by Dertinger

and Jung [120]. However, RNA Is more radioresistant than DNA, and transfer

RNA Is more resistant than messenge RNA, when measured by functional para-

meters. These sensitivity relationships may be explained by the relative

sizes (target sizes) of the nucleic acid molecules. It is partly on the

basis of these relative sensitivities that the critical event in radiation-

Induced cell death is considered by most workers to be interference with the

function of DNA.

Membranes: A number of lines of evidence indicate that radiation also

damages mabrenes and mumbrane function. Pmoxldatlon of membrane lipids and

lipids of model mmbranes has been reported by various groups [2S2,251,186,

-371,369,370,491]. Irradiated yeast cells show increased mino acid Influx

and loss of m"rane sulfhydryl groups without survival being affected

[237]. The increased radlosensitivity of ubryonic cells during the period

of gastrulation Is suggested by Dertinger and Jung [120] to be due to an

effect on cell mrnes. Jozwiak E229] reported increased omotic fragility, 1,



of irradiated porcine erythrocytes. Schuarhuis [403] showed that X-Irradia-

tion of human erythrocytes or ghosts produced some cross-linking of membrane

proteins and alteration of the cell shape.
The relationship between lipid peroxidation of model or cellular mem-

branes and radiosensitivity of organisms is not well established. Attempts

to define this relationship by altering the composition of membrane lipids

have produced somewhat equivocal results [138,485]. Incorporation of

polyunsaturated fatty acids (PUFA) Into the membranes of mouse fibroblasts

did not alter the radiosensitivity of these cells [485]; although lipid

peroxidation was not measured in this study, a significant decrease in the

membrane fluidity was observed when cells were supplemented with arachadonic

acid. Similarly, cells of the prokaryote Acholeplasm laidlawli exhibit

similar radiation survival characteristics when grown in the presence or

absence of high concentrations of dilineoylphosphatidylcholine and irradiated

in air at 5 Gy/mn at 37"C [138]. Whtle these conditions are optimal for the

development of lipid peroxidation In model membranes [139], the antioxidant

defenses of these cells may be sufficient to prevent significant lipid

peroxidation from occurring [139,485].

The localization of repair enzymes and nucleases on the cell mbrane

(163,417,44S] means that free radical damage to membranes could interfere

with repair and provides a rationale for regarding membranes as Important

radiation targets. Bacq and Alexander [38] proposed that a significant

component of radiation effects is attributable to cell membrane damage.

However, current evidence concerning radiogenic membrane damage does not

indicate that such damage Is of major significance except at exposure levels

above those were DNA lesions are critical. At very high exposures, early

effects on membrane permeability, t.e. allowing entry of macromolecules into

vascular space, can be life-threatening.

Enzyms: A report of Zajac at ai. [491] showed decreased aromatic

activities in Irradiated microsoms. As reviewed by Singh and Singh (41S],

some enzyes are resistant to radiation, some are inhibited, and some are

stimulated. There Is no clear evidence to date to suggest that enzye inac-

tivation is a critical aspect of radiation damage, altogh several reports

suggest that nucleic acid poljwram may be important targets leading to

cell death (429,430].
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D. Effects of leI.ii. Radiatiom at the Functional and Syntemic

Levels.

1. Call wvval Curves ad Nodils of Cellilar Imactivatiom.
At sufficient dosage, ionizing radiation kills cells or prevents their

proliferation. Much of the current theory concerning the mechanism of

irradiation dwage to biological tissues Is based on observations of

radiation-induced cell inactivation In mnmallan-cell tissue cultures. Use

of such systems enables the researcher to determine the proportion of cells
killed under a given set of experimental conditions. From the slope and form

of curves relating the proportion of cells surviving (plotted with a loga-
ittmic scale) to the dose (linear scale), various inferences and hypotheses

concerning the mechanism of radiation dage may be dram.
One of the characteristics of such curves which is often (but not

always) observed is a so-called *shoulder" - a rather abrupt steepening in
the slope of the curve above some critical dose range. This shoulder (indi-

cating existence of a "threshold" dose, below which the cells are more resis-
tant to the lethal effects of radiation) must be accommodated by any hypothe-

tical model of radiation-induced cell Inactivation. Only two of these models

are mentioned here.

Target Theory: This model of cell inactivation assumes that each effect

of Ionizing radiation stems from a specific critical Ohit" of a particular

target molecule. This theory of radiation action was been dominant for many

years. For a cell survival curve without a shoulder, the logarithm of the
level of Inactivation is directly proportional to the dose. A curve with a

shoulder is interpreted as indicating a system In which accmulation of

multiple hits (a specific number per cell) is required before the final hit

can produce a lethal effect. When the dose is increased sufficiently that

the energy absorption events per cell exceed this number, the low-dose
threshold Is exceeded and the slope of the survival curve steepens.

Repair Theory: This alternative to the multi-hit target theory, as an
explanation of cell survival curve shoulders, rests on the fact that cells

have a limited capability to repair radiation damage. According to this
theory, even a single radiation absorption event may be potentially lethal
but If the lesion is repaired in time (for Instance, before cell division is

attempted), cell death will be avoided. Secause of such repair processes,

cell death a a result of radiation deage Is prevented or the degree of



lethality diminished at lower dose rates. At higher dose rates (those above

the shoulder) the limited repair capacity (or OQ factor") Is saturated and

the slope of the cell survival curve is therefore steeper. Cell survival

curves with no shoulder Indicate that the cells have no repair capability for

the damage being Inflicted under the particular observation conditions.

Several types of observations support this theory, including those of

increased cell survival if a given dose is administered as successive frac-

tions (allowing between-dose repair by a system that would be overloaded if

the same total dose were absorbed without interruption). Support for the
repair theory is based upon the fact that certain chemicals (e.j. caffeine,
actinomycin 0) which are known to inhibit DNA repair also diminish or elimin-

ate cell survival curve shoulders and the fact that curves without shoulders

are seen for certain mutant microorganisms which have repair deficiencies.

Definitive experiments which will support one model of cell inactivation

while being incompatible with others apparently have not been devised. How-

ever, support for the repair theory seems to be steadily Increasing while the
target theory no longer meets with the general acceptance that It enjoyed for

many years. It seems likely that the ultimate model of cell inactivation

will Include elements of both theories.

j 2. Effects an Cell Ilvisiom cmi Ditfermtiatiem.
Chromosomal aberrations: The earliest microscopically apparent effects

of radiation on cells are chromosomal alterations (such as breaks, deletions,

and translocations). These alterations become detectable as the mitotic

apparatus condenses for cell division. The visible chromosomal alterations
are manifestations of earlier physical and chemical alterations of DNA mole-

cules. If these alterations are sufficiently severe, the cell will faill to

complete the transition through mitosis. At lower levels of DNA alteration,

non-lethal dam" may take the form of tranmissable chromosomal abnormal i-
ties (mutations), abnormal differentiation In embryonic cells (terata), or

neoplastic transformation.

Mutation: Putatfons arise when a radiation-induced change In the DNA of

reproductive cells Is non-lethal to the cell and can be rep ced and trans-

mitted during mitosis. The mutation Is normally heteroz'gons (since It is

extremely unlikely that the saw damg would occur to the two separated
gaMits of a chromosme pair) ad Is usually recessive. Such a mutation may

becam apparet only after many Wnrations when tw Individuals bhering the
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mutation happen to mate. Although mutations occur spontaneously, ionizing
radiation increases the mutation frequency. It has been estimated that the

amount of radiation needed to double the spontaneous human mutation rate is
50-250 rads [321].

Teratogensis: Teratogenesis is one of the well-recognized effects of
ionizing radiation E449]. The fetus and embryo are particularly vulnerable
because dividing cells are more sensitive to radiation than are resting
cells. among dividing cells, both undifferentiated &bryonic cells and
differentiated cells are less sensitive than are those which are undergoing
differentiation. Therefore, radiosensitivity varies continuously during
embryonic and fetal development. The nature of a radiation-induced terato-
genic effect will depend In part upon the organ systems undergoing develop-
ment at the time of irradiation. In the mouse, for example, abdominal hernia
can be produced by irradiation on the 4th to the 16th day, cleft palate on
day 8, 10, or 11, skeletal abnormalities on the 9th to 16th day, skull
defects on day 12, etc.

Carcinogenesis: A significant effect of ionizing radiation in moderate
doses is carcinogenesis (72,447,449]. The relationship has been conclusively
shown in humans and other animals. The major types of cancer induced by
hman whole body external radiation are breast, thyroid, and lung cancer, and
leukemia. For equal doses, high-LET radiations such as neutrons are more
carcinogenic than low-LET radiations such as X-rays. It is widely believed
that the essential carcinogenic event Involves alteration of cellular DNA
although this event may not be manifested as cancer for decades.

3. ,ute AdMItim Sjm es.
This term is used to refer to the effects of high-dose, whole-body

radiation. These effects can be subcategorized under 3 major headings: bone
marrow, gastrointestinal, and central nervous system sydroms [361].

Bone Narrow Syndrome: The bone marrow syndrome occurs at the lowest
dosage of the three syndromes (abot 100 A with a fatality threshold at 200
R). This sydrom Is cheracterized by lethal d~mage to bone marrow and
lymphatic steo cells, with consequent depletion of blood cells and the alter-
ation of Imne function. If exposure Is sufficiently severe, death from the
bone marrow smdrome occurs at approximately 3 weeks to 2 months after the
Incidence of radiation.
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Gastrointestinal Syndrome: The gastrointestinal syndrome appears at a

dose of approximately 500 R with lethality at 1000 R. It is characterized by

gastrointestinal symptoms and failure of the Intestinal mucosa which, if
sufficiently severe, will result in death within about 2 weeks.

CNS Syndrome: The central nervous system syndrome, with encephalitis,
meningitis, and CNS edema, Is apparent at 2000 R. At about 5000 R, lethality

from these causes occurs within 2 days - before the otherwise fatal gastroin-
testinal and bone marrow syndromes are expressed.

4. inay of Effects of |omizinu Relaton 0n Biological Systems.
Because normal cell function is more vulnerable to disruption by altera-

tions in DNA molecules than by alterations in molecules of other types,

dinage to DNA is believed to be the most critical effect in cells exposed to
radiation. Depending on the number of cells which are damaged and the inten-
sity of the damage, the effects of whole-body irradiation of animals can

range from minimal and repairable DNA alterations with no life-threatening

effects, through apparent recovery of the organism (but with residual life-
threatening effects such as mutation, teratogenesis, and carcinogenesis), to
massive cell lethality resulting in acute illness and death of the organism.

E. Effctsfg4travoIetM as 8101"121 an .
On the electromagnetic spectrm, ultraviolet radiation (approximately

280 to 400 w in wavelength) falls between the ionizing X- and y-rays (less

than 10 m) and the non-ionizing microwaves and radiowves (greater than
approximately 0.3 cm). Although ultraviolet radiation is not usually includ-
ed within the concept of *ionizing radiation,O its effects on interacton
with biological tissues (particularly in the near ultraviolet wavelengths

below 320 m) have much in common with those of X- and y-rays and will be
discussed with them in the following sections.

Biochemical effects of ultraviolet radiation, Including changes In DNA,
RNA, enzymes (which may be either activated or inactivated), an synthesis of
macromlecules, are reviewed by Parrish at al. (340] and by Hall and ftunt
[190]. As do X- nd y-radiation, near-ultraviolet radiation generates super-
oxide radicals In cell culture growth media, an increase in chromosome
damage, inactivation of enzymes,, oxidation of polyunsaturated lipids, and
m ane damage. In cell culture experiments, these effects can be prevented

by exogenous superoxide dismutase [77,148].



Ultraviolet radiation can be absorbed by a variety of endogenous and

exogenous biological compounds. As with other types of radiation, this

absorption can result in generation of highly reactive, relatively short-

lived intermediates (free radicals and ions) which through further energy

transfers can chemically modify nucleic acids and other biomolecules or

structures. As pointed out In the review by Parrish et al. [340], It has

been concluded that the primary event In lethal ultraviolet Irradiation of

bacteria is alteration of DNA. Ultraviolet inactivation spectra for a wide

variety of cells correspond relatively closely to the absorption spectrum of

DNA, with a peak near 260 no.

The mimicry of X- and y-ray effects by ultraviolet radiation is empha-

sized by Peak and Peak [344]. Among these effects are changes In soluble and

membrane-bound enzymes and in RNA, with these effects of near-ultraviolet

(but not those of far-ultraviolet) being potentiated by oxygen (as are those

of ionizing radiaton). One of the most prominent effects is the induction in

DNA of cyclobutane dimers at adjacent pyrimidine base sites. Peak and Peak

reported that this induction was several orders of magnitude less efficient

and the dimers were more efficiently repaired for near-ultraviolet (greater

than 320 nm) than for far-ultraviolet (less than 320 m) irradiation. Radio-

protectants which were protective against X-rays also protected against near-

but not against far-ultraviolet radiation. In these respects, the effects of

ner-ultraviolet light more closely resemble those of X-rays than they do

those of far-ultraviolet radiation [344].

Carotenoids protect against the adverse effects of ultraviolet irradia-

tion through their action in quenching radiation-induced singlet oxygen and

oxy-radicals [254] (as reviewed by Urbach at al. [451]), while other chemi-

cals may potentiate ultraviolet-Induced carcinognisis.
A F. Effet o f mIiW eite e tluclSsun

1. Tgs of l 1M-te 1MIm oI n1 1-tt.

The tern On-ionizlng radiation* refers to microwave and radiowave (14W
and RF) frequencies on the electromagnetic spectrum. Although frequency

demarcations betoee types of radiation on the spectrum are not precise nor
standardized, Onicrowsv e can be considered to include those with frequen-

cles of approximtel 300 kft to 300 W and "radlowaves" are a sector of the
radiofreqaeny dmin Which Includes all frequencies below 300 MHz (304].
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Microwave and radiowave exposures to the general population are now

pervasive as the result of the large numbers of radio, television, and radar

transmitters In use and the numerous other electromagnetic fields that are

generated in a technological society. Exposures are commonly measured as

OW/sq cm of exposed surface.

2. Contrasts letwen Effects of Ionizing and Nmn-1onIzIG
Radiation.

The most biologically significant contrast between these two types of

radiation is that identified by their characterizations, ionizing and nonion-

izing. Below the infrared frequencies, quantum energies are too low to

induce electronic excitations but are sufficient for resonance absorption.

Therefore, radiation in the MW/RF ranges does not transfer Its energy to

biological molecules by the formation of chemically reactive ion pairs and

free radicals. Rather, most of the energy transfer is accomplished by simple

thermal conversion. This difference in the mode of energy deposition in

Irradiated tissue results in profound qualitative differences in the types

and significance of resultant injury to the tissue.

While It Is clear that at the most common levels of exposure, the health

effects of non-ionizing radiatoh or* not compapable to those of tflnizing

radiation, In practical significance it Is also true that they are less well

unoerstood. There is still a residuum of uncertainty concerning the funda-

mentil question of whether there are any adverse health effects of microwave

and radiofrequency radiation which are not due to simple heat injury result-

Ing From the thermal conversion of the absorbed energy.

Biological effects of non-ionizing radiation have been reviewed [181])

under the auspices of the NATO Scientific Affairs Division. The collection

reveals areas of agreemnt, disagreement, and uncertainty concerning Interac-

tions of microwave and radiofrequency radiation with tissue. There Is

general agreement that tissue absorption of non-ionizing radiant energy is

predominantly mediated by water, with conversion of the absorbed radiant

energy to heat. Nigh intensity exposures lead to Irreversible thermal

Injury.

There Is less general agreement as to whether low-intensity MW/RF expo-

sures can also lead to non-themal reversible or Irreversible effects.

Kaiser (232] states that e,., well documented biological effects exist which

wise from an Irradiation at very low intensities (... below 10 mgar's)
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where thermal effects can be excluded" and cites several studies. Reference

is made to a theoretical concept which assumes the existence of metastable

oscillating systems (e.i. in membranes) which are self-sustained by metabol-

Ic energy in special active states and can be triggered to a biological

response by non-thermal absorption of low-intensity MWRF radiation. The

paper by Grundler (185] reaffirms previously published observations of

changes in yeast growth rate caused by low intensity MW radiation with the

effects being dependent on frequency and not correlated with power density in

the range of 6 to 34 lW cr 2 .

Berteaud [59] suggests that thermal-gradient-mediated phase transitions

in membrane lipids may be a primary site of NI/RF tissue alterations, even

when no thermal gradients are apparent to the investigator. In contrast,

Michaelson [305] reviews reported biological effects of RF/MW energy and

finds no adequately documented evidence of non-thermal responses.

In any case, It is clear that except for the straightforward thermal

injury of very high intensity MW/RF radiation, the biological effects of

non-ionizing radiation are uncertain and are not comparable to those of

ionizing radiation.

There has been no suggestion that chemical protection from non-ionizing

radiation injury might be feasible. Work concerning protection has Instead

focussed on shielding and other dose-attenuation strategies. Therefore, MW

and RF radiation will not be considered further In this review.

11. Emlosmm Factors Atch Influemce Radlosensltlvity.

A number of characteristics of cellular biochemistry and physiology

Interact to determine natural or Inherent radiosensitivity of both cells and

the higher level structures which they coqrise. Since some exogenous chemi-

cal radioprotectors may exert their effect by altering the normal balance

between these endogenous factors, it Is Instructive to begin with a brief

discussion of these factors and their relative effects. Some of these fac-

tors may be exploited for therapeutic gain to either increase or decrease

*~e&I radiosensitivity whereas others are not amenable to manipulation.

A. I.
lrw deposition within a biological saple Is dependent on a number of

ftsfcat Ifetors (as discussed In JI.C.2) whereas dage to critical targets

(91.CJ) I4 lflhe by the Isterastlen of efergy with the molecules which
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comprise the cell matrix. The deposition of energy in the target molecules

themselves has been referred to as direct action whereas deposition of energy

in the surrounding medium, with subsequent transfer to the critical targets,

is referred to as indirect action. Since 55-70% of the cell mass Is water

[134), and since the absorption of energy In a mixture is In direct propor-

tion to the mass ratio of its constituents [241], the products of water

radiolysis as denoted in equation 1 have been thought to figure heavily in

radiation damage to cells.

(1) H20 . L H' + "0H + e'aq + "2 11O2 +H2

The formation of these highly reactive species has been extensively

studied [92,130,415]. The deposition of energy is not uniform in radielyzed

water [284,405]. Approximately 10-14 sec after a pulse of high energy

radiation, fast electrons interact with water molecules to produce the

primary species of water radiolysis, according to equations 2-4.

(2) H10 + e'fast H20+ + e- + e'fast t . 10-1 sec [125]

(3) V4o+ + H2o -N--- W +  0" t4 • 0Z'sgec [21]

(4) e- + water - e- q t - 10-1 sec [105]

These primary products of water radiolysis are formed in mall localized

regions known as spurs, of approximately 2 n radius. The e'aq is formed

throughout the spur whereas the formation of N0 + and .OH are located
primarily In the core of the spur in a sphere of - 0.75 ra radius. These

primary species undergo radical reactions in the spurs betwen 10-14 to 10-12

seconds by reactions 5-8.

(5) e-aq + HS0 . .. * +20 k - 2.4 x 100 Wsec'1  (17S]

(6) eaq + *OH .. OW k • 3.0 x 10 ° X'1sec"1 [193]

(7) e@eq + e-aq +1It  2OH" k 4.5 x 10' 'sac " [17s]

(8) "9 + " 02 k - 5.0 x 10' N'rscl [291]

As the spur enlarges and the radical products begin to diffuse out into

the surrounding medit, they undeg ructie. with ether radicals, toming
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radical and neutral molecular products (equations 9-14).

(9) e- 4 H. + H+-. H2  k -2.5 X 1010 W'sec-1  (193]
(10) -ON + . M2~ - i0 k - 7.0 x 10' Pr'sec" (441]
(11) e-aq + N202  ON'-.. +$ -OR* k -1.2 x 1010 Or1 sec- ( 193]
(12) N- + K2 02 -. H20 + -ON k - 9.0 x 10' If 1sec 1(432]

(13) -ON + IN02 -.- 20 + I40 k - 2.3 x 10' W'sec' (440]
(14) -ON + N2. H20 + 4* k - 6.0 x 10' Or 1sec ( 441]

Within 10'3scC of the receipt of the radiation pulse, the reactions of the
primary free radicals are complete and a homogeneous solution of the products

of water radiolysis as shown in reaction 1 has been formed. The yield of
these species per 100 eV of absorbed energy (the G-value) Is approximately as
is shown in reaction 15 (93].
(15) 4.2 K20~.1-

2.7 e &q+ 2.7 Hs0+aq + 2.7 ON- + 0.6 H- + 0.45 Hr + 0.7H4202

Within a spur at < 10-12 sec after radiation incidence, the concentra-
tion of No and e aq may reach 10 and 100 Of respectively (415], while in
the core of the spur, He and ON- may be formed at concentrations which
approach 0.5 and 2 M respectively (130,227,228,405]. As the dimensions of
the spur increase over time and the products of water radiolysis undergo

their reactions, the concentrations of the reactive species decrease so that

by to-'sec a homogeneous solution is formed with concentrations of radicals
which are orders of magnitude lower than what is initially formed
(10- 2sec) in the core of the spur on interaction of water radiolysis

products with molecular oxygen.
The yield and nature of radical and molecular species formed on irradia-

tion of water Is influenced to a great degree by the presene of molecular
oxygen (reviewed by [76]). N~lecular oxygen has a high affinity for the

reducing radicals H* and e-aq, forming perhysroxyl

(16) H* * 0 N k -1.9 x10O0 Wsec1  (432]

(17) Caq It a 2.0 x 10* W'sec 1 94

(equain 16) and supereuide anion radicals (equation 17)0 respectively. The

17



rates of these reactions are so high that in oxygen saturated water, few

solutes can compete with oxygen. Thus by 10- sec after irradiation, the

radiolysis products in oxygenated water include:
(18) H0N * +"ON + 02"1 + H2 + H2 02

Oxygen interacts with the hydroxyl radical only under conditions of extremely

high p4; under these conditions the ozonide ion 0 " Is formed.

The reactions between organic compounds and the primary products of

water radiolysis have been studied extensively. Under anoxic conditions,

reactions of the hydrated electron and the hydrogen atom will be important.

Reactions between the hydrated electron (e-aq) and organic compounds are,

by definition, electron transfer processes. Since one-electron transfer

reactions with most organic compounds do not produce stable species, the

primary reaction products undergo secondary reactions to produce stable

products. The hydrated electron undergoes addition reactions witt many

organic compounds, depending on their electron affinity and redox potentials

(27,193]. The hydrogen atom (H.) participates in addition reactions with

sites of unsaturation in organic compounds, abstraction of hydrogen from

organic cmpounds and charge transfer reactions with metal ions [26.28]. The

hydroxyl radical similarly reacts by hydrogen abstraction, addition to sites

of unsaturation and electron transfer [153]. The reactivities of the

superoxide anion radical [399] and the perhydroxyl radical [64] have been
reviewed. In each case, the reactions of transients formed from water (and

oxygen, if present) Involve a competition between reactions of the radical

species with organic solutes (equation 19) and with water (equations ZOa-c)

and the ratio of these reactions will depend upon the strength of the

carbon-hydrogen bond and the stability of the free radicals produced.

(19) RH + e'aq or -ON or H" w radical products

* (ZOa) e'aq NO ' H'+OI"
(20b) -ON +g Hj .o + OH" -
(20c) H +HO H2 + "HO

The relative importance of direct and indirect effects In the genesis of

radiation dieage has long been debated. Whereas these effects are concep-

tually distinct, the practical boundarles between the. hve b eceme blurred as

Is



more is learned about the radiation chemistry of water. The practical dif-

ference between direct interaction of a target molecule with photons or Comp-
ton electrons (e'fast In equation 2) and the presence of a target molecule

very close to a water radiolysis spur having very high concentrations of

e-aq and *OH is not clear [425]. Furthermore, the direct effects of

radiation do not always result in damage at the site of energy absorption, as

direct effects may also involve energy transfer processes [75,198]. Never-

theless, water does contribute to the expression of radiation effects in some

simple model systems [34]. However, water content is not a variable which is

amenable to manipulation during the exposure of mwmalian cells to radiation,

so while water radiolysis must be taken into account when describing the

mechanisms by which radiation effects are produced, we are not able to alter

this variable to change the radiosensitivity in higher cellular systems.

9. The Oxyen Effect.
1. Seflmltion and Historical Notes.

Few substances have a more pronounced effect on cellular response to

radiation than oxygen. As defined in radiobfology, the oxygen effect refers
to the increase in the sensitivity of cells to ionizing radiation as the

concentration of oxygen is increased from zero to a fixed value [244]. This

effect was first noted by Holthusen in 1921 in experiments with Ascaris eggs

[208]. At the time, this effect was incorrectly ascribed to the non-dividing

nature of these cells under anaerobic conditions. Some years later, Anderson

and Turkowitz defined the absence of oxygen during Irradiation as the primary
* factor, showing that yeast cells dividing anaerobically were similary protec-

ted during hypoxia relative to the aerobic state [29]. Studies in a variety

of test systems noted the sensitivity to oxygen (reviewed by Patt [342]), but
studies conducted by Nottram [318] and later by Gray and colleagues [14]

quantified this relationship, noted its clinical relevance, and brought It to

the attention of radiation therapists.
2. Th" ft u #ANcNm=" Ratio.

Survival curves (plotting the logarithm of the surviving fraction of

cells [ordinate] against radiation dose [abscissa]; see §I.D.1) for mmalian
cells irradiated in the presence or absence of oxygen show the same shape.

However, the dose of radiation required to achieve a given level of effect
(to reduce cell survival to a given level) is greater in the absence of oxy-

gen than In Its presence. The ratio of the dose required to achieve a given



cell survival In the presence of oxygen to that dose required to achieve the

same effect under anoxic conditions is referred to as the oxygen enhancement

ratio (O.E.R.). Although there Is some controversy about the magnitude of

the oxygen effect at low radiation doses [276,381,382](cf[243,244]), the

effects of oxygen are said to be "dose-multiplying", that is, independent of

the dose of radiation and the survival level. The O.E.R. varies with the

type of radiation (see §I.C.2) and decreases with increasing Linear Energy

Transfer (§;.C.2)[46]. For sparsely ionizing radiations such as X- and

y-rays, the O.E.R. has a value of between 2.5 and 3. Dose multiplication by

oxygen requires the replacement of the anaerobic dose term (0) In algebraic

relationships describing the survival of cells by a multiple of D, without

deviating from the fitted curve [14].

In studies of the effect of oxygen on the radiosensitivity of isolated

macromolecules, a rather confusing picture emerges. The inactivation of

enzymes such as ribonuclease [206], carboxypeptidases t112]. trypsin [294],

ferricytochrome c [47] and others (cited in [215]) shows a dependence on the

presence of oxygen. Yet, oxygen has been reported to confer protection in

such systems in certain cases [120]. For the inactivation of transforming

DNA, similar discrepancies have been noted. Several authors report no effect

of oxygen [114,215] while others report protection by oxygen [68,195]. In

relating these studies to the enhancement of damage by oxygen in whole cells

or tissues, one must recognize that in the absence of the normal cellular

architecture and biochemistry, markedly different physicochemical processes
may dominate (see §1I.D).

3. ChWacteristics of On,, Enhacaut.
8. 080WM S~c as OwneM CscMtWraties.

SSoon after the presence of oxygen was recognized as an Important factor

influencing radiation sensitivity, the dependence of this effect on oxygen

concentration was determined. Alper and Howard-Flanders [22] showed that for

' * E. coil B Irradiated in suspension, the sensitivity (Sp) of cells at oxygen

partial pressure P relative to their sensitivity in anoxia (SN) follows the

relationship

(21) SaN

where m and K are constants. Th factor am represents the maxim sensitiza-

tion, which my be Interpreted as the oxygen enhancement ratio at high doses
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of radiation. The constant K relates the rate of Increase In sensitivity to

the increase In the oxygen partial pressure.

Graphically, equation 21 describes a hyperbola, with radiation sensitiv-

Ity Increasing rapidly as oxygen concentration increases from zero to about

0.5 - 1% 0 (Figure 1). Further increases up to the concentration of oxygen

In air (21%) or to 100% serve to increase radlosensitivity only marginally.

