UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE QUÍMICA CURSO DE GRADUAÇÃO EM QUÍMICA

HIDRÓLISE E DEUTERAÇÃO DO DIPEPTÍDEO GLICILGLICINA CATALISADAS PELO COMPLEXO MACROCÍCLICO BINUCLEAR – BMXD-Cu₂

Ana Cristina Franzoi

Prof. Dr. Bruno Szpoganicz Orientador

Florianópolis (SC), novembro de 2004.

ANA CRISTINA FRANZOI

HIDRÓLISE E DEUTERAÇÃO DO DIPEPTÍDEO GLICILGLICINA CATALISADAS PELO COMPLEXO MACROCÍCLICO BINUCLEAR – BMXD-Cu₂

Monografia apresentada ao Curso de Química, da Universidade Federal de Santa Catarina, como requisito para obtenção do grau de Bacharel em Química.

Orientador: Prof. Dr. Bruno Szpoganicz

A Química é tão fascinante quanto a História, mais suave que a Física, não menos intrigante que a Matemática, é uma disciplina que guarda em si um quê de mistério. Seja seu início clássico, sua transformação em instrumento de busca pela "vida eterna" ou a ciência que estuda a origem do amor, tudo isto a torna um desafio apaixonante, prova de que no final, tudo é uma questão de Química. Você duvida? Autor Desconhecido

AGRADECIMENTOS

Primeiramente agradeço à Deus, que esteve comigo em todos os momentos de minha vida;

Agradeço também ao Prof. Dr. Bruno Szpoganicz pela orientação, apoio e amizade;

Aos colegas do Laboratório de Equilíbrio Químico, especialmente à Gledir T. S. Martins pela contribuição dada a este trabalho;

Aos meus pais, Arlindo e Goreti, e irmãos, Daniel e Luciana, que me apoiaram e me incentivaram nos momentos de dificuldade para que eu não desistisse do meu sonho;

Ao meu namorado Thiago, pelo seu amor e carinho nesses anos de luta;

Aos meus amigos, que sempre estiveram ao meu lado nesta longa caminhada;

À Universidade Federal de Santa Catarina, professores e funcionários do Departamento de Química pela oportunidade de concluir este trabalho;

Ao CNPq pelo suporte financeiro;

Enfim, a todos que direta ou indiretamente colaboraram para a concretização deste trabalho.

I

ÍNDICE GERAL

ÍNDICE DE ABREVIATURAS, SIGLAS E SÍMBOLOS		IV	
ÍNDIC	ÍNDICE DE ESQUEMAS E FIGURAS		
ÍNDIC	E DE TABELAS	IX	
1. RI	ESUMO	1	
2. IN	TRODUÇÃO	2	
2.1.	Hidrólise de Peptídeos e Amidas	3	
2.2.	Enzimas Hidrolíticas	5	
2.3.	Complexos Macrocíclicos	6	
2.3.1.	Ligante Macrocíclico: 3,6,9,17,20,23-hexazatriciclo[23.3.1.1 ^{11,15}]		
	triaconta-1(29),11(30),12,14,25,27-hexeno (BMXD)	7	
2.4.	Reações Modelo	9	
3. OI	BJETIVOS	13	
4. PA	ARTE EXPERIMENTAL	14	
4.1.	Materiais	14	
4.2.	Medidas Cinéticas	14	
4.3.	Caracterização do Produto da Hidrólise da Gliclglicina Catalisada		
	pelo Complexo Macrocíclico Binuclear BMXD-Cu2	15	
4.4.	Cálculo de Minimização de Energia	15	
5. RE	ESULTADOS E DISCUSSÃO	16	
5.1.	Estudo Cinético das Reações de Hidrólise e Deuteração do		
	Dipeptídeo Glicilglicina Catalisadas pelo Complexo Macrocíclico		
	Binuclear BMXD-Cu ₂	17	

5.2.	Mecanismo proposto para a Hidrólise e Deuteração do Dipeptídeo	
	Glicilglicina Catalisadas pelo Complexo Macrocíclico Binuclear	
	BMXD-Cu ₂	27
5.3.	Proposta de Conformação do Complexo Macrocíclico Binuclear	
	BMXD-Cu ₂ para acomodar o Dipeptídeo Glicilglicina.	29
6. CONCLUSÕES		
7. RE	FERÊNCIAS BIBLIOGRÁFICAS	32

ÍNDICE DE ABREVIATURAS, SIGLAS E SÍMBOLOS

BMXD	Ligante 3,6,9,17,20,23-hexazatriciclo[23.3.1.1 ^{11, 15}]triaconta-1(29),11(30),12,14,25,27-hexaeno.	
GG	Dipeptídeo Glicilglicina.	
BMXD -Cu ₂	Complexo Binuclear formado entre 2 íons Cu ²⁺ e o Ligante BMXD.	
BMXD -Cu ₂ -GG	Complexo Ternário formado entre 2 íons Cu ²⁺ , o Ligante BMXD e Glicilglicina.	
BMXDCu ₂ HGG ⁴⁺	Espécie monoprotonada do Complexo Ternário.	
BMXDCu ₂ GG ³⁺	Espécie não-protonada do Complexo Ternário.	
BMXDCu ₂ H ₋₁ GG ²⁺	Espécie amida desprotonada do Complexo Ternário.	
BMXDCu ₂ H ₋₁ (OH)GG ⁺	Espécie monohidróxida do Complexo Ternário.	
BMXDCu ₂ H ₋₁ (OH) ₂ GG	Espécie dihidróxida do Complexo Ternário.	
(BMXD-Cu ₂) ⁴⁺	Complexo Binuclear Catiônico formado entre 2 íons Cu ²⁺ e o Ligante BMXD.	
(BMXD-Cu ₂)(SO ₄) ₂	Complexo Ternário formado entre 2 íons Cu ²⁺ , o Ligante BMXD e o Ânion Sulfato.	
CuGG e CuGG⁺	Complexos formados entre o íon cobre Cu ²⁺ e a	
Cu([9]aneN ₃)Cl ₂	Complexo Mononuclear formado entre o íon cobre Cu ²⁺ e o Ligante 1,4,7-triazaciclononano	
OBISDIEN	Ligante 1,4,7,13,16,19-hexaaza-10,22-	
СРА	Enzima Carboxipeptidase A	
LeuAP	Enzima Leucina Aminopeptidase	
PhePhePheGli	Tetrapeptídeo Fenilalanilfenilalanilfenilalanilglicina	

Da	Dalton	
EDTA	Ácido Etilenodiaminotetracético	
UV-Vis	Espectrofotometria de Ultra-Violeta e Visível	
RMN ¹ H	Ressonância Magnética Nuclear de hidrogênio	
MHz	Mega Hertz	
δ	Deslocamento químico	
ppm	Partes por Milhão	
D ₂ O	Água Deuterada	
NaOD	Hidróxido de Sódio Deuterado	
mol L ⁻¹	Concentração Molar	
CCH ₂	CH2 da Glicilglicina adjacente ao Grupo Carboxilato	
NCH ₂	CH2 da Glicilglicina adjacente ao Grupo Amino	
h	Horas de reação	
k _{obs}	Constante de Velocidade Observada	
<i>k</i> _h	Constante de Velocidade de Hidrólise	
<i>k</i> d	Constante de Velocidade de Deuteração	
Å	Angström	
~	aproximadamente	

