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4−EQUITABLE TREE LABELINGS

ZENA COLES, ALANA HUSZAR, JARED MILLER,

AND ZSUZSANNA SZANISZLÓ

Abstract. We assign the labels {0, 1, 2, 3} to the vertices of a graph;

each edge is assigned the absolute difference of the incident vertices’
labels. For the labeling to be 4−equitable, we require the edge la-

bels and vertex labels to each be distributed as uniformly as possible.

We study 4−equitable labelings of different trees and prove all cater-
pillars, symmetric generalized n−stars (or symmetric spiders), and

complete n−ary trees for all n ∈ N are 4−equitable.

In 1964 Ringel conjectured that given any tree on n vertices, the edges
of the complete graph on 2n + 1 vertices, K2n+1, can be decomposed into
isomorphic copies of this tree [Rin64]. In order to attack this conjecture,
Rosa introduced certain labelings of the vertices and edges of trees. The
most famous of these labelings, the β−valuations, were renamed graceful
labelings by Golomb [Gol72]. In a graceful labeling of a graph with e edges,
each vertex gets a distinct label from the set {0, 1, . . . , e} so that each edge
(labeled using the absolute difference of its incident vertices), has a unique
label [Ros67].

Rosa proved that if a tree has a graceful labeling then Ringel’s decom-
position conjecture is true for that tree [Ros67]. Based on this theorem
Ringel and Kotzig conjectured that all trees were graceful. This conjecture
is now known as the graceful tree conjecture, and it is arguably the most
famous graph labeling conjecture.

In the past 50 or so years a whole field of graph theory grew from this
central conjecture. There have been many generalizations and some partial
results, but we are not much closer today to proving the conjecture than we
were fifty years ago. An excellent and thorough survey of all results related
to the graceful tree conjecture can be found in Gallian’s Dynamic Survey
of Graph Labeling [Gal16].

In particular, in 1995, Cahit generalized the concept of graceful labelings
to k−equitable labelings. In a k−equitable labeling the vertex labels come
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from the set {0, 1, . . . , k− 1}. The edge labels are defined the same way as
in a graceful labeling, the absolute difference of the incident vertex labels.
The labeling is k−equitable if both the vertex labels and the edge labels
are distributed as evenly as possible. The formal definition is as follows:

Definition 1. Let G(V,E) be a graph with vertex set V and edge set E.
Given f : V → 0, 1, 2, . . . , k − 1 we define f(e) = |f(u) − f(v)| for all
e = (u, v) ∈ E. Let vi and ei denote the number of vertices, respectively
edges, labeled i. We say that f is a k−equitable labeling of G if |vi−vj | ≤ 1
and |ei − ej | ≤ 1 for every i, j

Notice that if a tree has size e then the definitions of (e−1)−equitability
and graceful coincide. Therefore, if one could show that every tree is
k−equitable for every k then the proof would settle the graceful tree conjec-
ture as well. Unfortunately, there is very little known about k−equitability
of trees for large k values. Cahit conjectured that all trees are k−equitable,
[Cah90a]. He proved that all trees were 2−equitable (also known as cor-
dial), and some trees were 3−equitable, [Cah90b]. Speyer and Szaniszlo
later proved that all trees were 3−equitable [SS00].

In this paper we consider 4−equitable labelings of different classes of
trees. We show that caterpillars, symmetric generalized n−stars (or spi-
ders), and complete n−ary trees are 4−equitable.

Throughout the paper we will refer to a vertex labeled i as an i−vertex.
Likewise, we will refer to an edge labeled i as an i-edge.

1. Caterpillars

Definition 2. A caterpillar is a tree where every vertex is at most distance
one away from the longest path. This longest path is called the spine. Any
leaves not on the spine are called legs.

Lemma 1. There exists a 4−equitable labeling of the spine where there are
at least as many legs connected to 0− and 3−vertices as there are connected
to 1−and 2−vertices.