For the conditions under which equation 21 applies, m has a value of about

three and K (interpreted as the partial pressure of oxygen at which the

effect is half maximal (K a -4- ) Is about S-10 umol/l [22]. The experi

mental determination of the applicability of this equation is difficult

[13] and is subject to the errors associated with the manipulation of low

oxygen concentrations [100]. Perhaps for these reasons, although earlier

studies had shown the general applicability of equation 21 to bacteria

[22], yeast [211] and mamalian cells [122,109],

b.- Pelt.., iUM -•

(Figure 1)

more recent research has described some deviation from this hyperbolic

relationship. Millar et 1. [309] have shown that by careful measurement of

oxygen tensions In the range of 1-10 yN, a biphasic relationship Is obtained

between oxygen concentration and enhanced radiosensitivity of Chinese hamster

V79-7S3B cells. This separation of the oxygen effect Into components depend-

Ing on oxygen concentration had been noted earlier In dry [35,3S9] and wet

[152,436] bacterial spores and has been observed recently In yeast [314]. In

an Interesting re-analysis, Powers (357] has shown that even In data purport-

Ing to show a fit to the single component hyperbolic curve (equation 21)

(274,483], transformations of the equation and a re-analysis of the data
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according to a linearized relationship show two components to the oxygen

effect. While non-linearity of this oxygen concentration-effect relationship

may indicate multiple components which contribute to the oxygen effect, it is

incorrect to attempt to deduce the parametirs of these sub-components from a

plot describing their combined effect [18].

b. Tim Scale of the OInM Effect.

Investigations into the timescale in which oxygen acts to enhance radia-

tion sensitivity can be categorized into two groups. Experiments on the

pre-irradiation effect of oxygen, in which cells are allowed contact with

oxygen for a fixed amount of time prior to irradiation, have provided

evidence about the critical sites of oxygen-dependent radiation damage.

Conversely, the admission of oxygen at fixed times post irradiation provides

data on the lifetimes of that portion of anoxic radiation damage which can be

altered by oxygen.
I. Pre-lrradiltlom )QOn Effects.

Howard-Flanders and Moore [213] studied the effect of transferring

bacteria between gases of defined composition. Using an apparatus with a

resolution time of 20 milliseconds (msec), they found that the bacillus

Sigella flexneri exhibited a radiation response characteristic of the gas in

which they were Irradiated - irrespective of their incubation in a different

gas more than 20 msec prior to irradiation. Thus, In bacteria, the radiosen-

sitizing effect of oxygen is fully expressed within 20 msec. These results

were confirmed by Shenoy et al. [408] using a rapid mixing technique for

Serratia marcescens over a wide range of oxygen concentrations. However in

experiments with m malan cells In culture, two components to the oxygen

effect were resolved in time [8,408]. At low concentrations of oxygen

(1-10), the cells required 40 msec contact with oxygen to achieve their full

oxygen enhancement ratio. At higher concentrations of oxygen, the full

O.E.R. was achieved at earlier times. These data were discussed in terms of

several hypotheses, the most plausible of which is the existence of two sites

within the cell at which oxygen may interact. Subsequent studies using a

carefully designed technique of a similar concept [481] with another mmal-
ion cell line have shown a similar timescale, though no evidence of time-

resolvable components (482,483]. Thus, in m alian calls, the effects of
oxygen are expressed within several tens of msec after contact with the

cells.
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I. Pst-Irrdtattm RIme. Effects.
Oxygen added 20 msec after the anoxic irradiation of bacteria was with-

out effect in altering the radiation response [213]. From this result, It

was concluded that the reactive species, which are produced within these

cells by radiation, decay in less than 20 msec to products which do not

interact with oxygen. The refinement of fast response techniques has consi-

derably shortened this estimate of the maximum lifetime of oxygen dependent

damage. In fully hydrated bacterial spores, oxygen-dependent damage decays
relatively slowly, following two parallel first-order reactions with half-

lives of 9 and 120 sec [428]. In bacteria (149,478] and mammalian cells

(273], the double pulse technique [150] yields an estimate of 0.1 msec for

the maximum lifetime of oxygen-dependent damage. Conversely, the oxygen

explosion method [302] consistently measures a half-life for decay of these

species from 0.5 to 1 msec [301,303,477]. Although some disagreement has

been noted, probably arising from the different techniques employed, it is

clear that the transients produced upon irradiation which are induced in

bacteria and mamalian cells under anoxic conditions are short lived, react

rapidly with oxygen [303], and decay to products which do not interact with

oxygen to increase radiation sensitivity.

4. Necham l of the Guns. Effect.
The early theories of the mechanism by which oxygen increases the radio-

sensitivity of biological material involved the biochemical and physiological

effects of oxygen which were known at the time [342]. However, as details of

this sensitization were investigated, it became apparent that a physico-chem-

ical mechanism of action was a more likely explanation for much of the oxygen

effect. This view was championed by L.H. Gray and his colleagues whose argu-
ments have been reviewed [356]. The temperature and concentration effects,

the time of action of oxygen, and the variation of the oxygen effect with

variations in radiation quality (LET) are all consistent with a physico-

chemical mechanism.

The nature of this physico-chemical mechanism is the focus of the

oxygen-fixation hypothesis [17,19,22]. In this theory, ionizing radiation is

presumed to create free radicals within the target molecules of the cell

which may undergo a number of reactions. If oxygen is present during or

Imediately after Irradiation, this first reaction of the radiation-induced
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radical (the "metionic" reaction [19]) will be to combine with oxygen, form-

ing a species which prevents normal biologic functioning of the target

(equation 22).

h . 02
(22) R ---. * f -- ROO

Since the lifetimes of most free radicals are short, oxygen must be
present during or immediately after irradiation to be effective in fixing

radiation damage; if oxygen is not present, the radical decays either to Its

original, biologically active form, or to an alternative damaged state

[404]. To a first approximation, this theory fits some of the data recorded

on the effect of oxygen in a wide variety of biological test systems. Thus,

the requirement for oxygen to be present during or immediately after irradia-

tion fits the observed lifetime of oxygen-dependent dam (JII.S.3.b).

Also, the older measures of the dependence of radiosensitization on oxygen

concentration described by equation 22 are consistent with one Interpretation

of that relation - the competition between oxygen fixation of radiation-
Induced radicals and their spontaneous decay or chemical repair by endogenous

processes (§11.0).

Not all data fit such an idealized model of oxygen radiosensititzation as
the oxygen-fixation hypothesis. The effects of radiation on different end-

points of radiation damage (such as mutagenesis and the loss of reproductive

capacity) were found to be differently modified by oxygen. In particular,
the production of mutants by irradiation was found to be enhanced by oxygen

to a lesser degree than the overall killing (reproductive sterilization) of
j the same bacterial strains [45,79]. Thus two types of damage were postulated

[16]. One type, termed Type N, Is relatively insensitive to oxygen and was

Identified tentatively as involving damage to the nucleic acid of the cell.

The other component of damage, Type 0, has a large oxygen enhancement ratio;
no Identification of the site of this damage was proposed. The experimental

identification of multiple components to the oxygen effect (§II.S.3) presents

the tempting possibility that Type N/Type 0 damage may have a physical

explanation and may be amenable to direct observation. However, insufficient

Information is available on the relevant characteristics of these resolvable

components to the oxygen effect to warrant speculation in this regard E14].
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Whereas oxygen exerts much of its effect by interaction with radiation-

induced free radicals, other effects of oxygen are also well known. Certain-

ly the concentration of oxygen in the post-irradiation culture of cells

affects their expression of radiation damage [109,110]. The influence of

oxygen on the repair of radiobiological damage (widely Interpreted as the

recovery from sub-lethal or potentially lethal damage; §III.C.5) has received

considerable attention [245]. Extremely hypoxic cells may be incapable of

repairing sublethal or potentially lethal damage. This inhibition of repair

probably results from metabolic deprivation and occurs at oxygen concentra-

tions (< 50 ppm 02) well below the radiobiological oxygen effect (< 1000 ppm

02). Thus biochemical processes involving oxygen may also contribute to its

radiobiological effects.

The significance of the mechanism of oxygen radiosensitization for chem-

ical radioprotection lies in the Interaction of the oxygen effect with other

modifiers of cellular radlosensitivity. The pervasive distribution of oxygen

and its profound influence on response to radiation sets practical limits to

the maximum efficacy of some other modifiers, particularly in, but not limit-

ed to, those cases where the second modifier alters the oxygen effect. The

elucidation of mechanisms of action of radloprotectors may be approached by

studying their influence on the oxygen effect [357] or its coqsonents, in

those test systems where oxygen has been shown to exert multiple effects.

C. Ea mmees Rad retecttive Substane.
$ I. t1ols.

a. Slutatliem - Siessinsis ad Regiation.
Glutathione (L.y-glutmyl-L-cysteinylglycine)(GSH) Is a unique tripep-

tide that is characterized by a y-glutamyl bond, which confers resistance to

normal peptidase activity, and a thiol group, which Is a good nucleophile,

with a dissociation constant (pK&) of 8.56 (for reviews see [53,184,295,

296.372,374,375] and [253]). At the normal redox status of cells, essential-

-' ly all Intracellular glutathione is present in the thiol form (reduced gluta-

thione, GSH) with less than S% present as glutathione disulfide (GSSG). The

total cellular pool of glutathione also Includes low molecular weight mixed

disulfides, protein mixed disulfides and thioesters.

Extracellular space, Including various body fluids such as bile, plasma

and the glomerular filtrate, contains BSHI GSSG and mixed disulfides general-

ly at very low (iN) concentrations [296,490). These concentrations are two
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or three orders of magnitude less than the glutathione concentration present
in erythrocytes and body tissues in general. The glandular portions of the

stomach and liver have the highest known concentrations of glutathione fol-
lowed by the spleen, kidney, lung, and other organs and tissues [74,2S3].
The turnover of glutathione during normal physiological conditions is contin- f
uous with a wide variation of rates depending on the organ or tissue. The
half-life of glutathione varies by tissue, being about one to three minutes

in the plasma compartment, one hour in the kidney, two to three hours in the
liver, and several days in the spleen, lung, nervous tissue and erythrocytes
[2S3]. The liver is particularly susceptible to rapid and extensive deple-
tion of glutathione by the formation of glutathione conjugates which are
catalyzed by glutathione S-transferases.

Other thiols present in the liver include coenzyme A (1-2 m in mito-
chondria; u1S aN in cytosol [217,420]) and cysteine (0.1 to 0.4 4); other

thiols are thought to be of lesser concentration. The cysteine concentration
is tightly controlled since a high concentration appears to be toxic to the

cell. Cystefne dfoxygenase is a highly inducible enzyme capable of rapid

oxidation of cysteine to cysteine sulfinate which is rapidly converted to

pyruvate and sulfite. Sulfite is then oxidized to sulfate within the inter-
membrane space of mitochondria by sulfite oxidase (for a review see (53]).

Depletion of liver glutathione is followed by a rapid resynthesis In !
which the cysteine pool turns over every two or three minutes. It has been

firmly established that during a high rate of cysteine consumption, the liver

utilizes the cystathionine pathway for Its de novo synthesis of cysteine. In

this pathway, the sulfur atom of methionine and the carbon skeleton of serine
are utilized with the intermediate formation of cystathionine [3763. Exogen-

ous sources of cysteine such as -acetylcysteine and L-2-oxothiazolldine-4

carboxylate promote glutathione synthesis.

Whereas the regulation of the cystathionine pathway is not well under-
stood, the rapid response to lowred glutathione levels Is well demonstra-
ted. Often, extensive resynthesis is accompanied by a so called "overshoot"
in glutathioe with a higher level after resynthesis than prior to deple-
tion. This phenommen remains unexplained and potentially could be of value

In maximizing cellular protection against the effects of ionizing radiation.
An extremely tmportant aspect of glutathione Is its Interorgan status

and fonctien. Since It appears that the liver Is largely responsible for
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maintenance of the supply of plasma glutathione, and with the rapid turnover

of plasma glutathione (1 to 3 minutes), the mechanism and regulation of the

efflux of liver glutathione Into this compartment Is of considerable interest

(for reviews see [53,295] and (184]). While much remains to be understood,

it Is clearly established that the efflux Is almost exclusively as GSH and

not GSSG. Some controversy exists concerning the relationship between the

intracellular level of glutathione and the rate of Its efflux [9,133].

The degradation of glutathione is initiated by y-glutmyltransferase (EC

2.3.2.2)(5-glutmylpeptide:mino acid 5-glutanyltransferase) which catalyzes

the removal of the y-glutmyl moiety of glutathione (for a review see

[295]). The enzyme can catalyze the transfer of the y-glutanyl moiety to

water or to certain y-glutamyl acceptor amino acids and dipeptides If these

acceptors are at millimolar concentrations. owever, only under very speci- p

fic conditions does it appear that this enzyme utilizes such amino acid

substrates In place of water [295]. y-Glutmyltransferase is located almost

exclusively in the membranes of certain cells with its active site exposed to

the extracellular space [448]. The kidney enzyme activity is localized in

the brush border of the proximal tubular epithelium [413]. Only extracellu-

lar substrates containing the y-glutamyl moiety appear susceptible to hydro-

lysis or transpeptidation. The rate of efflux of cellular glutathione,

mainly from the liver-, governs the rate of plasma glutathione degradation

principally by the extracellular y-glutmyltransferase of the kidney. Thus,

under normal physiological conditions, the rate of turnover of liver gluta-

thione Is dependent almost exclusively on the rate of efflux of glutathione

Into the plasma compartment [299]. It has been estimated that about 80% of

the total glutathione effluent from the liver Is into this compartment while

the remaining 20% Is excreted into the bile [375]. Extracellular y-glutayl-

4 transferase In the biliary and intestinal epithelial cells degrade rapidly

any GS1, GSSG, mixed d1sulfides or glutathione S-conjugates excreted via this

route. However, millimolar concentrations of BSH and 6SSG are present in the

bile at the point of entry into the bile and nearly one half of such gluta-

thione can be degraded In the bile duct under certain conditions [Reed and

Ellis, unpublished data, 1982].
Recent evidence suggests that the kidney has the ability to alter the

redox status of extracellular glutathione as well as all other thiols that

have ben examnied. Ans early observation [25] on the oxidation of NS to
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GSSG found that this reaction was catalyzed by an enzyme In kidney homogenate

which was distinct from y-glutmyltransferase. Renal thiol oxidase activity

has been characterized in detail and many of its properties established

[328,329,331,334]. This oxidase is a component of the plasma membrane of the

kidney tubular epithelium and catalyzes the oxidation of extracellular thfols

only. Substrates include GSH, cysteine, N-acetylcysteine and dithiothreitol

[328,329). In contrast to y-glutamyltransferase which ts located in the

brush border region, thiol oxidase is in the vasolateral part of the tubular

epithelial plasma membrane. It has been concluded that Its activity is
probably restricted to thiols present in plasma [334].

Limited Information exists on the uptake and reduction of low molecular-

weight disulfides. It has been shown that freshly isolated renal cells are

capable of the uptake and reduction of cystine to cysteine which probably

occurs via a GSH-dependent sequence of reactions catalyzed by cystosolfc

thiol transferase and glutathione reductase [NAD(P)4](EC 1.6.4.2;

NAD(P)H:oxidized glutathione oxidoreductase) [327,334]. Some evidence exists

that renal cells [330] and lung utilize extracellular GSSG in a manner that

does not involve extracellular degradation prior to cellular uptake. b

Isolated cells appear to be useful In studying the metabolism of thera-

peutically important disulfide drugs. 2-*ercaptoethane sulfonate, a uropro-

tective agent [83] against oxazaphosphorine cytostatics, can be detected as

the disulfide form In the plasma. However, the pharmacologically active

form, the thiol, Is excreted In the urine [334]. The disulfide form is

readily taken up by isolated renal cells and reduced to the thlol [332,

334]. Freshly isolated heptocytes do not take up the disulfide form and do

not accumulate either the thiol or the disulfide form. Freshly isolated

hepatocytes also fail to take up appreciable amounts of cystine or to accumu-
late either cysteine or cystine [373]. These cells accumulate momentarily

both cysteine and cystine in the presence of high concentrations of cysteine
([52,3]. Hepatocytes Isolated aseptically and placed In culture adapt within

hours to greatly enhanced uptake and utilization of cystie [Klingensmith and

Reed, unpublished data, 1984).

The failure of freshly isolated hepatocytes to take up and reduce low
molecular weight thiols appears to be a failure of transport and not reduc-

tion. Evidence for this conclusion comes from cell-free experiments with

IIver and kidney homogeoates that represent a reconstitvted system containing



thiol transferme and glutathione reductase [NA(P)H]. This system, under a

% gas atmosphere, readily converted 2-mrcaptoethane sulfonate (diculfide
form) to the thiol form by both liver and kidney preparations [334]. There-

fore, a deficiency In disulfide uptake capability appears to exist with hepa-

tocytes but not renal cells. It can be assumed that maintenance of the

thiol/disulfide redox status in the plasma compartment is complex and related

to several Important processes. Initially the efflux of GSH from the liver

provides the redox potential to convert cystine (which is the predominant

form of the total cysteine/cystine in plasma) to cysteine and the mixed

disulfide of cysteine and glutathione (373]. Cysteine and, in turn any

remaining GSH, can convert other disulfides to mixed disulfides and their

respective thiol forms. Utilization of disulfide and mixed disulfide by the

kidney also contributes to an overall decrease of disulfide and mixed disulf-

ide in plasma. Other cell types will also cause a decrease by uptake, but

again, variations in ability for uptake and possible limitation in rate of

reduction of mixed disulfide is observed [84]. In vivo oxidation of plasma

thiols by renal thiol oxidase to disulfides remains to be demonstrated at the

presumed concentrations of thiols in plasma because of the low affinity of

this enzyme and the resulting high Km value [328,329].

In mmmals, GSH appears to be an important physiological reservoir for

cysteine. The rapid response of the cystathionine pathway for converting

methionine sulfur and serine carbon atoms to cystelne appears limited largely

to the liver.

The half-life of GSH in the blood Is very short (1-3 minutes) because of

the high degree of activity of extracellular enzymes in the the kidney.

These enzymes function in the degradation of GS, GSSG and related mixed

disulfides of GSH (for a review see [184]). Extracellular release of

cysteine and cystine (from GSH and GSSG, respectively) is Initiated by

y-glutmyltransferase followed by the action of one or more dipeptidases

located primarily extracellularly in the kidney and Intestines. This process

may be essential to provide the cysteine and cystine that certain cell types

reufre for growth and maintenance of Intracellular 694. A constant efflux

of 65H from the liver, coupled with these extrahepatic enzymes functions to

provide 4 constant cysteine supply; a portion of this released cysteine and

cystine returns to the liver to help maintain the liver 6SH content.
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Separation of the mitochondrial and cytoplasmic compartments In isolated

hepatocytes by digitonin disruption has led to the demonstration of the meta-

bolic independence of the mitochondrial pool of GSH from that of the cyto-

plasm [299). Hepatocytes subjected to acute oxidative challenge have shown a

greater correlation of cell viability with the mitochondrial GSH pool than

with that in the cytoplasm (for a review see [374]). Such depletion is with-

out appreciable loss of cell viability unless accompanied by the additional

stress that can occur in the presence of many drugs [374].

Reduced oxygen species (02 , "OH, H202 ) may be derived from the

consequences of ionizing radiation, the redox cycling of chemical agents, or

endogenous production during normal metabolism. The deleterious effects of

these species are collectively known as oxidative stress and may lead to cell

death. Oxidative stress is known to be limited by the glutathione redox

cycle. Metabolism of cytosolic and mitochondrial hydrogen peroxide by gluta-

thione peroxidase Is firmly established (for a review see [235]). GSH

provides the required reducing equivalents, and glutathione reductase utiliz-

es NAD(P)H reducing equivalents to maintain a continuous redox pathway to

limit the hydrogen peroxide concentrations to steady state micromolar

levels. There is scant evidence to establish the rate limiting step during a

high level of oxidative stress.

I. Thiols and Free Radical Reactions.
As we have discussed In previous sections, free radical reactions play a

major role in radiation-induced cellular damage. Consequently, many schemes

for the protection of cell constituents from radiation damage involve protec-

tion by free radical mediated processes. Relevant to this topic, we briefly

review the large body of literature on the types of free radicals formed from

glutathione and other thiols, their mechanisms of formation and their subse-
1- quent reactions. Finally, theories of thiol-assisted radioprotection by free

radical processes are presented as a stimulus to further experiments in this

research area.

1. Foe of Sulfur-centered Radicals.
The most prominent sulfur-centered radical Is RS., the thiyl radical.

Other sulfur-centered radical species include perthiyl radicals (RSS), the
radical anion (RSSR)", and the radical cations %S , (RS)2*6,

and (RSSR)'. The production and disposition of all these radical
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species is a complex process Involving reactions which occur at rates close

to their diffusion-controlled limit. Whereas much evidence has accumulated

Indicating that thiyl radicals are formed as transient species in cellular

systems, the identification and biological role for these other radical

species is not as well understood.

Thtyl radicals may be produced by hjdrogen atom abstraction from the

corresponding thiol either by carbon-centered radicals (equation 23) or by

hydroxyl radicals (equation 24).

(23) R' + R'SH - RH + R'S"

(24) *ON + RSH(RS-) - RS- + H20 (OHr)

Furthermore, thiyl radicals may be formed upon reduction of transition metals

by thiols (equation 25).

(25) RSH + CU2  -.w RS" + Cu+ + H +

These three equations serve to place thiyl radicals at the center of molecu-

lar "repair" of direct radiation damage (equation 23), the scavenging of

water radiolysis products in the indirect effects of radiation (equation 24)

and the possible production of toxic products upon the autoxidation of thiols

(equation 25).

Estimates of the rate of molecular "repair" of cellular targets by

thiols have been obtained by measuring the rates of reaction of various

thiols with model carbon-centered radicals. In solutions containing methanol

and cysteamine, pulse radiolytic experiments show that the rate constant for

equation 23 (in which R' - "CKIOH and RH - CHSOH) Is k a 6.8 x 107
YW1 s-1 [6]. This rate constant holds true (within an order of magnitude)

for a variety of thiols and a small number of aliphatic carbon-centered

radicals, measured with either the equilibrium

(26) RS. + RS" q-a (RSSR)'" 0 9.4 t 0.5 x 103 W" c'" 1 )

at a pH close to the pKa of the thlol [6,7] or with the probe 2,2'-azino-

di-(3-ethylbenzthiazoline-6-sulfonate) (ABTS, € 1s e 3.6 x 10 R- 1 cm l )
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[484]. However, under the experimental conditions required to measure molec-

ular repair by the reaction shown In equation 26, the extent of the repair

reaction (equation 23) varies widely with even minor changes in the structure

of the carbon-centered radical. Thus, Baker et a1. [44] found (a) nearly

100% repair by the reaction shown in equation 23 to occur with glutathlone

and carbon-centered radicals from simple aliphatic alcohols, (b) lower repair

for biological materials such as glucose and deoxyribose, and (c) no measur-

able repair for adenoslne-5'-phosphate. With more complex target molecules,

the carbon-centered radicals may undergo competing reactions [437], and the

demonstration of molecular repair is constrained by the measurement techni-

ques which have been employed. Perhaps with the probe ASTS [484], estimates

of the molecular repair by thiols will be extended to more complex biomolec-

ules [See §V.1].

Similar pulse radiolysis experiments have measured the rate constants of

the reaction between thiols and the hydroxyl radical (equation 24). For RSH

* glutathione, the rate constant for reaction 24 (k24,) is 1.3 x 1010 or' s-'

[367]; the formation of the thiyl radical from the reaction of a nmber of
thiols with "O* approximate this value [204]. However, thiols may differ

in their contribution to molecular "repairO by their susceptibility to alter-

ation at other sites In the molecule, as may be the case for glutathione

[416]. This susceptibility may influence their capacity for radical

scavenging.

Thiyl radicals may also be produced by the one-electron reduction of

transition metals accompanying thiol oxidation to the disulfide [192] or to

those oxygenated forms which identification has been hampered by instabil-

ity. The autoxidation of cysteine has been reported to produce toxic metabo-

lites, presumably reactive forms of oxygen [394], which may be responsible

for the toxicity associated with the administration of cysteine [394,470].

Disulfides also produce thlyl radicals during Irradiation through their
interaction with organic carbon-centered radicals (equation 27), inorganic

radicals (equation 26) and the hydroxyl radical (equation 29).

(27) R * 'SR' - RSR' + R'S"

(28) .po5  RSSR -h*RSPO.RS
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(29) OH RSSR - RSOH RS"

It has been suggested that for disulfides such as cystine or penicill-

amine, reaction 30 may be quite Important [33]. This

(30) RSSR + *ON - RSS" + R(-H) + H20

reaction certainly operates for bis(t-butyl) disulfide in which the t-butyl

fragment Is relatively stable [71] and contributes to the spectrum of

products produced during the irradiation of cystine [363], penicillamine

[364], and cystine-penicillimine mixed disulfide (365]. However, evidence

from pulse rediolysis [367] and product analysis [336,337,338,363,364,365]

experiments suggests that for many biologically relevant disulfides, reaction

29 predominates.

As mentioned above, the radical anion (RSSR)'" Is formed by the

reversible equilibritu of equation 26. Presumably, this species may also

arise from direct electron capture of e-aq, a fact which has been exploited

in measuring the rate of decay of this Ion In anaerobic experiments [367].

The radical cations formed from sulfides and disulfides [(R2S)
+ ',

(R2 S.'.SR2 )] and (RSSR)+ * have quite Interesting properties [33], but

the formation and structure of these species have unknown relevance to

radiation biology.

II. Reactions of Sulfur-cmtered Radicals.

By definition, the hydrogen donation (or electron transfer) from

sulfur-containing species to carbon-centered target molecules (equation 23)

may only be thought of as repair of radiation damage If the sulfur-centered

radicals produced In the reaction are less daging than the original target

radical. Given the somewhat lower reactivity of sulfur-centered radicals

compared with their carbon-centered congeners, this requirment may be met.

However, sulfur-centered radicals still are very reactive, and may undergo a

variety of reactions. Although these reactions (generally) serve to detoxify

the radical from which they were produced, notable exaples may be found of

the production of toxic species Involved In the disposition of sulfur-center-

ed radicals.

The thiyl radical reacts in a variety of ways that may allow restoration

of, or ay destroy, the original state of the thial. The thlyl radical
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may dimerize with radical decomposition, forming the disulfide (equation

31). Alternatively, addition of molecular oxygen to the thfyl radical

(31) RS + RS' - RSSR

(32) RS" + N2 - RSO2 "

(equation 32) proceeds with a rate dependent on the structure of the thiol,

being high for cysteine and glutathione (8 and 1.6 x 10' 'lsec" 1, respec-

tively) [48,367,400] and somewhat lower for simpler thiols (e.g., ethane-
thiol, penicillamine). Adition of oxygen to thiyl radicals results in

products (RSOD.), a portion of which may react to regenerate the original

thiol. One product of this oxidation is the sulfinic acid (GRS02 - 1.8

for glutathione [260]) which may dimerize and subsequently react with a thiol
to yield RSSR, 02 and the sulfinic acid (equations 33, 34). Thus a disulfide

is produced by the radiolysis of glutathione which may be reduced

(33) RSG. + RS02 -- RS02SR + 02
(34) RSOzSR + RSH - RSSR + RSO2H

to the thiol by the action of enzymes such as glutathione reductase in the

presence of NAD(P)H. Other stable products of the radiolysis of glutathione

at neutral p4 include y-glutumylserylglycine, GSO2H, and the disulfide GSSG

(260].

Thlyl radicals may also Interact with certain biological materials which

4are classified as antioxidants, reducing agents, or electron acceptors. The

electron transfer from a-tocopherol (vitmin E) or ascorbate (vitanin C) has

been proposed to dispose of the thiyl radicals formed during molecular

*repair* of cellular targets (equation 35 and 36)E484]. This reaction

(3S) GS.. AH & "GS* - A * ' k+ A -6 x 10' Or'sec" (159]
(36) S" + Vitt E 6S" + VIt E"

follows the general order of radical reactivities (C > S > 0) since it is

likely that these products are initially oxygen-centered radicals which may
subsquently form resonance-stabtlind structures with delocalization of the
electron density at the o gen allm [292]. Subsequent electron transfer to
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biologic acceptor molecules (S1I.C.2.3.4) will detoxify the radicals and
complete the cascade of electron transfer from ultimate acceptor to target
radical (lI1.C.1.c).

