
Continuous Management of Requirement Decisions
Using the ConDec Tools

Anja Kleebaum1 Jan Ole Johanssen2 Barbara Paech1 Bernd Bruegge2

1Institute for Computer Science, Heidelberg University, Heidelberg, Germany
{kleebaum, paech}@informatik.uni-heidelberg.de

2Department of Informatics, Technical University of Munich, Munich, Germany
{jan.johanssen, bruegge}@in.tum.de

Abstract

[Context and motivation] While eliciting, prioritizing, and imple-
menting requirements, requirements engineers and developers contin-
uously make decisions. They establish important decision knowledge
that needs to be documented and exploited, i. e., thoroughly managed,
so that it contributes to the evolution and future changes of a software
system. [Question/problem] The management of decision knowledge
is difficult for various reasons: 1) The documentation process is an ad-
ditional effort, i. e., it is intrusive in the development process. 2) The
documented knowledge can be of low quality in terms of completeness
and consistency. 3) It might be distributed across many documen-
tation locations, such as issue comments and commit messages, and
thus difficult to access and use. [Principal ideas/results] Continu-
ous software engineering (CSE) emerged as a development process that
involves frequent, incremental decision making, implementation, and
validation of requirements. During CSE, requirements engineers and
developers implicitly document decision knowledge during established
practices, such as committing code, working with issues in an issue
tracking system, or conducting meetings. That means that CSE of-
fers opportunities for the non-intrusive capturing of decision knowledge
in various documentation locations. [Contribution] We develop the
ConDec tools (https://se.ifi.uni-heidelberg.de/condec.html) that sup-
port requirements engineers and developers in documenting and ex-
ploiting decision knowledge directly within the tools they use, such as
issue tracking and wiki systems, related to various software artifacts,
such as requirements and code, and during change impact analysis.

1 Introduction
Continuous software engineering (CSE) is an agile software development process that supports the incremental
implementation of requirements and their timely validation through user feedback [9]. During CSE, requirements
engineers and developers make and realize decisions in a frequent and iterative manner. In particular, they estab-
lish important decision knowledge, i. e., knowledge about decisions and their rationale related to the requirements

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: M. Sabetzadeh, A. Vogelsang, S. Abualhaija, M. Borg, F. Dalpiaz, M. Daneva, N. Fernández, X. Franch, D. Fucci, V.
Gervasi, E. Groen, R. Guizzardi, A. Herrmann, J. Horkoff, L. Mich, A. Perini, A. Susi (eds.): Joint Proceedings of REFSQ-2020
Workshops, Doctoral Symposium, Live Studies Track, and Poster Track, Pisa, Italy, 24-03-2020, published at http://ceur-ws.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heidelberger Dokumentenserver

https://core.ac.uk/display/303801801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://se.ifi.uni-heidelberg.de/condec.html


1

2

3

4

Figure 1: Left: Decision knowledge captured in the description of a Jira user story. Right: The user story 1 ,
development tasks 2 , 3 , and decision knowledge visualized as a tree. The summary of the unsolved issue 4 is
highlighted in red font. The knowledge tree is interactive, e. g., via a context menu and drag&drop possibility.

of the software under development. It has been known for long that the management of decision knowledge is
important to evolve a software system and to cope with future changes [4]. For example, Roeller et al. [19] state
that “decisions are like material floating in a pond. When not touched for a while, they sink and disappear
from sight [...] [and] are the most difficult to change at a later stage.” The management of decision knowledge
comprises its documentation and exploitation. It is also referred to as rationale management [8].