Proof. Given any caterpillar, find its spine. Label this path with the pattern
3−0−2−1−1−2−0−3, repeating as necessary. If the original path labeling
led to more legs from 1− and 2−vertices than from 0− and 3−vertices, then
change to the repeating pattern 1−2−0−3−3−0−2−1. Since the second
pattern switches every 1 and 2 with 3 and 0 respectively, we know that it
is possible to have at least as many legs adjacent to 0− and 3−vertices as
to 1− and 2−vertices. �

Theorem 1. All Caterpillars are 4−equitable.
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Proof. We label the caterpillar in steps, ensuring we preserve the 4−equita-
bility at each step. Because the only way to create a 3−edge is by connecting
a 0−vertex and a 3−vertex, we need to have enough legs that are adjacent
to such vertices on the spine. Label the caterpillar’s spine so that there are
no fewer legs from 0− and 3−vertices than 1− and 2−vertices. If the spine
is of length 1 (mod 4) or of length 3 (mod 4), do not label the last vertex.
In these two cases, we treat the unlabeled edge and vertex as a leg, and not
as part of the spine. This means paths of length 0 (mod 4) and 1 (mod 4)
will be treated in the same manner, as will paths of length 2 (mod 4) and
3 (mod 4). We will modify the original spine labeling later as necessary.

Once we have labeled the spine to have at least as many legs from 0− and
3− vertices as 1− and 2−vertices, the actual location of the legs is irrelevant,
we just need to note what types of vertices the remaining unlabeled vertices
are adjacent to. The next step is to label the legs in groups of four, ensuring
we create four distinct vertex labels and four distinct edge labels until we
can no longer do so . From the list below, we repeat step i as many times as
possible before moving to step i+ 1. This is not the only possible ordering
of the labeling steps, but we need to be careful not to use up too many of
the legs connected to 0−vertices and 3−vertices in any given step.

(1) If there is an unlabeled leg available on each vertex labeled 0, 1, 2
and 3, then create edges 0− 3, 1− 0, 2− 2, and 3− 1

(2) If there are 2 unlabeled legs available on 0−vertices and 2 on
2−vertices, then create edges 0− 3, 0− 1, 2− 2, and 2− 0.

(3) If there are 2 unlabeled legs available on 2−vertices and 2 on
3−vertices, then create edges 2− 3, 2− 2, 3− 1, and 3− 0.

(4) If there are 2 unlabeled legs available on 0−vertices and 2 on
1−vertices, then create edges 0− 3, 0− 2, 1− 1, and 1− 0.

(5) If there are 2 unlabeled legs available on 1−vertices and 2 on
3−vertices, then create edges 1− 3, 1− 1, 3− 0, and 3− 2.

(6) If there is 1 unlabeled leg available on a 2−vertex and 3 on 0−vertices,
then create edges 0− 0, 0− 2, 0− 3, and 2− 1.

(7) If there is 1 unlabeled leg available on a 2−vertex, 1 on a 0−vertex,
and 2 on 3−vertices, then create edges 2−1, 0−2, 3−3, and 3−0.

(8) If there is 1 unlabeled leg available on a 1−vertex and 3 on 3−vertices,
then create edges 3− 0, 3− 1, 3− 3, and 1− 2.

(9) If there is 1 unlabeled leg available on a 1−vertex, 1 on a 3−vertex,
and 2 on 0−vertices, then create edges 1−2, 3−1, 0−3, and 0−0.

(10) If there are 2 unlabeled legs available on 0−vertices and 2 on
3−vertices, then create edges 0− 0, 0− 3, 3− 1, and 3− 2.

(11) If there are 4 unlabeled legs available on 0−vertices, then create
edges 0− 0, 0− 1, 0− 2, and 0− 3.
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(12) If there are 4 unlabeled legs available on 3−vertices, then create
edges 3− 0, 3− 1, 3− 2, and 3− 3.