Whereas the sulfur-containing radical cations and anions may be of less
radiobiologic importance, they undergo several interesting reactions. The
radical anion (RSSR)- reacts with molecular oxygen to generate super-

oxide radical anion and the disulfide (equation 37)(97]. Also, the radical

cation of

(37) (RS .-. SR)- + 02 -b 0 2 -. + RSSR k34, - 1.4 x W0 or'sec'

(38) CH3 -g+H2 CH2C" (NH3)COON -.- CH3-&,CI CH2 CONS+ + CO2

methionine is subject to an intrwiolecular reaction which results in decar-
boxylation and the formation of a carbon-centered radical (203] (equation

38). Thus not all sulfur-centered radicals are disposed without potentially

harmful effects.

c. Overall Schme of Sulfur-centered Radical Reactios.
The formation and disposition of sulfur-centered radicals can be siamar-

ized In several figures. Firstly, the chemical production and general order

of reactivity of the sulfur-centered radical cations. anions and neutral

species are shown in Figure 2. Highly oxidizing inorganic radicals such as

8r2 " and the hydroxyl radical may cause the formation of

N Vit E ox

or2 ~Vit C o

R2S.O.S 2  RS.*.SR

(Figure 2)

sulf ide radical cations. Sulf ide radical Cations are mr Oxidizing than the
disulfide radical Cations which, to turn are more powerful oxifents than the
thiyl radicals.
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The reaction scheme from left to right Is equivalent to electron transfer

from right to left In the figure. In this figure, PZ+ " refers to the

radicals produced upon oxidation of phenothiazine drugs. Several drugs of

this class have been found to participate in radical reactions similar to

those of the thlyl radicals [43]; their known antioxidant effects have been
ascribed, at least In part, to their radical transfer properties [452].

A strong case is presently being made for thiol participation in coup-

lI ng hydrogen donation reactions, as In the molecular OrepairO of radiation

damage, with electron transfer reactions leading ultimately to non-toxic

biochemical reactions. The scheme of this coupling of hydrogen and electron

transfer is shown In Figure 3 [484]. The initial step of molecular

R" RSH PZ' Vit E Vit C"

RH RS, PZ Vit E" Vit C

R" e RSH PZ - Vit E e' Vit C

Figure 3

"repair" Is hydrogen donation by a thiol; If this reaction occurs In vivo,

RSH would be mainly glutathione. Except for thiyl radical formation, these

reactions are envisioned as electron transfer reactions [160]. Obviously, In

the absence of drug treatent, phenothtazine radical cations would not parti-

cipate; recently the direct reaction of thiyl radicals with ascorbate anion

has been observed [159]. The precise nature of the ultimate electron donor

is speculative; reduced nicotinamide dinucleotide (NAOH) and reduced cyto-

chrome c may react at rapid rates with the glutathione thlyl radical [1593.
Figure 3 presents an attractive picture for the disposition of

radiation-induced free radicals. However, It rests on some limited data

collected In highly purified model systems under controlled conditions.
Several problms concerning the general applicability of this scheme must be

resolved. First, the Initial reaction certainly occurs for simple aliphatic

caiboncentered radicals (1 L.C.1.b). However when a variety of structures
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are tested and the extent of reaction is determined, it has been noted that
when the target radical is more biologically relevant, this reaction Is quan-

titatively less Imortant [44]. Furthermore, kinetic treatment of these data

suggests that when competing reactions vie for the initially formed target

radical, including intramolecular reactions, only a subset of the reaction
products may be susceptible to this "repair" reaction (437]. Once thiyl

radicals are formed from the target carbon-centered radicals, the extent of
their participation (as outlined) in the electron transfer reactions outlined

must be determined. As yet, no studies have been undertaken to address this
point (See §V.5). Until these questions are resolved, the hypothesis for

sequential free radical repair to progressively less noxious radical species,

although conceptually (chemically) possible, must be considered somewhat

(biologically) speculative.
2. Vitamins ad AtlouIdants.

Vitamin E is an efficient inhibitor of radical based reactions including

lipid peroxidation In vivo (for a review see E439].)

1, - 12  f, a CH3 a Tocopherol (a T):

14R a CHS; R2 a H *I-Tocopherol (0-T): R,-

Rt a CI; R3  H 7 Tocopherol (y T):

Rf - CHI; R2 - RS - H a Tocopherol (6 T):

(Vitamin E)

Autoxtdation, In simle terms, Is a chain reaction as described below in a

reaction scheme of Burton and Ingold [90]. RH represents the organic sub-

strate and initiation:
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(39) Initiation: RH - R. or ROO-
(40) Propagation: R. + 02 - ROO.

(41) ROO- + HR' - ROON + R'.

(42) ROO. + RH . ROOR"H (aR.)

(43) Termination: ROO- + ROO - non-radical products

ROO. the peroxy radical as the product.

Several individual tocopherols constitute vitamin E, and only recently
has their relative and the absolute antioxidant effectiveness In vitro been

clarified [90]. These chain-breaking phenolic antioxidants, rOt, shorte
the oxidation chain. Whereas chain termination by reaction 43 is suppressed,

termination may occur by reactions 44 and 45 with n being the stoichiometric

factor for the antioxidant.

(44) ROO. + ArOH-. ROON + ArO.
(45) (n-1) ROO- + ArO.--g nonradical products

In an inhibited reaction in which all ArO. are destroyed by reaction 45,

the rate of autoxidation has been described by the following equation:

-d[02 ] It (RH] Ri

dt nks [ArON]

where R1 is the rate of chain initiation.

The abstraction by peroxyl radicals of the phenolic hydrogens from these

tocopherols has been described as the rate constant k,,s. The values of k,

for a-, B-, y-, and 6- tocopherols are 23.5, 16.6, 15.9 and 6.5 x I0s N"1

s" , respectively, at 30"C [90]. Each tocopherol was found to react with

exactly two peroxyl radicals and all the tocopherols appear to be exception-

ally good chain-breaking antioxidants In vitro. Further, the data of Burton

and Ingold [90] are in agreement with in vivo tests of the relative biologi-
cal activities of these tocopherols; a-T >$-T >y-T >6-T [96].

Rate constants have been reported for the reaction of superoxide radi-

cals with ferricytochrome c, k a 2.6 1 0.2 x 10s W" s-1 at pH 9.0 and ascor-

bate, k - 1.52 t 0.1 x 10s M1 s-1 at pH 9.9 [65]. It has been suggested

that the facile oxidation of ascorbate by 02- probably occurs via hydrogen

atom transfer [399].
In aqueous media, reduced paraquat (methyl viologen N + ) combines with

02 to give a stoichimetric yteld of 02:. In an aprotic solvent such as
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dimethylformaide, MV' and 027 combine in a 1:1 stoichlometry to form
irreversibly a peroxy zwItterion adduct [M + 02:] with the -00- group at

the 2-position [320]. Rapid decomposition via ring rupture and oxidative
reactions yield a multitude of products [320].

Interestingly, no evidence has been obtained to Indicate that 02: acts
as an initiator of radical chain reactions [399]. The powerful nucleophil-
ic properties of 02; in aprotic solvents do not exist in aqueous media [399].

S. The cmpetition NOW.
For nearly 30 years workers have extended the original observation of

Alper and Howard-Flanders (22] on the role of oxygen In modifying the radio-

sensitivity of E. colt. Although molecular oxygen has the ability to
increase the sensitivity of living cells to ionizing radiation more than any

other agent, compounds containing the thol moiety are by far the most active

protective agents known. Thus, the quantitative relationship between ioniz-

ing radiation injury and oxygen supply continues to provide a useful means of

describing the interactions of a variety of endogenous and exogenous agents

that modify such injury. There is general agreement that the oxygen effect

is mainly the reaction of oxygen with radiation Induced free radicals at

target sites which can result In permanent damage. Competition for these
target site free radicals involves a large number of compounds with thiols

having the greatest effectiveness.

Further understanding has led to the idea that an additional type of

radiation damage occurs which is Independent of oxygen [120]. Revesz and

coworkers [380] have extended the model to consider the initial reaction of

radiation induced radicals with oxygen as being reversible and subject to

biochemical alterations. The chemical events of ionizing radiation damage

and biochemical processes are described In Figure 4 (1984, Lazlo Rdvesz,

personal communication).

Much of the recent work of Rovesz and coworkers involves the effects of
ionizing radiation on glutathione deficient and proficient cells. The in

vitro clonogenic survival of human fibroblasts with a genetically defined
glutathione deficiency have been studied along with genetically related

fibroblasts without glutathione deficiency [121]. The survival curves,

obtained in an oxygen atmosphere, of both cell lines were similar but the
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Figure 4. Schmatic illustration of the radiochamtcal and biochemical

processes postulated by the theory. R" a unspecific radical; T
functional target; T * target radical; Sa. Sb. Sc and Sd a
repairing species; 0N - molecular oxygen; L - reactive species in absence of

02; F a species which fixes damage irreversibly; a, a, y - constants

Indicating proportions; ko , kSb and k1 * constants indicating

reaction rates.

R" * Sa - SaR - R

TO 2 Sc  . SCTO2  . T

T" + 02 -* TO2

TN + Fc FcTO2  lethal
ks TSb

R" + T-- TO T +Sb--'* TSbT

TL+ Sd SdTL - T

(1 -Y)
To + L TL

TL + Fd FdTL lethal

I II

Radiochomfcal Processes Biochemical Processes

r0
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survival curves obtained in anoxic (argon) atmospheres Indicated an
oxygen enhancement ratio (OER) of about 1.5 for glutathione deficient cells.

An OER of 2.9 was found when comparing the oxic and anoxic survival curves of
the control cell line.

This evidence was used to support the theory of a competition model for

oxygen and glutathione specifically since other thiols (cysteine and

y-glutmylcystene) were present In the glutathione deficient cells [1213.

Furthermore, these studies suggest that the major effect of exogenous thiols

may be their scavenging action whereas endogenous glutathione exerts its

major effect In the radical competition process with oxygen. Glutathione

appears to be extrmely efficient in the repair of radiation damage due to

its high ability to eliaiate free radicals by hydrogen donation. Revesz

[377) has proposed a qualitative difference between GSK' and GSHr cells in

their ability to repair oxically induced DNA damage even though no difference

was observed in GSe4 cells rejoining DNA single strand breaks (SSb) induced

by hypoxia and radiation. However, GSH" cells had a decreased capacity to

repair oxically induced injuries which could indicate that the repair of SSb
induced under oxic conditions requires GSH [377]. Exogenous thiols including

GSH and dithiothreitol (DOT) could promote rejoining of SSb. On the other

hand, GSH depletion with diethylmaleate does not change the rate of SSb

repair [151]. The role of thiols in DNA repair is quite unclear and needs

careful evaluation (See §I .C.5.b).
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111. Omical Radipretection.
A. PIwstoloical Resonses to Chmical Noctlation of Celllr

Wad rtectlon Sistm.
Genetic and somatic alterations of cellular constituents occur during

exposure to ionizing radiation. The extent of these alterations Is related

to the status of the cellular defense systems that protect cellular consti-

tuents and stabilize their functions. This section examines the general

nature of radioprotectors and outlines the physiological responses involved

in cellular radioprotection. Pertinent to Obuilt-In" radioprotection at the

cellular level during irradiation is the status of naturally occurring

substances. Additionally, compartmentation of cellular protective systems

must be considered since its role is beginning to be placed more in perspec-
tive relative to cell viability during chemical intoxication.

Cell viability and even cell survival Is dependent upon the various
inherent protective features. The protection of vital cellular constituents

appears dependent on the structural Integrity of the cell, the compartmenta-
tion of both functions and constituents, and the presence of certain
enzymes. These enzymes include glutathione S-transferases, epoxide hydro-
lases, superoxide dismutases, catalase, glutathione peroxidases and gluta-

thione reductase. Essential low molecular weight constituents include water,
thiol compounds (particularly glutathione), vitamins C and E and the vitamin

A precursor, $-carotene, although an absolute requirement for any one of

these agents for cellular radioprotection has not been ascertained.

1. emeral Coepts.
Cellular defense against injury can be defined in terms of the nature of

the species causing the injury. In the case of ionizing radiation, at least

a portion of that Injury results from such highly reactive intermediates as

the hydroxyl radical. These agents possess an inadequate electron density
and attack cellular constituents at positions of higher electron density.

The rates of such reactions are less dependent on the (relatively minor)

variations In the inadequate electron density of the Injurious species as

they are on the electron density of the damaged cellular constituent. Reac-
tions of this type are known to be susceptible to the presence of small

amounts of agents that either liberate or scavenge radicals [433]. The
Importance of agents such as Fe" + Iron (for liberation) and vitamin E (for
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scavenging of radicals), continues to be a subject of lively polemics among
toxicologists.

Reduced species of dioxygen (including those that are free radicals) are

endogenous to cells and tissues. However, ionizing radiation can result in a

magnification of the total cellular content or the subcellular concentration

of these reactive Intermediates.

Cellular constituents that protect against free radical-med iated cellu-

lar dmage reside In the subcellular compartments. These subcellular organ-

elle compartments are important, but attention must also be paid to the

distribution characteristics of both the prooxidants and antioxidants between
the aqueous and lipid phases. Additionally, oxidation-reduction (redox)

potentials vary with the degree of complexation with metal ions, macromole-
cules, etc. Thus the general nature of these reactions and even the protec-

tive systems are Influenced by the particular milieu of the cellular inter-
I or.

Specific enz)es have a major responsibility for cellular protection

against radical-mediated toxicity. The glutathione peroxidase/reductase
redox cycle enzymes, catalase, and superoxide dIsmutases (SOD) catalyze reac-

tions that are capable of realizing very rapid decreases In the concentration

of reduced oxygen Intermediates (Fig. 5).

II
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Glutathione GSH) Is a substrate for the glutathione peroxidase/reductase

redox cycle (an enzymic reaction), but in non-enz)mic reactions the cell

primarily utilizes 0-carotene, a-tocopherol, ascorbic acid and possibly uric

acid (24] as important cellular protective agents.

2. Cellular Aspects of Radtoprotection Systm.

a. tln.
The concentration and nature of nonprotein thiols and protein sulfhydryl

groups has been a topic of long-standing interest. Vital cellular functions

of protein sulfhydryls are numergus and cannot be enumerated here. However,

the dynamic nature and relatively high concentration of protein sulfhydryl

groups, which may exceed the concentration of total nonprotein thiols, (6-10

mlH in liver) are closely related to the status and functions of nonprotein

thiols. Protection of protein thiols from alterations (including the homeo-

stasis oxidation state) involves the total cellular thiol:disulfide potential

[494]. Subcellular distribution and concentrations of both non-protein

thiols and protein sulfhydryls may relate closely to their respective func-

tions. Nore than 90% of the total non-protein thiols present in cell;

appears to be glutathione. The presence of a discrete mitochondrial pool of

glutathione was proposed by Vignais and Vignais [466]. Mitochondria retained

GSH during experiments involving nonaqueous media [224,225]. Isolated rat

mitochondria contain about 10% of the total hepatic qlutathione with about

90% of it being present as reduced glutathione [225]. Wahilander et al.

(472] reported the mitochondrial glutathione content to be 13% of total liver

content by a nonaqueous extraction procedure.

Meredith and Reed [299] suggested that based on compartment water space

[140,472], the mitochondrion maintains a higher glutathione concentration

than the cytoplam, 10 mM versus 7 mil, respectively. The apparent Impermea-

bility of the inner membrane of the mitochondrion led to the speculation that

mitochondria maintain intrmitochondrial glutathione by in sLitu synthesis

[472]. Higashi et al. [199) have suggested that liver glutathione is a two-

compartment physiological reservoir of L-cysteine. A labile compartment

,* serves as a cysteine reservoir and as a more stable compartment, which Is not

readily available even during starvation. Cho et al. (102] have provided

confirmatory evidence in that fasted and refed rats maintain a constant level

of plama cystine.
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Studies on glutathione biosynthesis demonstrate separate pools of gluta-

thione in the cytosol and the mitochondria with the in vivo turnover half-

lives being 2 and 30 hr, respectively [299]. Short-term starvation depleted

the cytosol pool but not the mitochondrial pool.

Differential depletion of cytosolic and mitochondrial glutethione of

freshly isolated hepatocytes with glutathione depleting agents has permitted

an evaluation of the protective role of intracellular glutathione. Chemical

intoxication observed with ethacrynic acid [299], acetaminophen [298] or

bromobenzene, suggests that short-term depletion of cytosolic glutathione

does not cause a significant loss of cell viability. If depletion of cyto-

solic glutathione was accompanied by partial depletion of mitochondrial

glutathione, then a rapid increase in loss of cell viability was observed.

The effects of thiol depletion on cellular radlosensitivity have recently

been investigated (e.[., (246]). Much more needs to be understood about the

consequences of depletion of the pools of intracellular glutathione.

Hill and 8urk [200] have speculated that vitamin E-deficient hepatocytes

are more susceptible to oxidative stress than normal hepatocytes. Also,

other oxidant defenses were unable to prevent lipid peroxidation that occur-

red under the incubation conditions employed in their experiments. Loss of

cell viability during incubation was not accompanied by depletion of gluta-

thione which indicates that some aspect of membrane fragility may relate to a

specific function of vitamin E. Compartmentation may have an important role

in these observations.

h. dmu CIclIn.

A second role for glutathione Is in a powerful radioprotection system

against ionizing radiation damage which is mediated via the glutathione redox

cycle. The cellular effects associated with reduced oxygen metabolism and

subsequent redox cycling and lipid peroxidation have been reviewed by Kappus

and Sies [235]. We are Just beginning to understand and assess the energy

required by the consumption of reducing equivalents that result from redox

cycling.

The combined effects of protection by superoxide dismutase, glutathione

peroxidase and glutathione reductase Is:
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(46) 4 0'. 49 --- 2 M202 +02

(47) 2 H202 - 2 "20 + 02

(48) Net: 4 0;- + 4 N .e. 2 420 + 3 02

Since superoxide anion radicals can migrate across artificial lipid

bilayer membranes at temperatures above the lipid phase-transition [393],

they may traverse membranes in general. Hoever, their crossing membranes of

erythrocytes [283] and granulocytes (170] is thought to occur via anion

channels. This point could be important since most quinones are in membrane

and the concentration of 02 in the lipid plasma membrane Is 8 times that in

the aqueous medium [362]. Thus, superoxide anion radicals may be migrating

in both directions across membranes from their site of formation. The rapid

reaction of semiquinones with oxygen would indicate that semiquinones would

not diffuse far in the presence of oxygen [360]. Protection by superoxide

dismutase may indicate some superoxide anion production outside of cells

(360].
Protection from reduced oxygen species therefore may occur in membranes

by specific membrane-associated proteins which are capable of membrane pro-

tection and therefore can be shown to limit lipid peroxidation of membrane-

associated polyunsaturated lipids.

An excellent example of the complexity of redox cycling has been discus-

sed by Biaglow [61] concerning the reduction of nitro compounds that are

radiosensitizers. Reduction of the nitro functional group to nitro radical

anions is catalyzed by reductases including NADPH cytochrome P-450 reductase

(AYH Lu, personal cumunication, 1982). The fate of such radicals depends on

many factors including 02 concentration and GSH. 02 and GSH compete for the

nitro radical anion electron and in turn form superoxide anion radical and

glutathione thiyl radical, GS*, which then forms glutathione disulfide

(SSG). Decreasing the concentration of either 02 or GSH appears to Increase

eacromolecular demage. Such damage has been shown to be coincident with

radiation damage and currently is being investigated extensively for thera-

peutic application In cancer treambet with nitro compounds such as misonidi-

aI*le Ca].
Protection against quinones appears to involve several aspects of cellu-

1r function Involving oxygen reduction. Quinones can undergo either two-
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electron reduction to corresponding hydroquinones or one-electron reduction

to the corresponding semiquinone radicals [219]. However, the main cytotoxic

effects of quinones are thought to be mediated through one-electron reduction

to the semiquinone radical [35]. This radical is known to be capable of the

formation of the superoxide anion radical by the one-electron reduction of

molecular oxygen [165].

It has been suggested that, whereas the rate of NADPH formation is not

limiting for monooxygenase activity, it may be rate-limiting for quinone-

stimulated superoxide formation (360]. Simple quinones stimulate the

formation of 02; by Isolated rat hepatocytes at rates up to 15 nmoles/min per

106 cells. Destruction of 02: and water formation would require the consump-

tion of 15 moles/min per 106 cells of Intracellular GSH or nearly a complete

turnover of GSH to GSSG and reduction back to GSH in two minutes. An equal

quantity (7.5 moles) of NADPH must be furnished. However, Sies et al.,

[410,411] have calculated the maximum rate of NADPH production to be equiva-

lent to 15 moles/min per 106 cells.

Sies et al., (411] have reviewed the metabolism of organic hydroperox-

ides and concluded that enzymatic reduction of organic hydroperoxides is the

result of the activities of two GSH-requiring enzymes, glutathione peroxidase

[EC 1.11.1.9] and glutathione transferase [EC 2.5.1.18]. Additional protec-

tion against hydroperoxides is afforded by endogenous "antioxidantsO includ-

ing a-tocopherol, ascorbic acid and $-carotene. Synthetic antioxidants such

as butylhy 1roxytoluene (BHT) are thought to act primarily as mimics of

a-tocopherol in the termination of the free radical reaction sequence.

The rate of cellular generation of NN)PH from NADP4 appears to be rate

limiting for monooxyenase reactions. In Intact liver, cytochrome P-450-

dependent drug metabolim Is decreased when an organic hydroperoxide Is being

reduced to the corresponding alcohol by glutathione peroxidase and, in turn,

GSSG consumes NADPH-reducing equivalents In the conversion of newly generated

BSSG to 6SH [171].
A serious question has been raised concerning the role hydrogen peroxide

may have in microsomal lipid peroxidation. Hydrogen peroxide reacts with

reduced transition metals, especially ferrous Iron, to generate the most

oxidative oxygen species, the highly reactive hydroxyl radical, .O. 1his

radical is thought to predominate In initiation of microsomal lipid peroxide-

tion. However, orehouse et&1. (317] have concluded that hydroxyl radicals
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generated from hydrogen peroxide do not Initiate microsomel lipid perox-

idation.

NADPH-dependent lipid peroxidation, which Is initiated by NADPH-cyto-

chrome P-450 reductase, may occur by hydroxyl radical formation through an

iron-catalyzed, Haber-Weiss reaction [158]. Such lipid peroxidation may
arise also from the formation of a reactive ADP-Fe-oxygen complex [442].

Possible events Include the reduction of perferryl Ion to the ferryl ion for

initiation of lipid peroxidation. Superoxide anion may be the reductant:

(49) A)P-Fes* + 0:2 .* ADP-Fe 2402
followed by

(50) AOP-Fe2 02  ADP-[Feo]2 + H20+2 H+

In contrast, NADPH-cytochrome P-450 reductase-dependent lipid peroxida-

t ion with EDTA-Fe may occur through a hydroxyl ion-dependent mechanism rather
than an ADP ferrous ion-oxygen type of complex [88].

The effect of redox cycling can now be extended to calcium. Hydroperox-
ides can modulate the redox state of pyridine nucleotides and the calcium

balance in rat liver mitochondria via the participation of the glutathione
redox cycle involving glutathione peroxidase and glutathione reductase

[280]. These workers have proposed that the redox state of mitochondrial

pyridine nucleotides can be controlled in part by glutathione peroxidase and

*glutathione reductase and that oxygen metabolites are a factor in the balance

of Ca2+ between mitochondria and extramitochondrial space.
A calciu-dependent process has been described as the comon final path-

way of toxic chemical cell death. Using primary cultures of adult rat hepa-
tocytes, Schanne et al. [401] demonstrated that toxic cell death caused by
ten different chemicals was dependent on extracellular Ca2+ . Similarly,

Chenery et Al. [101] showed that cultured hopatocytes exposed to CCl, and

the calcium ionophort, A23187, were dependent on extracellular Ca" for the
expression of toxicity. These Investigators proposed a two-step mechanism

for toxic cell death. The first step is the disruption of the integrity of

the plIma mmbrane by widely differing mechanisms followed by a con final

step: the influx of extracellular calcium across the dmaged plaim mmbrane.
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More recent experiments cast doubt on the commonal ity of this pathway
for cell death. Recent studies by Acosta and Sorenson [2] have demonstrated
that the toxicity of CdC12 is accelerated in cultured hepatocytes incubated
with calcium-free media. These results are in direct conflict with those

reported by Schanne et al. (401] and Chenery e.t a.l. [101]. In addition,

Smith et al. [418] have demonstrated in freshly isolated hepatocytes that
three different liver cell toxins, CCI,, bromobenzene, and ethylmethane

sulfonate (EMS), are far more toxic to hepatocytes in the absence of extra-
cellular Ca2" than in its presence. These studies suggest that certain
aspects of toxic cell injury are not dependent on extracellular Ca2+.

The reasons for variability in cellular responses to extracellular Ca2+

and chemical toxicants are presently unknown. One can only speculate that
differences in media conditions play an Important role. Reed and Fariss

(374] have shown that the entry of extracellular calcium is not a prerequi-

site for cell death in isolated rat hepatocytes.

It is interesting to speculate that the susceptibility to cell injury

afforded cells in calcium-free media may be the result of Inadequate intra-

cellular Ca2+ concentrations since A23187, permits the influx of extracellu-

lar calcium but does not cause cellular damage [374]. Indeed, these studies

support the contention that the entry of extracellular calcium is not the

cause of cell death but, more likely, the result of cell death.
A puzzling result of the extracellular Ca2  studies is the accelerated

toxic cell injury afforded hepatocytes incubated in calcium-free media. This

phenomenon has been observed with numerous compounds including adrimycin +
bis-(2-chloroethyl)-nitrosourea (ADR-BCNU), CCI, bromobenzene, and EMS which

are depleters of glutathione [418]. Babson et al. [374] have demonstrated

that AOR-SCNU toxicity is dependent on the level of intracellular gluta-

thione. That is, cell death occurs once the level of intracellular SH falls
below 20% of its initial value. Accelerated cell death of hepatocytes
treated with Ca2+-free media resulted from an enhanced loss of intracellular
glutathione [374]. This accelerated loss of glutathione has recently been

shown to be the result of a rapid efflux of GSH which occurs regardless of
the toxin used [374]. Consequently, the accelerated loss of intracellular

glutathione in hepatocytes treated with Ca2+-fm media may explain the
enhanced toxicity observed with ADR-BC or any other compound that relos on

W depletion as its mechanism of toxicity.
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Recent developments suggest that chemically Induced cell injury results

from changes in intracellular Ca2+ homeostasis as opposed to the influx of

extracellular C&2+ . These studies have demonstrated the depression of Ca
2+

sequestration in liver microsomes and mitochondrta after treatment with a

variety of hepatotoxins. Furthermore, this loss In calcium retention appears

to be related to alterations in the status of glutathione and reducing equi-

valents.

I. Theories of Radioprotection.
In the forty years since the research of the Manhattan Project suggested

the possibility of chemical radioprotection, numerous theories have been

proposed to account for the actions of radioprotectors. These theories range

from molecular interactions between radioprotectors and the target molecules,

which are damaged by Ionizing radiation, to events at the organ level which

Influence the state of radiosensitivity of the organism. A theory of radio-

protector action differs from the mechanism of action In that a single

mechanism of action may be involved in several different theories by which

radioprotectors exert their beneficial effects. This relationship should

become clear in this section, in which we review the historical context of

the theories of radioprotector action and explain which mechanisms may be

Involved in each theory. The individual mechanisms of action will be des-

cribed more fully in the following section (§III.C.). Please keep in mind

that several of these theories of radioprotection are mutual ly exclusive;

however, in the absence of conclusive proof that they are not involved in
chemical redioprotection we have chosen to present them in a historical

context. This overview of theories is presented to orient the reader and to

unify the mechanistic concepts to be presented in §III.C. in a field In which
the lines between opposing theoretical frameorks have been quite heavily

* draw.

The radical scavenging theory of radioprotection Involves solely the
Indirect effect of radiation. The Interaction of ionizing radiation with the

solvent in biochemical systes, water, has been described in III.A. The

radicals produced fem water radiolysis (-ON, .14, e-) exert dom-

Ing effects on critical constituents of model cellular system and may be
domaging In the Mole organism, contributing to the s of radiation damage.
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Therefore, the removal of these water radiolysis products before they can
interact with critical targets in cells should confer protection from radia-

tion. This theory of radioprotection was first described when the free

radical nature of radiation damage was first understood in the 1950's. It

has survived to the present largely because at least a portion of the damage

caused by ionizing radiation Is likely the result of indirect action, and

many very efficient radioprotectors are very good scavengers of water-derived

radicals. The evidence for and against radical scavenging as a mechanism of

radloprotector action Is discussed in §III.C.3.a.

2. IjroM Sweatlon to Twet Radicals.
Both the direct and indirect effects of ionizing radiation produce free

radicals in biological materials. Hydroxyl radicals, hydrogen atoms, and

products derived from the aqueous electron, react with organic molecules to

abstract hydrogen atoms from the molecule. Direct effects may also contri-

bute to the formation of species In which a hydrogen atom Is removed from the
starting structure. In these circumstances, restitution of the original

structure requires donation of a hydrogen atom. This hydrogen atom transfer

has been observed between thiols and carbon-centered radicals (see ILi.C.1.

b.1.). In simple systems containing model carbon radicals (derived from

aliphatic alcohols) and biological thiols (_.e. glutathione and cysteine),

hydrogen atom donation with formation of thlyl radicals has been observed.

