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a b s t r a c t

This paper presents and analyzes the behaviour of AISI 304 steel sheets subjected to perforation under a

wide range of impact velocities. The relevance of this steel resides in the potential transformation of

austenite into martensite during mechanical loading. This process leads to an increase in strength and

ductility of the material. It makes the AISI 304 attractive for many engineering applications, especially

for building structural elements responsible for absorbing energy under fast loading. However, this

transformation takes place only under determined loading conditions strongly dependent on initial

temperature and deformation rate. In order to study the material behaviour under impact loading,

perforation tests have been performed at room temperature using both, a drop weight tower and a

pneumatic gas gun within the range of impact velocities 2.5 m/srV0r85 m/s. The results are

compared with those reported in [18] and [21] for ES steel and TRIP 1000 steel. The comparison

highlights the good performance of the AISI 304 under high loading rates. Martensitic transformation

taking place in this steel during perforation is identified responsible for such behaviour.

1. Introduction

An exhaustive analysis of metals deformation behaviour is
necessary to meet the demand of industrial sectors for materials
that can bear hard mechanical loadings. For design purposes,
engineering fields like aeronautical, automotive and naval
industries require an accurate knowledge of the thermo-visco-
plastic behaviour of metals. Particularly, high loading rate events
have become increasingly important for the previously mentioned
industrial sectors [1–5]. One of the main challenges of modern
industry is the optimization of materials for energy absorption
and crashworthiness in the design of vehicles, vessels and
aircrafts [2,6–8].

For that task, new alloys with high strength, ductility and
toughness have been developed. Among them, the high strength
TRIP steels (Transformation Induced Plasticity) have become of
great relevance [9–11]. These steels are susceptible of transform-
ing austenite into martensite during straining. Martensitic trans-
formation is desirable during impact loading, since it increases
the strength and ductility of the material. The work hardening
increase due to martensite formation delays plastic localization
stabilizing material behaviour [12,13].

The controlling factor for the kinetics of martensitic transfor-
mation is the supply of free energy. The free-energy variation of
the system must be large enough to enable the reaction to mount
the activation barrier between austenite and martensite [14–16],
Fig. 1.

In Fig. 1, Ms is the temperature at which martensite forms
without an assistance of external driving force, because of the
difference between the free energy of both phases, DGg-au

Ms
. Within

the range MsrTrT0, a mechanical driving force U0 has to be
supplied to the system to induce the martensitic transformation.
Transformation occurs if the mechanical driving force makes the
system fulfill Eq. (1).

DGg-au
T þUu¼DGg-au

Ms
ð1Þ

If Ms
s rTrT0, the stress required for the transformation

exceeds the yield stress of the austenite and strain is required
for the transformation.

At higher temperatures, T0oToMd, the chemical driving force
opposes the transformation and the mechanical work applied to
the system must be greater than the difference in free energy
between both phases, UuZDGg-au

T0 rT rMd
.

With increasing temperature, the flow stress of the austenite

phase tends to decrease at any strain rate. For T4Md, the
mechanical work required for the transformation (dashed green

line) cannot be achieved by straining of the austenite (solid green

line). Thus, Md represents the temperature at which no martensitic
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transformation takes place, no matter the plastic deformation of
the parent phase [17].

Due to the relation existing between deformation and
temperature in the material behaviour, the strain rate also plays
a crucial role in the martensitic transformation. For high strain
rates, the martensitic transformation could not exist. Under
dynamic loading conditions, thermal softening of the material
due to adiabatic heating may prevent the phase transformation.

From previous considerations, it is clear that martensitic

transformation only takes place under determined loading
conditions highly dependent on the material considered. It is
feasible that determined TRIP steels initially designed for
absorbing energy, under crash or impact, do not show martensitic

transformation at high strain rates [18]. Susceptibility of each
particular material for transforming austenite to martensite under
dynamic loading has to be carefully examined.

Thus, the present paper studies the impact behaviour of the
TRIP steel AISI 304. This reference material, widely used in a

variety of industries, displays martensitic transformation at low
strain rates, as demonstrated by Tomita and Iwamoto [19,20].
However, it is not proven that in this material the transformation
may take place under impact conditions of deformation. In order
to analyze such a problem, perforation tests using AISI 304 sheets
have been performed at room temperature under wide ranges of
impact velocities 2.5 m/srV0r85 m/s. For that task, two differ-
ent experimental setups have been used, a drop weight tower and
a pneumatic gas gun. Tested samples have been examined using
an SEM, and a notable amount of martensite has been found in all
the specimens analyzed. The martensitic transformation may be
related to the excellent performance of this material under
dynamic solicitation. The results from the perforation tests of
the AISI 304 sheets are compared with those previously published
by the authors [18,21] for other commercial steels used in the
automotive industry, mild steel ES and TRIP 1000 steel. The
comparison shows the suitability of the AISI 304 for building
structures responsible for absorbing energy under impact loading.