ÍNDICE DE ESQUEMAS E FIGURAS

Esquema 1.	Reação de formação de um dipeptídeo, onde -CONH-	
	representa a ligação peptídica.	3
Esquema 2.	Hidrólise de amidas em condições ácidas.	4
Esquema 3.	Hidrólise de amidas em condições básicas.	5
Figura 1.	Estrutura do ligante macrocíclico BMXD.	7
Figura 2. (I) Geometria de coordenação para o complexo		
	(BMXD-Cu ₂) ⁴⁺ , onde Z representa o solvente ou ânions.	8
(II)	Estrutura de raios X do complexo $(BMXD-Cu_2)(SO_4)_2$.	8
Figura 3.	Proposta de conformação do complexo BMXD-Cu ₂ , em	9
	solução, para acomodar ligantes grandes como o pirofosfato.	
Esquema 4.	Hidrólise do N-(6-Carboxi-picolinoil)benzimidazol catalisada	
	pelo íon Cu ²⁺ .	10
Figura 4. (I)	Estrutura do complexo CuGG⁺.	10
(II)	Estrutura do complexo CuGG.	10
Figura 5.	Complexo macrocíclico mononuclear de cobre(II) -	
	Cu([9]aneN ₃)Cl ₂ .	11
Figura 6.	Arranjo sugerido para o dipeptídeo na cavidade do complexo	
	receptor OBISDIEN -Cu ₂ .	11
Figura 7.	Curvas de distribuição das espécies do complexo ternário	
	BMXD-Cu ₂ -GG em função do p[H].	16

Figura 8.	Espectros de RMN ¹ H do sistema 1:2:1 L-Cu ₂ -GG, para uma solução inicialmente contendo: $[BMXD] = 0,01 \text{ mol } L^{-1}$, $[Cu] = 0,02 \text{ mol } L^{-1} e [GG] = 0,01 \text{ mol } L^{-1} em p[D] 6,1$. (I) = 0 hora, (II)= após 50 horas e (III)= após 72 horas, a 70°C.	18
Figura 9.	Espectros de RMN ¹ H do sistema 1:2:1 L-Cu ₂ -GG, para uma solução inicialmente contendo: $[BMXD] = 0,01 \text{ mol } L^{-1}, [Cu] = 0,02 \text{ mol } L^{-1}e [GG] = 0,01 \text{ mol } L^{-1} \text{ em p}[D] 6,9. (I) = 0 \text{ hora,}$ (II)= após 50 horas e (III)= após 72 horas, a 70°C.	19
Figura 10.	Gráfico de $In[NCH_2]$ <i>vs.</i> tempo para a deuteração e hidrólise do dipeptídeo glicilglicina em D ₂ O, em p[D] 6,1 a 70°C.	22
Figura 11.	Gráfico de $In[NCH_2]$ <i>vs.</i> tempo para a deuteração e hidrólise do dipeptídeo glicilglicina em D ₂ O, em p[D] 6,9 a 70°C.	22
Figura 12.	Gráfico de $ln[CCH_2]$ <i>vs.</i> tempo para a hidrólise do dipeptídeo glicilglicina em D ₂ O, em p[D] 6,1 a 70°C.	24
Figura 13.	Gráfico de ln[CCH ₂] <i>vs.</i> tempo para a hidrólise do dipeptídeo glicilglicina em D ₂ O, em p[D] 6,9 a 70° C.	25
Figura 14.	Arranjo sugerido para o dipeptídeo na cavidade do complexo receptor BMXD-Cu ₂ , sendo considerada a espécie mais reativa na reação de hidrólise e deuteração.	26
Figura 15.	Espécie não ativa para a hidrólise e deuteração, onde a ligação peptídica está desprotonada e estabilizada pela coordenação ao íon metálico na cavidade do macrociclo.	26
Figura 16.	Mecanismo para a hidrólise e deuteração do dipeptídeo glicilglicina catalisadas pelo complexo macrocíclico binuclear BMXD-Cu ₂ .	28

Х

Figura 17. Disposições de baixa energia - conformação do tipo cuia do complexo BMXD-Cu₂ para acomodar o ligante glicilglicina, gerada por cálculos semi-empíricos usando o programa CAChe. (Branco – Hidrogênio, Cinza – Carbono, Azul – Nitrogênio, Vermelho – 2 íons Cu(II) e Oxigênio).
 30

ÍNDICE DE TABELAS

Tabela 1. Constantes de velocidade observadas para os valores de p[D], obtidas do gráfico ln[NCH₂] vs. tempo em D₂O, a 70°C.
Tabela 2. Constantes de velocidade observadas para a hidrólise e deuteração da glicilglicina nos valores de p[D], em D₂O a 70°C.
23

1. RESUMO

Estudos cinéticos da hidrólise e deuteração da glicilglicina (GG) catalisadas pelo complexo macrocíclico binuclear BMXD-Cu₂, (BMXD - 3,6,9,17,20,23-hexazatriciclo [23.3.1.1^{11,15}]triaconta-1(29),11(30),12,14,25,27-hexaeno), foram acompanhados por RMN ¹H. Foram observadas duas reações paralelas para o sistema ternário BMXD -Cu₂-GG: a deuteração de um CH₂ da glicilglicina, o NCH₂, e a hidrólise da ligação peptídica, quebra da ligação C – N.

O modo de coordenação da glicilglicina na cavidade do complexo receptor ativa o grupo carbonila pela coordenação do oxigênio ao centro metálico, favorecendo o ataque de um reagente nucleofílico, tal como a carboxila do dipeptídeo. Os resultados cinéticos mostram que a espécie mais reativa para a reação de hidrólise e deuteração é a espécie não-protonada (BMXDCu₂GG³⁺). Em p[D] 6,1, onde BMXDCu₂GG³⁺ é a espécie predominante, os valores das constantes são: $k_h = 1,63 \times 10^{-6} \text{ s}^{-1} \text{ e } k_d = 3,37 \times 10^{-6} \text{ s}^{-1}$. Em valores maiores de p[D], onde temos a máxima formação da espécie com a ligação amida desprotonada (BMXDCu₂H₋₁GG²⁺, p[D] ~ 8,0) não foi observada nenhuma reação. A partir da espécie mais reativa foi proposto um mecanismo para a hidrólise e deuteração do dipeptídeo glicilglicina catalisadas pelo complexo macrocíclico binuclear BMXD-Cu₂.

Cálculos de minimização de energia mostram que o complexo macrocíclico binuclear BMXD-Cu₂ adota a conformação do tipo 'cuia' para acomodar o dipeptídeo glicilglicina.

2. INTRODUÇÃO

A necessidade de expandir horizontes e olhar para a Química não somente como uma ciência de moléculas individuais, mas também como uma investigação de como as moléculas se agrupam e interagem em grupos, pares, pequenos ou grandes agregados, abriu espaço para o campo da Química Supramolecular.¹

Em 1937, Klaus Wolf,² químico alemão, cunhou o termo *Übermoleküle*² (macromolécula), e mais tarde, no final da década de 1960, com o desenvolvimento de novas moléculas, como os éteres de coroa³ e os criptandos,⁴ Charles Pedersen, Donald Cram e Jean-Marie Lenh relembraram a expressão e desenvolveram a Química Supramolecular, que pode ser definida por: "justamente como há um campo da química baseado nas ligações covalentes, a química molecular, há um campo da química supramolecular, a química da reunião molecular e da ligação intermolecular".⁵

Na Biologia, ligações covalentes definem a composição das moléculas fundamentais – proteínas, ácidos nucléicos, lipídeos, hormônios – mas ligações não-covalentes desempenham um papel crítico na determinação de suas funções. É por meio de interações fracas que as enzimas são capazes, não somente de se ligar, mas também de liberar suas moléculas-alvo, de abrir e copiar a dupla hélice do DNA e que as células nervosas podem enviar sinais umas às outras.⁶

As interações moleculares têm sua essência dentro da química orgânica, nos processos de síntese molecular; da química de coordenação, na formação do complexo metal-ligante; da físico-química, nos estudos das interações experimentais e teóricas; da bioquímica e de todos os processos que envolvem a ligação e o reconhecimento de um determinado substrato com seu receptor.⁶

Receptores moleculares são estruturas orgânicas unidas por ligações covalentes que são capazes de se ligarem seletivamente a substratos moleculares e/ou iônicos por meio de várias interações intermoleculares, conduzindo à formação de uma super ou supramolécula. Estas espécies são caracterizadas

1

pelo seu arranjo espacial e pela sua estrutura definida, possuindo certa flexibilidade, devido às fracas interações existentes entre seus componentes.