However, these highly purified systems cannot be considered as directly

comparable to those of cells or tissues, and the relevance of such reactions

to biological target molecules is unknown. The literature on the pros and

cons of hydrogen transfer as a mechanism of radioprotector action is discus-

sed in III.C.3.b.

3. Muxd Oulfid. Fa,,tm.
The mixed disulfide theory was proposed by Eldiarn nd Pihi in the aid-

1960's and applies only to sulfur-containing radioprotectors which can form

mixed disulfides with protein sulfhydryl groups. The effects of ionizing

radiation may be expressed to a certain degree by the loss of biological

function of critical protein molecules. These critical proteins may be

protected from damage by the formation of temporary mixed disulfides In an

exchange reaction which ca be expressed as In equations 51 and 52. The
formation of mixed disulfides

51
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(51) Protein-SN + RSSR - Protein-SSR + RSH

(52) Protetn-SS-Protein + 2 RSH - 2 Proteln-SSR

serves to protect the labile sulfhydryl and disulfide groups on proteins from

oxidative damage due to direct or indirect effects of radiation. The rever-

sal of equations 51 and 52 would regenerate the original protein molecule

after the Ionization and free radical reactions initiated by radiation have

been completed. In this way, enzyme active sites, the conformation of struc-
tural proteins, or critical tonophores may escape radiation damage at their

thiol or disulfide moieties. Thus, the targets of radiation action are

stabilized by mixed disulfide formation; since mixed disulfide formation is

reversible, biologically-competent molecules may be reformed after the
passage of radiation. The evidence for and against this mechanism of radio-
protector action is discussed In §III.C.4.b.

4. blem of Entiluims Red otectsrs.
Revesz and co-workers have proposed that exogenously administered radio-

protective thiols and disulfides act by releasing endogenous radioprotectors

which are responsible for the beneficial effects. This theory is restricted
to exogenous redioprotectors having a thiol or reducible disulfide group,

since the released endogenous radioprotoctors (principally glutathione) are
contained in naturally occurring mixed disulfide forms with cellular

proteins. In a fashion similar to the mixed disulfide theory, the proponents
of this theory have shown that the efficacy of radioprotection by exogenous

4 agents correlates with their glutathlone-releasing potential. The released
glutathione is thought to prevent radiation damage by the other mechanisms of

protection, t.e., by hydrogen transfer reactions, radical scavenging, etc.
This theory is supported by the finding that glutathione may exert protective

activity in ways that may not be mimicked by other thiol-containing radiopro-
tectors [380]. However, more recent research on the nature of those thiols
present In naturally occurring protein-thiol mixed disulfides tends not to
support the theory, because only a mall fraction of the low molecular weight

thiols bound to protein have been Identified as glutathione (81,2?8]. The
evidence for and against this theory of radioprotection Is discussed further
under the title enhanced protection against oxidative stress* in I1II.C.3.c.



S. liednekal Shc.
A theory of radloprotection, which was first proposed In the md-1960's,

and which has received little further direct experimental support. This

theory was proposed by lacq and associates [36,40,42] to overcome what they

viewed as the inadequacies of the mixed disulfide and free radical scavenging

theories of radioprotection. They proposed that radioprotectors (principally

thiol radioprotectors) bind to cell membranes and induce the formation of

lesions in the regulatory processes of the cell which leads to a radioresis-

tint state. The hypothesis would explain the correlation of mixed disulfide

formation with radioprotector efficacy since the formation of mixed disul-

fides was the first step in their proposed cascade of reactions that led to

increased radioresistance. Consequently, no explicit mechanisms for the

increased radioresistance were proposed at the time the hypothesis was formu-

lated. However, the concept of "stress* reactions to a variety of environ-

mental stimuli has recently been the subject of considerable investigation.

Cells subjected to a brief hyperthermic treatment became more resistant to

subsequent heat treatments (review [196]) and this thermotolerance is accom-

panied by specific biochemical changes. In the hour following heat shock,

protein synthesis Is virtually halted and, as translation function returns,

the synthesis of a specific group of proteins is induced (Heat Shock

Proteins, HSP) (226,236]. The synthesis of these proteins appears to be

correlated with the development of thermotolerance [263,270]. These proteins

are also regulated by environmental conditions other than heat shock [233,

264,479] and may be Induced by chemical agents such as sodium arsenite or

ethanol [269]. Concoamittant with the development of thermotolerance, the

yeast Saccharomyces cerevisiae acquires a resistance to radiation damage

possibly by the induction of its DNA repair capacity (313]. The mechanisms

by which thermal and radiation tolerance is increased by heat or these chem-

*ical agents Is unknown. Recent work shows that altered glutathione metabol-

Im is associated with the early stages of this effect [312,315]. Thus It is

teepting to speculate that exogenously supplied thiols may be interacting

with this stress response in some way - either by triggering induction

(althogh in certain cell lines the response requires 8 - 10 hours to achieve

its maximal effect) or by mimicing step(s) further dow the pathway toward

increased resistance. Paradoxically, other experiments have shm that exo-

genous thiols ssitie cells to therml stress. It should be noted that
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these studies [234,315] were all done in the presence of the exogenous thiol,

rather than by treating the cells and washing out the thiol prior to the

second application of heat stress. As heat may increase the autoxidation of

exogenous thiols, this sensitization may be explained by Invoking a heat-

induced increase in the toxicity of the exogenous thiol. However, thiols may

exert effects on cell constituents which result in observable increases in

radiation resistance after they are washed out of cells [14,15,463]. Indeed,

a recent report shows that the brief oxidation of GSH with diamide results in

brief thermosensitizatlon followed by the development of sustained thermo-

tolerance [197]. Thus the induction of a stress response leading to radia-

tion resistance by thiols or other radioprotection coipounds needs to be

investigated (see §V).

6. "WoxIa.

One of the major factors determining the radiosensitivity of a tissue is

the degree of oxygenation during irradiation. As discussed in §I.B., oxygen

contributes to the resulting damage by interacting with free radicals produc-

ed in both target molecules and in the solvent; it thereby increases the
radiation damage which is measured. Consequently, a drug or procedure which

decreases the extent of oxygenation should exhibit a relative radioprotective

effect when compared to the fully oxygenated situation. When the oxygen

effect was first recognized as an important factor in radiobiology in the

19SO's, the concept was imediately applied to explain the radioprotective

, effect of a variety of radioprotectors. Two means by which hypoxia may be

produced in tissues In vivo are by (1) reducing the delivery of oxygen to

tissues either by altering oxygen transport or by redirecting blood flow to

specific organs or portions of organs, or (2) by consuming the oxygen which
is delivered to tissues in chemical or biochemical reactions, thereby limit-

Ing the oxygen available for participation in free radical reactions.

Several hormonal agents may exert at least a portion of their radloprotective

effect by altering blood flow In irradiated organs, thereby causing hypoxia.

Also, at first, the radioprotection shown by sulfhydryl compounds was

explained by the knowi consmption of oxygen during thiol oxidation. While a
portion of the radioprotective efficacy of thiols may be attributed to this

ehaneimc, other factors must certainly also be considered. The evidence for

hypoxie by ether mechanism is considered In 111I.C.2.
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7. Itut la.
The effects of temperature change on biochemical processes are well

known. Consequently, temperature is a variable which has been employed to

alter the radiosensitivity of cells and tissues. Hyperthermia Is a promising

adjuvant technique in cancer therapy, as it increases the susceptibility of

cells to the toxic effects of chemotherapeutic drugs. Acute hyperthermia

also increases the mount of damage produced by a given dose of ionizing

radiation. However, as discussed above (§1I1.B.5. Biochemical Shock), the

stress of hyperthermia is accompanied by adaptive processes which increase

the resistance of cells to radiation. tn contrast, the effects of suboptimal

temperatures have been shown to result In a radioprotective effect [209].

Presumably, this protective effect may be explained by mechanisms which are

different from the induced resistance resulting from prior hyperthermic

exposure. The reduced metabolic activity accompanying hypothermia may allow

more complete and efficent repair of radiation damage [239]. Alternatively,

damage-producing reactions following the absorption of radiation energy may

be slower or less complete and this effect may account for the reduced sensi-

tivity [55]. Drug effects have only infrequently been explained by their

action in causing hypothermia. A portion of the radioprotective activity of

one drug, chlorpromazine, may be due to its ability to lower the body temper-

ature; the protective effect and the profile of body temperature after

chlorpromazine administration are coincident (60]. However, studies suggest

that other drugs which produce hypothermia, including cystemine, cysteine,

serotonin, sodiu fluoroacetate [39], cholinomimetics [424], and cyanide

[458] may not produce the majority of their radioprotective effect by this

mechanism [311].i
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C. Miochemical Nc r!Ism of RadlorOtcter Actim.

1. Pre tlee or nud-ctio of Railatlom Oose.'
a. P hsical skhildins of biological tissm.
b. dminstration of blecklg! * s or chulatrs.

2. Sewressiom of the Fommtion of eactive SMiues.
When oxygen was recognized as an important factor governing the redIa-

tion sensitivity of biological materials, this concept was soon applied to

the mechanism of chemical radioprotectors. Since the maximum dose-reduction
factor which can be obtained for cells in culture or In vivo is approximately

equal to the magnitude of the oxygen effect (§I.B), the reversal of the
oxygen effect was a potential explanation of chemical radioprotection.

Similarly, pharmacological agents known to alter hemodynamics in vivo were
thought to be radioprotective by interfering with the delivery of oxygen to

irradiated tissue (461]. It was shown early on that sulfhydryl radiopro-

tectors incubated in closed vessels can rapidly deplete the solution of its

oxygen content [183]. The evidence for these two mechanisms of action is
reviewed below.

a. Cadiovascalar Nmoia.
The importance of a normally maintained blood flow and concomitant

oxygen delivery mechanism In the maintenance of tissue radiosensitivity has
long been appreciated (183]. Indeed, this topic has recently been the

subject of investigation by radiation oncologists endeavoring to protect
normal tissues within the radiation field from dose limiting side effects.

These investigators have used physical limitations in blood perfusion (207]

and more recently microsphere embolization of the Intestine (279] or the
kidney [161], perfusion with deoxygenated dextran-hemoglobin (202], and other
techniques. While promising, these techniques are both very experimental and

by definition will be limited to radiation therapy.

s These topics will not be considered at the specific request of the
agency sponsoring this review. The topics are listed in this report only to
indicate their logical place In the full spectra of possible mechanisms of

action of radioprotective, drugs.



Alterations In tissue oxygen delivery by altering distribution of blood

supply has also been proposed as a mechanism of action of chemical radiopro-
tectors [461]. Compounds to which this mechanism has been applied include

the biogenic amines (histamine, serotonin, norepinephrine and epinephrine)

which exert specific pharmacological effects which were well recognized prior

to the recognition of their anti-radiation potency. Also included In this

group are thiols and disulfides, although the evidence for the production of
hypoxia by this mechanism is slim. A third chemical which likely protects by

inducing cardiovascular hypoxia is cyanide, operating by a vasomotor stimula-

tory mechanism [458].

Of the biogenic mines, the most widely studied compound in this group

is serotonin, whose radioprotective effect was first described in 1952 [41,

182]. The early studies on the interrelationships between serotonin and
radiation effects have been reviewed [423]. In the period 1952 to 1965, the

determination of the mechanistm of action of these substances was the focus of

intense Investigation; radiochemical (§11I.C.3) and biochemical mechanisms

were championed against the local hypoxia mechanism. In particular, evidence

concerning the protection afforded chemical polymer model systems [11] was
used to refute earlier claims that serotonin and other aromatic mines acted

by local or systemic tissue hypoxia. In this experiment, the depolymeriza-

tion of polymethacrylate is used as a model of radiation damage. Histamine,

serotonin and epinephrine all exerted a *protective" effect in this system

which cannot be due to their pharmacologic effect on oxygen delivery, since a

non-biological system was employed.

However, since the biological radioprotective effect is the one whose
mechanism we seek to explain, data from biological experiments should be

given more weight. In this respect, the evidence for radioprotection as a

property of the cardiovascular pharmacology of the biogenic mines is strik-

Ing. Firstly, thymocytes Irradiated in vitro are unprotected by histamine,

epinephrine and 0-phenylethylamine, at doses which offer good protection in

vivo [454]. Correlations between the spleen oxygen tension and radiopro-

tective efficacy are high for the drugs of this group and also help to

explain differences in efficacy of histaine between strains of mice [460,
461]. Conversely, the oxygen tension In the spleens of mice and rats after

injection of the thiols cysteine, cystemine or aminoethyl Isothluroniv

(AET) Shows a varile and inconsistent response, tending to increase, rather
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than decrease the oxygen content [459]. Radioprotecttve tryptamines inhibit

uptake of the dye neutral red into the spleen of mice, while non-protective

congeners and amino thiols do not have this property [493]. Also, specific

pharmacologic antagonists abolish the radioprotective effects of histamine,

epinephrine, carbumtnoylcholine [461) and serotonin (455,456]. If these

drugs are acting to reduce the delivery of oxygen in radiosensitive tissues,

then physically Increasing the amount of oxygen available for delivery should

reverse this effect. Indeed pure oxygen respired at pressures up to 60

p.s.i. reverses the radioprotective effect of serotonin, histamine, and

epinephrine but causes much less reduction of cysteamine or cysteine radio-

protection [457]. Finally, the state of intracellular oxygen tension in

intestinal nucosa, estimated by measuring the oxidation state of the pyridine

nucleotides KAD(P)*/NAD(P)H, may be altered by serotonin, although these

results were not clear cut [220].

Not all evidence favours hypoxia as the mechanism of radioprotection by

the biogenic mines. As mentioned previously, indolealkylamines are protec-

tive in model polymer systems (11] and a recent report suggests that sero-

tonin and 5-hydroxytryptophan protect mastocytoma P815A cells in vitro under

conditions which preclude hypoxic radioprotection [398]. Protection of cells

in vitro by ti-adrenergic agonists may involve 8-adrenergic receptors and the

cyclic AMP system (419]. The data from the intracellular MAD(P)H/NAD(P) +

reduction were equivocal, suggesting that intestinal radioprotection by sero-

tonin may operate by a non-hypoxia mechanism. Also, inasmuch as most biolo-

gical processes are interrelated, one can interpret serotonin or other

biogenic amine radioprotectlon by other mechanisms. As examples, the

enhancement of post-irradiation recovery/repair processes [32,57,180]

(§III.C.5) or the effects of biogenic mines on endogenous thlols and their

influence on radiosensitivity [179,310] (III.S.4) have been proposed to

account for biogenic amine radioprotction. However, the bulk of experimen-
tal evidence suggests that biogenic amines protect against ionizing radiation

by affecting the cardiovascular system so that hypoxia is produced In

tissues, exhibiting radiation damage.b. emc1Sobta1Im.,
An alternative mans by which hypoxia may be induced in cells or

tissues is by local consumption of oxgen by chemical or biochemical reac-

tions. This mchanism of radloprotectfon is limited to the syl%*y'l (or

S.



disulf Ide) containing radioprotectors which undergo oxidation reactions in
which molecular oxygen Is consumed. The chemical and biochemical oxidation

of thiols has been reviewed (95,223] and efficient catalysts for the reaction

between thiols and molecular oxygen have been identified. These catalysts
include metal tons or their chelated forms In biological systems including
haemln, cytochromes, and other metal loproteins. The metal ion catalyzed

oxidation of thiols by molecular oxygen always follows the stoichiametry:

(53) 2RSH + 02 -. RSSR + H202

(54) 2RS1I + 11202 - RSSR + 21120

(55) NET: 4RSH + 02 -. 2RSSR + 21420

For many years, the biochemical hypoxia mechanism was thought to be restric-

ted by definition to thiols which can participate in reactions 53-54 either
with or without catalysis [37,459]. As a result of drug disposition studies

on cystamine (2-minoethyldisulfide), in vivo reduction to the active thiol

was recognized (142,464,465]. Furthermore, a "futile cycle' (Figure 6) has

been proposed whereby there is oxidation of thiols by thiol-oxidizing enzymes

* (flavin-containing monooxygenase) and reduction of the resulting disulf ides

by the glutathione redox system [495], possibly with the assistance of thiol-

trantsferase [288J.

02 NADPH 2 N 1*4S GSSG N\rADPH +4H

Fig20e 6: PRedox cycle of aminothiol consumption of oxygen.

Evidence for and against this mechansm of radloprotection has been
accumulating steadily since Its suggestion by L.H. Gray E183]. Gray observed
that ~nuif ted cysteine (Ilikely to contain traces of iros or copper) In
buffetr at of9> 6 rapidly remved oxygen from closed vessels. This effect was
staw to operate in at least a part of the protective affect of cysteine. At
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has been cautioned [14], reports on the Importance of hypoxia in radioprotec-
tion from this period are difficult to Interpret because the accurate
measurement and control of low oxygen tensions In vitro were not often

achieved [123]. Nevertheless, many reports were published either for or

against the importance of hypoxia in sulfhydryl radioprotection. These early
reports have been sumarized (406,486]. Although most reports on sulthydryl

radioprotection acknowledge a contribution of protection by hypoxia, the

extent to which this mechanism accounts for the sum of a radioprotector's

actions remains controversial.

Early reports on hypoxia by sulfhydryl oxidation attributed the entire
protective action of this class of radioprotectors to their tendency to

produce this effect [183,205]. However, the effects of cystemine, cystamine

or cysteine are additive to the effects of severe hypoxia in vivo (breathing

5% oxygen) [123,391] although brief periods of respiring pure nitrogen
produced effects which were not entirely additive [487].

Nimerous investigations have shown (albeit reduced) radioprotection by

sulfhydryl compounds under strict anoxia in vitro [99,210]. Measurement of

oxygen content of tissues or blood In vivo show conflicting results: reports

of a lowering of venous 02-tension without change In the arterial 02 -tension

after cysteine or cystemine [389] conflict with reports of the variable or

unchanged effect of thiols on tissue oxygen content (178,459]. As discussed
in the previous section, the radioprotctive effect of thiols was unchanged

In animals breathing oxygen at high pressure [457]. If one accepts the
reduction of pyridine nucleotide fluorescence as indicative of reduced intra-

cellular oxygen tensions, sulfhydryl radioprotectors exert little influence
on Intracellular oxygen concentrations [220].

Recently, interest has again been focussed on thiol-induced hypoxia as
an important factor in the radloprotection of malian cells by WR-2721

[S-2-(3-minopropylaino)ethylphosphorothoic acid]. This compound is one of

a group of compounds whose radioprotective actions are dependent on the
hydrolysis of the material (in this case, a phosphoric ester) to liberate the

thiol, which Is the true radioprotective substance [246250]. This agent has

been investigated for clinical application because of its reported selecti-
vity in protecting normal versus twor cells [490]. The involvmt of
hypoxia in the mechanim of action of wR-2721 is Important because one wants
to selectively protect relatively well oxygenated nomal tissue without
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altering the already compromised radiosensitivity of relatively hypoxic (but
not necessarily anoxic) twmor cells. Investigators at the Gray Laboratories

have published an interesting series of reports E116,117,427] (also reviews

[118,119]) whose collective Impact is to question whether MR-2721 has any
effect other than local tissue hypoxia. Experimental investigation on

radioprotection In V79 spheroids, which are known to contain cells exposed to

partial hypoxia, suggests that WR-2721 exerts both an oxygen-independent
mechanism and an oxygen-dependent mechanism which is best expressed in these
borderllne-hypoxic cells (132]. Also Purdie et a). has shown that the
product of WR-2721 dephosphorylation, MR-1065 EN-(2-mercaptoethyl)-1,3-
diaminopropane] is capable of very rapidly depleting the oxygen content of
suspensions of mammalian cells in culture [366]. The combination of oxygen
identification as a critical factor in the clinical efficacy of WR-2721
coupled with experimental demonstration of its oxygen-depleting capability

provides strong support for biochemical hypoxia as at least a large part of
its mechanism of action.

All of these investigations are confounded by the lack of adequate
ability to measure the oxygen concentration at the site of critical radiation
effect, which likely is in or close to the nucleus. The pyridine nuclootide

fluorescence measurements come the closest to achieving this objective, but
these measurements reflect the oxygen tension in the sites of greatest flux
of pyridine nucleotides, the mitochondria (220]. Furthermore, the observa-
tion of hypoxia or anoxia In closed vessels In vitro should be kept in per-

spective, as allowance must be made for factors in vivo which govern extra-
cellular oxygen delivery and Intracellular oxygen consumption.

3. bted01cate. of RudistiWmIPAiuO Reactive NuEWe
When the physical Interaction between ionizing radiation and the irra-

diated saple Is complete (at w 10-9 sac), radical species are present.
Radical scavengers (reviewed In 9a, below) may interact with water radicals
to prevent damage to critical molecules In the cell which would otherwise
have led to cell death. Radioprotectors my also react with organic or water
radicals by hy*dromn donation to "repairg these radical species (Sb, below).
Finally, since radiation dne approximates the *oxidative stress' which has

been associated with active oxygen toxicity or the toxicity of compounds
wh ich underg oxygen-dependssnt redox cycIIng, rod loprotectors may support or
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refurbish the natural cellular mechanisms of defense against oxidative stress

(§c. below).
a. Froe Radical S§Evnig.

To the extent that radiation-induced radical formation occurs in the

solvent (51I.A.), one mechanism of action of radioprotectors which must be

considered Is the removal of these products of water radiolysis before they

are able to react with, and damage, the critical targets whose alteration

leads to cell death. The extent to which the indirect (water radiolysis)

effect is important In the expression of radiation-induced cell death remains

a hotly debated topic among radiobiologists [349] cf. [12]. It seems reason-
able to assme that products of water radiolysis do contribute to cell death
and that the major damaging species is the hydroxyl radical (.OH) since the

rates of reaction of various radfoprotectors with -OH correlate with the

magnitude of their protective effect [107,390,396]. Although the involvement

of the hydroxyl radical has generally been accepted, the assignment of the
fraction of radiation damage to a specific percentage remains debatable [99].

A class of compounds whose protective action is generally accepted as

involving radical scavenging is that of the aliphatic alcohols, including

methanol, ethanol, ethylene glycol, and glycerol. A common feature of

protection by these coqounds Is the large concentration required to achieve

maximm radioprotection In vitro (1 - 3 N) [124,390] although by measuring

*parameters other than cell death, protective effects of radical scavengers
may be noted at much lower concentrations [49,186]. Since their toxicity

exceeds their radioprotective potency, the alcohols are not generally very

effective in vivo. However, a compound wkse maximm effect in vitro is

similarly exerted at concentrations > 2 N is dimethyl sulfoxide (0NS0)

[99]. 04S0 is effective In vivo at a dose of 4.5 g kg "1 which can be
administered only because of the extremely low toxicity of the coqmnd

[30,313 As more Is understood about the nature of the events interposed
between free radical formation and ceil death, the role of antioxidants has

similarly been refined. his, classification of radical scavengers by the
type(s) of radicals with which they interact is now possible, as Is their

protection against the initiation or sequele of lipid peroxidation [370,

3713.
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Thfols may also participate in radical scavenging reactions, at rates

which are close to the diffusion controlled limit (see II.C.l.b.i). Even at

these high rates of reaction, calculations show [349] that cysteamine (a very

good scavenging thiol) would be required at a concentration of 30 Mh to

produce a dose reduction factor of only 1.3. Yet, cystemine is effective

to a greater degree at doses in vivo which would produce a concentration of 3

mH if the compound were distributed evenly throughout the body. This discre-

pancy is rationalized by suggesting that thiols are concentrated in the

vicinity of critical radiation targets by electrostatic interaction or bind-

Ing to the target molecule. This binding effectively raises their local con-

centration to a level at which their radical scavenging ability matches their

protective potency (see IIhI.C.4.a.). On the other hand, thiols may also

protect by mechanisms unrelated to radical scavenging.

One difficulty with the idea that radical scavenging plays a major role

in radioprotection is the anomaly encountered with radiations of different

biological effectiveness. As mentioned in §11..2, the oxygen enancement

ratio decreases with increasing linear energy transfer (LET). In concert

with this observation, the yields of both *ON and e"& decrease with

increasing LET [2S]. If the major mechanim by which radioprotectors act is

to scavenge these radicals, and the contribution of these radicals to the

total mount of radiation dmage decreases, one would expect the effective-

ness of radioprotectors to decrease in parallel with the radical yield.

Glycerol protection of both bacteria and haploid yeast Is relatively constant

over a wide range of LET [23,289] and cysteine Is equally effective in

protecting against S.2 and 27 NeV -particles [20]. While It does not seem

logical that a radioprotector should act by different mechanisms of action

against the effects of radiation of different quality, these observations do

not necessarily disprove the scavenging mechanism thought to operate with

"soft* X- and Y-rays.

b. Nrom i AleM to tpA rmadicll.

A hypothesis of the mechanism of action of svlfhydryl radioprotectors,

which has gained popularity in recent years. Is the hydrogen donation hypo-

thesis. This theory seks to eplain the radloprotection of this class of

coommunds by the reaction of thfols with carbon-centered radicals formed in

critical target miecules (eqoatim 23). In contrast to the radical

(23) R + NIS.
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scavenging hypothesis, this theory takes into consideration both the direct

and Indirect actions of radiation, i.e., target radicals may be produced by
direct deposition of energy within the target or by the reaction of target

molecules with the products of water radiolysis (primarily "H ad OH).
The theory lies at the heart of the competition model of radiation protection

(§|I.D.) In that the molecular repair reaction shown in equation 23 is in

competition with oxygen addition to the target radical (SI1.8.4; equation

22).
Direct evidence for the validity of the hydrogen donation hypothesis is

scant. Although the reaction shown in equation 23 has been observed [5,6,7,
1S9] (reviewed [484]), at present such observations can be made only indi-
rectly in highly purified model systems. Thus, It is not possible to measure

this reaction In whole cells, cell fractions, or even with biologically rele-
vant molecules such as proteins or DNA. Furthermore, since this mechanism is

limited to thiols, most of which are also efficient free radical scavongers,
one has difficulty in distinguishing in biological systems between radical

scavenging and hydrogen donation. Estimates of the contribution of hydrogen

donation to radioprotection have been made in model systems In which indirect b

effects are dimfnished or eliminated (..j. dry or frozen biological prepare-
tions). Under these conditions, sulfhydryl coqwunds are effective in pro-

tecting DNA [76] and enzypes [172]. Also, radical transfer between carbon-
centered radicals in salmon sperm DNA irradiated at -196C and cystemine has

been shown by electron spin resonance spectroscopy (326].
Based on the presumed coqietiton between hydrogen donors and oxygen for

the target radicals, one would expect that radioprotectors which are thought

to act by hydrogen donation should be more effective when oxygen is excluded
from the test system. Ihis result was indeed observed for the protection by
cystomine [210] and mercaptoethaol (212] of bacterlophag DNA Irradiated in

aqueous suspension. However, in aqueous suspension, at least a portion of
this protection say have been produced by the radical scavenging effects of
these thiols, as the precastlie agaenst Indirect effects may have been in-

adequate t14).
Difficulties with the hydrelin donation theory also hinge on the differ-

ential protection of tYMlc sd well onjenated calls In contrast to
results with bacterIophage, thiols we mch mre effective In protecting oxic

than mmic cell supeties. tidffer etial protection my be explained



either by invoking the theory of thiol oxidation resulting in oxygen consump-

tion (which would tend to show a greater effect in well oxygenated cells (See

SIII.C.3.b]) or by the argument that hypoxic cells are already protected to
their maximum degree by endogenous thiols and therefore derive little benefit

from additional exogenous thiol. Furthermore, estimates of the rates of the

reaction between model target molecules and either oxygen or thiols have

shown that oxygen reacts with carbon-centered radicals as much as 200 times
faster than the hydrogen-donating reaction [4]. Thus under physiological
conditions and in the absence of any chemically induced hypoxia, the relative

contribution of the hydrogen donating reaction is questionable. However,

some experimntal evidence does suggest that this reaction my account for a
share of the somewhat modest radioprotctive activity of thiols in the

absence of oxygen.

c. Eaanced Protection fr 'Oxidative Stress'.