2. AISI 304 steel

2.1. Microstructure and chemical composition

The AISI 304 steel is the most versatile and most widely used
stainless steel. It has an excellent forming and welding character-
istics. Extensively used in a variety of industries, its typical
applications include pipelines, heat exchangers railings, springs or
threaded fasteners.

The AISI 304 belongs to the type called high-alloy TRIP steels.
These austenitic steels (in its undeformed state, the microstructure of

the AISI 304 is constituted by 100% of austenite) contain a large
amount of alloying elements, such as Cr and Ni, improving pitting
and corrosion resistance, Table 1.

The AISI 304 shows strain induced transformation of austenite

into martensite within determined ranges of strain rate and
temperature [19,20,22,23]. In high-alloy TRIP steels, this trans-
formation is basically controlled by the ‘‘Magee effect’’ [24], as
described in [12,13,25].

Next, the thermo-viscoplastic behaviour of this material is
examined.

2.2. Thermo-viscoplastic behaviour

Due to the industrial relevance of this stainless steel, several
laboratories focussed their interest on the characterization of the
thermo-viscoplastic behaviour of the AISI 304 [23,19,20]. In this
section of the article, the experiments performed by the authors
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Fig. 2. True stress evolution as a function of the true strain for different strain rate levels at room temperature, steel AISI 304 [26].

Table 1
Chemical composition of the AISI 304 steel (% weight) [22].

C Mn Cr Ni Mo Cu Si Nb

0.06 1.54 18.47 8.3 0.30 0.37 0.48 0.027
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Fig. 1. Free energy of martensite and austenite as a function of temperature [15,16].



on AISI 304 steel sheets [26] are briefly discussed. Tensile
tests were conducted within wide ranges of strain rate,
10�4 s�1r _ep

r103 s�1, at room temperature. In addition, the
amount of martensite in the tested samples was determined by
means of X-ray diffraction.

The macroscopic behaviour of the material is illustrated in the
following graphs, Figs. 2 and 3. The material shows high strain
hardening and large ductility within the whole range of strain
rates considered, Fig. 2. Those characteristics are clearly noticed
when the behaviour of the AISI 304 is compared with that
corresponding to other commercial alloys like mild steel
ES (ferritic steel) or TRIP 1000 steel (multiphase steel) [27–32],
Fig. 3, frequently used in the automotive industry for building
crash box structures, side panels and bumpers as reported in [33].

Using the data depicted in Fig. 3, the specific energy (energy per

unit of volume) absorbed by the specimens during the tests is
calculated as the area under the stress–strain curve (full integral).
It is observed that, at failure, the AISI 304 steel absorbs
quite larger amount of energy than the other steels involved
in the comparison: EAISI304¼323.68�106 J/m34ETRIP1000¼172.90
�106 J/m34EES¼136.06�106 J/m3.

Moreover in [26] was reported that straining of austenite and
subsequent martensitic transformation is mainly responsible for

the elevated hardening rate (and therefore ductility) displayed by
the AISI 304. At low strain rates _ep

¼ 10�1 s�1, in the necking zone
of the tested samples (where maximum straining occurs), the
volume fraction of martensite has been determined, Va0E60%,
Fig. 4a. More remarkable is that even at higher loading rates
_ep
¼ 102 s�1, a large amount of martensite is still formed Va0E35%,

Fig. 4b.
A dependence of the material flow stress level on the strain

rate is observed, Fig. 5. However, the rate sensitivity of the
AISI 304 seems to be quite independent of the plastic strain (the

Volume Thermally Activated of the material is assumed independent

of plastic strain), Fig. 5. Moreover it has to be noted that beyond
a certain level of loading rate, the flow stress of the material
sharply increases, Fig. 5. Such observation is in agreement
with the experimental results reported by Follansbee [35].
According to several authors [36–38], this behaviour is tied to
viscous drag deformation mechanisms taking place at high strain
rates [39].

Based on this knowledge of the material deformation beha-
viour, an analysis on the response of AISI 304 steel sheets
subjected to perforation under wide ranges of impact velocities is
carried out. In the following section, the experimental setups
applied for conducting the perforation tests are introduced.
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Fig. 6. Schematic representation of the drop weight tower.

Fig. 7. Conical striker used in the drop weight tower tests.
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Fig. 8. (a) Scheme of the facility used for measurement of the impact velocity and (b) description of the experimental setup used in the high velocity impact tests.