We have labeled legs in groups of 4, adding 4 distinct vertex labels
and 4 distinct edge labels in each step. This way, the 4−equitability of
the caterpillar is the same as the 4−equitability of the spine. Hence the
distribution of extra edge and vertex labels does not change.

If the spine was of length 0 (mod 4), either path labeling pattern results
in a perfectly even set of vertex labels, and one less 0−edge. If the spine
was of length 2 (mod 4), using the pattern results in either an extra 0− and
3−vertex, and an extra 3−edge, or results in an extra 1− and 2−vertex,
and an extra 1−edge.

After reducing the amount of unlabeled legs as much as possible by the
previous groupings of 4, we will be left with up to 4 unlabeled vertices. The
only way we can be left with more than 2 legs from a 1−vertex or from a
2−vertex is if we have: 2 legs from 1−vertices, 1 from a 0−vertex, and 1
from a 3−vertex, or 2 legs from 2−vertices, 1 from a 0−vertex, and 1 from
a 3−vertex. Otherwise we have up to 1 unlabeled leg from a 1−vertex, up
to 1 from a 2−vertex, up to 3 from 0−vertices, and up to 3 from 3−vertices.
Unfortunately, even though there are no more than 4 vertices to label, we
will need to consider over 20 possibilities. In the rest of this section, we
will present all of these for the sake of completeness.

Case 1. The spine of the caterpillar is of length 0 (mod 4).

Notice that in this case we have a missing 0−edge in both labelings of
the spine, so we will need to create a 0−edge before creating different edges.
Since the vertex labels on the spine are uniformly distributed all our new
vertex labels must be different.

(1) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 0−vertices, create the edges 1− 1, 2− 3, 0− 2, 0− 0.

(2) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 3−vertices, create the edges 2− 2, 1− 0, 3− 1, 3− 3.

Otherwise: if there exists a leg on a 1−vertex, create a 0−edge by labeling
the leaf 1. If there exists a leg on a 2−vertex, create a 0−edge by labeling
the leaf 2. If all legs are on 0− and 3−vertices, create edge 0 − 0 and/or
3− 3, then use other vertex labels to complete the labeling.

Case 2. The spine of the caterpillar is of length 2 (mod 4), with an extra
3−edge.

This happens when we use the first spine labeling pattern. In this case
we have an extra 0−vertex and an extra 3−vertex, as well as an extra
3−edge. Therefore we must first use 1 and 2 as vertex labels before using
any other vertex label.
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If there is exactly one unlabeled leg on both a 0−vertex and a 3−vertex,
we will need to go back to the labeling of the caterpillar’s spine, which we
labeled with the pattern 3−0−2−1−1−2−0−3. In order to 4−equitably
label the graph, we will remove the label on the first 3−vertex on the spine,
and relabel it with a 1. Notice that although this is a spine vertex, it has
degree 1, so we only change one edge label in this process. We now have
1 extra 1−edge, 0−vertex, and 1−vertex. Then, we will use the unlabeled
legs to create edges 0 − 2 and 3 − 3, which will result in a 4−equitable
labeling.

Otherwise, we can define the labeling based on what types of vertices
the unlabeled legs are connected to as follows:

(1) If there are only unlabeled legs from 0−vertices, create edges in the
order 0− 1, 0− 2, then 0− 0 as necessary.

(2) If there are only unlabeled legs from 3−vertices, create edges in the
order 3− 1, 3− 2, then 3− 3 as necessary.

(3) If there is one unlabeled leg from a 3−vertex, and the rest (at least
two) are from 0−vertices, create the edges in the order 3− 3, 0− 1,
0− 2, 0− 0.

(4) If there is one unlabeled leg from a 0−vertex, and the rest (at least
two) are from 3−vertices, create the edges in the order 0− 0, 3− 1,
3− 2, 3− 3.