Se além do sítio de ligação, o receptor também carrega funções reativas, este efeito pode ser uma transformação química na ligação do substrato, comportando-se assim como um reagente supramolecular ou catalítico.

Ligantes macrocíclicos, como BMXD⁷ e OBISDIEN,⁸ são receptores moleculares que interagem com biomoléculas pequenas. Esses ligantes podem formar complexos binucleares com íons metálicos da 1^ª série de transição, os quais, por sua vez, ligam-se a ânions secundários que funcionam como pontes dentro da cavidade do macrociclo. Neste caso, os complexos binucleares são os "hosts" e os ânions são os "guests". Esta interação "hóspede-hospedeiro", do ânion com os centros metálicos do complexo macrocíclico foi denominada como complexo cascata por Lehn.⁶

Um tipo de substrato que pode ser reconhecido na cavidade desses complexos macrocíclicos binucleares são os peptídeos.

2.1. Hidrólise de Peptídeos e Amidas

Peptídeos são compostos formados a partir da reação entre um grupo amino e um grupo carboxílico de α-aminoácidos, sendo o grupo amida –CONH–, designado por ligação peptídica,⁹ (**Esquema 1**). Conforme o número de resíduos de aminoácidos por molécula, esses compostos recebem o nome de dipeptídeo, tripeptídeo, etc, e, finalmente polipeptídeos.¹⁰ Um polipeptídeo com 100 ou mais resíduos de aminoácidos é chamado de proteína.

$$^{+}H_{3}N-R-COO^{-} + ^{+}H_{3}N-R-COO^{-} \longrightarrow ^{+}H_{3}N-R-C-N-R-COO^{-} + H_{2}O$$

Esquema 1. Reação de formação de um dipeptídeo, onde –CONH– representa a ligação peptídica.

Dependendo da seqüência de sua cadeia, os peptídeos coordenam-se de diversas maneiras com íons metálicos.¹¹ Por exemplo, o dipeptídeo glicilglicina (NH₂CH₂CONHCH₂COOH), tem dois grupos terminais coordenantes, além dos átomos de oxigênio e nitrogênio da ligação peptídica, sendo possível a coordenação tridentada.

A hidrólise de peptídeos depende da reatividade do grupo carbonila da ligação peptídica.¹² Esta reatividade é quase ausente em peptídeos, devido à ressonância do tipo,

desta maneira, as amidas são bases fracas, pois ocorre apenas a deslocalização do par de elétrons não-ligantes do átomo de nitrogênio.¹²

Em condições ácidas, a hidrólise de uma amida resulta do ataque da água sobre a carbonila protonada¹³ (**Esquema 2**). A protonação do oxigênio da carbonila (I) deixa o carbono parcialmente positivo, favorecendo o ataque nucleofílico da molécula de água, formando um intermediário tetraédrico (II). Este intermediário perde uma molécula de amônia, produzindo um ácido carboxílico protonado (III), que transfere um próton para a amônia, formando o ácido carboxílico (IV) e o íon amônio (V).

Esquema 2. Hidrólise de amidas em condições ácidas.

Em condições alcalinas, a hidrólise ocorre pelo ataque do íon hidróxido, um agente fortemente nucleofílico, sobre a própria amida¹³ (**Esquema 3**). O íon OH⁻ ataca o carbono carbonílico da amida, formando um intermediário tetraédrico (I), que perde um próton, para dar um diânion (II). O diânion perde uma molécula de amônia, este passo é sincronizado com a transferência do próton da água.

Esquema 3. Hidrólise de amidas em condições alcalinas.

2.2. Enzimas Hidrolíticas

As vantagens do uso de enzimas para hidrolisar proteínas e peptídeos são várias: enzimas são específicas e quebram prontamente ligações que são resistentes à catálise não específica; não são destrutivas, não somente para aminoácidos comuns, mas também para grupos lábeis introduzidos *in vivo* ou *in vitro* e agem rapidamente, podendo teoricamente completar a hidrólise em minutos.¹⁴

Certas peptidases requerem íons metálicos para suas atividades, e por isto, reações de hidrólise têm chamado a atenção de químicos inorgânicos.¹⁵ Estas metaloenzimas são classificadas de acordo com sua especificidade pelo substrato.

A carboxipeptidase A (CPA, peptidil-L-aminoácido hidrolase) é uma metaloexopeptidase que contém um íon Zn^{2+} como centro ativo, ligado a uma cadeia polipeptídica de 307 resíduos de aminoácidos. Esta enzima apresenta especificidade pelo substrato OOC - CHR - NH - CO -, a hidrólise ocorre no aminoácido C – terminal.¹⁶

4

Aminopeptidases apresentam especificidade pelo substrato $- NH - CO - CHR - NH_2$, e a hidrólise ocorre no aminoácido N terminal do substrato peptídico.¹⁷ A leucina aminopeptidase (LeuAP), extraída do pâncreas bovino, é uma metalopeptidase de massa molecular 324 kDa, consistindo de 6 subunidades idênticas. Através de absorção atômica foi identificada estruturalmente, confirmando que para cada subunidade de 54 kDa, há 2 íons Zn²⁺.

É muito difícil estabelecer mecanismos para reações enzimáticas, os problemas residem em como o íon metálico promove a hidrólise de peptídeos. Assim, torna-se necessário o desenvolvimento de ligantes adequados que mimetizem os resíduos de aminoácidos presentes no sítio ativo dessa classe de enzimas.

2.3. Complexos Macrocíclicos

Complexos macrocíclicos polinucleares de metais de transição representam uma ferramenta importante no estudo dos mecanismos que governam as interações do íon metálico e a ativação do substrato.¹⁸

De especial interesse como agentes complexantes, os ligantes macrocíclicos podem impor um alto grau de pré-organização na formação de complexos metálicos, além de constituírem uma excelente base para o reconhecimento molecular, podendo assim variar o tamanho da cavidade, forma e componentes.¹⁹

Ligantes macrocíclicos hexamino, em suas formas protonadas, quando ligados a certas moléculas neutras e ânions em solução, em alguns casos, são capazes de catalisar ligações de substratos em significantes reações biológicas. Muitas vezes estas enzimas miméticas mostram fatores elevados para a velocidade de reação, quando comparadas com os mesmos processos na ausência do macrociclo. Macrocíclicos hexamino podem formar complexos metálicos mono e binucleares, os quais são capazes de coordenar ânions.²⁰

5

2.3.1. <u>Ligante Macrocíclico:</u> 3,6,9,17,20,23-hexazatriciclo[23.3.1.1^{11,15}] triaconta-1(29),11(30),12,14,25,27-hexaeno (BMXD)

Há um grande interesse em complexos binucleares que contenham estruturas ligantes capazes de segurar dois centros metálicos na cavidade fechada, enquanto mantém suficiente flexibilidade para promover ligações com o substrato.¹⁹ Um exemplo de ligante deste tipo é o macrociclo 3,6,9,17,20,23-hexazatriciclo[23.3.1.1^{11, 15}]triaconta-1(29),11(30),12,14,25,27-hexaeno (**Figura 1**), que contém seis grupos aminos doadores, na forma de duas subunidades dietilenotriamina, separados por pontes benzílicas.