3. Experimental setups

3.1. The drop weight tower

In order to carry out the low velocity perforation tests, a drop
weight tower has been used as illustrated in the schematic
drawing of Fig. 6. This experimental arrangement was applied by
Rodrı́guez-Martı́nez et al. [18] for low velocity perforation of

TRIP 1000 steel sheets. In this section of the manuscript, the main
features of the experimental setup are provided; further details
can be found in the work cited above.

This experimental configuration allows a perpendicular impact
on the steel sheets, within the range of impact velocities
2.5 m/srV0r4.5 m/s. The impact velocity V0 is fixed by the user
by choosing the height from which the striker is dropped h0, Eq. (2).

V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2g h0

p
ð2Þ

where g is the gravity.
The tested square specimens were At¼100�100 mm2 in size

and h¼1 mm thick. They were clamped by screws all around the
active surface, Af¼80�80 mm2. The screws were symmetrically
fixed in order to avoid any disturbances during the test. The
device used to clamp the steel sheets had a transparent side made
of PMMA. Such an arrangement allowed to film the perforation
process by means of a high speed camera.

The steel striker used has a conical shape, as shown in Fig. 7. Its
larger diameter is Fp¼20 mm and its mass is Mimp¼0.105 kg.
After machining the striker has been oil quenched to avoid its
damage or erosion during perforation, Fig. 7.

Localization of deformation 
and onset of cracks 

Cracks propagation

Cracks propagation and 
petals development

Cracks propagation and 
petals development

Large bending 

Fig. 10. Different stages of the perforation process for AISI 304 steel, V0¼4.4 m/s at room temperature: (a) localization of deformation and onset of cracks; (b) cracks

progression and formation of petals; (c) development of petalling and (d) complete passage of the impactor and petalling failure mode. Acquisition frequency: 15,000 fps.

Picture resolution: 640�480 pixels.

Fig. 9. Projectile used in the pneumatic gas gun tests.



The striker was attached to the instrumented bar of the drop
weight tower, whose mass is Mbar¼0.761 kg. Additional mass was
added to the setup in order to increase the effective mass to
Mtotal¼18.787 kg (the range of the impact energy covers 59
JrEir190 J). A load cell placed on the striker enabled to record
the impact force versus time signal. The force cell records 4000
measurements, which are equally spaced within the acquisition
time. For all the tests conducted, the acquisition time was set to
16 ms leading to an acquisition frequency of 250 kHz. This high
acquisition frequency allows for an accurate definition of the force
evolution as a function of time. The time dependent velocity V(t)
and displacement of the striker during perforation ds(t) can be
calculated by an integration of the impact force versus time curve
F(t), Eqs. (3)–(5).

FðtÞ ¼Mtotal ðaðtÞþgÞ; aðtÞ ¼
FðtÞ�Mtotal g

Mtotal
ð3Þ

VðtÞ ¼ V0�

Z t

0

FðtÞ�Mtotal g

Mtotal
dt ð4Þ
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Target pierced 

Onset of crack Onset of crack 

Detail: Target pierced 
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Fig. 11. Target pierced for V0¼3.25 m/s at room temperature, AISI 304 steel.
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Fig. 12. Petalling failure mode for V0¼3.5 m/s at room temperature, AISI 304 steel.
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Fig. 13. Petalling failure mode for V0¼4.4 m/s at room temperature, AISI 304 steel.
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dsðtÞ ¼

Z t

0
V0�

Z t

0

FðtÞ�Mtotal g

Mtotal
dt

� �
dt ð5Þ

where a(t) is the deceleration of the striker during perforation.

3.2. The pneumatic gun

In order to conduct the high velocity perforation tests, a
pneumatic gas gun has been used as illustrated in Fig. 8. This

experimental arrangement was applied by Rodrı́guez-Martı́nez
et al. [21] for perforation of ES steel sheets. In this section of the
manuscript, the main features of the experimental setup are
given; details can be found in the work cited above.

This experimental configuration allows a perpendicular impact
on the steel sheets within the range of impact velocities
25 m/srV0r100 m/s. To measure the impact velocity, 3 sources
of light Bi coupled to 3 laser diodes Ci and 3 time counters are used.
When the projectile passes through a source of light, Fig. 8a, a time
counter is trigged. This procedure is repeated 3 times defining two
time intervals Dt12 and Dt23, Fig. 8a. Knowing the distance between
the 3 sources of light is possible to measure two instantaneous
projectile-velocities Vij

0 . Their average V0 was used to define the
impact velocity values reported throughout this article.

The samples are At¼140�140 mm2 in size and h¼1 mm
thick. The active part of the specimen, after it is screwed and
clamped on the support, is Af¼100�100 mm2. The mass of the
hemispherical projectile used is Mp¼0.063 kg and its dimensions
are shown in Fig. 9.

The projectiles were made of Maragin steel, which exhibits
very high yield stress. In addition, the projectiles underwent a
heat treatment in order to increase their hardness. It permitted to
avoid their damage or erosion during perforation.