(5) If there is one unlabeled leg from a 2−vertex, and the rest (if any)
are from 0−vertices, create the edges in the order 2−1, 0−2, 0−0.

(6) If there is one unlabeled leg from a 2−vertex, and the rest are from
3−vertices, create the edges in the order 2− 2, 3− 1, 3− 2, 3− 3.

(7) If there is one unlabeled leg from a 2−vertex, one from a 3−vertex
and the rest are from 0−vertices, create the edges in the order 2−2,
3− 1, 0− 1, 0− 2.

(8) If there is one unlabeled leg from a 1−vertex, and the rest are from
0−vertices, create the edges in the order 1− 1, 0− 2, 0− 1, 0− 0.

(9) If there is one unlabeled leg from a 1−vertex, and the rest (if any)
are from 3−vertices, create the edges in the order 1−2, 3−1, 3−3.

(10) If there is one unlabeled leg from a 0−vertex, one from a 1−vertex
and the rest are from 3−vertices, create the edges in the order 0−0,
1− 2, 3− 1, 3− 2.

(11) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 0−vertices, create the edges 1− 3, 2− 2, 0− 1, 0− 2.

(12) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 3−vertices, create the edges 2− 2, 1− 0, 3− 1, 3− 2.

Case 3. The length of the spine is of 2 (mod 4), with an extra 1−edge.
5



This happens when we use the second spine labeling pattern. In this
case we have an extra 1−vertex and an extra 2−vertex. Therefore we must
use 0 and 3 as vertex labels before using any other vertex label.

If there is exactly one unlabeled leg on both a 0−vertex and a 3−vertex,
we will need to go back to the labeling of the caterpillar’s spine, which we
labeled with the pattern 1−2−0−3−3−0−2−1. In order to 4−equitably
label the graph, we will remove the label on the first 1−vertex on the spine,
and relabel it with a 0. Then, we will use the unlabeled legs to create edges
0− 1 and 3− 3, which will result in a 4−equitable labeling. Otherwise, we
can define the labeling based on what types of vertices the unlabeled legs
are connected to as follows:

(1) If there are only unlabeled legs from 0−vertices, create edges in the
order 0− 3, 0− 0, then 0− 2 as necessary.

(2) If there are only unlabeled legs from 3−vertices, create edges in the
order 3− 0, 3− 3, then 3− 1 as necessary.

(3) If there is one unlabeled leg from a 3−vertex, and the rest (at least
two) are from 0−vertices, create the edges in the order 3− 1, 0− 0,
0− 3, 0− 2.

(4) If there is one unlabeled leg from a 0−vertex, and the rest (at least
two) are from 3−vertices, create the edges in the order 0− 2, 3− 0,
3− 3, 3− 1.

(5) If there is one unlabeled leg from a 2−vertex, and the rest (if any)
are from 0−vertices, create the edges in the order 2−0, 0−3, 0−0.

(6) If there is one unlabeled leg from a 2−vertex, and the rest are from
3−vertices, create the edges in the order 2− 0, 3− 3, 3− 0, 3− 1.

(7) If there is one unlabeled leg from a 2−vertex, one from a 3−vertex
and the rest are from 0−vertices, create the edges in the order 2−0,
3− 3, 0− 3, 0− 1.

(8) If there is one unlabeled leg from a 1−vertex, and the rest are from
0−vertices, create the edges in the order 1− 3, 0− 0, 0− 3, 0− 1.

(9) If there is one unlabeled leg from a 1−vertex, and the rest (if any)
are from 3−vertices, create the edges in the order 1−3, 3−0, 3−3.

(10) If there is one unlabeled leg from a 0−vertex, one from a 1−vertex
and the rest are from 3−vertices, create the edges in the order 0−0,
1− 3, 3− 0, 3− 3.

(11) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 0−vertices, create the edges 1− 1, 2− 0, 0− 3, 0− 2.