Several reasons hinder requirements engineers and developers from systematically managing decision knowl-
edge. Problems are 1) the intrusiveness and overhead of the documentation in a separate tool, 2) a low decision
knowledge documentation quality in terms of incompleteness and obsolescence, i. e., inconsistency, and 3) the
distributed documentation locations, which make the documented decision knowledge hard to exploit [12]. CSE
and current software development tools provide opportunities to minimize the overhead of the documentation of
decision knowledge. Issue tracking and version control systems offer lightweight documentation locations, such
as issue comments, commit messages, and code comments used in established practices such as committing code.
However, challenges remain in the low quality of the decision knowledge documentation and the exploitation of
knowledge in various documentation locations. Our long term vision is an on-demand decision documentation as
part of the on-demand developer documentation [18] in that requirements engineers and developers continuously
document, share, and exploit decision knowledge. In our previous work [11, 14], we presented requirements for
the management of decision knowledge in CSE. In this paper, we describe the resulting ConDec tools for the
continuous management of decision knowledge that aim to tackle the three problems of rationale management.
To overcome the intrusiveness, ConDec directly integrates into the development tools that requirements engineers
and developers often use, for example, into the issue tracking system, version control system, wiki system, chat
system, and the integrated development environment. Currently, the ConDec tools consist of a Jira, an Eclipse,
a Confluence, a Slack, and a Bitbucket plugin. The ConDec tools are open source.1

The remainder of this paper is structured as follows: Section 2 presents the ConDec features and views,
whereas Section 3 summarizes important design decisions. Section 4 sketches a scenario on the tools’ usage. In
Section 5, we present evaluation plans. Section 6 discusses related work and Section 7 concludes the paper.

2 ConDec Features and Views
In the following, we present an overview of the features (italic highlighting) and views of the ConDec tools.

Knowledge consists of knowledge elements and relationships among them. Knowledge elements are software
artifacts such as requirements, development tasks, source code, and also decision knowledge elements. ConDec
enables to configure the model that defines which decision knowledge elements and relationships are used. The
default decision knowledge elements are: the issue, i. e. decision problem, to be solved , alternatives , pro-
and con-arguments , and the decision . ConDec supports bidirectional relationships that are commonly used
to model the interdependencies between solution options, i. e., between decisions and alternatives [15]: enables,
constrains, forbids, comprises, subsumes, overrides, and relates. In addition, pro-arguments support solution

1https://github.com/cures-hub

https://github.com/cures-hub


Figure 2: Chronology view with filters. The summary of the unsolved issue is highlighted in red font.

options, whereas con-arguments attack solution options. ConDec enables requirements engineers and developers
in documenting decision knowledge directly in the tools that they work in. In Jira, they document decision
knowledge within the description and comments of existing Jira issues such as user stories or tasks (Figure 1,
left). Also, they can create new Jira issues with distinct types of decision knowledge. Besides, ConDec supports
the documentation of decision knowledge in code comments, commit messages, Confluence wiki pages, and Slack
chat messages. Requirements engineers and developers manually mark text as a respective decision knowledge
element. They are supported by a text classifier that automatically identifies decision knowledge elements.

ConDec builds up and visualizes the knowledge graph consisting of knowledge elements. The knowledge graph
is accessible from single knowledge elements such as requirements and code classes. The right side in Figure 1
shows a view included in a Jira issue. ConDec provides other views, such as an overview of all decision knowledge
elements in a project, a view for the entire knowledge graph, a chronology view as suggested by Lee and Kruchten
[16] (Figure 2), and a matrix view as suggested by Boer et al. [2]. Requirements engineers and developers use
the integrated knowledge visualization to understand the requirements of a software system along with decisions
related to their elicitation or implementation. They make new decisions consistent with the requirements and
former decisions by exploiting the knowledge graph during changes, to estimate change impacts. ConDec offers
various filters. Filter criteria are the textual content of knowledge elements, the types of knowledge elements
and relationships, status, documentation location, distance in the knowledge graph, and time. For example,
requirements engineers could view decisions for a requirement only, without seeing the tasks and alternatives.

Requirements engineers are supported in creating meeting agendas filled with decision knowledge matching
the given filter criteria (Figure 3, left) and in documenting decision knowledge in meetings. The ConDec Slack
tool comprises a chat bot that supports both the requirements engineers and the developers in exporting decision
knowledge captured in chat channels to the respective requirement. Besides, the chat bot informs them about
new decision problems and decisions regarding requirements in an information channel. The communication is
supported through automated release notes including decision knowledge for the particular release. To exploit the
documentation, it must be of high quality. ConDec supports quality checking using dashboards and enforcement
of the complete documentation of decision knowledge. The completeness can be a quality gate in pull requests
so that they can only be accepted and the branch be merged if the quality check is passed (Figure 3, right).