Figura 1. Estrutura do ligante macrocíclico BMXD.

O ligante BMXD é uma poliamina hexadentada capaz de formar um arranjo binuclear pela inclusão de dois cátions metálicos em sua cavidade molecular, deixando disponível a coordenação de sítios adicionais. Em solução aquosa, estes sítios de coordenação podem ser ocupados por moléculas de H₂O, íons OH⁻ ou substratos aniônicos.⁷

A geometria de coordenação dos íons Cu²⁺ no complexo binuclear catiônico (BMXD-Cu₂)⁴⁺, inicialmente sugerida por Martell e colaboradores²¹ (**Figura 2. I**), teve seu arranjo estrutural confirmado por cristalografia de raios X do complexo

(BMXD-Cu₂)(SO₄)₂. A estrutura obtida,⁷ (**Figura 2. II**) mostra que a ligação dos íons metálicos ao macrociclo é feita através dos três nitrogênios amínicos da subunidade dietilenotriamina. O ambiente de coordenação de cada íon metálico é completado por um átomo de oxigênio do sulfato, neste caso, o oxigênio (O3) de um sulfato a um cobre (Cu1) e o oxigênio (O4') do outro sulfato ao outro cobre (Cu2). A distância interatômica entre os íons Cu²⁺ é de 5,31Å.

Figura 2. (I) – Geometria de coordenação para o complexo binuclear (BMXD- Cu_2)⁴⁺, onde Z representa o solvente ou ânions.²¹ (II) – Estrutura de raios X do complexo (BMXD- Cu_2)(SO₄)₂.⁷

Embora a estrutura no estado sólido do complexo (L-Cu₂)(SO₄)₂ mostre que o macrociclo adota a conformação do tipo 'cadeira' (uma subunidade dietilenotriamina coordenante para cima e a outra para baixo), não é necessariamente a que adotaria em solução.⁷ Devido à certa flexibilidade do complexo L-Cu₂, espera-se que o cátion possa variar sua distância interatômica podendo acomodar ligantes maiores, como o pirofosfato, por exemplo, em uma conformação do tipo 'cuia', onde as duas subunidades dietilenotriamina estão viradas para o mesmo lado (**Figura 3**).⁷

Figura 3. Proposta de conformação do complexo BMXD-Cu₂, em solução, para acomodar ligantes grandes como o pirofosfato.⁷

Reações modelo nos mostram que complexos macrocíclicos de metais de transição são propostos como catalíticos para a hidrólise de peptídeos.

2.4. Reações Modelo

Muitos processos biológicos envolvem hidrólise de proteínas e peptídeos, mas pouco é conhecido a respeito dessas importantes reações.²²

Os estudos cinéticos e mecanísticos sobre a hidrólise de amidas, que constituem uma reação típica destes derivados dos ácidos carboxílicos, são geralmente realizados em soluções alcalinas ou ácidas, sob um longo período de aquecimento.²³

Kahne e Still estudaram a hidrólise de uma ligação peptídica, do tetrapeptídeo fenilalanilfenilalanilfenilalanilglicina (PhePhePheGli), e observaram que a constante de velocidade da reação em pH neutro e temperatura ambiente foi de 3 x 10^{-9} s⁻¹, o que corresponde a um tempo de meia vida de aproximadamente 7 anos.²⁴ Para obter uma reação de meia vida substancialmente menor que 1 ano em solução neutra, Hine e colaboradores, utilizaram em seus experimentos temperatura de 80°C.²²

Íons metálicos sozinhos catalisam reações hidrolíticas.²⁵ Fife e Prystas em estudos sobre a hidrólise de N-(6-Carboxi-picolinoil)benzimidazol catalisada por íons metálicos bivalentes observaram, na presença dos íons Zn²⁺, Ni²⁺, Co²⁺ e

Cu²⁺, um aumento na velocidade na ordem de 10⁵-10⁶ e 10⁹ para os três primeiros íons e para o íon cobre, respectivamente.²⁶ A reação do complexo com o íon Cu²⁺ foi interpretada como um ataque nucleofílico intramolecular do OH⁻ sobre a carbonila da amida (**Esquema 4**).²⁶

Esquema 4. Hidrólise do N-(6-Carboxi-picolinoil)benzimidazol catalisada pelo íon Cu²⁺.²⁶

Íons cobre(II) catalisam a hidrólise da glicilglicina na faixa de pH 3,5-6,3. O perfil de velocidade da reação tem um máximo em p[H] 4,2, devido à formação do complexo CuGG⁺ (**Figura 4. I**). Em valores de p[H] mais altos, a velocidade decresce, devido à formação do complexo cataliticamente inativo CuGG, produzido pela ionização do átomo de hidrogênio da ligação peptídica (**Figura 4. I**).¹²

Figura 4. Estruturas dos complexos formados entre os íons cobre(II) e a glicilglicina: (I) – CuGG⁺ e (II) – CuGG.¹²

A hidrólise do dipetídeo glicilglicina catalisada pelo complexo macrocíclico mononuclear de cobre(II) – Cu([9]aneN₃)Cl₂, onde [9]aneN₃Cl₂ – 1,4,7-triazaciclononano (**Figura 5**) foi evidenciada. A reação foi realizada em pH 8,1, e embora o complexo Cu[9]aneN₃Cl₂ seja catalítico, somente após grande período de incubação (50°C) em uma velocidade lenta de hidrólise, obteve-se um rendimento significativo de glicina.²⁷

Figura 5. Complexo macrocíclico mononuclear de cobre(II) - Cu([9]aneN₃)Cl₂.²⁷

Conforme Bordignon-Luiz,²⁸ o complexo macrocíclico binuclear OBISDIEN -Cu₂ é proposto como catalítico na hidrólise da glicilglicina. A reação foi estudada em p[D] 4,2, e a glicina foi o único produto observado, caracterizado por RMN ¹H (singlete próximo a 3,57 ppm). A **Figura 6** mostra o arranjo sugerido para o dipeptídeo (no caso da glicilglicina, R = H) na cavidade do complexo receptor (confirmado através de estudos de espectrofotometria de UV-Vis), e como pode ser ativado para a hidrólise pela coordenação ao cobre(II).

Figura 6. Arranjo sugerido para o dipeptídeo na cavidade do complexo receptor OBISDIEN -Cu₂.²⁸

Em muitas reações catalíticas com íons metálicos, a função destes íons é similar à do próton, mas é um caminho mais eficiente porque mais do que uma carga positiva pode ser envolvida e a concentração do íon pode ser elevada em solução aquosa.²⁹

Estudos sobre o efeito do íon metálico na hidrólise de peptídeos são requeridos considerando as limitações técnicas, a complexidade e o grande número de variáveis encontradas no estudo dessas reações e a simplicidade de reações modelo, justificam o grande número de trabalhos publicados. Neste trabalho, selecionou-se para estudo o complexo macrocíclico binuclear BMXD-Cu₂ e como substrato para reação de hidrólise e deuteração, o dipeptídeo glicilglicina.

3. OBJETIVOS

 Efetuar os estudos cinéticos das reações de hidrólise e deuteração da glicilglicina catalisada pelo complexo macrocíclico binuclear BMXD-Cu₂ e caracterizar por RMN ¹H o produto destas reações;

• Identificar a espécie mais reativa em cada sistema e propor um mecanismo para estas reações;

• Apresentação da possível conformação estrutural do complexo ternário BMXD-Cu₂-GG através de cálculos de minimização de energia usando o programa CAChe.