(12) If there is one unlabeled leg from a 2−vertex, one from a 1−vertex
and two from 3−vertices, create the edges 2− 2, 1− 3, 3− 0, 3− 1.

�

The fact that we needed so many cases to handle the last few remaining
vertices suggests that this method is not easily generalizable for higher
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k−values when establishing the k−equitability of caterpillars. However, we
are able to conclude that all caterpillars are 4−equitable.

2. Symmetric Generalized n−stars

Definition 3. A symmetric generalized n−star for n ≥ 3 is a tree in
which all leaves are the same distance from a central vertex of degree n.
The number of leaves in the tree is equal to the maximum degree of the
graph. A level is the set of all vertices the same distance away from the
degree n vertex.

The concept of a level makes intuitive sense when we think about these
graphs as rooted trees with the high degree vertex being the root. We also
note here that we could have used the name symmetric spider, after spider
graphs defined in the literature, instead of symmetric generalized n−star,
but we find the latter more descriptive even if somewhat less imaginative.

Lemma 2. All symmetric generalized 3−stars are 4−equitable.

Proof. Let us consider a symmetric generalized 3−star as a tree rooted
at the vertex of maximum degree. We use a labeling pattern where we
label each level at a time such that the tree stays 4−equitable at each
step of the pattern. To do this, we use the 4−subsets of {0, 1, 2, 3} with
a cardinality of three as vertex labels and label the vertices in a way such
that the edge differences also produce the 4−subsets of {0, 1, 2, 3}. We
start by labeling the root vertex 0. We then go in a clockwise direction
following the pattern 3 − 2 − 1, 3 − 0 − 2, 0 − 1 − 2, 3 − 1 − 0. This takes
care of the first four levels of the symmetric generalized 3-star. For the
next four levels, since we are not starting from a root vertex of zero, but
are continuing from our 3− 1− 0 leaves, we must start from the beginning,
switching path one with path three and keeping the center path the same.
Namely, the vertex labels on the next four levels of the complete generalized
3−star are 1 − 2 − 3, 2 − 0 − 3, 2 − 1 − 0, 0 − 1 − 3 moving in the same
direction. These two patterns alternate as we label further and further
along a symmetric generalized 3−star. At each level, the vertex labels
produce three different edge labels using three different vertex labels, and
the star remains 4−equitable at each level. �

Lemma 3. All symmetric generalized 4−stars are 4−equitable.

Proof. With a similar argument, we can also see that all symmetric gener-
alized 4−stars are also 4-equitable. We begin by labeling the root vertex 0.
We then label, following a clockwise motion, the vertices at each level with
0 − 1 − 2 − 3, then 2 − 1 − 3 − 0. Since we are working with exactly four
vertices at each level, we can simply alternate between these two labelings.
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What is essential is that we use four different vertex labels and four dif-
ferent edge labels at each level. Thus, the tree remains 4−equitable as the
symmetric generalized 4-star gets larger and larger. Specifically, the edges
are distributed evenly and there is one extra zero vertex. �

Lemma 4. All symmetric generalized 5−stars are 4−equitable.

Proof. Notice that we can add a path to a symmetric generalized 4−star to
create a symmetric generalized 5−star. In order to keep the new generalized
5−star 4−equitable at each level, we must choose a vertex label that will
be repeated at each level as well as an edge label to repeated at each level.
To do this, we can simply label this extra path following the path labeling
pattern that starts with 0 that is already the label of the root vertex and we
continue with 3−1−2−2−1−3−0 which we know produces different edge
labels and vertex labels at each step in groups of 4, which is consistent with
the labels for the complete generalized 4−star. This results in a 4−equitable
labeling of the symmetric generalized star with five leaves. �

Lemma 5. All symmetric generalized 6−stars are 4−equitable.