The adverse effects of reduced oxygen species (*ON, 02, H202) on

cells or tissues are collectively known as Qoxidative stress" (for overview,

see (409]). Since these reactive compounds are produced during the irradi-

ation of cells and tissues, one may refer to radiation as producing oxidative
stress. Whereas acutely lethal effects of radiation may be mediated to a

large degree by the indiscriminate and highly reactive hydroxyl radical

("O) (107,396], other oxidants may also contribute to both acute and

delayed effects. Perhaps as a result of the Involvement in certain reactions

of Intermediary metabolism, cells have developed enzymes to provide protec-

tion against certain oxidants. Superoxide dismutase is effective in the

destruction of the superoxide anion radical, converting two molecules

of 02 to one molecule each of 02 and 120 t [323]. Catalase (96] removes
ij hydrogen peroxide, and glutathione peroxidase Is a good catalyst for the de-

toxification of both hydrogen peroxide and lipid hydroperoxides [1573. Thus
an intricate network of defenses has evolved to protect against oxidative
stress.

Certain of these cellular defenses may be amgmentud by radioprotectors.

We have previously noted the possible release of reservoirs of glutathione by
exogenous thiol radioprotectors (§lll.S.4); the released glvtathlone may

function partly as the cofactor for either glutathione peroxidase or the

U~
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recently described glutathione-dependent labile cellular factor which pro-
tects against lipid peroxidation [188,201]. Alternatively, direct admini-

stration of the defensive enzyme may in some cases provide radioprotection.

In vitro, added superoxide dismutase (SOD) is reported to protect erythro-

cytes (268] and DNA [492] from damage due to "Co y-rays. SOD and catalase
have been shown to protect certain enzyme activities associated with erythro-

cyte energy metabolism from y-radiation in vitro [230]. Administration of
exogenous SOD to mice [131] and rats [414] prolonged survival after lethal

doses of radiation. In the most promising report to date, Petkau reported a
dose reduction factor of 1.56 t 0.04 after intravenous atinistration of SOD

to mice [345]. This reduction of radiation lethality was attributed to

protection of the proliferative capacity of bone marrow cells. On the other

hand, radiation-induced inhibition of human lymphocyte blastogenesis was not
protected by SOD or catalase, and Indeed exogenous SOD and catalase depressed

l)phocyte proliferation in vitro [242]. Other reports suggest that the

protective effect of SOD may not be so striking [1,51]. In view of the many

factors involved in the distribution and metabolism of enzymes administered
in vivo [397], perhaps these conflicting reports should not be too surpris-

Ing.
The possibility that chemtcal radioprotectors act by stimulating or

inducing this enzyme seems even more remote. Indeed cystemine in radiopro-

tective doses is reported to Inhibit activity of the enzyme In the bone
marrow in vivo [255], and prior X-irradiation does not Induce the activity of
the enzyme in Droohila [50]. Thus, the role of SOD in natural radloprotec-

tion and Its possible therapeutic use as a radlop-otective agent Is unclear.
4. Tweet M11112tio.

Thus far, we have described mans by which radioprotectors Interact with
the products of radiation to prevent or ameliorate radiation damage. Radio-

protectors may also exert their action by interacting with the target for
radiation dmage. In this section we describe ways by which protective

agents my stabilize the target to prevent or allow restitution of radiation
dampg.

a . INN~m ty 1M.
The Idea that redioprotectors are effective by binding to DIM and stabi-

lizing Its structure was wll sumarized by M In 1967 (86. Thistheory

has been developed most extensively for the minothiol redioprotectors, of
66



which cystemine is the prototype. According to this theory, iinothiol

radioprotectors bind to DNA and stabilize its secondary structure. This

Increased stability has several benefits.

With increased stability, the radioprotector-DNA complex is less suscep-

tible to unwinding and subsequent loss of secondary structure that can occur

when the DIIA chain is broken by ionizing radiation or its products. Also, an

Increase in stability reduces the rate at which the DNA may be unwound for

transcription or replication. In both of these cases, the increase In

stability allows for a greater possibility that lesions produced in the DNA

molecule can be repaired.

Evidence for the involvement of this theory in the mechanism of radio-

protector action is mostly circumstantial. Cystamine, the disulfide form of

cysteemine, was shown by Jelltu In 1965 [221,222] to bind to DNA and the mode

of binding has recently been shown to involve electrostatic forces [275].

The binding of cyst(e)mine2 is almost entirely accounted for by binding to

the sugar-phosphate backbone of OA [82], interaction which involves binding

between the cationic amino groups on the imnothtol or diminodisulfide and

the anionic phosphate groups of DNA (462]. Upon binding, the mlting point

(T1) of the nucleic acid-radioprotector complex is raised, relative to the

T" of the nucleic acid alone E287,387,462]. Protection of DNA by

cyst(e)mine2 was found to be complete at low doses (( 20 Gy) of y-radiation

and high concentrations of cyst(e)mine2; at higher radiation doses, increas-

Ing concentrations of cyst(e)mine2 protected against the destabilizing

effect of radiation [387].

The correlation between DNA binding and radloprotective activity is only

partial. It appears that DNA binding is not the sole requisite function. In

contrast to the cysttmine, guanidoethyldisulfide (BED), glutathione disulfide

(GSSG) series, where DNA binding paralleled radioprotective potency, other

dimines, such as cadeverine or diguanidines such as pentamethylene diguani-

dine, show good DA binding but no radioprotective activity [249]. This

result was explained by the possibility of localized radical scavenging by

2 In much of this wrk, cystmne was dissolved in water or buffer and
the Interaction with DNA was mnltored over a finite time period. In view of
the caity of cystemine to be oxidized to cystamine, some question remains
as to which material actually we IemWd to the nucleic acid In these studies.
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the disulf ides; alternatively, the disulf ides may be easily reducible and
therefore the DNA may be more accessible once the repair is complete.

Finally, the DNA binding hypothesis serves to readily explain sowe
observed structure-activity relationships among the ainothiols (See
SV!I.A). Generally speaking, the presence of a thiol group in a molecule Is
not sufficient to express radloprotective activity; an amino group is requir-
ed for highest activity, and the amino group cannot be separated from the
thiol by more than three carbon atoms [128,431]. Presuming that the amino-
thiol is oxidized to the di minodisulfide In vivo (494,495], an aminothiol
having four carbon atoms between amino and sulfhydryl groups would result in
a disuinodisulfide with ten atoms between the amino groups. In a study of
DNA binding and stabilization by a series of a, a-diamines having various
carbon chain lengths, maximia stabilization was found with I.5-diminopentane
and very low binding was observed with 1,10-dimvinodecane (285,286]. Thus at
the first Inactive diuiinodisulfide in the series, the relative binding is

probably very low. Howver, this correlation does not hold up uniformly,
since a series of 4-(alkyl)-disulfides and thiosulfates were found non-
concordant for DNA binding (measured using equilibrium dialysis) and radio-
protective activity [164].

b. Wined iiulfide F~mtIS.
This hypothesis, presented In the mid-1950's by Eldjarn and Pihl (141]

involves the reversible formation of disulfide bonds between proteins and ad-
ministered sulfur-containing radioprotectors. Following on the observation

4 of mixed disulfide formation in vitro, the interconversion of cysteamine and
cystamine in vivo was demnstrated. Eldjarn and Pihl also noted that after
admnistering IS-labelled cystemine or cystemine, most of the radioactivity

>~. was bound to protein In mixed disulfide linkage at the time of maximum pro-
tective activity (141]. Subsequently thiol/disulfidat exchange reactions
(equations 56 and SY) were documeted, and the presence of substantial

*amunts

(56) RSH + RISSRIemf RSSRI + R'SH
(57) RSSR + RSN ~ R55R + NSH

of mixed disulfide (ASSR) wero found to be present in such a system att
eqvilibrium [142,144]. A positive coelation betwee the rate and extent of



mixed disulfide formation and radloprotective activity was demonstrated for a

variety of thiol compounds [143]. The regeneration of native protein may be

accomplished by thiol-disulfide exchange (in which GSH functions as RSH in

equation 57, possibly catalyzed by thiol transferase) and by subsequent

action of the glutathione redox system coupled with glutathione reductase and

NAOPH (348].
Certain eazaes, especially those requiring an essential sulfhydryl

group, were found to be protected from X-rays by forming mixed disulfides

(3S0]. Other studies failed to show appreciable change In enzjoe radioresis-

tance upon mixed disulfide formation with a radioprotector (368]. The mech-

anisms behind enzyme protection were originally proposed to Involve

radiation-induced heterolytic cleavage of the disulfide bond of the mixed

disulfide (equation 58). Such a reaction would theoretically yield low
hv

(5) ProteinSSR ProteinS" * SR

molecular weight thiyl radicals and protein thiols in one half of these

radiation-initiated reactions (347]. However other experiments indicated

that this heterolytic reaction may not occur (126], but rather that the mixed

disulfide prevents interaction of the critical thiol with other radiation-

damaged portions of the molecule (127]. The hypothesis of Pihl et al.

suffers from several flaws. First, the measurement of equilibriu constants

and rate constants has been criticized on the basis of the lack of considera-

tion which was given to pH effects. Critics contend that Inadequate atten-

tion was given to differences in the degree of ionization of the various

radioprotectors when correlations wre made between the equilibrium formation

of mixed disulfides and redioprotector efficacy (176]. W0hen one removes from

consideration those candidate thiols which are widely different in degree of

Ionization and In steric hindrance to the reaction, little difference In rate

or degre of mixed disulfide formation Is observed. In defense of PIh's

correlations, It should be mentioned that all his ms es were made at

37C and pH 7.4, conditions which are likely to approximate the situation In

vivo. Thus candidate thiols, which do not exhibit ionization or steric

factors under these conditions, are likely to exhibit similar behavior also

in vivo, and so they should net be excluded from consideration a ori.
Per"Se the am serious fault with the mixed diselfide hipothesis Is

Its fallure to 00ai1n the redlopotection of Wcleic acid, whickh Is thought

6T



by many to be the prime radiation target. Sulfhydryl groups are restricted

to proteins, most of which are quite radioresistant relative to tissues,

cells, or DNA in vitro. Identification of sulfhydryl-containing critical

targets would support the hypothesis of protection by mixed disulfide forma-

tion. Some progress in this direction was made with the denstration of

X-ray inactivation of the Initiation factor a DNA-dependent RNA polyuerase

[429] an Its protection by mixed disulfide formation [430]. However, the

radiation-induced inactivation is produced at relatively high radiation

doses, raising doubts about the relevance of this observation to the situa-

tion in cell inactivation studies. This type of experiment should be exten-

ded to other critical enzymes in DNA metabolism.

S. Exhammet or Protection of Acovuew or aIfr Pe .
After ionizing radiation has damaged cellular molecules, this damage may

be expressed by the attendant biological consequences (cell death, mutagene-

sis, altered function) or it may be repaired, and the cell may recover from

radiation-induced effects. For the purposes of this section, we have adapted

the definitions of the term "recovery" and *repair" as they are considered

by Orr [333]. By these criteria, recovery rj.e. "lkind recovery; recovery

from sublethal damage (SLO) or potentially lethal damage (PLD)"] refers to

the whole cell and Its response to radiation damage; recovery is measured as

cell survival, death, or division time. On the other hand, repair ("DNA

repair") refers to processes carried out on the molecular or sub-cellular
organelle level. As pointed out by Orr, recovery and repair are related,

though not necessarily always closely related.
The importance of recovery (and by inference, repair) lies in the end

result desired. The observed decrease in radiotherapy efficacy with increas-

Ing dose fractionation [162] presents difficulties for cancer therapy presum-
ably due to recovery from radiation damage in tumor cells; for increased

radiotherapy efficacy, one would want to inhibit the processes governing

recovery [231,319,436]. Conversely, for accidental radiation exposure, one

would wish to enhance or stimulate this repair process to prevent radiation

dama. The latter concept Is the focus of our review.

a. ftowl ft" Am S'UM
Cellular recovery from radiation dmge wis described by Lea E26] in

1936, but the reports of Elkind and Sutton E141,146] stimulated Interest in

its effects and mchanivm . Verieu mt4ol Ic factors re IMrtt In the
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expression of recovery, including oxygen [87,277](for a review see [245]).

The effects of radioprotective substances on the recovery process appear to
have not been investigated extensively. Presumably thiols could be tested

for their effect on the recovery process between doses of a split-dose exper-

Iment, provided they were removed from the medium prior to the second dose of

radiation (without removal, the effect of radioprotective substances on the

second dose of radiation might be misinterpreted as an effect on recovery).
The term potentially-lethal damage is used to denote circumstances under

which, by appropriate treatment of irradiated cells, the expression of radia-

tion lethality may be avoided. This term was coined by Phillips and Tolmach

In 1966 [346] to describe their observation that cells treated immediately

following irradiation with cycloheximide to inhibit cell division were more

resistant to the radiation damage. Similar results have been observed for

the holding of cells at teeratures suboptimal for growth [56]. While some
work has been performed on the identification of substances which inhibit the

recovery from potentially lethal damage, little investigation has been done

on the stimulation of this biological phenomenon.

b. ftbpr of iatlow-uued Structures.
Macromolecular structures damaged by radiation may be repaired by

enzymes. DNA repair is a well-researched function of bacterial and mammalian

cells [191], and this process has recently been the subject of numerous

reports in radiation biology [21]. The tnvolvement of ADP-ribosylation in

repairing DNA strand breaks produced by radiation is under investigation, and

the suggestion has been made that such repair of DNA strand breaks Is neces-

sary for cellular recovery from radiation damage [281]. Glutathione (GSH)

may also be involved in the repair of DNA single-strand breaks (SSb) as has
been suggested using cells genetically deficient In GSH synthesis [137,378]

or In which GS4 deficiency was produced by D,L-buthionine-S,R-sulfoximine

(6SO) [378] or hypoxiatelsonidazole treatment [135,379]. Interestingly,

cells which are genetically deficient in glutathione synthetase [265] have

Increased intracellular amounts of y-glutaiylcystelne, cysteine, and other

low molecular weight thiols [137], yet these thiols are unable to substitute

for GSH in supporting DNA S~b repair (379]. In contrast to these results,

Chinese hamster ovary cells whose non-protein thiols are depleted by diethyl-

maleate show no differences in the rate of repair of SSb induced by X-rays
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[151]. Thus, the role of endogenous thiols in the repair of DNA damage must

be studied further to clarify these conflicting findings.

Exogenous compounds have recently been investigated for their ability to
induce the enzymes responsible for DNA repair. This property has been docu-

mented for a number of compounds which stress cells, including hydrogen

peroxide (115], methylmethane sulphonate [62], nickel compounds [388], 1,6-

dinitropyrene [91] and mercury [388]. The induction of DNA repair capacity

has also been reported for the sulfur-containing radioprotector WR-2721

(384,385]. In contrast, cysteamine was found to Inhibit DNA polymerase I-

directed repair synthesis [66]. Cysteamine decreased the extent of rejoining

of DNA SSb in GSH-proficient cells [316] but was able to substitute for

glutathione in GSH-dependent SSb repair in GSH-deficient fibroblasts [136].

Thus, It appears that thiols are involved in certain types of DNA repair

(though possibly not all types), and further research may point to new

compounds able to stimlate the repair of radiatfon-fnduced DNA daage.
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4.4

IV. Therwy of Radiation Doom .

In this section, the question: "What post-irradiation actions can be

taken to meliorate radiation injury?" is briefly considered. In general,

therapeutic strategies after radiation exposure depend upon the dose receiv-

ed. At exposures above about 2000 reds, there is no effective treatment at
the present time for the CNS-syndrome produced. At lower doses which can

produce the acute effects of the gastrointestinal radiation syndrome, provi-

sion of symptomatic relief and physiological support must take priority over

other considerations. If the patient survives this syndrome or does not

experience it, then support of the functions and recovery of any hematopole-

tic injury can be provided. Beyond treating syptoms of these acute radia-
tion syndromes, it should eventually be possible to provide therapeutic

measures for enhancement of normal processes for DNA repair, including thera-
py to prevent expression of delayed effects of DNA lesions such as neoplasms.

A. Treatm t of Gatr .intestial Failure.
S

Reviews of acute radiation syndromes and their supportive treatment are

given by Bond et al. (70], Prased [361], Pizzerello [351] and by Pizzerello

and Witcofski [352]. As mentioned in Section 1, the direct cause of radia-
tion death depends on the dose absorbed. With whole body radiation doses

from about S0 to about S000 rods (above which the CNS syndrome causes more
rapid death), gastrointestinal failure Is typical. This syndrome is charac-

terized by nausea, vomiting, anorexia, diarrhea, fluid electrolyte Imbalance,

4 increased vascular permeability, vascular collapse, and overwhelming Infec-

tion as the gut wall is breached before destroyed mucosal cells can be regen-

erated. Spontaneous survival after such massive gastrointestinal Injury Is

Improbable.

Therapy for the gastrointestinal radiation syndrome should Include:

1. Neasures to combat infection (antibiotics, gme globulin, sterile Isola-

tion, etc.); 2. Correction of fluid and electrolyte Imbalances; and 3. Mlmin-
Istration of other agents to meliorate acute symptoms and treat tissue
damage. Experimental work has identified certain agents which may eventually

prove to be therapeutically useful. For exmple, Palladino et al. [339]
described protection of chickens and mice from y-irradiation mortality by use
of certain proteolytIc enzyme inhibitors. They suggest that the protection
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was due to prevention of radiation-induced, protease-mdiAted Increases in
vascular permeability.

If the patient survives the gastrointestinal crisis (death can occur
within a few days), then the more slowly expressed effects of h mpotetic
failure can be treated.

9. Malsolosical Somort, dutn Recovery of Nomapoietic Factiems.
Mammalian hemopotetic and lymphatic cells are quite radiosensitive

compared to may other cell types. Whole body irradiation above approximate-
ly 200 rods (in huans) can severely depress the proliferating stam cell
populations of these systs, with fatal results. Death is typically due to
loss of the body's ability to combat Infection and to blood loss consequenes
of acute depletion of the leukocyte and platelet populations. For dose
below about 500 riads, therapeutic measures can be effective. Established
therapeutic methods are designed to replace the Impaired functions or cell
populations until repopulation by surviving or administered cells can be
accml ished. These measures include direct administration of fresh plate-
lets, granulocytes, leukocytes, whole blood, bone marrow, spleen cells, etc. '
Antibiotics and sterile-tent isolation may be used during the period of
increased vulnerability to infection.

These measures to sustain the patient during the bone-marrow, recovery
peiod can be supplemented by the administration of other agents which stfi-
late recovery of the hamopoetic system. Use of these agents, however, has
been chiefly experimental. Agents with which some success has been achieved
In Irradiated animals include the following:

Interferon: Survival of henopoletic tissue Is reported to be enhanced by
interferon [282,3353 or by substances which can Induce Interferon synthesis,
Including sulfhydryl compounds, their phosphorylated derivatives, bacterial
endotoxins, vasoactive mines (histamine, serotonin, mexamine), double-
stranded RNlA, and polysaccharides. With the currently Increasing availabil-
fty of sicrobiologically produced interferon, adequate evaluation of the
utility of this agen In post-radiation therapy should now be feasible.

Tissue extracts: Active thymic polypeptides stimulate ]ymhoyopis-
sis, increase Imnological competence, stimulate metabolic recovery proces-
ses In thymus ad liver of whole-body X-irradiated rats,, and provide radio-
Protection [73,355,450]. In contrast, Cuaplicki [111] reported that whbile

.&&enal calf thyus extract provided protection to mkse If adefistered
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before irradiation, It caused a rapid decrease In leukocyte count and decrea-
sed survival time if given after irradiation.

Blutaurine (y-glutsyl-taurine), identified by Feuer et1 Al. (1563 as the
radioprotective agent in parathyroid extract, partially prevents the
radiation-induced decrease in bone marrow mitotic index. When injected as
much as 3 hours after exposure, glutaurine supported 30-day survivals of 86%,
compared with 50 for controls.

Endotoxin and Endotoxin Polysaccharides: Vigneulle and Baumn [467]
observed increased 30-day and 40-day survival rates in y-irradiated mice
given endotoxin Immediately after exposure. The treatment caused an increase
in the pool of myeloid precursor cells, allowing enhanced granulocytopoiesis.

Bacterial endotoxins consist of lipid and polysoccharide moieties, with
the major endotoxic effects being due to the lipid. Nowotnydet l. [322] have
demonstrated that either the lipopolysaccharides or their hydrolyzed, non-
toxic, polysaccharide-rich components are, active inducers of bone marrow
colony-stimulating factors In mice. They protect against lethal irradiation,
have in vitro iune adjuvant activity, and show antineoplastic activity. I
Hoiwever, the radiation protection with post-irradiation injection was marked-
ly less than with administration before irradiation (3223. Work by this group
(reviewed In (54]) idicated that the protective action is Indirect, invol-
ving the release of mediators (by the lung and perhaps other tissues as well)
Into the serum. Thus, each of the four biological effects can be passively
transferred by injecting seru from treated Into untreated animals. Their
work suggests that different fractions of the polysaccharide hydrolysates are
responsible for the different biological activities. Injection of bacterial
lipopolysaccharides after Irradiation but Immediately before bone marrow
transfusion makedly Improv-d spleen colony formation and erythroid different-
tiation In mice (426].

Horone: Mome (10] emphasized the Importance of the inteerative
functions of the endocrine system wh~ich aid recovery from radiation injury.
He presented experimental meslts of treatment, of Irradiated animals with
prepat ion from the thyroid gland, gonads, and adrenal cortex. He concluded
that his and other data tn the literature support the hyppothesis that when
post-irradiation endocrine deficiency begins to appear, administration of
thyroid or adrenal cortical hormones can diminish hinepoietic deficits.
jqpemnt of hsmpoiesis, phagocytic capacity, and reaction to infectious



factors after hormonal treatment was demonstrated. Aggravated endocrine

deficiency was correlated with increased expression of radiation injury

whereas stimulation of endocrine function lessened that expression. Methyl-

androstadienolone is reported to stimulate postirradiation structural and

metabolic repair In rats [395].
Other Ants: Synthetic lysophospholipid analogs of the naturally

occurring 2-lyso-phosphatidylcholine were reported [58] to improve signi-
ficantly the survival of X-irradiated mice, with the Improvement being detec-

table even when treatment was given 6 hours after irradiation. Effective

doses have been found to be without toxicity in clinical pilot studies.

Although the mechanism of action is unknom, it is speculated that the

central role of phospholipids in cell membrane structure and function, the
influence of the analogs on normal DNA metabolism, or the possible interac-

tion of phosphatidylcholine with chemical radicals may be involved.

Glucan, a potent reticuloendothelial stimulant and imne modulator

which is Isolated from the cell wall of Saccharomyces cerevtsie, enhances
hemopotetic recovery in sub-lethally y-irradiated mice When injected 24 hours

postirradiation, although pretreatment Is markedly more effective (354]. The

protection mechanism is believed to be the stimulation of granulocyte produc-

tion. Takeda at &l. [434,435] and Yonezawa [488] report that single injec-

tions of ginseng extract to mice, rats, or guinea pigs within 2.6 hours of
Irradiation provided protection from bone marrow death. For examle, when

the injection was within 5 minutes of irradiation, 30-day survival was 76%,

compared with 19% for controls.
An improved survival rate is produced by injection of tocopherol inmedi-

ately after irradiation; no Improvement is observed If the injection was

postponed until 5 hours after irradiation [392]. Reports showing experimen-

tal postirradiation therapeutic effects of a numer of other agents have been

reviewed [351]. These include Imidaxole, lipids (Intraperitoneal or oral),
lycopine, RA, DNA, and erythropoietin. In each case, a large increase In

survival rate for irradiated rats or mice was reported.
In most cases the clinical therapeutic potential of these various exper-

Imentally promising agents Is yet to be evaluated. The variety of the agents

found which can support hemopoletic recovery and the evidence (S4] which
suggests that the activity of the bacterial polysacchrldes Is mediated by
the release of an endogeons agent encourages further efforts In fdtifyieg
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such an endogenous agent which could prove to be therapeutically useful.

C. .Rleforcemt of eriel N epair Procesms.
Even if the absorbed radiation dose is low enough to preclude severe

hemopoletic and gastrointestinal injury of the types discussed, radiation

danage to DNA can produce serious delayed effects. Fortunately, precise and

active DNA repair systems exist in cells. The subject of DNA repair has been

reviewed [191,272,352] and Is discussed in Section III.C.S.

Much investigation (sumarized In [341]) has documented repair defi-

ciencies in a number of heritable human disorders which are associated with

increased cancer and/or increased sensitivity to radiation. The importance

of DNA-repair to the normal organlm is also made clear by the review of

several human diseases associated with impaired DNA-repair activity by

Friedberg et al. [166]. There can now be no doubt that repair processes are

crucial to the determination of whether DNA lesions will ultimately be

expressed.

At least some of the DNA repair processes are capable of responding to

the stimulus of DNA damage with increased activity. The survival of irradia-

ted cells has been shown in a number of cases to depend on postirradiation

conditions [109]. Adjustment of these conditions to those which are optimal

for repair of potentially lethal cellular damage therefore represents a

therapeutic opportunity. Despite long-standing research attentinn to radio-

protection through prevention of DNA injury, some radioprotective agents act

In part, at least, through the enancment of repair processes rather than by

the prevention of DNA lesions. Indeed, Serk with repair-deficient mutant
bacteria led Sresler [78] to postulate that repair enhancement is the main

mechanism of radloprotectant action.

An experimental system in which repair of radiation-damaged DNA can be

specifically studied (in the absence of complications introduced by effects

of the radiation on the repair system Itself) uses cultured mammlian cells

which have been infected by radiation-dimged viral DNA. As reviewed by

Ofais [1133, use of this system as a screening assay should allow identifi-

cation of naw candidate therapeutic ogents and evaluation of DNA-rair

enhancement by knw radleprtecta nts (see IV.4).

Nuch of the available Information concerning DNA repair and its modula-

tion has been otined with Isolated cell systems. One can hope for, but not

n] issm, clinical therapeutic ptemtial for an agent which 0hances rqwir
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when added directly to cell cultures. Even in the experimental system, the
repair-enhancing agent usually must be added very soon after irradiation to
be effective - too soon to sewm practicable for treatment of most human
exposures. Nievertheless, the accumulating evidence that carcinogenic and
mutagenic DNA lesions are subject to repair by normal cellular mchanis
(191] is grounds for optimism. The results cited below, demonstrating that
DNA repair can be stimulated by chemical Intervention, may yield practical
results since there are typically very long latent periods which extend
between a mutagenic or carcinogenic transformation and its expression.
Further work may eventually reveal practical approaches to DNA repair therapy
of radiation injury. Specific agents showing experimental post-irradiation
effects on DNA repair Include:

Thiols: Riklts et al. [385] demonstrated that WR-2721 or mrcaopro-
pionylglycine causes an increase In post-irradiation DNA repair, as rWprsen-
ted by labeled thymidine incorporation by cultured hamster cells. Observa-
tions led them to conclude that these agents act not only as antioxidants and
radical scavengers but also act by affecting repair processes.

Certain cellular repair systems, may be thiol dependent. Research by
Revei and co-workers E135,137,3631 shows that post-irradiation incubation of
cultured BSN4-deficient fibroblasts with dithiothreitol or 2-mevcaptopropion-
ylglycine supports increased DNA repair. Post-irradiation addition of 1,4-

j dithiothreitol to leukocyte cultures was reported by Dick and brown [63] to
decrease chromosomal de" in hamster and Potorous, cells by 36% and 46%
respectively. The most significant effect is in the first 30 minutes after
Irradiation. In view of the short half-lives of free radicals, the reports
of post-irradiation protection (continuing in soe. cases for hours) by free
radical scavengers is surprising and suggests that there may be a delayed,
post-irradiation production of free radicals.

EzomnoWs enSsM.: Superoxide dismutase, recognized as being radiopro-
tective through its prevention of superoxide-induced lesions [323], was
reported by Simoyan [414] to improve survival of X-Irradiatod rats when
given intraperitoemlly thirty minutes after irradiation. Surprisingly,
postirradiation adinistration is mor effective, then won administeration
before irradiation.

Sleigh end slp (415] $""Iet that the adeInstratfafn of exopnem
rwpir onzspos alread deftstrate as effectiv In iselIe cell Wytons



and use of agents which induce synthesis of endogenous repair enzymes may

have potential as therapeutic approaches to radiation injury.

Exogenous enzyes have also been shown to reduce the spontaneous aberra-

tions in cells from Fanconi's and Bloom's syndromes [147], two of the herit-

able human conditions linked with increased radiation sensitivity and

increased DNA damage. These observations led to the suggestion that the

defect in the inherited conditions may be a decreased capacity for radical

scavenging rather than deficient repair capabilities [147,169]. Presumably,

an analogous hypothesis can be invoked as an explanation of the post-irradia-

tion protection by radical scavengers: if irradiation injures the cell's

basal radical scavenging capacity, neither a second generation of radiation-

induced radicals nor impaired repair mechanisms need be hypothesized.