4.1. Materiais

O ligante BMXD.6HBr, na forma de cristais incolores, foi sintetizado conforme metodologia descrita por Martell e colaboradores.⁷ O ligante utilizado neste trabalho foi sintetizado por Gledir Martins,³⁰ para o desenvolvimento de sua tese de doutorado.

O cloreto dihidratado de cobre(II) (CuCl₂.2H₂O – Vetec), o sulfeto de ferro (II) (FeS – Vetec) e o dipeptídeo glicilglina (NH₂CH₂CONHCH₂COOH 98% – Aldrich Chemical Co.), foram usados sem prévia purificação.

A solução estoque de cobre foi padronizada através da titulação com ácido etilenodiaminotetracético (EDTA – Vetec), com murexida como indicador.³¹

Água deuterada (D_2O 99,8% – Acros Organics) e solução de hidróxido de sódio deuterado (NaOD 30wt% em D_2O – Acros Organics) foram utilizadas no preparo das soluções para os estudos cinéticos por RMN ¹H.

4.2. Medidas Cinéticas

As medidas cinéticas foram acompanhadas por Ressonância Magnética Nuclear de hidrogênio. Os espectros de RMN ¹H dos compostos foram registrados em um espectrômetro Bruker AC 200, 200 MHz a 25ºC.

Para o preparo das soluções ternárias (em tubos de 2,0 mL), os compostos foram diluídos em D₂O, utilizando as seguintes concentrações: [BMXD] = 0,01 mol L^{-1} , [Cu] = 0,02 mol L^{-1} e [glicilglicina] = 0,01 mol L^{-1} .

O p[H] de cada solução foi controlado pela adição de uma solução diluída de NaOD (~ 0,2 mol L⁻¹), utilizando uma microbureta de Gilmont, e medido com um pHmetro (Micronal B-474) equipado com um eletrodo combinado (Ingold). O instrumento foi calibrado com soluções tampão (Corning) e os valores de p[H] foram convertidos: p[D] = pH_{medido} + 0,4.³²

13

Para cada sistema, foram realizadas 10 medidas cinéticas. As soluções foram incubadas em um banho termostatizado, a uma temperatura de 70°C, por várias horas, com controle do p[H] a cada 5 horas. (Ética Equipamentos Científicos S.A.).

Os valores das constantes (k_{obs} , k_h e k_d) foram calculados pelo desaparecimento da ressonância da glicilglicina: NCH₂ (CH₂ adjacente ao grupo amino) e CCH₂ (CH₂ adjacente ao grupo carboxilato). Por se tratar de uma reação lenta, as integrações dos sinais são normalizadas com relação aos prótons do macrociclo.

4.3. Caracterização do Produto da Hidrólise da GlicIglicina Catalisada pelo Complexo Macrocíclico Binuclear BMXD-Cu₂

O produto da reação de hidrólise da glicilglicina catalisada pelo complexo BMXD-Cu₂ foi caracterizado por Ressonância Magnética Nuclear de hidrogênio.

Após o período de incubação, aproximadamente 72 horas, o metal cobre(II) foi precipitado das soluções com sulfeto de hidrogênio (H₂S), gerado a partir do sulfeto de ferro(II) em solução ácida (HCI concentrado ~ 12 mol L⁻¹) e então, centrifugadas (Centrífuga Excelsa Baby II – Modelo 206-R, Fanem).

4.4. Cálculo de Minimização de Energia

A partir do arranjo sugerido para o dipeptídeo glicilglicina na cavidade do complexo macrocíclico binuclear BMXD-Cu₂, reproduziu-se através de cálculos semi-empíricos, onde se utilizam apenas os elétrons de valência dos átomos, a possível conformação de mais baixa energia do complexo. O cálculo de minimização de energia foi realizado com o programa CAChe³³ (*Computer-Aided*) versão 5.0 (Fujitsu), utilizando o método de parametrização AM1-d (*Austin Model 1*)³⁴ e de otimização EF (*Eigenvector Following*).³⁵

5. RESULTADOS E DISCUSSÃO

O ponto de partida para a realização dos estudos cinéticos nas condições adequadas foi obtido com os estudos potenciométricos.³⁰ Através destes dados obteve-se a curva de distribuição das espécies do sistema ternário BMXD-Cu₂-GG (**Figura 7**), que reporta a porcentagem de cada espécie formada em função do p[H]. A provável espécie ativa BMXDCu₂GG³⁺, encontra-se na faixa de p[H] entre 4,0 e 8,0, sendo a cinética realizada em valores de p[H] compreendidos nesta faixa.

Figura 7. Curvas de distribuição das espécies do complexo ternário BMXD-Cu₂-GG em função do p[H]. **BMXDCu₂HGG**⁴⁺ - espécie monoprotonada, **BMXDCu₂GG**³⁺ - espécie não-protonada, **BMXDCu₂H.**₁**GG**²⁺ - espécie amida desprotonada, **BMXDCu₂H.**₁**(OH)GG**⁺ - espécie monohidróxida e **BMXDCu₂H.** ₁**(OH)**₂**GG** - espécie dihidróxida do complexo ternário.³⁰

Através dos estudos de massas por eletrospray³⁰ foi comprovado a formação do complexo ternário com a inclusão de uma glicilglicina na cavidade do

macrociclo – $[BMXDCu_2GG - 2H]^{2+}$, $[BMXDCu_2GG - H + Br]^{2+}$. O bromo em solução deve-se ao fato que o ligante é obtido na forma de sal (BMXD.6HBr).

5.1. Estudo Cinético das Reações de Hidrólise e Deuteração do Dipeptídeo Glicilglicina Catalisadas pelo Complexo Macrocíclico Binuclear BMXD-Cu₂

No estudo cinético do sistema BMXD-Cu₂-GG foram observadas duas reações: a deuteração de somente um dos CH_2 da glicilglicina, o NCH₂ e a hidrólise da ligação peptídica, quebra da ligação C – N.

Os espectros de RMN ¹H do sistema em p[D] 6,1 (**Figura 8**) e p[D] 6,9 (**Figura 9**), confirmam a ocorrência destas reações:

- pela diminuição do sinal da glicilglicina em δ 3,80 ppm (NCH₂, CH₂ adjacente ao grupo amino) e em δ 3,89 ppm (CCH₂, CH₂ adjacente ao grupo carboxilato);

- pelo aparecimento de um singlete em δ 3,62 ppm, que corresponde à ressonância dos prótons do CH₂ da glicina , o produto da hidrólise.

Para obter os valores das concentrações dos grupos NCH₂ e CCH₂ da glicilglicina, os sinais referentes ressonância dos mesmos foram normalizados com relação aos prótons do macrociclo, que permanecem constante durante a reação.

Os grupos NCH₂ e CCH₂ da glicilglicina deuterada estão representados abaixo:

 $\begin{array}{c} D_2 N - \frac{CH_2}{CH_2} CO - ND - \frac{CH_2}{CCH_2} COO^{-1} \\ NCH_2 CCH_2 \end{array}$

Figura 8. Espectros de RMN ¹H (200 MHz, D₂O) do sistema 1:2:1 L-Cu₂-GG, para uma solução inicialmente contendo: $[BMXD] = 0,01 \text{ mol } L^{-1}$, $[Cu] = 0,02 \text{ mol } L^{-1} e$ $[GG] = 0,01 \text{ mol } L^{-1} em p[D] 6,1$. (I) = 0 hora, (II)* = após 50 horas e (III)* = após 72 horas, a 70°C.

* Os espectros II e III foram ampliados para melhor visualização.