Proof. With a similar argument, we can add two paths to the symmetric
generalized 4−star to create a symmetric generalized 6−star. Notice in the
alternate path labeling pattern : 3−0−2−1−1−2−0−3−3−0−2−1−1
that the vertices and edges are asymmetric about the indicated 0. We will
take this vertex label as the label of the root vertex. The asymmetry of
the path labeling pattern about the root vertex is essential for keeping the
symmetric generalized 6−star 4−equitable at each step. �

Theorem 2. All symmetric generalized stars are 4−equitable.

Proof. To create a 4−equitable labeling of a symmetric generalized n−star
for all n ≥ 3 we will glue copies of a generalized 4−star with one copy of a
symmetric generalized m−star where m < 4 at the root. So, if n = 4k+m
and m 6= 1, 2 then we glue k copies of our labeled symmetric generalized
4−star and one copy of our labeled symmetric generalized m−star. If m = 1
or 2, we use k− 1 copies of the symmetric generalized 4−star and one copy
of our symmetric generalized 5− or 6−star, respectively.

�

3. Complete n−ary Trees

In order to prove all complete n−ary trees are 4−equitable, we first
handle binary, ternary, quaternary, and 5−ary, 6−ary and 7-ary trees. We
will build the general case from these building blocks.

Lemma 6. All Complete Binary Trees are 4−equitable.
8



Proof. Given any complete binary tree, label the root vertex 3. Label the
children of each 0− and 2−vertices 2 and 3; label the children of each 1−
and 3−vertices 0 and 1. On level 2 the 4 vertices are labeled 0, 1, 2, 3.
The number of vertices on every future level is a multiple of 4, and the
vertex labels are evenly distributed on each level. The edges between any
3− or 0−vertex and its children are 3 and 2; the edges between any 2− or
1−vertex and its children are 0 and 1. The edge labels between levels 1
and 2 are completely evenly distributed. The number of edges after every
future level is a multiple of 4, and the edge labels are evenly distributed on
each level. Therefore, all complete binary trees are 4−equitable. �

In order to prove that complete ternary trees are 4−equitable we need to
carefully count the number of vertices and edges in the tree level by level.
Since the number of edges at each level is a power of three, we need to
know how we can write powers of three modulo 4. We will make use of the
following two easy facts:

(1) If a number has the form (8a+3), then 9(8a+3) = (8+1)(8a+3) =
64a + 8a + 24 + 3 = 8B + 3. To obtain an odd power of 3 we can
multiply 3 with 9 as many times as necessary. Therefore, every odd
exponent of 3 is of the form (8B+3) and is congruent to 3 (mod 4).

(2) If a number has the form (8a+1), then 9(8a+1) = (8+1)(8a+1) =
8B+1. Since every even exponent of 3 is a product of 9’s this implies
that every even exponent of 3 is of the form 8B+1 and is congruent
to 1 (mod 4).

Now we establish how the total number of vertices in a complete ternary

tree with k levels, 3k+1−1
2 , relates to 4.

Claim 1. 3k+1−1
2 ≡ 1 (mod 4) when k is even, and ≡ 0 (mod 4) when k is

odd.

Proof. If k is even, then k + 1 is odd, so 3(k+1) is of the form 8B + 3, and
8B+3−1

2 = 4B + 1 ≡ 1 (mod 4). If k is odd, then the exponent is even, so

3k+1 is of the form 8B + 1, and 8B + 1 − 1 = 8B, which is divisible by
4. �

Lemma 7. All complete ternary trees are 4−equitable.