3 ConDec Architecture
This section presents decisions concerning the ConDec architecture. The ConDec tools are plugins for existing
development tools and thus bound to the respective plugin framework and programming languages. Mainly, the
tools are written in Java, JavaScript, and other languages for web development. An issue was where to persist
and how to synchronize the knowledge from different locations. We decided to use Jira and git as the central
decision knowledge repositories. Decision knowledge from other locations such as chat messages is exported to
Jira and then maintained there—close to the requirements and code. To enable the explicit capturing of decision
knowledge in the description and comments of Jira issues and their linking with other knowledge elements,
the ConDec Jira plugin introduces two new database tables created with the active objects framework. The
knowledge graph is represented with the jGraphT library similarly to [5]. It is a singleton object and is only
updated by changes, e. g., when a new element is added. The alternative would be to recreate the entire knowledge



Figure 3: Left: Macro to create a meeting agenda as part of the ConDec Confluence plugin. Right: Merge
check for decision knowledge completeness as part of the ConDec Bitbucket plugin.

developer@refsq /home/dev0/myproject (CONDECDEMO-2.pw.storage)
$ git commit –a
Encrypt the password with the SHA1 algorithm

Figure 4: Left: Commit message containing a design decision. The developer works on a branch related to a
development task. Right: Subtree of the knowledge tree in Figure 1 with the design decision as a new leaf node.
The formerly open issue is now solved.

graph for every user interaction, which is not efficient. For graph visualization, ConDec uses the jstree, treant,
and vis.js JavaScript libraries and the gephi library in Eclipse. REST APIs are extensively used throughout all
the plugins for communication. The ConDec Eclipse plugin uses the Jira REST Java client library to access
Jira’s REST API. The ConDec Jira plugin offers a REST API to document and access decision knowledge. For
example, this REST API is used in the ConDec Slack plugin to export decision knowledge elements from Slack
to Jira. Git repositories, e. g., commits related to Jira issues, are accessed by using the jgit library.

4 ConDec Scenario
In the following, we describe a scenario to demonstrate how ConDec supports knowledge management for re-
quirements engineers and developers. In Figure 1, the requirements engineer creates the user story As a user,
I want to choose a password so that I can securely log in to the system and captures the issue whether passwords
should pass a security check as well as the decision to integrate a library for it. The requirements engineer
creates the following development tasks that split the requirement: Enable to persist passwords and Imple-
ment password strength checking. The developer assigned to the task captures the issue How to encrypt the
password? in a comment of the first task. ConDec visualizes the knowledge graph and automatically appends
this issue to the knowledge tree (Figure 1- 4 ). During a meeting, the requirements engineer and developers spot
unsolved decision problems from the meeting agenda (Figure 3, left). They orally decide to encrypt passwords
with the SHA1 algorithm but do not document it. The developer implements the first task on a feature branch.
The branch cannot be merged back to the master branch as long the issue is still unsolved (Figure 3, right). The
developer makes a commit on this branch with the decision Encrypt the password with the SHA1 algorithm
being part of the commit message (Figure 4, left). The text classifier automatically identifies the decision in
the commit message. Since the branch and the commits are linked to the task, ConDec automatically relates
the decision to the issue. The issue is marked as solved and the red highlighting is removed (Figure 4, right).
The developer is allowed to merge the branch back to the mainline as the decision knowledge documentation is
complete in the sense that both the issue and the decision are documented.

5 Evaluation
For the evaluation of the ConDec tools, we use the following design that targets agile project courses with
students. We introduce students to rationale management by giving an introductory lecture at the beginning of
a course [13]. Afterward, the students apply the ConDec tools over the duration of one semester. The evaluation



addresses two goals: The first goal is to show the acceptance of the ConDec tools. The students participating in
the evaluation need to answer questions in a written form and during interviews. We derive the questions in a
questionnaire by considering the variables of the technology acceptance model [7]: the perceived usefulness, the
perceived ease of use, and the intention to use. We ask the students to provide detailed feedback on the features
for the management of decision knowledge they applied. In particular, we want to evaluate the text classification
feature. The accuracy of the text classifier is not perfect and differs for every project and developer. We need
to evaluate to what extent the developers are triggered to explicitly capture decision knowledge even if the text
classifier has false positives. The second goal is to assess the quality of the established data sets in terms of
consistency and completeness of the documented knowledge.