Figura 9. Espectros de RMN ¹H (200 MHz, D₂O) do sistema 1:2:1 L-Cu₂-GG, para uma solução inicialmente contendo: [BMXD] = 0,01 mol L⁻¹, [Cu] = 0,02 mol L⁻¹e [GG] = 0,01 mol L⁻¹ em p[D] 6,9. (I) = 0 hora, (II)* = após 50 horas e (III)* = após 72 horas, a 70° C.

* Os espectros II e III foram ampliados para melhor visualização.

Segundo Moore e Pearson,³⁶ reações complexas, que envolvem um reagente sofrendo duas ou mais reações independentes e coincidentes, são chamadas de reações paralelas. Quando estas reações são de 1^ª ordem podem ser definidas, segundo as Equações 1 - 4:

$$A \xrightarrow{k_1} U \qquad (1. a)$$
$$A \xrightarrow{k_2} V \qquad (1. b)$$

sendo **[A]**, a concentração de reagente; **[A]**₀ a concentração inicial, **[U]** e **[V]** as concentrações dos produtos, aminoácido e dipeptídeo deuterado, respectivamente. A constante *k* global, é a soma das constantes k_1 e k_2 ,

$$-\frac{d[A]}{dt} = k_1[A] + k_2[A] = k[A]$$
 (2. a)

Integrando,

$$\ln \frac{[A]}{[A]_0} = -kt$$

ou,

$$[A] = [A]_0 e^{-kt}$$
 (2. b)

Assim, o consumo do reagente A é proporcional à formação dos produtos,

$$\frac{d[U]}{dt} = k_1[A] = k_1[A]_0 e^{-kt}$$
 (3. a)
$$\frac{d[V]}{dt} = k_2[A] = k_2[A]_0 e^{-kt}$$
 (3. b)

Integrando,

$$[U] = [U_0] + \frac{k_1 [A]_0}{k} (1 - e^{-kt})$$
 (4. a)

$$[V] = [V_0] + \frac{k_2 [A]_0}{k} (1 - e^{-kt})$$
 (4. b)

Os dados cinéticos para o sistema ternário BMXD-Cu₂-GG são interpretados segundo as Equações **5. a** e **5. b**,

glicilglicina
$$\xrightarrow{k_{h}}$$
 2 glicina (5. a)
glicilglicina $\xrightarrow{k_{d}}$ glicilglicina deuterada (5. b)

onde k_h representa a constante de hidrólise, k_d a constante de deuteração. A constante observada é a soma dessas duas constantes (Equação **6**):

$$k_{\rm obs} = k_{\rm h} + k_{\rm d} \tag{6}$$

Os valores de k_{obs} foram obtidos a partir do desaparecimento da ressonância do NCH₂ (CH₂ adjacente ao grupo amino) da glicilglicina, sendo calculados pela inclinação da reta, no gráfico ln[NCH₂] vs. tempo (**Figuras 10** e **11**). Estes valores estão listados na **Tabela 1** e decrescem à medida que o p[D] aumenta.

Figura 10. Gráfico de $In[NCH_2]$ *vs.* tempo para a deuteração e hidrólise do dipeptídeo glicilglicina em D₂O, em p[D] 6,1 a 70°C.

Figura 11. Gráfico de $ln[NCH_2]$ *vs.* tempo para a deuteração e hidrólise do dipeptídeo glicilglicina em D₂O, em p[D] 6,9 a 70^oC.

p[D]	<i>k</i> _{obs} x 10 ⁶ s ⁻¹
6,1	5,00(2)
6,9	1,49(4)
8,0	0

Tabela 1. Constantes de velocidade observadas para os valores de p[D], obtidas do gráfico $ln[NCH_2]$ *vs.* tempo em D₂O, a 70°C.

Os números entre parênteses são os erros estimados no último algarismo significativo.

Os valores das constantes de hidrólise, k_h, foram calculados com a ajuda da Equação **7** (obtida a partir da equação 4.a):

$$[GG] = \frac{k_{\rm h} \, [GG]_0 \, (1 - e^{-k_{\rm obst}})}{k_{\rm obs}}$$
(7)

sendo [GG] a concentração de reagente no tempo t e [GG]₀ a concentração inicial de glicilglicina.

Os valores das constantes de deuteração, k_d, foram determinados através da Equação **6**. As constantes de hidrólise e deuteração estão na **Tabela 2**.

Tabela 2. Constantes de velocidade observadas para a hidrólise e deuteração da glicilglicina nos valores de p[D], em D_2O a 70°C.

p[D]	<i>k</i> _h x 10 ⁶ s ⁻¹	<i>k</i> _d x 10 ⁶ s ⁻¹
6,1	1,63(2)	3,37(2)
6,9	0,54(4)	0,95(4)
8,0	0	0

Os números entre parênteses são os erros estimados no último algarismo significativo

A exemplo da reação de hidrólise, a constante de deuteração é maior para valores de p[D] mais baixos, não sendo observada, nas condições de reação, qualquer mudança em p[D] 8,0. A reação de deuteração ocorre somente no CH₂ adjacente ao grupo amino do dipeptídeo, o NCH₂. Os prótons do CH₂ adjacente ao grupo carboxilato do dipeptídeo (CCH₂) não são trocados por deutério sob as condições presentes neste experimento.

Os valores das constantes de hidrólise (k_h), também podem ser obtidos independentemente da deuteração, através do desaparecimento da ressonância do CCH₂ (CH₂ adjacente ao grupo carboxilato) da glicilglicina. Em cada experimento, esta constante foi calculada pela inclinação da reta, a partir do gráfico ln[CCH₂] *vs.* tempo (**Figuras 12 e 13**).

As constantes de hidrólise obtidas para os valores de p[D] 6,1 e 6,9 foram 1,64 x 10^{-6} s⁻¹ e 0,55 x 10^{-6} s⁻¹, respectivamente, que estão de acordo com os obtidos a partir da Equação **7** e listados na **Tabela 2**. Estes valores podem ser considerados elevados, uma vez que a velocidade de hidrólise da ligação peptídica de um tetrapeptídeo demonstrou ser muito lenta.²⁴

Figura 12. Gráfico de $ln[CCH_2]$ *vs.* tempo para a hidrólise do dipeptídeo glicilglicina em D₂O, em p[D] 6,1 a 70^oC.

Figura 13. Gráfico de $ln[CCH_2]$ *vs.* tempo para a hidrólise do dipeptídeo glicilglicina em D₂O, em p[D] 6,9 a 70^oC.

O arranjo sugerido para o substrato dipeptídeo na cavidade do complexo receptor é mostrado na **Figura 14**. O grupo amino terminal e o oxigênio carbonílico do grupo amida estão coordenados aos dois centros metálicos. A ativação do grupo carbonila pela coordenação do oxigênio ao centro metálico, aumenta a carga positiva sobre o carbono carbonílico, favorecendo o ataque de um reagente nucleofílico, tal como um íon hidróxido ou até mesmo a carboxila do dipeptídeo.

De acordo com a curva de distribuição das espécies (Figura 7), esta espécie – BMXDCu₂GG³⁺, apresenta o máximo de formação em pH 5,9 (p[D] 6,3), e pode ser considerada como a mais reativa de acordo com os resultados cinéticos, pois em p[D] 6,1, os valores das constantes de hidrólise e deuteração são os mais elevados.

Os dados cinéticos mostram que em p[D] 8,0 não ocorre hidrólise e deuteração do dipeptídeo. Isto pode ser explicado devido ao fato de que neste

valor de p[D] predomina a espécie não ativa para a hidrólise e também para a deuteração – BMXDCu₂H₋₁GG²⁺, onde a ligação peptídica está desprotonada e estabilizada pela coordenação ao íon metálico (**Figura 15**).