Other agents: Olontseva [325] attributes the protective effect of purl-

fied spleen extract, given one hour after irradiation of mice and hamsters,

to the presence in the extract of highly active ONase I inhibitor. Borek

[72] reported that selenium and retinoids, added to cell systems after radio-

genic or chemically Induced neoplastic transformation, suppresses the expres-

sion of that transformation.

0. tweil Principles.
Akoyev [10] reviewed some of the general hypotheses concerning radia-

tion recovery processes (as of 1970) and reported additional experiments

undertaken to explore some of the questions raised by these hypotheses. From

his review of available information and his own work, Akoyev developed

several general principles concerning mamallan recuperation from radiation

injury. These include the facts that recovery occurs during, between and

following radiation exposures and is proportional to the absorbed dose of

radiation that does not inhibit the repair processes themselves. Radiation

damage repair Is proportional to the metabolic rate of the species and occurs

on all levels of biological organization (molecular. cellular, tissue and

organ levels). Finally, the rate of repair in various tissues parallels the

rate of damage expression (i.e. bone marrow Is faster than gastrointestinal

tissue which Is faster than nerve, muscle, etc.).

E. Ssw
Current treatomt strategies for radiation Injury can be said to be

on a physiological basis. They are relatively effective for treatment of the

n marrow supesion and other syuptoms of hempoletic failure. However,
bonewrro~upprss7,



strategies appear merely syuptomatic and supportive for treatment of the
gastrointestinal syndrome, and are without effect in treatment of the CNS
syndrome. Strategies remain in the realm of basic experimentation for
reinforcemet of DNA repair processes. The multiplicity of agents which have
shown experimental promise for augmentation of bone-marrow recovery and DNA
repair suggests that clinical advances in the near term can be expected in
these areas.

IVs



V. UcM uudaIon for Future Vork.
In this section we present recomendations, for future studies in the

field of chemical radioprotection. We have identified six general areas in
which we feel that additional work will lead to profitable advances In our
understanding of the mechanisms of action of radioprotective drugs. These
six areas are presented, according to our opinion, on a scale of decreasing
priority.

1. Pulse Radiolyis.
The pulse radiolysis technique Is providing information about the nature

of the free radicals formed by ionizing radiation that is essential for the
understanding of free radical Interactions with cellular constituents. The
measurement of radical yields, radical reaction pathways and rates of reac-
tions in defined chemical systems provides data that aid enormously in under-
standing the biological effects of free radicals. Improvement of radio-
protectors will require a biochemical and genetic understanding of these
effects in defined systems as well as in more complex biological systems.

2. Preti Thiols and NImud Disuif I&e%.
A growing body of evidence Indicates that protein thiols participate in

the regulation of cellular metabolic and genetic processes. Ionizing radia-
tion damage via reduced oxygen species can alter the oxidation reduction
state (redox state) of the pyridine nucleotides and the thiol disulfide
status. The glutathione redox cycle utilizes NAUPH reducing equivalents in
the reduction of SSO back to 65f with glutathione reductase after the reduc-
tive transformation of hydrogen peroxide to water by the oxidation of USI to

Z GSS6 which is catalyzed by glutathione peroxidase. The limiting rate in the
glutathione redox cycle a&Wars to be the rate of formation of MPH via the
pentos. phosphate pathway. failure to reduce OSSG rapidly results in the
formation of protein glutathionet mixed disulfides. These and other protein
mixed disialfides have an undeterined effect on the rate of metabolism and
genetic events fncluding progreson through the cell cycle.

Research Is needed on several aspects of rotein thiols. Improved
measurement Is neede on the quatity of these protein thiols, that can form
protein mIxe diisolfIdes with low molecular weight thIelS ad diselfides by
Me)o disualfue interchang roactions. With sobh lnfoten It 1"mId be

. ... .. ...



logical to determine the rates of thiol disulfide transferas activity with
the protein mixed disulfide for the conversion to protein thiols and gluta-
thione mixed distil? Ides fol lowd by thiol and SS formation and the consunp-
tion of NADPH reducing equivalents for reduction of GMS to UNI. It is
Important to have this information to understand better the radioprotective
effects of thiol containing agents. Clls possess a very dynamic energy-
dependent process for the maintenance of homostasts of thiols and distilf-
Ides. The perturbation of this homeostasis by the administration of exogen-
ouis thiol- or disulfide-contalning radioprotectors Is likely to alter these
protein thiol- or protein mixed disuti id-dpedent processes. A key to
developing better radioprotective agents ay lie In the understanding of the
physiological role of this process.

Studies on the metabolism an distribution of radioprotective agents

appew to be quite inadequte. Is view of the long history of chtemical
radioprotection, It is surprising that certain aspets of the basic pharmaco-I
logy of these compounds have not been investigated. The few studies of meta-

bol to of sul for-cstaising reiprotectows which have been atteted appear
to be quite varelile. Nay early studies used radioactively labelled
compounds which wee used to Investigate the tissue distribution of the
compouds. tmwer,, only the presence of radioactivity was determined i..

most of these studies. Therefore, no information on the biochomical trans-
formation and ultimate fate of the compound can be ascertained by such I
eaperheents. Withomt such Informatios, meaningful structure-activity, roe -

tiemehips we imsible to deteriaine (See ILA). FwUrterore, the devel-
opest of radiopretectors in cancer therapy has bee hapsed by unexpeted
phwsokinetics, of p"wising drugs, ~mto$e leading to "st""a rempesus
Is patients paticipatle to clinical trials E69,174,t40. ThVefre, and
@ffot Oust be direted tssd the 11iMvestiaio of the mtlis ad tissue
distribaste of representtiv rispretective dries. Such invetlation

Aul~d fteus Or" thi -biattusfer a of Pqseseftiatt"e drug with the
14041ficAten and qWeIMtifcai of mtl ftft beth jj ze 1Mxi.
IinosMWlMe es the ottas d kE hutles of *bSrp too# distrIteee ad

rgtnof Wh Pa~t &Mg , ts 10 ~ s qM *;tep wI utsit Is Suilem
010901 ws.V 00"ge 404 to Us s*)o n of a"$o i I'O



4. OM fteir Iindctit.
The human body continuously repairs DNA as expressed by excretion in the

urine of 1-2 notes day " person "1 of modiffed bases, principally thfine

(Dr. Bruce Ames, personal communication, 1984). Since oxidative stress

appears to modulate the level of these products in some inst.nces, such

indicators of DNA damage could be valuable indicators of level of DNA repair

that may occur with Individuals. If DNA repair induction occurs and toler-

ance to oxidative stress develops then urinary products could be biological

markers for such changes.

The virus/cell system described by Defais [113] for studying DNA repair

does not appear to have been utilized for screening of potential post-

Irradiation protectants. It would appear to be well adapted to this

purpose. This system, involving irradiation and purification of the viral

DNA before Its use to infect non-irradiated cultured mamalian cells and

observation of the viral-DNA repair by those cells, has a number of advantag-

es for this application. Replicate samples of homogeneously damaged DNA

preparations can be administered reproducibly to cells exposed to different

agents and conditions. Repair success can be objectively measured by observa-

tion of repaired virus activity. Effects on repair of radiolesions, divorced

from any effects on their prevention, can be observed. The method should

allow convenient preliminary screening of potential therapeutic agents as

well as evaluation of the repair coqonent of the action of radioprotec-

tints. Systematic testing by this method of previously identified radfopro-

tectants should add significantly to our understanding of chemical radlopro-

tection.

S. ft ff of 6adical A"U the Yield 1dSlu le

According to the scheme of Willson et at. (160,484] (see Figure 3.

II.C.I.c), glutathione thiyl radicals formed during molecular Orepair" of

target radicals by hyroen atom donation react with progressively less

noxious radical acceptors to detoxify the sulfur-centered radical. If this
hypothesis holds, one shoold be able to demonstrate, under conditions In

uhtch direct oxidation of the ultimate electron donor (j.j., cytowme c or

3MPH) does not take place by the ultiate oxidant ('ON or f'), that the

radboofcal yield of SOH, S 4 ~ glItatieme, ratiolyuis prodcts
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are diminished by the presence of the ultimate electron donor. For exavole,
if the radical reactions

(58) R* +GSH SS *G + RN
(59) GS' + Cyt cred -. GS- + Cyt co

are thought to result in cycling of GSH between reaction 58 (hydrogen atom
donation) and reaction 59 (electron transfer), then the yield of other
products of the radiolysis of glutathione

(60) OS, 2 .. BS02 H+GH +GSSG
should be reduced in the presence of reduced cytochrome c comp~ared to the
yield of these oxidation products in Its absence. This experiment could be
repeated at whatever levels of biological relevance the hydrogen donation
reaction had been shown to occur (i... purified systems, DNA, whole cells,
etc.).

6. Toxlct of Thol Ralehu'otectors.
A large proportion of radioprotectors contain a thiol group or a poten-

tial thiol group. This class of compounds contains many of the most effec-
tive radioprotectors. As with many drugs, the utility of thiol radioprotec-

tors Is limited by their toxicity. The prototypic thiol radioprotector,

cystemine, cannot be used clinically because of this toxicity. However, few

studies of the toxic effects of thiol compounds have been done which quantify
these toxic effects. Little is known about the relationship, if any, between
the toxic effects of thiol and their radioprotective activity. The mechanism

of toxicity has recently been investigated for the thiol-containing Mino
acid cysteine (468,469]. These studies have recently implicated cysteine

oxidation, with concomittant production of hydoge peroxide, in the mechan-
ism of cystelne toxicity (470]. Cystofne has beon shown to be utagenic in

the $alimonella reversion assay (173], presuably by similar mtechanisms, If
the radioprotective efficacy of thfol compounds results from their consuWn
tion of oxygen during their oxidation,, the toxicity of these compounds may be
an extension of their therapeutic effect. On the other hand, should other
mechanisms be Implicated In the therapeutic limitation of these drugs, such
as the ulceooenic (85] and adrenocortical necrotic [2933 actions of cyst*-A
mine or the hpocalcmic effets of UR-t7Z (174]9 one may be able to
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dissociate the radioprotective from the toxic effects of the drugs. A
similar separation of the toxic from the radiosensitizing effects of congen-
ers of misonidazole (3] has recently begun to yield some promising results
(103]. An understanding of the factors contributing to the toxicity of thiol
radioprotectors may yield similar benefits in the therapeutic indices of
these drugs.



V1. Chemical Radiaprotection: Research In Progress.

A. Nhjor Topics and Current PrIncipal Investigators.

Introduction. Because radioresistance and radiosensitivity are
reciprocal varliables, research directed toward one of these topics Is also
related to the other. Much current research, for examle, is aimed at
chemically increasing radiosensitivity of twor cells. Since modification of
radiosensitivity is equally a modification of radioresistance, research
projects concerning radiosensitization were not unifrmly excluded from this
compilation: if results of such a research proje cfe iglt be expected to also
provide information concerning radioresistance, it was included here.
However, many radiosensitivity projects which were judged to have only
marginal relevance to radioprotection (such as clinical trials of
radiosensitizers or investigation of radiosensitizer toxicity and
pharmacology) were omitted.

In this section, projects related to eight topics are referenced by the
principal investigator's surname. Further Information concerning specific
projects can be found in Section B.

1. Radiation m: basic Nature and Nuchanim.
Investigators: Adelstein, Bedford, Bernhard, Burns, Cole, Cress, Curtis,
Denman, Dewey, Epp, Ewing, Fanburg, Geard, Gillette, Gregg, Griffiths,
Griggs, Henrner, Jose, Katz, Keng, Koval, Kubitschek, Lawrence, Leeper, Lett,
Matney, Oleinick, Powers, Ramey, Remsen, Rich, Rodgers, Rosenberg, Roti Roti,
Schneiderman, Setlow, Sinclair, Souty, Smith, Stuart, 8 Sutherland, R
Sutherland, Taylor, Tobias, Wallace, Wheeler, Withers, Zimbrick.

ZA. 1011ation Reuistance/smmsitivitr. Basic Nature and Nnchwium.
Investigators: Bedford, viaglow, Ducorr, Gregg, Koval, Paterson.

26. Radiation ResisteiSensItIvitz. aineature Effect.
Investigators:- Bowden, Coleman, Cress, Denmani, Dewey, Gleard, Berr Hahn,
Hall, Hofer, Kim, Leaper, Lett, Plank, Schnaiderman, Song.

2C. Radiation Reuistance/Smmsitivity: Oxnen Effect.
Investigators: Agrawal, Bi1aglow, Epp, beard, 65upta, Hiorer, RiM, Ling,
Meistrich, Moulder, Mulcahy, Plenk, Ressen, Rich, Song, Suit, Tobias.

20. Radiation Nesistance/Sensitivity: Othu Chwmial Netlation.
~ ~1 Investigators: Agrawal, Arthur U Little, Inc., Sardos, Barkley, M1aglow,Brown, Chil Hosp Philadelphia, Ciborowski, Cole, Coleman, Epp, Ewing, Fan-

burg, Fu, Beard, Gillette, Gregg, Hagan, Hall, Henner, Hichman,, Hofer,
Infante, Jordan, Kligerman, Krohn, Leaper, Msgaw, Muistrich, Mitchell, Moul-
der, Mulcahy, No Calif Cancer Prog, Parthasarathy Phillips, Powers, Ramey,I
Research Triangle lnst., Rich, Richmond, Rosenthaf, Sanders, Savarese, Schne-
iderman Sodicoff, Song, Sridhar, Stuart, Suit, R Sutherland, Urtasun, Utley,
Yuhas, fiiirick.
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3A. Radiation Repair/Recovey Processes: Basic Nature &W

Investigators: Brent, Burns, Cress, Denman, Ducoff, Evans, Fluke, Griffiths,
Griggs, Hadden, Hanawalt, Hunner, Howard-Flanders, Humphrey, Kong, Koval,
Lawrence, Lett, INeyn, Oleinick, Paterson, Prakash, Remey, Rinsen, Rich,
Rupert, Setlow, Smith, 8 Sutherland, Taylor. Wallace, Wheeler.

3B. Radiation Repair/Recove Processes: Chemmical Noiulatio.
Investigators:7Adler,M Aving, Baroos, Brent. Gillette, Ling, NuTcahy, Remson,
Setlow, Smith, R Sutherland.

4: Research on Nathodolg For Use In Radise iam Stulos.
Investigators: Brent, Cborowsk, Jr an, Lange, waney, Reaw, mos,
Paterson, Wallace, Weinreb, Zimbrick.

S. Research Projects In Area Relevant to Chemical Raileprotection.

Introduction: Listed on the following pages are some specific current or
recent research-projects relevant to chemical radioprotect Ion funded by U.S.
Government Agencies. It is emphasized that for some projects, the
radioprotection component may represent only a secondary objective of the
research. Entries given, when available, for each project are as follows:

Pl/ORG: This entry identifies the principal investigator and organization
with which the project is associated.

TITLE: This entry gives the title of the project.

SU0WRY: This entry gives brief characterization of that portion of the
research project related to chemical radioprotection, to the extent that such
information was available to us. In most cases, these entries consist of
relevant selections and sumaries from larger abstracts provided by the
researchers or other sources.

SPONSOR: This entry indicates the source of funding for the research.

TOPICS: These codes refer to the eight major topics listed In section A.

SOURCES: The Sponsor names are followed by letters Indicating the source
of our information concerning the project. These sources are as follows:

A. CRISP (the U.S. Public Health Service's OCoqiuter Retrieval of
Information on Tcentffc Projects* file), a co~uter-based information system
concerning all USPHS-supported grants and contracts and intrnmural research at
the National Institutes of Health. We are grateful to Louis J. Parkhurst,
Technical Information Specialist, for the search of CRISP on the topics
Oradioprotective q ts4 and gradiosonsitiaeri, perforie 2/23/84.

8. FederalinResear(chair P S data bass of Dialog
Information ces, searche ra~ r ee1"

C. RECONl RIP data base of the Department of Energ. We are grateful
to Axel RfNWI7'Sciece and Technology Division, DOE, for providing us with a
search of this data base performed in Februay, 1984.



I. AV

0. Commierce Business Daily (Dialog Data Base) - search performed
Feb 22, 1084. The four contracts retrieved from this data base were listed
in CBD as being in the process of negotiation. It is assumed that
negotiations were successfully completed but no additional information is
available for them. Therefore, they are listed separately here rather than
in the main body of the following compilation.

CONTRACTS LISTED AS UNDER NEGOTIATION
P1/ORB: Arthur 0 Little, Inc., Cambridge, M4A
TITLE: In vivo screening of radloprotectors.
SPONSOR: ". 7.'iny Ned Res Dvlpt Command, Fort Detrick, M4DlD TOPICS: 2D

P1/ORB: Children's Hosp, Philadelphia, PA
TITLE: Development of central nervous system radloprotectors
SPONSOR: U.S. Army Ned Res Dvlpt Command, Fort Detrick, 14D /D TOPICS: 20

P1/ORB: Northern Calif Cancer Program, Palo Alto CA
TITLE: Screening of radlosensitizers and radioprotectors.
SPONSOR: Natl Cancer Inst, "N /D TOPICS: 20

P1/ORB: Research Triangle Inst., Research Triangle Park, NC
TITLE: Development of new prophylactic radioprotective agents.
SPONSOR: U.S. Army Med Res Ovipt Comand, Fort Detrick, MD /D TOPICS: 20

P1/ORG: Adelstein, S James; Shields Warren Red Lab, Harvard Univ, Boston M4A
TITLE: Nacromolecular radiation effects.
SUMMARY: Radiochemical alterations of amino acids, protein, and DNA in
cultured hamster lung fibroblasts are studied.
SPONSOR: Nati Inst Arth, Diab, Digest and Kidney Dis /B TOPICS: 1

P1/ORB: Adler, HI; Oak Ridge Natio-nal Laboratory, Oak Ridge TN
TITLE: Microbial mtagenesis and cell divisio%.
SUMMARY: One objective is to explain the previously observed promotion by
membrane preparations of recovery of Irradiated bacteria.
SPONSOR: Dept Energy /C TOPICS: 36

P1/ORB: Agrawal, Krishna C; Tulane Univ. Sch. Med., Mew Orleans, LA

TITLE: Development of antitumor and radiosensitizing agents.
SUMRY: An objective Is to develop and test a radiosensitizer for

vivo and in vitro.TOIS
3PUMO: EtT7cer Institute IATOIS C2

P1/ORB: Sardos, Thomas J; SUNY at Buffalo, Aerst NY
TITLE: Chemical and biological studies in cancer chemotherapy.
SMAY: Objectives include determination of structure-activity relationships
for radiosensitizing agents, design of new agents, and study of interaction
of selected agents with nucleic acids and with DNA-repair processes.
SPONSOR: Nati Cancer lnst, NIH /A TOPICS: 20,38

P1/ORB: Barkley, Howard T; L~iv of Texas, Houston TI
TITLE: Radoprotective effects of prostoglandin inhibitors.
SUMMRY: This Is a s-project of a larger research program grant.

SPNSR:Netl Cancer nt, NIH /A TOPICS: ED



PI/ORG: Bedford, Joel S; Radiology, Colorado State Univ, Fort Collins CO
TITLE: Dose and time factors in cellular radiosensitivity.
SNMARY: The objectives are a better understanding of the nature of lethal
lesions in irradiated cells and of the Interrelationships of factors
Influencing radiosensitivity. Dose-rate and dose-fractionation effects are
emphasi zed.
SPONSOR: NatI Cancer Inst, NIH / TOPICS: 1,2A

PI/ORG: Bernhard, William A; Dept Radiation, Univ Rochester, Rochester NY
TITLE: Effects of ionizing radiation on nucleic acids.
SUMlPARY: The objective is to determine the chemical mechanisms by which
ionizing radiation causes alterations in the primary structure of DNA,
Initially by developing a set of rules for prediction of DNA/free radical
events.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1

PI/ORG: Biaglow, John E.; Case Western Reserve Univ., Cleveland OH
TITLE: 1odfication of X-ray response of anoxic-hypoxic cells.
SUINMY: The nature of radiosensitization by mitogenic hormones of hypoxic
tumor cells is studied. The effect of cellular thiols on radiosensitization
by insulin and effects of drugs which influence endogenous non-protein thiols
are investigated.Agents studied include epidermal growth factor, phorbol
esters, rotenone, anthycin A, metronidazole, and misonidazole.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS:

2A,2C,20

PI/ORG: Bowden, George T; Univ Arizona, Rad'n Oncology Div, Tucson AZ
TITLE: Interaction of hyperthermia with radiation and drugs.
SUIMRY: (see summary under Eugene Garner).
SPONSOR: Nati Cancer Inst, NIH /A TOPICS: 29

PI/ORG: Brent, Thomas P; St Jude Children's Research Hasp, "eephis TN
TITLE: Enzymes and reactions for repair of DNA In human cells.
SU44ARY: Objectives include identification and characterization of enzymes
and reactions involved in excision-repair of DNA in human cells exposed to
radiation or alkylating agents (using purified repair enzymes) and screening
of cell extracts from individuals with "DNA repair syndromes for repair
enzyme deficiency.
SPONSOR: Natl Cancer Inst, NIH A TOPICS: 3A.3B,4

PI/ORG: Browo, John N.; Stanford Univ., Stanford CA
TITLE: Experimental radiotherapy - Basis and modification.
SUIMRY: Two of the topics of this project are (a) the influence of comon
chemotherapeutic agents on radiation resistance of normal spinal cord, lung,
and kidney tisue; and (b) the testing and enhancement of tmor cell
radiosensitization by electron-affinic agents. The agents studied include
BCNU, misonidazole, actinmW~cin 0, adriacin, bleoaecin, cyclophosphafde,
and cis-platinum.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

P1/ORG: Burns, FJ; NY Univ Ned Ctr, Tuxedo NY
TITLE: Ocogenic action of proton and electron radiation on rat skin.
SWNMY: Sngl e and double strand DNA breaks are studied using single and
multiple radiation doses with special reference to repair of oncogenic damage

8B,



and to a track theory of radiation damage.
SPONSOR: Dept Energy /C TOPICS: 1,3A

PI/ORG: Ciborowski, Linda J; Massachusetts General Hospital, Boston NA
TITLE: Hicronucleus screening of DDC and other radioprotectors.
SUMAY: An in vitro assay based on observation of micronuclei formation is
evaluated fo-quantfying radiation damage and for use as a screening assay
for radioprotective effectiveness.
SPONSOR: Nat1 Cancer Institute /A TOPICS: 20,4

PI/ORG: Cole, A; Dept of Physics, Univ Texas System Cancer Ctr, Houston TX
TITLE: Radiation and biophysical studies on cells and viruses.
SUNMARY: Continuing objectives are to define the initial lesions induced by
radiation and subsequent events leading to cellular responses, using
cultured, synchronized mammalian cells, low and high LET radiations, and
various drugs.
SPONSOR: Dept Energy /C TOPICS: 1,20

PI/ORG: Coleman, C Norman; Stanford Univ Sch Ned, Stanford CA
TITLE: Stanford University participation in the NCOG.
SUMMARY: Stanford is a participant in the Northern California Oncolopy Group,
whose major purpose is to design and conduct clinical trials, including
trials involving radiosensitizers, radioprotectors, and hyperthermia.
SPONSOR: Nat) Cancer Inst, NIH /A TOPICS: 28,20

PI/ORG: Cress, Anne E; Radiation Oncology, Univ Arizona, Tucson AZ
TITLE: DNA protein crosslinks after hyperthermia and radiation.
SUMMARY: The molecular and cellular nature of the DNA protein crosslinks
generated by hyperthermia and radiation are investigated, with testing of
their relationship to lethality, replication, and repair.
TOPICS: Nat) Cancer Inst, NIH / TOPICS: 1,2B,3A

PI/ORG: Curtis, Stanley B.; Univ Calif., Laurence Berkeley Lab., Berkeley
CA
TITLE: Response of rat twmor cells to heavy ions.
SUMARY: The research measures responses of cellular processes to high- and
low-LET radiation.
SPONSOR: Nat) Cancer Inst, NIH /A TOPICS: 1

P1/ORB: Denman, David L; Univ Cincinnati Hosp, Cincinnati OH
TITLE: Chrmsomal damage Induced by hyperthermia and radiation.
SUMRY: Studies of molecular mechanism of killing of cultured hamter ovary
cells by radiation and heat, Including the roles of repair and cell cycle
stage are carried out.
SPONSOR: Nat) Cancer Inst, NIH/S TOPICS: 1,28,3A

PI/ORG: Dewey, William C.; Univ of Calif. San Francisco CA,
Colorado State Unv, Fort Collins CO
TITLE: Molecular basis of radiosensitization by hyperthermia.
SUMRY: The research Is to determine which heat-induced lesions are lethal
In themelves and which radtosensitize by interaction with X-ray-induced
lesions. Effects of heat on the niber of radiaton-Induced single-strand DNA
breaks are detemined.
SPONSOR: Natl Cancer Inst,, NIH; US Ompt Agriclture IA,1 TOPICS: 1,28g O
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PI/ORG: Ducoff, Howard S; Univ Illinois, Urbana IL
TITLE: X-rays increase insect longevity - Ftssible mechanism.
SUNMARY: The objective is to test a model explaining the increase in
longevity of irradiated insects. The model hypothesizes that radiation
damage to DNA induces higher levels of DNA-repair enznes.
SPONSOR: Nat) Inst of Aging, NIH /B TOPICS: 2A,3A

PI/ORG: Epp, Edward R.; Massachusetts General Hospital, Boston IA
TITLE: Radiation sensitization applied to cancer radlobiology.
SUMMARY: Effects and mechanisms of radiation damage and of chemical
radiosensitizers, including oxygen and its interaction with other
sensitizers, are studied in ammalian cells. Certain "shoulder- modifying*
compounds and compounds believed to alter indirect damage to RNA are also
studied.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,2C,20

PI/ORG: Evans, HH; Dept Radiology, Case Iestern Reserve Unfv, Cleveland OH
TITLE: Carcinogenesis in mammalian cells.
SUMMARY: The objective is to determine the role of DNA repair in mutagenesis
and carcinogenesis. Reactions to radiation of repair-proflcient and repair-
deficient cells are compared.
SPONSOR: Dept Energy /C TOPICS: 3A

PI/ORG: Ewing, David; IHahnemann Univ School of Ned, Philadelphia PA
TITLE: Lethal damage from 02 and OH in irradiated cells.
SUMMARY: Earlier conclusions regarding hydroxyl radicals and their relation-
ship to oxygen in lethal radiation dmage are reevaluated. 7he conclusion
that oxygen sensitizes by reacting at cellular sites fored by *OH attack
is tested.
SPONSOR: Natl Cancer Inst, NIH /A,B TOPICS: 1,20

P1/ORG: Fanburg, Barry L; New England Ned Ctr )bsp, Bston MA
TITLE: Radiation injury to pulmonary endotheliu.
SUMM RY: Radiation damage to cultured lung endothelial cells is characterized
and biochemical mechanivs of daimage and protection are studied, using radio-
protectants and radiosensitizers.
SPONSOR: Natl Heart, Lung, and Blood Inst, NINH /B TOPICS: 1,20

PI/ORG: Fu, Karen K; Univ of Calif., San Francisco CA
TITLE: Chemical modification of low dose rate irradiation.
SUMMARY: An objective of the research Is to obtain quantitative information
on modification of low-dose irradiation effects by radiosensitizers and
radioprotectors in normal and tower tissue In vitro.
SPONSOR: Natl Cancer Instv NIH /A TOPICS: 20

PI/OR: Giard, Charles R; Colubia Univ, Nwe York NY
TITLE: Radiation cytogentics.
SJMPY: The overall research objective Is the study of effects of low-dose
ionizing radiation on m lia cells and the biophysical intepreation of
these effects. Studies of modification by envtromental factors, Including
oxygen am teierature, of dose response relationships are Included.
SPONSOR:Natl Cancer Inst, NIH /A TOPICS: 1,tO,2C,28



P1/ORB: Gerner, Eugene W.; Univ of Arizona, Rad Oncology Div., Tuscon AZ
TITLE: Biochemical and cellular aspects of hyperthermia damage.
StNMAY: The primary objective of the program of which this is a sub-contract
is to determine efficacy in cancer therapy of hyperthermia, used alone and
with radiation or chemotherapy. Molecular, physical, engineering, and clinic-
al aspects of the problem are studied.
SPONSOR: Nati Cancer Inst, NIH /A TOPICS: 25
P1/ORG: Gillette. Edward L; Colorado State Univ, Fort Collins CO
TITLE: Radiation repair of normal mammlian tissues.
SUMMARY: Quantitative responses of microvascular and other normal tissues to
radiation, with or without other agents, are evaluated with specific atten-
tion given to the relative biological effectiveness of high-LET radiations
and to loss of repair capability after high- or low-LET Irradiation combined
with other agens, including the radioprotector WR-2721.
SPONSOR: Nat 1 Cancer Iwist, NIH IA,B TOPICS: 1,20,38
P1/ORB: Gregg, Earle C; Case Western Reserve Univ, Cleveland OH
TITLE: Mutants and altered radioresponse of cells and tumors.
SUMNAY: Objectives include (1) determination of effects of very small doses
and dose rates of both drugs and ionizing radiation and (2) identification of
biochemical, biophysical, and cytological differences between established
radioresistmnt mutant cell lines and their parental source.
SPONSOR: Natl Cancer tinst, NIH /A TOPICS: 1,2A,20

P1/ORB: Griffiths. T Daniel; Northern Illinois Univ, Dexalb IL
TITLE: DNA replication after insult with UV.
SUNIMY: The time course of UIV effects on DNA synthesis and of recovery from
these effects, and molecular events responsible for the effects and recovery
from then are studied.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,3A

P I/ORB: Griggs, Henry G; John Brown Univ Biology Dept, Siloam Springs, ARITITLE: Ultraviolet and ionizing radiation damage.SUDNARY: Radiation-induced intracellular processes chromosomal lethal les-
Ions, and cell repair processes In synchronous calf cultures are examined.
SPONSOR: Natl Cancer Iwst, NIH /A TOPICS: 1,3A

P1I/ORB: Gupta, Vicram; Univ Texas Ned Branch, Galveston TX
TITLE: Effect of physiological oxygen levels on tumor therapy.
SUMMARY: The effect In cultured tuow cells of physiological vs. 20% oxygen
concentrations are studied in the hope that the results will aid Interpreta-
tion of cytotoxicity data from drug and radiation exposures.