Using the design described above, we already collected data from two teams of a multi-project course at the
Technical University of Munich. Currently, we are gathering additional data from another course at Heidelberg
University. The projects at university aim to simulate an industrial environment and do have industrial cus-
tomers. Nevertheless, it would be beneficial to evaluate the ConDec tools in real industry since practitioners
might have a better feeling of decision-making issues in industrial projects than students. Currently, we have no
plans for implementing the ConDec tools in an industrial environment outside the university. However, we are
positive that the ConDec tools could be installed in industrial projects as long as the underlying tools fit, e. g.,
Jira is used as the issue tracking system.

6 Related Work
This section discusses related tools for the management of decision knowledge. Hesse et al. [10] and Capilla et al.
[4] list and compare existing tools, such as SEURAT [3], the Decision Architect [17], and Archie [6]. Many of
these existing tools focus on the documentation of architectural design decisions as they are difficult to change
in the future and thus very important. ConDec enables to capture architectural design decisions but also other
kinds of decisions, e. g., related to the elicitation and prioritization of requirements.

The first goal of ConDec is to minimize the intrusiveness of the documentation and exploitation of decision
knowledge. For this, ConDec enables requirements engineers and developers to document decision knowledge
in various locations, such as chat messages, commit messages, and issue comments, which is different to the
tools mentioned above. Besides, ConDec enables the requirements engineers and developers to access the docu-
mentation from within the various tools they work with so that they do not have to change their development
context. To support easy documentation, ConDec offers a text classification feature. Bhat et al. [1] develop a
tool to manage architectural design decisions that also offers a text classification feature for decision knowledge.
Their classifier identifies different types of decisions, e. g., existence and ban decisions [15], whereas our classifier
identifies different types of decision knowledge, i. e., the issue (decision problem), alternatives, the decision, as
well as pro- and con-arguments. Our classifier does not distinguish different types of decisions but we consider
this as a future improvement. Bhat et al. [1] use the architecture knowledge management system AMELIE as
the central repository and also the viewpoint for software artifacts such as requirements, stakeholders, and ar-
chitectural elements, and decisions. ConDec uses Jira and git as the central repositories for decision knowledge,
requirements, and code. In ConDec, the decision knowledge views are part of many tools.

The second goal of ConDec is to maximize the quality of the documented decision knowledge in terms of
completeness and consistency. SEURAT also offers metrics to infer whether the rationale documentation is
complete and produces warnings if it detects incompleteness, e. g., if an alternative has more pro-arguments than
the decision [3]. ConDec uses similar metrics. Besides, it offers the merge check in pull requests and dashboards.

7 Conclusion and Future Work
ConDec supports requirements engineers and developers in managing decision knowledge in a lightweight and non-
intrusive way. It integrates knowledge from different documentation locations and provides a means to support
and assess the documentation quality. In our future work, we will evaluate on how the decision knowledge helps
new team members in getting insight into the system’s decision history, improves the ongoing development, and
supports future changes. We plan to improve the support for change impact analysis. Currently, ConDec supports
manual inspection of the relationships between decisions and other knowledge elements in the knowledge graph,
which can be used to investigate how a change in a decision may affect other decisions. Carrillo and Capilla [5]
describe a more advanced ripple effect algorithm and a technique to assess the stability of decisions. For this, they
also categorize dependency types between decisions into only four categories. We will adopt this simplification,
but also enable the ConDec users to configure more dependency types.



Acknowledgements: This work was supported by the DFG (German Research Foundation) under the
Priority Programme SPP1593: Design For Future – Managed Software Evolution (CURES project). We thank
the students who contribute to the ConDec tools as well as Doris Keidel-Mueller and the anonymous reviewers.

References
[1] M. Bhat, C. Tinnes, K. Shumaiev, U. Hohenstein, A. Biesdorf, and F. Matthes. “A-DEX: A Tool For

Automatic Curation of Design Decision Knowledge and Recommendation of Alternatives and Experts”. In:
International Conference on Software Architecture (ICSA 2019). Hamburg, Germany, 2019.