Figura 14. Arranjo sugerido para o dipeptídeo na cavidade do complexo receptor BMXD-Cu₂, sendo considerada a espécie mais reativa na reação de hidrólise e deuteração.

Figura 15. Espécie não ativa para a hidrólise e deuteração, onde a ligação peptídica está desprotonada e estabilizada pela coordenação ao íon metálico na cavidade do macrociclo.

5.2. Mecanismo proposto para a Hidrólise e Deuteração do Dipeptídeo Glicilglicina Catalisadas pelo Complexo Macrocíclico Binuclear BMXD-Cu₂

Os resultados da Tabela 2 indicam que a espécie não-protonada -BMXDCu₂GG³⁺ é a mais reativa para as reações de hidrólise e deuteração, nas condições experimentais realizadas.

A **Figura 16** mostra o mecanismo para as reações de hidrólise e deuteração da glicilglicina catalisadas pelo complexo macrocíclico binuclear BMXD-Cu₂. A coordenação da glicilglicina (não-protonada) na cavidade do complexo receptor forma o complexo ternário **(I)**. Neste complexo, o grupo amino terminal está coordenado a um íon cobre e o grupo carbonila da amida é labilizado pelo outro íon cobre, favorecendo o ataque nucleofílico do grupo carboxilato do próprio dipeptídeo. Na reação de hidrólise, em p[D] 6,1 a velocidade de reação é aproximadamente 3 vezes maior do que em p[D] 6,9, pois neste valor de p[D] temos além da espécie ativa (não-protonada) a espécie inativa (ligação peptídica desprotonada), e em p[D] 8,0 não se observa hidrólise, devido ao fato da espécie inativa predominar. Na deuteração, em p[D] 6,1 a velocidade de reação é aproximadamente 3,6 vezes maior do que em p[D] 6,9 e em p[D] 8,0 não se observa deuteração.

A reação é de 1^ª ordem, pois depende do ataque intramolecular do grupo carboxilato sobre a carbonila, que forma o intermediário cíclico **(II)**, sugerido para as duas reações paralelas – hidrólise da ligação peptídica e deuteração do NCH₂.

A reação de hidrólise segue o caminho **a**. A quebra da ligação amida produz o intermediário anidrido (III), que é atacado, em uma etapa rápida, por um agente nucleofílico, fornecendo duas moléculas de glicina (IV). A coordenação de uma nova molécula de dipeptídeo, forma o complexo (I) e fecha o ciclo catalítico.

A reação de deuteração segue o caminho **b**. A deuteração do intermediário **(V)**, fornece uma molécula do dipeptídeo monodeuterado, **(VI)**. A substituição desta molécula deuterada por uma nova molécula de dipeptídeo completa o ciclo catalítico.

Ambos os ciclos podem ocorrer até completa deuteração do grupo NCH₂ do dipeptídeo e hidrólise da ligação amida, rendendo moléculas de glicina deuteradas e não-deuteradas.

Figura 16. Mecanismo para a hidrólise e deuteração do dipeptídeo glicilglicina catalisadas pelo complexo macrocíclico binuclear BMXD-Cu₂.

5.3. Proposta de Conformação do Complexo Macrocíclico Binuclear BMXD-Cu₂ para acomodar o Dipeptídeo Glicilglicina.

Cálculos de minimização de energia, reproduzindo a estrutura do complexo macrocíclico binuclear BMXD-Cu₂, mostram que o mesmo possui certa flexibilidade. Assim, pode-se variar a distância entre os átomos de cobre(II), dependendo do substrato que será coordenado na cavidade do macrociclo.

A conformação de mais baixa energia do complexo BMXD-Cu₂ para acomodar o ligante glicilglicina é mostrado na **Figura 17**. A molécula possui um centro de simetria, onde os anéis aromáticos estão deslocados para baixo, as duas subunidades dietilenotriamina estão viradas para o mesmo lado – conformação do tipo cuia e a distância interatômica dos dois centros de cobre(II) é de 6,9 Å. A aproximação da glicilglicina ao complexo deverá ocorrer por cima, visto que por baixo há um maior impedimento estérico espacial, devido à presença dos anéis aromáticos.

Como citado anteriormente,⁷ embora os cálculos de minimização reproduzam a estrutura do complexo BMXD-Cu₂-GG, mostrando que o macrociclo adota a conformação do tipo cuia, esta não é necessariamente a conformação que adotaria em solução.

(I) – Vista Superior

(II) – Vista Lateral 1

(III) – Vista Lateral 2

Figura 17. Disposições de baixa energia - conformação do tipo cuia do complexo BMXD-Cu₂ para acomodar o ligante glicilglicina, gerada por cálculos semiempíricos usando o programa CAChe. (Branco – Hidrogênio, Cinza – Carbono, Azul – Nitrogênio, Vermelho – 2 íons Cu(II) e Oxigênio).

6. CONCLUSÕES

O complexo macrocíclico binuclear BMXD-Cu₂ forma complexos ternários com o dipeptídeo glicilglicina. A coordenação da glicilglicina em sua cavidade ocorre através do grupo amino terminal a um íon cobre(II) e do oxigênio carbonílico a outro cobre(II). Esta última coordenação ativa o grupo carbonila para um possível ataque do grupo carboxilato do próprio dipeptídeo.

Em p[H] ácido (p[D] 6,1 e 6,9) observaram-se duas reações paralelas catalisadas pelo complexo macrocíclico binuclear: a deuteração do NCH₂ da glicilglicina e a hidrólise da ligação peptídica. Nesta faixa de p[H] predomina a espécie não-protonada do complexo ternário, BMXDCu₂GG³⁺, sendo a mais reativa tanto para a hidrólise como para a deuteração, exigindo a existência de um intermediário comum às duas reações. O produto da hidrólise da glicilglicina, a glicina, aparece como um singlete em δ 3,62 ppm.

A espécie com a ligação amida desprotonada, que predomina em p[D] 8,0 demonstrou não ser ativa, já que o íon cobre(II) estabiliza essa ligação contra um ataque nucleofílico.

Cálculos de minimização de energia mostram que o complexo macrocíclico binuclear BMXD-Cu₂ é flexível, podendo adotar uma conformação dependendo do substrato que será coordenado. Para a glicilglicina, a provável conformação adotada pelo complexo macrocíclico binuclear é do tipo cuia.