Proof. Given any complete ternary tree, label the root vertex 3. Label
the children of each 3−vertex with 0, 1 and 2. Label the children of each
2−vertex, with 0, 1 and 2. Label the children of each 1−vertex, with 1, 2
and 3. Label the children of each 0−vertex with 3, 3 and 0. The total

number of vertices in the tree is given by
∑k

i=0 3i = 3k+1−1
2 . This sum is

congruent to either 1 (mod 4) or 0 (mod 4). Thus we know that either the
number of vertices or number of edges in the tree is divisible by 4.
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Let vl,i be the number of vertices labeled i in level l, and el,i be the
number of edges labeled i in level l. The distribution of vertex labels
in level l + 1 is as follows: The number of 0−vertices in level l + 1 is
equal to vl,0 + vl,2 + vl,3; the number of 1−vertices in level l + 1 is equal
to vl,1 + vl,2 + vl,3; The number of 2−vertices in level l + 1 is equal to
vl,1 + vl,2 + vl,3; and the number of 3−vertices in level l + 1 is equal to
2vl,0 + vl,2. In level 1 we have v1,3 = 0 and v1,1 = v1,2 = v1,0 = 1 and,
with the above formulas, we can see that there is an extra 3−vertex in level
2. Substituting v2,0 into the previous formulas we get v3,0 = v3,1 = v3,2 =
v2,0 + v2,0 + (v2,0 + 1) = 3v1,0 + 1. Also, v3,3 = 2v2,0 + v1,0 = 3v2,0, so
level 3 has one less 3−vertex than 0−, 1−, and 2−vertices. Since every
odd exponent of 3 is congruent to 3 (mod 4), and every even exponent of
3 is congruent to 1(mod 4), the pattern of having one extra 3−vertex in
a level and one extra 0, 1, and 2−vertices in the next level continues to
repeat infinitely. This means if the vertex labels include an extra 3 in one
level, then the labels of the next level include an extra 0, 1, and 2, and the
reverse also holds true. Furthermore, because the total number of vertices
in the tree is congruent to either 1(mod 4) or 0(mod 4), the pattern for total
vertices in the tree of an extra 3−vertex and then completely even vertex
labels repeats infinitely. A similar argument for the total number of edge
labels shows a repeating pattern of one less 0−edge followed by the edge
labels being distributed completely evenly in the whole graph. Therefore,
all complete ternary trees are 4−equitible. �

In what follows we will describe labeling algorithms for other n−ary
trees. We will leave it to the reader to produce an argument similar to the
above argument for checking the k−equitability at each level, as we feel it
would not add to the clarity. Whenever possible we will introduce the same
number of vertex labels of each kind and the same number of edges labels
of each kind on any new level. This will assure that the property of being
4−equitable is preserved in each step. The introduction of the following
two terms will help simplify the the proofs.

Definition 4. A group of 4 vertices each having distinct labels is called a
perfect group. The children of a perfect group are labeled by the perfect
group algorithm as follows: All the children of the 0−vertex are labeled
3. All the children of the 1−vertex are labeled 0. All the children of the
2−vertex are labeled 2. All the children of the 3−vertex are labeled 1.

Notice that executing the perfect group algorithm introduces the same
number of vertex and edge labels of each kind. Therefore we can apply this
algorithm repeatedly and the the 4−equitability of the tree will not change.

Lemma 8. All complete quaternary trees are 4−equitable.
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Proof. Given any complete quaternary tree, label the root vertex with 0.
Label the children of the root vertex with 0, 1, 2 and 3. Label all descendants
using the perfect group algorithm. �

Lemma 9. All complete 5−ary trees are 4−equitable.

Proof. Given any complete 5−ary tree, label the root vertex 0. Label the
vertices in level 1 by 0, 1, 2, 3 and 3. Label the descendants of the perfect
group by using the perfect group algorithm repeatedly.

Label the children of the 3−vertex in level 1 with 0, 1, 1, 2 and 3 . Label
the children of the 0−vertex by 3. Label the children of the 2−vertex by 0.
Label the children of one of the 1−vertices by 2 and label the children of
the other 1−vertex by 1. Group these new vertices into perfect groups and
label their descendants by using the perfect group algorithm repeatedly.