[2] R. C. de Boer, P. Lago, A. Telea, and H. V. Vliet. “Ontology-Driven Visualization of Architectural Design
Decisions”. In: Joint Working IEEE/IFIP Conference on Software Architecture & European Conference on
Software Architecture. Cambridge, UK: IEEE, 2009, pp. 51–60.

[3] J. E. Burge and D. C. Brown. “Software Engineering Using RATionale”. In: Journal of Systems and Software
81.3 (2008), pp. 395–413.

[4] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar. “10 years of software architecture knowledge
management: Practice and future”. In: Journal of Systems and Software 116 (2016), pp. 191–205.

[5] C. Carrillo and R. Capilla. “Ripple effect to evaluate the impact of changes in architectural design decisions”.
In: 12th European Conf. on Software Architecture (ECSA’18). Madrid, Spain: ACM Press, 2018, pp. 1–8.

[6] J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and M. Wieloch. “Decision-Centric Traceability of archi-
tectural concerns”. In: 7th International Workshop on Traceability in Emerging Forms of Software Engi-
neering (TEFSE). San Francisco, CA, USA: IEEE, 2013, pp. 5–11.

[7] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw. “User Acceptance of Computer Technology: A Comparison
of Two Theoretical Models”. In: Mangagement Science 35.8 (1989), pp. 982–1002.

[8] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech. Rationale Management in Software Engineer-
ing: Concepts and Techniques. Springer, 2006.

[9] B. Fitzgerald and K.-J. Stol. “Continuous software engineering: A roadmap and agenda”. In: Journal of
Systems and Software 123 (2017), pp. 176–189.

[10] T.-M. Hesse, A. Kuehlwein, and T. Roehm. “DecDoc: A Tool for Documenting Design Decisions Collabo-
ratively and Incrementally”. In: 1st International Workshop on Decision Making in Software ARCHitecture
(MARCH 2016). Venice, Italy: IEEE, 2016, pp. 30–37.

[11] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge. “Tool Support for Decision and Usage Knowledge
in Continuous Software Engineering”. In: 3rd Workshop on Continuous Softw. Engineering. 2018, pp. 74–77.

[12] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge. “How do Practitioners Manage Decision Knowl-
edge during Continuous Software Engineering?” In: 31st International Conference on Software Engineering
and Knowledge Engineering. SEKE’19. Lisbon, Portugal: KSI Research Inc., 2019, pp. 735–740.

[13] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge. “Teaching Rationale Management in Agile
Project Courses”. In: 16. Workshop SEUH. Bremerhaven, Germany, 2019, pp. 125–132.

[14] A. Kleebaum, M. Konersmann, M. Langhammer, B. Paech, M. Goedicke, and R. Reussner. “Continuous
Design Decision Support”. In: Managed SoftwareEvolution. Cham: Springer, 2019. Chap. 6, pp. 107–139.

[15] P. Kruchten. “Documentation of Software Architecture from a Knowledge Management Perspective – De-
sign Representation”. In: Software Architecture Knowledge Management. Springer, 2009, pp. 39–57.

[16] L. Lee and P. Kruchten. “A Tool to Visualize Architectural Design Decisions”. In: Quality of Software
Architecture Models and Architecture. Springer, 2008, pp. 43–54.

[17] C. Manteuffel, D. Tofan, P. Avgeriou, H. Koziolek, and T. Goldschmidt. “Decision architect - A decision
documentation tool for industry”. In: Journal of Systems and Software 112 (2015), pp. 181–198.

[18] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A. Gerosa, M. Godfrey, M.
Lanza, M. Linares-Vásquez, G. C. Murphy, L. Moreno, D. Shepherd, and E. Wong. “On-Demand Developer
Documentation”. In: International Conference on Software Maintenance and Evolution. 2017, p. 5.

[19] R. Roeller, P. Lago, and H. van Vliet. “Recovering architectural assumptions”. In: Journal of Systems and
Software 79.4 (2006), pp. 552–573.


	Introduction
	ConDec Features and Views
	ConDec Architecture
	ConDec Scenario
	Evaluation
	Related Work
	Conclusion and Future Work