7. REFERÊNCIAS BIBILOGRÁFICAS

- 1. LEHN, Jean-Marie. In <u>Perspectives in Coordination Chemistry</u>, VHCA, Basel and VCH, Weinhem, 1992. 447p.
- WOLF, K. L.; FRAHM, F.; HARMS, H. <u>Z. Phys. Chem. Abt. B</u>, v.36, pg.17, 1937.
- **3.** PEDERSEN, C. J. Cyclic Polyethers and their Complexes with Metal Salts, <u>Journal of the American Chemical Society</u>, pg.2495-2496, 1967.
- 4. DIETRICH, B.; LEHN, J.M.; SAUVAGE, J. P. Diaza-polyoxa-macrocycles et macrobycicles, <u>Tetrahedron Letters</u>, v. 10, pg.2885-2888, 1969.
- 5. DIETRICH, B.; LEHN, J.M.; SAUVAGE, J. P.; BLANZAT, J. Criptates-X: Sintheses et proprietes physiques de systemes diaza-polyoxamacrobicycliques, <u>Tetrahedron</u>, v. 29, pg.1629-1645, 1973.
- 6. LEHN, J.M.; BALL, P., <u>Supramolecular Chemistry: Concepts and</u> <u>Perspectives</u>, VCH, Weinheim, 1995. 274p.
- **7.** MENIF, R.; MARTELL, A. E. A. Oxigen Insertion a new Tyrosinase Model Binuclear Cu^I Macrocyclic Complex, <u>Journal of the Chemical Society</u> <u>Communications</u>, pg. 1521-1523, 1989
- 8. MOTEKAITIS, R. J.; MARTELL, A. E.; LECOMTE, J. P.; LEHN, J. M. Stabilities of Mononuclear and Dinuclear Macrocyclic Complexs of 1,4,7,13,16,19-hexaaza-10,22-dioxaciclotetracosano (bisdien), <u>Inorganic Chemistry</u>, v.22, pg.609-614, 1983.
- 9. McGILVERY, R. W. <u>Biochemistry: A Functional Approuch</u>, 2. ed. 1979. 862p.
- 10. MORRISON, R. T.; BOYD, R. N., Organic Chemistry, 6. ed. New York, 1992. 1278p.
- **11.** HATHAWAY, B. J.; BILLING, D. E. The Eletronic Properties and Stereochemistry of Mono-Nuclear Complexes of the Copper(II) Ion, <u>Coordination Chemistry Reviews</u>, v.5, pg.143-207, 1970.
- **12.**GRANT, I. J.; HAY, R. W. Copper(II) Catalysis of the Hydrolysis of Glycylglycine, <u>Australian Journal Chemistry</u>, v.18, pg.1189-1195, 1965.
- **13.** SOLOMONS, G. <u>Química Orgânica</u>, 7. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S.A., 2002. 777p.
- 14. BENSON, R. J.; LOUIE, P. C.; BRADSHAW, A. R. Amino Acid Analisys of Peptides. In: The Peptides Academic Press Inc., v. 5, 1981, p. 217-260.
- **15.** QUIOCHO, F. A.; LIPSCOMB, W. N. Carboxipeptidase A: Protein and an Enzime, <u>Advanced Protein Chemistry.</u>, v.25, pg.1-78, 1971.
- **16.** CHRISTIANSON, D. W.; LIPSCOMB, W. N. Carboxipeptidadse A, <u>Accounts of Chemical Research</u>, v.22, pg.62-69, 1989.
- **17.** LOWTHER, W. T.; MATTHEWS, B. W. Metalloaminopeptidases: Common Functional Themes in Disparate Structural Surrodings, <u>Chemical Reviews</u>, v.102, pg.4581-4607, 2002.
- **18.** BENCINI, A.; BIANCHI, A.; PAOLETTI, P. Thermodinamic and Structural Aspects of Transition Metal Compounds. Polynuclear Complexes of Azamacrocycles, <u>Coordination Chemistry Reviews</u>, v.120, pg.51-85, 1992.

- **19.** LLOBET, A.; REIBENSPIES, J.; MARTELL, A. Oxydiacetic Acid and Copper(II) Complexes of a New Hexaaza Macrocyclic Dinucleating Ligand, <u>Inorganic Chemistry</u>, v.33, pg.5946-5951, 1994.
- 20. JUREK, P. E.; MARTELL, A. E.; MOTEKAITIS, R. J.; HANCOCK, R. D. Molecular Recognition of Pyrophosphate by 1,13-Dioxa-4,7,10,16,19,22hexaazacyclotetracosane (OBISDIEN) and by Its Mononuclear and Dinuclear Copper(II) Complexes. A Thermodynamic and Molecular Mechanics Study, <u>Inorganic Chemistry</u>, v.34, p.1823-1829, 1995.
- **21.** MENIF, R.; MARTELL, A. E.; SQUATTRITO, P. J.; CLEARFIELD, A. New Hexaaza Macrocyclic Binucleating Ligands. Oxigen Insertion with a Dicopper(I) Schiff Base Macrocyclic Complex, <u>Inorganic Chemistry</u>, v.29, pg.4723-4729, 1990.
- 22. HINE, J.; KING, R. S. M.; MIDDEN, W. R.; SINHA, A. Hydrolysis of Formamide at 80°C and pH 1-9, Journal of Organic Chemistry, v.46, pg.3186-3189, 1981.
- **23.** BURGESON, I. E.; KOSTIC, N. M. Selective Hydrolysis of Unactivated Peptide Bonds, Promoted by Platinum(II) Complexes Anchored to Amino Acid Side Chains, <u>Inorganic Chemistry</u>, v.30, pg.4299-4305, 1991.
- 24. KAHNE, D.; STILL, W. C. Hydrolysis of a Peptide Bond in Neutral Water, Journal of the American Chemical Society, v.110, pg.7529-7534, 1988.
- **25.** LAWRENCE, L; MOORE, W. J. Journal of the American Chemical Society, v.73, pg.3973-3977, 1951.
- **26.** FIFE, T. H.; PRYSTAS, T. J. Divalent Metal Ion Catalysis in Amide Hydrolysis. The Hydrolysis of *N*-Acylimidazoles, <u>Journal of the American Chemical Society</u>, v.108, pg.4631-4636, 1986.
- HEGG, E. L.; BURSTYN, J. N. Hydrolysis of Unactivated Peptide Bond by a Macrocyclic Copper(II) Complex: Cu([9]aneN₃)Cl₂ Hidrolyzes Both Dipeptides and Proteins, <u>Journal of the American Chemical Society</u>, v.117, pg.7015-7016, 1995.
- LUIZ, M. T. B.; SZPOGANICZ, B.; RIZZOTO, M.; MARTELL, A. E.; BASALLOTE, M. G. Molecular recognition of dipeptides. Catalysis of deuteration and hydrolysis of glycilglycine by dinuclear OBISDIEN Zn(II) complexes, <u>Inorganica Chimica Acta</u>, v.287, pg.134-141, 1999.
- 29. NATION, D. A.; MARTELL, A. E.; CARROLL, R. I.; CLEARFIELD, A. Host-Guest Interactions of Inorganic Phosphates with the Copper(II) Complexes of the Hexaaza Macrociclic Ligand 3, 6, 9, 17, 20, 23 – hexazatriciclo [23.3.1.1^{11,15}]triaconta - 1(29), 11(30), 12, 14, 25, 27 - hexaeno, <u>Inorganic Chemistry</u>, v.35, pg.7246-7252, 1996.
- **30.** MARTINS, G. T. S.; SZPOGANICZ, B.; TOMISIC, V.; HUMBERT, N.; ELHABIRI, M.; ALBRECHT-GARY, A. M.; SALA, L. Equilibrium and kinetic studies of ligand BMXD complexation with copper(II) and glycylglycine, <u>Inorganica Chimica Acta</u>, v.357, pg.2261-2268, 2004.
- **31.** SCHWARZENBACH, G.; FLASCHKA, H. <u>Complexometric Titrations</u>, London: Methuen & Co., 1969, p.257.
- **32.** GLASOE, P. K.; LONG, F. A. Use of Glass Electrodes to Measure Acidities in Deuterium Oxide, <u>Journal of Physical Chemistry</u>, v.64, pg.188-190, 1960.

- **33.** <http://www.cachesoftware.com/cache/index.shtml>. Acesso em: 20 nov. 2004.
- **34.** DEWAR, M. J. S. AM1- A new general purpose quantum mechanical molecular model, <u>Journal of the American Chemical Society</u>, v.107, pg.3902-3909, 1985.
- **35.** BAKER, J. An algorithm for the location of transition states, <u>Journal Comp.</u> <u>Chemistry</u>, v.7, pg.385, 1986.
- **36.** MOORE, J. W.; PEARSON, R. G. <u>Kinetics and Mechanism: A Study of</u> <u>Homogeneous Chemical Reactions</u>, 3. ed. New York: Wiley-Interscience, 1987. 455p.