£ SPOSOR: Natl Cancer lost# 411H /1 TOPICS: KC
P1/ORB: Hadden, CT; Univ Tennesee, Oak Ridge TN
TITLE: Repair and cell cycle response In cells exposed to environmental 1.biohazards.
S~N Y: ftmal In bacteria of nitodcad pyrimidise 41mers, as control led

to clarify. induaid prtenrocesses.ooteswesude
to IV genepi 910ste.UY eisa4tetpoete tde
SPONSO: hpt Enrg C TOPICS: 3A

Pt/OR: WNa, George 0% Stanford Univ School of Nodilie,, Stanford CA
TITLE: bif Icatien of radiation response J1 11r
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SUMMARY: Objectives include the development of information on how
hyperthermia kills cells, on cell thermotolerance, and on the effects of
thermotolerance on X-ray sensitivity in vitro and in vivo.
SPONSOR: Nat] Cancer [nst, NIH /A,B TOPICS: 28

PI/ORG: Hall, Eric J.; Columbia Univ, New York, NY
TITLE: Radiobiological studies related to high LET radiotherapy.
SUMMARY: Purposes of the research incTude: study of the mechanfsm of action
of radiosensitizing electron affinic compounds, including several newly
synthesized ones; study of interactions with naturally occurring polymines
of several chemotherapeutic agents; and Interaction of these agents with
hyperthermia and with the electron affinic sensitizers.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS:2B,2D

PI/ORG: Hanawalt, PC; Herrin Biol Labs, Stanford Univ, Stanford CA
TITLE: DNA repair mechanisms in living cells exposed to ultraviolet light
or environmental by-products of energy conversion.
SUMMARY: Bacteria are used for analysis of post-irradiation recovery
processes.
SPONSOR: Dept Energy, NIH /A,C TOPICS: 3A

PI/ORG: Henner, William 0; Dana-Farber Cancer Inst., Boston MA
TITLE: Mechanims of radiation carcinogenesis.
SUMMARY: The chemistry and enzymology of X-ray-induced DNA damage and of DNA
repair in human cells are studied. Location and extent of strand breaks and
the effects of oxygen and free radical scavengers are determined, as well as
rates and extent of post-radiation repair.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: 1,2D,3A

PI/ORG: Hofer, Kurt 6; Florida State Univ., Tallahassee FL
TITLE: Tumor cell hypoxia as a factor in cancer therapy.
SUMRY: Studies are made of the significance of the oxygen effect to
radiotherapy; means of modification of the radioresistance of hypoxic cells
including simultaneous application of radiation and hyperthermia r
radiosensitizing agents; enhancement of by tumor cell pH reduction of
hyperthermic radiosensitization; and the mechanism (damage enhancement vs
repair inhibition) of synergistic radiosensitization.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: 28,2C,20

P1/ORG: Howard-Flanders, Paul; Yale Univ, New Haven CT
TITLE: Crosslinking of nucleoproteins by radiation.
SUMMARY: The enzjuatic mechanisms of post-replication repair and genetic
recombination In E. coli are Investigated.
SPONSOR: Nati Int orueneral Med Sciences, NIH /B TOPICS: 3A

PI/ORG: Huphrey, Ronald N; Univ of Texas System Cancer Center, Houston TX
TITLE: DNA repair and recovery in the minallan cell cycle.
SLNMRY: Objectives include determination of the biochemical basis of cell
cycle dependent variations in response to radiation and chnical agents;
definition of the relationship of certain DNA repair processes to mmalian
cell survival and mutaeusis; and Isolation of mutegen-smitive variant
cell lines that could be used to investilgte the miecular basis of 011A
repair.
TOPICS: Nati Cancer last, NIH /I TOPICS: 3A
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PI/ORG: Gabriel A Infante; Catholic Univ of Puerto Rico, Ponce PR
TITLE: Radiation chemistry of biologically important compounds.
SUMMARY: One of the subprojects continues studies of radiosensitization.
SPONSOR: Div of Research Resources /A TOPICS: 20

PI/ORG: Jose, Jule G; Sch Optometry, Univ Calif, Berkeley CA
TITLE: AgIng and radiation effects on ocular metabolism.
SUMMARY: Alterations in UV-induced DNA, RNA, protein, mucopolysaccharide, and
proteoglycan metabolism in lens, cornea, and conjunctiva of young and old
rats are examined.
SPONSOR: Nat? Eye Institute, NIH /8 TOPICS: 1

PI/ORG: Jordan, Scott W; Univ of New Mexico, Albuquerque NM
TITLE: Computer-based analysis of renal radiation response.
SUMMARY: Studies include evaluation of computer-assisted morphometric
analysis for demonstration of tissue radiation response and of effects of
radiation sensitizing or protective agents.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20,4

PI/ORG: Katz, R; Dept Physics, Univ Nebraska, Lincoln NE
TITLE: Theory of RBE.
SUMMARY: A model of track structure and relative biological effectiveness is
being used in an attempt to understand biological effects of low dose
Ionizing radiation.
SPONSOR: Dept of Energy /C TOPICS: 1

PI/ORG: Keng, Peter C; Univ Rochester, Rochester NY
TITLE: Phase specific DNA repair in irradiated tumor cells.
SUMMARY: The objective is to investigate DNA damage and repair of irradiated
syncronized tumor cells at different phases of the cell cycle to determine
whether relative rate or extent of repair is responsible for variations in
cell survival during the different phases.
SPONSOR: Natl Cancer Inst, NIH / TOPICS:1,3A

PI/ORG: Kligerman, Morton M; Univ Pennsylvanis, Philadelphia PA
TITLE: Clinical radiation and drug protection with WR-2721.
SUMMARY: Dosage and effectiveness of the radioprotector, WR-2721, in patients
undergoing radiotherapy are tested, alone and in combination with
cis-platinim and cyclophosphmide. Some pharmacologic studies with
radiolabelled drug are included.
SPONSOR: Nat) Cancer Inst, NIH /A TOPICS: 2D

PI/ORG: Kim, Jae H; Sloan Kettering Institute, New York NY
TITLE: Cellular response to heat and radiation.
SUMMARY: Interactive effects of glucose concentration, ambient oxygen
concentration, and tmperature on survival of HeLa cells are studied.
SPONSOR: Natl Cancer nit, NIH /8 TOPICS: 28,2C

PI/ORG: Koval, Thomas N; George Washington Univ Sch Ned, Washington DC
TITLE: Insect cells - A basis for radioresistance.
SUMMMRY: The objective is to determine the basis of the extreme
redioresistance of cultured TN-2S insect cells. Several aspects of
radioresponse repair, and recovery of the cells are studied.
SPSNSOR: Nati Cancer lst, NIH I TOPICS:1,2A,3A
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PI/ORG: Krohn, Kenneth A; Univ of Washington, Seattle WA
TITLE: Radioprotective drugs Mechanism and biological studies.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Kubitschek, HE; Argonne Nati Lab, Argonne IL
TITLE: Molecular, genetic, and cellular mechanisms of environmental and
solar-UV mutagens.
SUMMARY: The nature of DNA lesions produced by environmental and energy-
related mutagens is studied using bacteria. Effects of ultraviolet light are
emphasized.
SPONSOR: Dept of Energy /C TOPICS: 1

PI/ORG: Lange, CS; Downstate Med Ctr, State Univ of NY, Brooklyn NY
TITLE: Biological effects of ionizing radiation at the molecular, cellular,
and organismal levels.
SUMMARY: Studies of DNA breakage and repair depend on DNA size measurements.
This project attempts to develop accurate methods for these measurements.
SPONSOR: Dept of Energy /C TOPICS: 4

PI/ORG: Lawrence, CW; Dept Rad Biol and Biophys, Univ Rochester, Rochester
NY
TITLE: Molecular biology of radiation mutagenesis.
SUMMARY: Among the objectives is the study of the effects of new mutations in
S cerevisiae on DNA repair.

MRDepto Energy /C TOPICS: 1,3A

PI/ORG: Leeper, Dennis 8; Thomas Jefferson Untv, Philadelphia PA
TITLE: Interaction of hyperthermia, radiation and drugs in vitro.
SUMMARY: Cell response to hyperthermia and to drug/radatiTn c-cTnatons are
studied, as well as studies of physics and dosimetry of high energy protons,
electrons and neutrons.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,2B,20

PI/ORG: Lett, John T; Biochem & Rad, Colorado State UnLiv, Fort Collins CO
TITLE: Repair of radiation damage to cellular DNA.
SUMMARY: Studies in hamster ovary cells of repair of X-ray induced DNA strand
breaks as a function of cycle position and temperature and of responses of
individual chromosomes are be carried out.
SPONSOR: Natl Cancer Inst, NIH /8 TOPICS: 1,2B,3A

PI/ORG: Ling, C Clifton; George Washington Univ, Washington DC
TITLE: Oxygen radiosensitization at different dose rates.
SUMMARY: The oxygen effect as a function of dose rate and of oxygen
concentration is systematically studied. Measurements of split-dose recovery
kinetics of mammlian cells at low oxygen concentrations are Included.SPONSOR: Nat1 Cancer Inst, NIH IA TOPICS: 2C,3B

PI/ORG: Natney, TS; Unilv of Texas Health Science Ctr, Houston TX
TITLE: The effect of radiation-sensitive mutations and mutagens/carcinogens
on bacterial recombination and mtagenesis.
SULMRY: The project deals with development of bacterial systems which quanti
tate different types of radiation- and chemical-induced genetic recombinatin
and mutation.
SPOSOR: Dept of Energy /C TOPICS: 1,4
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PI/ORG: Megaw, Judith M; Emory Univ, Atlanta GA
TITLE: Liposomal intraocular drug delivery in vitro and in vivo.
SUMMARY: Del ivery of 1 iposome-bound specific lents to intfaocu uar tissues,
including delivery of free-radical scavengers to protect the lens from
development of radiation-induced cataracts, are investigated.
SPONSOR: Natl Eye Institute /A TOPICS: 20,4

PI/ORG: Meistrich, Marvin L; Univ. Texas System Cancer Ctr, Houston TX
TITLE: Mutagenic action of cancer therapy on testis cells.
SUMMARY: This project concerning the sterilizing and mutagenic action of
drugs and radiation on male germ cells includes studies of factors
lifluencing cell sensitivity; investigation of methods of protection against
.terilizing effects; and testing of radioprotectors.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 2C,2D

PI/ORG: Meyn, Raymond E; Univ of Texas System Cancer Ctr, Houston TX
TITLE: Repair of radiation damage in vitro and in vivo.
SUMMARY: The objective is detailed diers--nding '6T malian cell DNA repair
mechanisms for radiation damage.
SPONSOR: Natl Cancer Inst, NIH / TOPICS: 3A

PI/ORG: Mitchell, J B; Nat1 Cancer Inst, NIH, Bethesda NO
TITLE: Response of hunan hematopotetic precursor cells to halogenated
pyrimidlnes.
SUMMARY: Data relevant to whether the radiosensitizing halopyrimidines act by
being actually incorporated into cellular DNA to make the DNA less stable to
radiation are experimentally obtained.
SPONSOR: Div of Cancer Treatment, NIH /A TOPICS: 2D

PI/ORG: Moss, Alfred J; Veterans Administration Ned Ctr, Little Rock AR
TITLE: Post-irradiation repair of DNA by mammalian cells.
SUMMARY: A sensitive oxygen assay for direct determination of oxjgen
concentration in suspensions of irradiated cells is being developed for use
in studies evaluating DNA damage and repair.
SPONSOR: Veterans Administration B TOPICS: 4

PI/ORG: Moulder, John E.; Medical College of Wisconsin, Milwaukee WI
TITLE: Optimization of radiosensitizer use in radiotherapy.
SUMMARY: Effects of hypoxia, the radiosensitizer misonidazole, and radiation
are studied and distinguished in neoplastic and normal rat tissues.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 2C,20

PI/ORB: Mulcahy, R Timothy; Univ of Rochester, Rochester NY
TITLE: Radiation sensitizers - Interactions with other modalities.
SUMMARY: The research tests the hypothesis that repair inhibition bycarbamoyl at ton is correlated with radtosensittzer enhancement of effects of

nitrosoures chemotherapeutic agents. Chemical structure (carbamoylating and
alky'attng properties), cellular environment (e.., oxygen concentration),
and cell proliferative status are among the v4Ftaoles studied.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: 2C,2D,38

PI/ORG: 01einick, Nancy L; Case Western Reserve Univ, Cleveland OH
TITLE: Radiation-induced modification in protein synthesis.
SIJMRY: Radiation-induced DNA damage and repair are compared in active DNAs
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of proliferating cells and less active DNAs of plateau-phase cells.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 1,3A

PI/ORG: Paterson, Malcolm C; Chalk River Nuclear Labs, Chalk River, Canada
TITLE: Radiosensitivity and DNA repair in cancer risk.
SUMMARY: Radiosensitivity and DNA repair in skin fibroblasts from patients
known to be at high risk of cancer are evaluated.
SPONSOR: Div Cancer Cause and Prevention /B TOPICS: 2A,3A,4

PI/ORG: Parthasarathy, Rengachary; Roswell Park Mem Inst, Buffalo NY
TITLE: Stereochemistry of thiol-disulfide interchanges.
SUMMARY: The role of thiol-disulfide interchanges in radiation protection and
carcinogenesis are studied, using X-ray diffraction techniques to study
crystal structures of thiols and related compounds and complexes. Results
will be useful in designing radioprotective agents.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Phillips, Theodore L; Univ Calif. Medical Center, San Francisco CA
TITLE: Evaluation of radiosensitizers and radioprotectors for cancer
therapy.
SUMMARY: This is a sub-project of the general clinical research center grant.
SPONSOR: Div Research Resources, NIH /A TOPICS: 20

PI/ORG: Plenk, Henry P.; LDS Hospital, Salt Lake City UT
TITLE: Radiation therapy oncology group.
SUM4ARY: Activities which this cooperative clinical research project helps
support Include pioneering programs in use of increased oxygen tension and of
hyperthermia with radiotherapy.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 2B,2C

PI/ORG: Powers, Edward L; Lab Rad Biol, Univ Texas, Austin TX
TITLE: Physico-chemical studies of radiation effects in cells.
SUMMARY: The effects of added metal (Ag or Hg) on radiation sensitivity of
bacteria and the behavior of a radical scavenger and oxygen are studied.
SPONSOR: Natl Inst General Ned Sc, NIH; Dept Energy /B,C TOPICS: 1,2D

PI/ORG: Prakash, Satya; Dept Biology, Univ Rochester, Rochester NY
TITLE: Repair of DNA damaged by psoralen + 360 NM irradiation.
SUMMARY: Systems for repair of DNA damage induced by exposure of cell systems
to psoralen plus UV light are characterized.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 3A

PI/ORG: Rasey, Janet S; Univ of Washington, Seattle WA
TITLE: Neutron radiobiology in support of radiotherapy.
SUMMARY: Biological dosimetry to determine RBE's for neutron beams are
carried out in vitro and in vivo, with investigation of repair of sublethal
and potentiaTTfTeUal dageand protection by WR-2721 and related thiols
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,20,3A

PI/ORG: Remsen, Joyce F; Univ Calif., Davis CA
TITLE: Radiosensitizers and DNA damage.
SUML Y: The objective is to characterize effects of hypoxic-cell radiation
sensitizers on formation and repair of radiation-induced DNA damage In

inmalian cells. Thyuine damage and DNA strand breaks are studied in aerobic
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and hypoxic conditions.
SPONSOR: Nati Cancer Inst, NIH /A TOPICS: 1,3A.38,3C

PI/ORG: Rich, Tyvin A.; Harvard Medical School, Boston MA
TITLE: Hypoxic cell sensitizers - Radiosensitization, distribution,
neurotoxic ity.
SUMMARY: Damage interaction between radiation and cancer chemotherapeutic
agents; development of a basis for use of hypoxic cell sensitizers during
radiotherapy; genetic control of drug resistant cells and radiation response
of those cells; long-term effects of radiation; and repair in mammalian cells
of radiation damage are studied.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,2C,2D,3A

PI/ORG: Richmond, Robert C; Dartmouth-Hitchcock Ned Ctr, Hanover NH
TITLE: Radiation-chemical induction of mutagenesis.
SUMMARY: Effects of sensitizers on radiation-induced mutagenesis are studied.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Rodgers, Michael A; Ctr for Fast Kinetics Res, Univ Texas, Austin TX
TITLE: Electron transfer reactions in micro-heterogeneous media.
SUMMARY: Ways in which aggregates and interfacial regions in heterogenous
media influence one-electron transfers between free radicals are
characterized. The results will have significance for understanding and
control of health effects of high energy radiations.
SPONSOR: Natl Inst of General Ned Sciences, NIH/A TOPICS: 1

PI/ORG: Rosenberg, Robert C.; Howard Univ. School of Ned, Washington OC
TITLE: Superoxide dismutase in normal and malignant cells.
SUMMARY: This is a sub-project of a biomedical interdisciplinary research
project.
SPONSOR: Div of Research Resources, NIH /A TOPICS: 1

PI/ORG: Rosenthal, C Julian; SUNY Downstate Ned Ctr, Brooklyn NY
TITLE: Radiosensitization and treatment of malignant tumors.
SUMMARY: This is a sub-project of the general clinical research center grant.
SPONSOR: NIH /A TOPICS: 2D

PI/ORG: Roti Roti, Joseph L; Univ Utah, Salt Lake City UT
TITLE: Radiation induced alteration of chromosomal proteins.
SUMMARY: The objective Is to determine the role of chromatin in the
radioresponse of mammalian cells.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 1

PI/ORG: Rupert, Claud S; Univ of Texas, Richardson TX
4 TITLE: Repair of radiation-damaged nucleic acid.

SUMMARY: DNA repair mechanisms in irradiated cells are studied.
SPONSOR: Nat) Inst General Ned Sciences, NiH /I TOPICS: 3A

PI/ORG: Sanders, CL; Battelle Pacific Northwest Labs, Richland WA
TITLE: Inhaled transuranics in rodents.
SUMMARY: One objective is to examlne anticarcinogenic factors that modify
carcinogenic processes resulting from inhalation of transtanic elements.
Anticarcinogenesis with vitamins is evaluated.
SPONSOR: Dept of Energy /C TOPICS: 20
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PI/ORG: Savarese, Todd; Roger Williams General Hosp, Providence RI
TITLE: Differentiation-induction in human colon cancer cells.
SUMM4ARY: An objective is to determine whether differentiation-inducing
compounds can alter sensitivity of cultured or in situ tumor cells to X-rays.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Schneiderman, Martin H
TITLE: G2 cell killing and arrest of X-ray and drugs.
SUMMARY: (see under Dennis Leeper)
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,28,20

PI/ORG: Setlow, RB; Brookhaven Natl Lab, Upton NY
TITLE: Radiation and chemical damage to DNA and its repair.
SUMMARY: Radiation damage to bacterial and vertebrate cells and kinetics of
three types of repair are measured along with effects of chemical modulators
of repair processes. The aim is to develop a molecular basis for biological
dose-response curves at low doses.
SPONSOR: Dept of Energy /C TOPICS: 1,3A,3B

PI/ORG: Sinclair, Warren K; Nat'l Coun Rad Protec and Meas, Bethesda MO
TITLE: Radiation effects and exposure criteria.
SUMMARY: The research assesses available information in order to develop NCRP
reports on (among other topics' biological aspects of radiation protection
criteria and biological effects of magnetic fields.
SPONSOR: Food and Drug Admin, USPHS/A TOPICS: 1,20

PI/ORG: Smith, Kendric C; Dept Radiology, Stanford Univ, Stanford CA
TITLE: Repair of radiation-induced lesions in DNA.
SUMMARY: Objectives of these studies in E. coli include characterization of
the processes for UV radiation mutagenesTs;-'deermination of the source and
nature of spontaneous mutations; and molecular description of post-replica-
tion repair processes.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 1,3A

PI/ORG: Smith, Kendric C; Dept Radiology, Stanford Univ, Stanford CA
TITLE: Molecular basis of radiation lethality.
SUMMARY: Radiation-sensitive E. coli mutants are used to study various
aspects of radiation-induced Zel=ath, including the mechanisms and control
for repair of DNA damage, interactions and possible radiation-induction of
different repair pathways, and drug inhibition of repair.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 1,3A,3B

PI/ORG: Sodicoff, Marvin; Temple Univ., Philadelphia PA
TITLE: X-ray therapeutic index for salivary glands.
SUMMARY: The objective is to widen the differences in sensitivities of normal
and neoplastic salivary tissue by use of the radioprotector, MR-2721, and the
radiosensitizer, Ro-07-0S82. Effects of the compounds, alone and together,
are studied. Other drugs, including Isoproterenol and c)clic AMP are
evaluated as possible substitutes for the still-experimental WR-2)21.
SPONSOR: Natl Institute of Dental Research /A TOPICS: 20

P1/ORB: Song, Chang W.; University of Hospitals, Minneapolis MN
TITLE: Use of 5-thio-O-glucose in radiotherapy.
SUPIMr: Studies showing that 5-thio-D-glucose is specifically cytotoxic

99



toward hypoxic cells, that it sensitizes these cells to x-irradiation while
protecting oxic cells from radiation damage, and that the hypoxic cell cyto-
toxicity of the compound is dramatically enhanced by moderate hyperthermia
are extended.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: 26,2C,20

PI/ORG: Sowby, FO; Internat Comm on Radiological Protection; Sutton, UK
TITLE: Recommendations on radiation protection.
SUMMARY: Fundamental radiobiological and other data are critically examined
in reviewing the Committee's 1977 recommendations and (In the late 1980's)
drafting its next recommendations for national and regional radiation protec-
tion programs.
SPONSOR: Natl Cancer Inst, NIH IS TOPICS: 1

PI/ORG: Sridhar, Rajagopalan; Oklahoma Ned. Res. Fndn., Oklahoma City OK
TITLE: Interactions of hypoxic cell radiation sensitizers.
SUMMARY: Interactions of electron affinic nitro radiosensitizers with certain
mumalian enzymes are studied. Effects of catecholamines on their radiosen-
sitization are measured.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Stuart, Marie J; Upstate Ned Ctr, State Univ NY, Syracuse NY
TITLE: Effect of Irradiation on vascular-platelet interactions.
SUMMARY: Effects of radiation on arachidonic acid metabolism in blood vessels
and their modification by radical scavengers and antioxidants are character- f
ized to elucidate biochemical mechanisms involved in radiation effects on
vascul ar/platelet interaction.
SPONSOR: Natl Cancer Inst, NIH IA TOPICS: 1,20

Pl/ORB: Suit, Herman 0; Dept Radiation Ned, Ross General iosp, Boston MA
TITLE: Modification of tumor response to local Irradiation.
SUMMARY: Enhanced chemical radiosensitization by combination of sensitizer
treatment with hyperbaric oxygen is evaluated in nine murine tumors.
SPONSOR: Natl Cancer Inst, NIH /6 TOPICS: 2C,2D

PI/ORG: Sutherland, Betsy N; Brookhaven Natl Laboratory, Upton NY
TITLE: UV transformation, DNA repair in human cells and skin.
SUMMARY: Roles of wavelength, age, cell origin, growth schedule, DNA and DNA
repair on a UV-Induced transformation process in human cell cultures are
evaluated.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,3A

PI/ORG: Sutherland, Robert M.; Univ Rochester, Rochester NY
TITLE: Combined radiotherapy-chemotherapy studies.
SiMMRY: Experiments Investigate the basic properties and responses of tor
and normal tissues to radiation and drugs, Including the kinetics of repair

-' processes.
SPONSOR: Nat1 Cancer Inst, NIH /A TOPICS: l,2D,31

PI/ON: Taylor, J3; Inst of 1tblec liophys, Florida State UIiv, Tallahassee
FL
TITLE: Repair of lesions and initiation of DNA replication in vertebrate
cells.
SJIMY: An objective Is to stvdy replicons and determine why these sites are
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particularly sensitive to ionizing radiation using DNA cloning techniques in
frog eggs or mammalian cell cultures.
SPONSOR: Dept of Energy /C TOPICS: 1,3A

PI/ORG: Tobias, Cornelius A; Univ of Calif. Donner Lab., Berkeley CA
TITLE: Heavy Ion radiobiology related to oncology.
SUMMARY: Responses of normal mamalian tissues and of twmor growth and kine-
tics to heavy-ion beams are studied. Modification of these responses by
oxygen are also studied.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,2C

PI/ORG: Urtasun, Raul C; Cross Cancer Institute, Edmonton, AS, Canada
TITLE: R.T.O.G. phase I, and III clinical studies.
SUMMARY: Among the areas to which this project in a cooperative clinical
research agreement will contribute is that of chemical modification of radia-
tion response, with studies at both the basic and clinical research levels.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20

PI/ORG: Utley, Joella F; Untiv Calif Medical Center, San Diego
TITLE: Biological analysis of sulfhydryl radioprotective drugs.
SUNMARY: A new, sensitive assay method for the radioprotective agent,
WR-2721, is used to study: 1) the Intracellular form and site of binding of
the drug which may elucidate its mechanisms of action; 2) the rate of its
reaction with radicals; 3) possible radiation-drug mutagenesis; 4) phamaco-
kinetics in normal and tumor tissues and their possible alteration by radia-
tion.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 20,4

PI/ORG: Wallace, Susan S; Dept Microbiol, New York Med Coll, Valhalla NY
TITLE: Modification of X-ray induced damages in phage T4.
SUMARY: The objective is to define the molecular mechanisms involved in
repair of X-ray induced DNA damage in bacteriophage.
SPONSOR: Nati Cancer Inst, NIH I TOPICS: 3A

PI/ORB: Wallace, Susan S; Dept Microbiol, New York Med College, Valhalla NY
TITLE: Repair of DNA damage induced by ionizing radiation.
SURY: The objective is to elucidate molecular mechanisms involved in
repair by E. coli and S. c of radiation damaged phage DNA.
SPONSOR: IMt Mer rst-,--11--/7- TOPICS: 3A

PI/ORG: Wallace, SS; Dept Nicrobiol, NY Ned 0lege, Valhalla NY
TITLE: Immunochtmcal approach to the study of DNA repair.
SUIMY: The objective is to develop a simple immmochemical assay to quanti-
fy DNA lesions so as to facilitate the study of DNA repair.
SPONSOR: Dept of Energy /C TOPICS: 3A

PI/ORG: Weinreb, Steven M; Pennsylvania State Univ, University Park PA
TITLE: Synthesis of securinega alkaloids.
SIUMY: Some alkaloids have show antiradiation activity. Total synthesis
of soe of the Securinega is proposed.
SPONSOR: Ntil lost of General 16d Sciences, NIH /A TOPICS: 4
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PI/ORG: Weiss, Herbert; Sloan-Kettering Inst., New York NY
TITLE: Mechanism of radiation damage in cells.
SUMMARY: The early physicochemical events involved in radiation effects in
cells are studied, using spores, bacteria, and mammalian cells plus radiation
sensitizers and radioprotectors.
SPONSOR: Natl Cancer Inst, NIH /A,B TOPICS: 1,2D

PI/ORG: Wheeler, Kenneth T; Rhode Island Hosp, Providence RI
TITLE: DNA damage and repair in irradiated brain and brain tumor.
SUMMARY: The objective is to elucidate the molecular mechanisms differentiat-
ing DNA repair kinetics in normal cells and tumor cells after irradiation.
SPONSOR: Natl Cancer Inst, NIH /8 TOPICS: 1,3A

PI/ORG: Withers, H Rodney; UCLA Ctr for Health Science, Los Mgeles CA
TITLE: Radiobiology of normal tissues.
SUMMARY: Responses of normal tissues (bone marrow stem cells, hair follicle
cells, and adrenal tubule cells) to multiple doses of radiation are quanti-
fied.
SPONSOR: Natl Cancer Inst, NIH /B TOPICS: 1

PI/ORG: Yuhas, John M; Children's Hosp of Philadelphia, Philadelphia PA
TITLE: Radioprotectants and radiosensitizers in radiotherapy.
SUMMARY: The objective is to determine whether WR-2721, given before radia-
tion and radiosensitizers, increases therapeutic effectiveness.
SPONSOR: Natl Cancer Inst, NIH / TOPICS: 2D

PI/ORG: Zimbrick, John D.; Univ. of Kansas, Lawrence KS
TITLE: Spin-labeled platinum complexes for radiochemotherapy.
SUMMARY: A series of such complexes are synthesized and tested for modiffica-
tion of cell response to radiation. Nblecular mechanisms of their actions are
studied.