Label the children of the 3−vertex on level 2 by 1, 2, 2, 3 and 0. Label
the children of the 1− vertex by 3. Label the children of the 3−vertex by
0. Label the children of one of the 2−vertices by 2 and label the children of
the other 2−vertex by 1. Group these new vertices into perfect groups and
label their descendants by using the perfect group algorithm repeatedly.

Label the children of the 0−vertex on level 3 by 0, 1, 2, 3 and 0. Label
the descendants of the perfect group by using the perfect group algorithm
repeatedly. Treat the 0−vertex on level 4 like the root vertex and repeat the
above algorithm. A complete 5−ary tree labeled by the above algorithm is
equitable at any height. �

Lemma 10. All complete 6−ary trees are 4−equitable.

Proof. Given any complete 6−ary tree, label the root vertex 0. Label the
vertices in level 1 by 1, 2, 2, 3 and 3, 0. First we define the labeling of
the descendants of the first group of 4 vertices. Label the children of the
1−vertex by 3. Label the children of the 3−vertex by 0. Label the children
of one of the 2−vertices by 2 and label the children of the other 2−vertex by
1. Group these new vertices into perfect groups and label their descendants
by using the perfect group algorithm repeatedly.

For the two remaining vertices on level 1 label half of the children of
the 3−vertex by 1, the other half by 2. Label half of the children of the
0−vertex by 0, the other half by 3. Group these vertices in perfect groups
and label the descendants using the perfect group algorithm. It is easy to
see that the complete 6−ary tree labeled by the above algorithm is equitable
at any height. �

Lemma 11. All complete 7−ary trees are 4−equitable.

Proof. Given any complete 7−ary tree, label the root vertex 0. Label the
vertices in level 1 by 1, 2, 2, 3 and 0, 1, 3. We define the labeling of the
descendants of the first group of 4 vertices as before: Label the children of
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the 1− vertex by 3. Label the children of the 3−vertex by 0. Label the
children of one of the 2−vertices by 2 and label the children of the other
2−vertex by 1. Group these new vertices into perfect groups and label their
descendants by using the perfect group algorithm repeatedly.

The labeling of the descendants of the remaining three vertices on level
1 is slightly more complicated. Label the children of the 3−vertex in level 1
with 0, 1, 2, 3 and 0, 1, 3. Label the children of the 0−vertex by 2, 2, 2, 3, 3, 3
and a 0. Label the children of the 1−vertex by 0, 0, 0, 1, 1, 1 and a 2.

We can group all but one of the level 2 vertices into perfect groups. At
this point all edge labels are distributed evenly and 0 appears one more
time as a vertex label than any other vertex label. Therefore, we can label
the subsequent levels by using the perfect group algorithm and by treating
the extra 0−vertex as a root vertex and repeating the previous labeling.
The complete 7−ary tree labeled by the above algorithm is equitable at any
height. �

Theorem 3. All complete n−ary trees are 4−equitable.

Proof. Given any n = 4k+ l label the root vertex by 0. Then label 4(k−1)
vertices by equally distributing the 4 vertex labels. After grouping these
vertices into perfect groups their descendants can be labeled by the perfect
group algorithm. Label the remaining 4 + l vertices and their descendants
based on the appropriate lemma above with the following modification:

• For l = 1, use k − 1 perfect groups for the descendants of the
3−vertex on level 1, the 3−vertex on level 2 and the 0−vertex on
level 3.

• For l = 0 or l = 2, no modification is needed.

• For l = 3, use k perfect groups for the descendants of the 3−vetex
on level 1 and then use the extra vertex labels 0, 1, 3. For the other
two level 1 vertices use the same pattern as in the case of 7−ary
trees assigning labels 2 and 3 to the children of the 0−vertex and
assigning labels 0 and 1 to the children of the 1−vertex with an
extra 0− and 2−vertex, respectively.

Now we can proceed using the perfect labeling algorithm repeatedly and
starting our whole process over regarding a 0−vertex on level 2 as a root
vertex. �
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