2 SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 2D

PI/ORG: Zimbrick, John 0; Univ of Kansas, Lawrence KS
TITLE: Radiation biochemistry of DNA base damage.
SIMARY: The overall objective is to obtain information on types of radia-
tion-induced DNA base lesions in bacteria and the biological consequences of
the lesions. Quantities and types of base lesions and effects on these of
radiosensitizers and radioprotectors are determined.
SPONSOR: Natl Cancer Inst, NIH /A TOPICS: 1,20
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V11. AgWIx B: Sam Compounds SWing Radlepytective Ativity.
This Appendix contains information on the types of compounds which have

been tested for radloprotective activity. Included in Section A are some

general comments on radiobtological structure-activity relationships (SAR)
which have been deduced from tests of efficacy of a wide range of compounds.

These tests have been performed by the Antiradiation Drug Development Program
of the U.S. Army Medical Research and Development Command. The comments on
SAR which are included here are an abbreviated version of a discussion of SAR
included in reference [431]. Section 6 contains data extracted from liter-

ature reports which attempt to define the mechanisms of action of radlopro-

tectors.

Several points should be kept In mind by persons using this Appendix.

First, the bare conclusions of SAR derived from whole animal bioassay studies

[431] provides no information on the absorption, distribution, metabolism and

excretion of the test compounds, but is based only on the end effect radio-
protective activity. Thus, some compounds Judged In some assays to be with-

out radioprotective effect may Indeed exert radioprotective activity if

adequately delivered to, or appropriately metabolized by, the radiosensitive

tissue. Other compounds which are effective radioprotectors of cells may be

metabolized or excreted before they can be delivered to the radiosensitive

tissue and thus will appear to be without effect. Therefore, one must inter-
pret bioassay-derived SAR with a note of caution when no data on the metabo-

lism and pharmecokinetics are available. Secondly, for persons using Section

8, It should be noted that many prominant radiobiologists have cautioned that

such *objective" parameters as Dose HMdifying Factors (OF) obtained in

tissue/cell culture systems and even in whole animal studies may vary greatly
from one laboratory to another ([14] and references therein). The proper

form of equations defining cell survival curves is a continuing controversy

among radiobiologists. Even with data fit to the sine equation, changes in

the pre- or post-irradiation cell culture conditions markedly Influences the

observed cell survival [109,110]. Unsuspected variables which are uncontrol-
led [100] further complicate conparisons of date betwmeen laboratories. Thus

comparison of data between different laboratories Is generally ill-advised
for quantitative purposes [14]. The table of compounds, rather than giving
quantitative Indications of absolute radioprotective activity, should be used
to orient the reader to the types of compounds currently being tested and to
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suggest references to begin further investigation about the work being done

on that radioprotector.

A. Structvre-Activity Relatiomships.

Since many non-thiol radioprotectors exert their effect through well-

understood pharmacologic effects (e.g., serotonin, Isoproterenol), the struc-

ture-activity relationships (SAR) of these compounds will not be discussed in

this report. The finding of radioprotective activity for cysteine and

cystemine (2-aminoethanethiol) in the late 1940's and early 1960's stimula-

ted an effort to identify structural analogs of these compounds which exhibit

increased effectiveness and/or decreased toxicity. The general findings of

these efforts [431) are sumarized in this section.

The general rule which has emerged from intensive investigation of

aminothiol radioprotectors holds that the necessary requirements for radio-

protective activity are: (1) a two or three carbon backbone separating (2) a

thiol or potential thiol and (3) a primary or secondary mino functional

R - NH - C2 - C1 - SR'

(3) (1) (2)

group. lhile this Orule" is surely an oversimplification, its precepts have

generally been upheld with few exceptions. Modifications of each of these

requirements will be considered In turn.

(1) The Carbon Chain: The optimal size of the carbon chain separating

the amino and thiol functional groups is two carbons. Separating these
functional groups by more than three carbons abolishes radioprotective activ-

ity. In the series of 3-aminopropanethiols, few compounds showed more than

low activity and many were without effect. Certain hydroxylated compounds,

especially those carrying a hydroxyl group at the 2 position, were active

when the amino group carried an alkyl chain. 3-inopropylphosphorothioates

followed this generalization, with 2-hydrox-3-alkylinopropylphosphorothio-

ates showing sow activity.
Among the amino(alkylethane)thiols, most substitutions resulted in the

diminution or abolition of radtoprotective activity. Activity was retained

in the series 2.alkyl2-minoethanethiols (up to propyl substitution) and

varied results were obtained In the 2-alklyl-tIoethyl. .iminoethanethiols.

owver, mwe extensive substitution, inclodiig involvmwt of carbocjlic



structures at the 2 position, abolished radioprotectfve activity. Alkyl

substitution at the C, carbon was more hindered in term of the size of

permissable substitutions, with no activity beyond ethyl substitution at C1.
The involvement of both carbons of minoethanethiol as part of a carbocycle

(I.e., 2-aminocyclobutanethiol) retained activity, which diminished somewhat

as the size of the carbocyclic ring was Increased.

Functionalization of either R, or R2 in the series H2NC(RR 2)CNSH

dramatically altered the toxicity and/or radioprotective activity. Incorpor-

ation of thiol functions Into these alkyl groups greatly increased the toxic-

ity of the compounds. Hydroxylation of these alkyl groups Increased the

efficacy of the compound relative to the non-functionalized compound; the

phosphorothioates of this series were generally highly active with relatively

low toxicity.

(2) The Thiol Group: Early in the radioprotective drug development

program, it became apparent that a thiol group or a potential thiol group was

generally necessary for radioprotective activity. The nature of the "poten-

tial0 thiol group influenced the relative activity and toxicity of the basic

compound. Thus, blocking the thiol group in a manner such that it was

metabolically unavailable (e.jj., alkylation of the thiol to produce a thio-

ether) eliminated radioprotective activity. However, blocked forms of

thiols (e.j., thlosulfates (Bunte salts), phosphorothloates, disulfidess, or

other derivatives from which free thiols may be formed metabolically) were

active to varying degrees, both In absolute dosage and relative to the

toxicity of the compound. Altogether, about 50 different sulfur blocking

groups were tested in varying degrees for their ability to latentiate the
thiol and alter the relative potency of the parent aminothiol. In general,
the three thiol derivatives mentioned above were found to be most promising.

The blocked thiols have generally been considered to be prodrugs; the free

thiol was thought to be the active form at the site of action. One might

assume that the function of the blocking group was to alter the

pharmacokintics or the rates of metabolim and excretion of the drugs.

While this is a plausible hypothesis, extensive data to support this general

Note that hydrolysis of most pr-thlels yields one mole of thiol per
mole of pro-thiol Wwheeas on reduction, disulf ides yield two oles of thiol
per mole of disvlfide.
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conclusion is remarkably lacking; more detailed studies of the

structure/activity relationships between the different series of blocked

thiols must be compared with data on the pharmacokinetics of these drugs

before this general conclusion can be accepted.
(3) The Amino Group: Various structures may be attached to the mino

group of the basic iminoethanethiol structure with no deleterious effect on

radioprotective activity. The N-(n-alkyl mino)ethanethiosulfuric acid series

(RNIHCH2CH2SSOH) affords an interesting pattern of activity, with full activ-

ity where R includes a straight chain of up to three carbon atoms. The next

four compounds (R - C4 through C?) were inactive, but modest activity return-

ed when R a Ce to CIO; further extensions were inactive or exhibited only

very low activity. Branched chain hydrocarbons attached to the amino func-

tional group were generally representative of the activity of the unbranched

homologue. Tertiary mines (dialkylminoethanethiols) were without activity,

including those compounds in which the nitrogen atom was part of a heterocyc-
1 ic ring.

Introduction of a phenyl group onto the alkylminoethnethiosulfuric

acids (resulting in compounds of the series CstHs(CH2)nNHCIgCH 2SSOSH)

produced inactive compounds for n a 0 - 2, but compounds showing good activ-

ity for n - 4 and S. Incorporation of alkyl substitutients on the phenyl

ring of 4-phenyl-n-butyl minoothanethlosulfuric acid increased the toxicity

of the compound drmatically, while substitution with a methoxy group produc-

ed higher radloprotective potency.

Hydroxylation of the alkyl chain in the N-alkyl minoethanothiols reduced

the toxicity of the compound irrespective of the position of the hydroxyl

group on the alkyl chain. In general, the introduction of this group had

little effect on or reduced the radloprotectlve potency when compared to the

nonhydroxylated homologue. Polyhydroxlation further reduced the toxicity,

and in some cases allowed testing for potency at higher doses, revealing good

activity.

Hany other substitutients on the amno functional group have been tested

for radloprotective activity, Including phenw yalkyl-, cyloalkylalkyl.,

heterocycloalkyl-, pyridylalkyl-, quinolyloxyalkyl-aminoetihmethiels and

their blocked thiol derivatives. Varying activity was encotered, not

alvayi In orderly sequnce or In relation to their expected pharmacokinetic

behavior.
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Perhaps the best known alkylamino functionalization is the group of

aminoalkyl aminoethanethiols and phosphorothloates [RNH(Clt2 )nNH(CH2)mSR' J,
represented by the prototypic compound WR-2721 [S-2-(3-aminopropylamino)-

ethylphosphorothioic acid, R - H, R' - P03H2, n - 3, m - 2]. In general, the

phosphorothloates in this group were more active than the thiols and were

less toxic. Alkylaminoalkylaminoethanethtols or phosphorothioates were

inactive when the terminal alkyl chain contained more than one carbon atom.

Varying the length of the alkyl chain between the amino groups produced a

peak of activity at n - 3. In contrast to the thiols, phosphorothioates in

this class could be hydroxylated in the aminoalkylamino group without loss of

activity. As noted above, the compounds In which n - 2 and m - 3 were of

couparable activity when R' - H or POsH 2.

In view of the above requirements for a (potential) thiol and a primary

or secondary mine, it is interesting that N,N-bridged mno(bis(ethane-

thiols)) and derivatives [R'S(CH2)2NH(CHn)NH(CH2 )2SR'] were almost uniform-

ly ineffective. The only exceptions were the diphosphorothioates

(RI a POSH 2) where n m 3 or 4.

Other Compounds: Certain other compounds not patterned after the basic

minoethanethiol structure have also been tested for radioprotective activ-

ity. Mercaptoacetmidines, generally tested as the thiosulfates, are some-

what more effective than the corresponding aminoethyl analogs, but are also

more toxic. In contrast to the minoalkylthiol series, amidines containing

more than 2 carbons In the primary alkyl chain were active, albeit with some-

4what lower activity than the shorter chain compounds.

Guanidinoalkylthiols and derivatives [RNHC(UWH)N(R)(CN)nSR' Y - H,

SOSH, or disulfide] showed little promise In terms of radioprotective activ-

Ity. This result was somewhat unexpected, since the parent comounds

[H2NC(h'H)N(CH)nS", n a 2 or 3] are generally considered the active coo-

ponents of the Isothurontim compounds AET (Aminoethyl Isothluroniua) and APT
(Aminopropyl Isothiurota) which have the structure MN(CH2)nSC(UH)NH,

n - 2 and 3, respectively. This result maey demonstrate one of the hazards of

Inferring too much from the structureactivity relationships When phermaco-

kinetic behmor Is not, or Is only briefly, considered.
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S. mosod List. Booia

qM.!dDose maeilRadiation Effect Reference

Acetyithioures 0.11 Shigella flexneri YSR e;20 WR/i P-air 1.7, P-N2 1.1 [106J
Anoethane thiol 2M V79 cells near U? radiation 2x increase in 00, [169)

In culture value
hinoethylisothiuron- 2-501 mouse fibroblast fast neutrons Increased survival (154]
ium UriBr (AET) 1929 cells 4-5 ft;0.47-S.2 Gy rate severalfold

f noethylisothiuron- O.45NU4kg rat liver y(76y)30 min after "antagonized radia- (167]
Ium SrHfr (AET) mitochondria treatment with AET tion Induced increase

in protein synthesis

Anoethyl isothiuron- 3000g/kg I .P. mouse bone marrow GICo, reduced frequency [168)
I um 3rHr (AET) 15mmn before cells In vivo 50250 R of polychromatic

Irradffffon erythrocytes
Aninoethylisothiuron- 2,4 or Sil mouse cells "OCO-v UHF 201 a 1.20 (155]
ium kiiWr(AET) 0.24 By/s 4r 1.27

50 1.34
4-MW nfttrons WR Sal a 1.00

Chloral hydrate 0.31V/ i.p. "T tmors (mice) X-ray to TCD,, OW 1.05 (407]
Cystaine 50moles/mol* aldolase X-rays enhjme iactivation (177]

S5moleu/mole yeast alcohmol X-ray, O e ftectivetion
enzyme dehyroenase <1<W<3
50*ole/ml* pancreatic e-uyl ase X-rays O"re iftactivation
enzye1
Mmoles/asle BO -ati In.av s Xry nrtactivation
en:p 1)<me
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Compound Dose Materl'F Radiation Effect Reference

Cytamine 10214 E. coi RNA poly- X-ray;1.75 kR/min DRF 2 (calf thymus [430]
ierise with a- (220kV,20mA,0.Smm templ ate)
factor) Cu filter)

1o-2M E. colt RNA poly- X-ray;1.75 kR/min OAF 30 (T4
Berasci with o- (220kV2m.0.5mm template)

Cystamine 60mg/kg 1.m. adult male and female 6OCo-y; 0.78 Gy/min OAF 1.46 (257]
20min before Mister SFF rats
irradiation (180230
50mg/kg i.p. adul t ma an female 6OCo-y; 0.386 By/min OAF 1.79
15min before Mister SPF rats
irradiation UlSW-2309)

Cystamine 50mg/g lum. adult male and female UOCo-y; 0.386 By/sin ORF 1.65 (257]
1mn before Mister SPW rats
irradiation (180-230"50mg/kg i.p. adult 81)dfmale ~~ 600-.y; 0.369 By/mmn OAF 1.U4
15min before Mister 5FF rats
Irradiation (160-2309)

Cystmin 5 /kI.m. adult male and feaale "Co--I; 0.369 By/gin ORF 1.24(46
a beforeMister SWF rats

irradiation (180-2309)
Cysteamine 150m/k endothellal calls of 6OCo-y; 3 By/min 1.3 (446]

rat cerebral cortex
Cysteenine 750 Chines hinster V79 50 JMXrp ET OW %B/S) 4.8 (67]

cells (sydeid a ( 9)0 kv/Pm MV la* S) 3.2
Chinee6 bmtar V79 I0JV X-ray,, LET OHF &%/S) 1.6
cells (syuswoetasd) 0()170 Whi/m OW (late S) 1.5
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Compound Dose Material Radiation Effect Refer@"@e

Cysteamine 50moles/mole aldolase X-rays enzyme inactivation (177]
enzyme 2 < 0KV (6
S5igoles/mole yeast alcohol X-rays enzyme Inactivation
enzyme dehydrogenase 2<0OW < 6
S(0soles/pole pancreatic a-anylase X-rays enzyme inactivation
enzyme OWK < 6
50moles/mole B. subtilis a-amylase X-rays me inactivation
enzyme J1V ( 6

Cysteine 1.6 x i0-SH calf thymus DNA "'Cs;600 R/min "weak protection" [47
1.6 x 10-31 salmon spevu DNA I 'Cs;600 R/mIn Oweak protect iong 27

Cystoomine 10-31 ricrosomes from G*Co v-rar.80 kit dereases V.g of ['gi]
chloride liver cells of male ethymorphime imethyl-

Sprague.Dawley rats ation; Increae V".
(180-200g) of cyt P-490-othyl-

woohiae Interactione
Cysteine 50moles/sole aldolas K-rays e..'ze Inactivation Lily)

enzyme 2( < (w<
Cysteine 54ioles/mole yeast alcohol X-rays *up*m inativation (177)

Wwz s/e duhyir@NOWase 2 ( W (6
5(hols/moe pacreatic a-&lbe I-raepu~ ~ctvte

enzyme 2 <(o C (6
5Ooles/mle 8. wihtlls *-aqlisa X-rays snaym Inactivation
enzyme 2 <w It

Cystolne 5Smgqkg I.p. rats am 1-rags M swvival at 30 [343]
at le W eflm deev. ton wvval
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Biological~a
omu"dDose -" NilF Radiation Effect Reference

Cysteine 0.114 anoxic Pseudo- Y ORF 1.8 (80]
monas spp.

L-Cysteine 40mg/day male mice "0C-, DRF 1.19 t 0.05 [475]

Cystine SWmoles/mole aldolase X-rays enzyme inactivation [177)
enzyme 1.3 CNF < 4
50moles/mole yeast alcohol X-rays enzyme inactivation
enzyme dehydrogenase 1.3 OKF < 4
Samoles/mole pancreatic a-aiylase X-rays enzyme inactivation
enzyme 1.3 014F < 4
540moles/mole B.,subtills gi-amylase X-rays enzyme inactivation
enzyme 1.3 OWF < 4

2-0i(n-butyl)- 4mM human kidney T X-rays ORF 2.0 (471]
Vermathiazolidine cells (culture)

DI ethyl minoreserpine 320*glkg mice 120 ft/sin (250 kV, ONF Intestine 1.15 (267]
(OL-152) 2m hvl, 1.6= Cu) skin 1.5 - 1.9

bone marrow 1.0
KHlT timer 1.7
£141 tumor 1.0

2-Diethyl-2- 4*14 human k idfey T X-rays ORF 2.7 [471]
pvetblaol Idine, cells (culture)

Dimthylsulfoxide 1in anoxic Pseudo- Y OF 1.6 (0
momas spp.

212-~iohYl- 2SWug/kg mouse bone marrow Y-radiation reduced radiation- E2713
thiamplidine colony forming units Induced inhibition of

CPU growth activity
Glycerol 214 am~ic Mg II 2.0 ESoI

immas op.
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L£ I

Siolooical
CgMpund Bose WXiffeial Radiation Effect Reference

Guanylthiourea 0.314 Shigella flexneri YGR C;20 kR/min P-air 2.3, P-N2 1.14 (106]
0.1M MOeNTr Y6A e;20 kR/min P-air 1.9, P-N2 1.3

bis-(2-Guanidoethyl) 1.6 x 10-3M calf thymus DNA "'9Cs;600 R/.in Ostrong protection' (247]
dil ph ide

bis-(2-Guanido- 1.6 x l0IM salmon sperm DNA 1S7cs;600 ft/mm "strong protection' [247]
ethyl) disulphide
0-(G-Hydroxynthyl)- 450mg/kg 30min neonatal rat brain I By/min (Piotron) WX 1.3 (2621
rutosides before radiation microvasculature
Imidazolidine thione 0.1N Shigella flexcneri Y6R e-;20 kR/min P-air 2.1, P-142 1.7 (106]
Nercaptopropionyl 20mg/kg mouse liver tritiated water 441 reduction of (187]
glycine nuclei SuVi/gE LW. abnormal muse liver

15-30 min after drug nuclei 3 days after
radiation

2-(o-Nethylphenyl)- 6Wi human kidney T X-rays DRF 1.6 [471)
thiazolidine cells (culture)

1-Nethyl-2-phenyl- 6W huan kidney T X-rays ORF 1.8 (471]
thiazolidine cells (culture)
D-Penicilline 3gm/kg 60mtn 3-4 day old mice 6*Co-v; 6-10 Gy increased LO, ./~ from [259]

before radiation 6.77 BY to 8.2 W y
D-Penicillamine 1Omgday p.o. male rats 60Co-.y; 25 By to reduced lung pathology [353]

right hemithorax due to radiation
0-Penicillemine 10gdypo aert 0CO-'; 25 Sy to reduced radiation- (73

right hemithorax induced arterial per-
fusion defects in lungs

D-Penicillamine 10mg/day p.o. male rats '0 CO-.Y; 21 ayt rvne o eue 44
right hemithorax Chaoges In lung snipes

caused by radiat ion
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Biological
Compound Dose -WTeiili Radiation Effect Reference

D-Penicillamine (1) l0ng/day male mice 6C-y; (1) OAF 1.04 t 0.04 (475]
(2)lO0ng/day 500-1000 R (2) DRF 1.13 ± 0.04

D-Penicillamine 2mg/day male mice 6"Co-y; 10-20 Sy comparison of LDsO/ [476]
181-360 days gave
OAF 1.2

Pentobarbital 0.06mg/g i.p. HT tumors (mice) X-ray to TCD50 OMF 1.07 (67]

2-Phenyithiazol- 804 humnan kidney T X-rays OAF 1.8 (471]
idine cells (culture)

* Structure 1 lS0ng/kg, LDSO-300 male mice 6"Co'r; 40 Rlmin OAF 1.4 (300]
Structure 2 600mg/kg, LD50-1200 male mice "Co-i; 40 R/min OAF 1.3
Structure 3 600mg/kg, L050-1200 male mice Co-Y; 40 A/min OAF 1.4

Thiazolidine &Mhuman kidney T X-rays OAF 1.6 (471]
t cells (culture)

Thiocarbohydrazide 0.05" Shigella flexneri Y6R e';20 kR/min P-air 1.8, P-N42 1.1 (106]
5-thio-O-glucose 1.59/kg A/J female mice 2000-5000 rad OWF 1.1 - 1.3 [402]

1.59/kg A/J female mice (220kVP;15ma) OAF 1.3 foot
(0-40 days)

1.5g/kg A/J female mice 117-124 red/mmn OAF 1.2 foot
(60-90 days)

Thiosemicarbazide O.1M Shigella flexneri YEA e';20 kR/mmn P-air 2.4, P-N2 1.7 (106]
Thiourea 0.3M Shijej]a flexneri YER 4r;20 kR/mmn P-air 3.5, P-N2 2.2 (106]

0.I" Sh el aflnerT EAt e';20 kR/mim P-air 2.3, P-N2 1.5

Thiourea 0.2M anoxic Pseudo- OAF 2.1 (60]
monas aPP.
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Comnpound Dose Bilogical Radiation Effect Reference

MR-2721 400mg/kg i.p. C57 BL/6J male mice l3?Cs-y; 117 A/min DRF 1.75 (2(hiin) [24B)
(20-259)

400mg/kg I.p. C57 BL/6J male mice 13?CS-'r; I17 A/mm OAF 1.32 (6(huln)
(20-25g)

MR-2721 220mg/kg weanling mouse 2SOk~p X-rays ORF 1.16 - 1.20 [412)
15min before for renal growth
radiation protection

WR-2721 3mg/ml V179 spheroids 137Cs; 6.2 By/mm A 21 t %0 [132]
30min In culture O -5a %0

WR-2721 400mg/kg male mice "'7Cs-Y 33-62 By OW 1.5 for So [214]
930min before at 917 It/min reduction In leg

radiation contractions

W-2721 300mg/kg i.a. mice 6'Co-y; 0.33 By/mi n hemopotetic death (256]
15min before OAF 2.14
radiation

W-2721 400mg/kg female mice 6OCo-y; 40 R//mm OAF 1.6 (238]
15min before
radiation

W-2721 400og/kg mice M1 CS-Y; 9.17 Bay/am OAF for t~iow cells: [306]
30min before 1.11 - 1.24
radiation

MR-2721 400mg/kg mice 137 Cs-y;. 9.17 Bay/min OWF jejunum) 1.64 [307]
15min before (est is) 1.54
radiation (fibrotarcoma) 1.28
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CopudDs -aer&_Raito fec eeec

rdiose n111 aitonEfc eeec

WR-2721 4ml human fibroblast 137C5-Y ORF for DNA strand [386]
tcell culture breaks a 1.00

WR-2721 500mg/kg E1416 tumors In 6 PNeV X-rays OW 1.15 t 0.04 [297]
URIS/C mice 5 By/min

MR-2721 500mg/kg BALB/C mice 6OCo-y; 200 Rlmin hematopoistic death (104]

300mg/kg DALS/C mice 60CO-Y; 200 R/min gastrointestinal deathii OW 1.65
WR-2121 400mg/kg rat parotid gland X-radiation DNW 1.92 [4213

WR-2721 400mg/kg rat parotid gland 300kVp X-rays LWF 2.40 (422]

MR-2721 400mg/kg female mouse skin 24OkVp X-rays ORW I.55(in airi [427)
35-45min ONW 1.17 (in 01
before radia-
t loll

411
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COmpound Dose MaeIIRadiation Effect Reference

WR-2721 400mg/kg mouse lung 24OkVp X-rays O1W (pneumonitis) [444]
30uin before 1.2-2.4
radiation OW (fibrosis)

M R-2721 400mg/kg mouse skin e-; 20-60 By DPW 1.1-1.3 (5mmn) [443]
variable time 13-17 By/min OW 1.7-2.1 (30min)
between drug
and radiation

WR-2721 200mg/kg rat hind limb 6 Co-'; 20-SO By OW (late skin [4S33
1.31 By/mmn reaction) 1.5

DKF (muscle dmage)
1.5-2.0

WR-2121 (1) 125mg/kg mouse strains 300kVp X-rays Il) OPF 1.34-1.40 (4893
(2) 250mg/kg (2) OW 1.63-1.87
15min before
radiation

WR-2822 195mg/kg C57B1/GJ mice (1) 4 NoV X-rays (1) survival OWF 1.23 (104]
250 ft/mmn

(2) 0.9 NeV neutrons (2) survival ON1 1.51
55 ft/mmn

Wft-2823 200mg/kg C57B1/.J mice (1) 4 NO X-rays (1) survival UHF 1.32 (104]
250 ft/mmn

(2) 0.9 NoV neutrons (2) survival VHF 1.21
55 ft/mm
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41.

ComPO~ndBioloical
C o m p o u nd D osm t e i a R a d ia t io n E f f e c t R e f e r e n c e

WR-77913 2200mg/kg BALB/C mice 60Co-'r; 200 R/mIn hautopoietic death (104]
MWF 1.97

1500mg/kg MISB/C mice 60CO-Y; 200 R/ain gastrointestinal death

16.5m/kg 57816J mce 4F 1.95

(2) 0.9 N.Y neutrons (2) survival MVF 1.46
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ABBREVIATIONS USED IN COMPOUND LIST

P-Air, P-N2 - ratio of doses unprotected to give 10% survival S. flexneri
added to solution 5-10 min before radiation.

DMF - Dose Multiplying Factor: The ratio of radiation doses required In the
presence or absence of the drug to achieve the sae level of effect.

DRF - Dose Reduction Factor: Synonpmous with IMF, but specific for
radioprotection.

-0 Slope of the cell survival curve.

i.m - Intrauscular injection of drug.

i.p - Intraperitoneal Injection of drug.

kVp ' kilovolt peak: a measure of the Intensity of X-rays.

ma-milliaqres.

keV - kilo electron volts.

G- Gray, a unit of Incident radiation (equal to 100 rads).

PMeV - Million electron volts.

Structures: I - NKuC-CH2 -N-CN2 -CM5 -SN

2 & 3: R-tVC ..I R a CM2*C-CH2-CH2- (Structure 2)

CMS CH2*C-CN 2-CN2- (Structure 3)

* 0%J
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