Next the perforation tests performed using both experimental
techniques are analyzed.

4. Impact behaviour of AISI 304 steel sheets

First of all, the low velocity perforation experiments conducted
using the drop weight tower setup are examined.
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4.1. The low velocity impact tests

In this section of the paper, the results obtained for the
AISI 304 are compared with those reported by Rodrı́guez-Martı́nez
et al. [18] for the perforation of TRIP 1000 steel sheets (both AISI 304
and TRIP 1000 steels samples have the same size and thickness).
Differences in the response under loading of both materials are
discussed.

The first step is to examine the perforation mechanisms via the
video images recorded during the tests, Fig. 10.

The perforation process can be split up into several stages. At
the beginning of the loading process, the deformation is localized
in the small area corresponding to the interface striker/plate, as
shown in Fig. 10a. During the process of localization, the target is
strongly bent until the onset of cracks occurs, Fig. 10b. Then, the
cracks start to propagate radially enhanced by the increasing
circumferential strain caused by the passage of the projectile,
Fig. 10c. Crack propagation is precursor to petals formation,
Fig. 10c. Finally, the cracks reach the rear side of the plate and the
petalling failure mode is completed, Fig. 10d. Thus, plastic
instabilities formation and progression is revealed as the
mechanism behind target collapse in the impact tests. These

observations are in agreement with the experimental evidences
reported in [40–42].

For the whole range of impact velocities tested, the perforation
mechanisms remain invariable. Petalling is the recurring failure
mode for all the tests performed, using the drop weight tower
setup, Figs. 11–13. It has been noticed that neither the rolling
direction nor boundary conditions influence the initiation or the
propagation of cracks.

Up to this point, no differences with the results observed by
Rodrı́guez-Martı́nez et al. [18] for perforation of TRIP 1000 steel
sheets are reported.

However in Fig. 14, different ballistic limit values depending
on the material considered are illustrated. In the case of the
AISI 304, the ballistic limit takes the value Vbl-AISI 304¼2.9 m/s,
in the case of the TRIP 1000 the ballistic limit takes the value
Vbl-TRIP 1000¼2.6 m/s, Fig. 14.

In fact, for the whole range of impact velocities tested, the AISI
304 absorbs quite larger amount of energy than the TRIP 1000,
Fig. 15.

The causes behind the different impact behaviours of both
materials can be derived from the recorded curves force/striker
displacement, Fig. 16.
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For all the impact velocities considered, in the case of the
AISI 304 tests, the slope of curve force/striker displacement is
lower than in the case of the TRIP 1000 tests, qF/qds9AISI304o
qF/qds9TRIP1000. However, the former material shows a larger
striker displacement at failure, Fig. 16. The maximum force level
during the tests remains approximately constant for both metals
Fmax

AISI304 � Fmax
TRIP1000 � 11kN
���� , Fig. 16.

These observations may be explained as follows:

� In the case of the AISI 304 steel experiments, the lower slope of
curve force/striker displacement is caused by the lower flow
stress level of this material in comparison with the TRIP 1000

steel sy
TRIP 1000

ep
¼ 0:02, _e

p
,T

sy
AISI 304

ep
¼ 0:02, _e

p
,T
� 2

���.��� , Fig. 3.

� The larger striker displacement at failure recorded in the case
of the AISI 304 steel experiments is caused by its greater

ductility in comparison with the TRIP 1000 steel,
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���.��� , Fig. 3.

Previous explanations match the observations derived from
the analysis of the permanent deflection of the impacted samples,
Fig. 17. Plastic work, under the form of bending, acts as the main
mechanism for energy absorption during perforation. High work
hardening exhibited by the AISI 304 spreads plasticity along the
samples during perforation (high velocity of the plastic waves)
increasing permanent bending of the target (permanent bending of

the AISI 304 sheets is much greater than that of the TRIP 1000
sheets). It homogenizes material behaviour, delaying strain
localization and leading to a global response to the impact by
the whole plate, Fig. 17.

The next step is to determine, if martensitic transformation
takes place in the AISI 304 sheets during perforation (a study by

Rodrı́guez-Martı́nez et al. [18] reported the absence of martensite

formation in the tested TRIP 1000 plates). As previously mentioned,
martensitic transformation increases the hardening rate of steels
delaying plastic instabilities formation. Therefore, the transforma-
tion process may be behind the good performance of the AISI 304
sheets under perforation.

For that task, the AISI 304 impacted plates have been cut;
petals and cracking interfaces have been examined, using an SEM,
Fig. 18. For the whole range of impact velocities covered,
martensite has been found in the tested specimens, Fig. 19. A
relevant amount of grains partially transformed for different
variants has been detected. In the zone directly affected by the
impact, the complicated shape of the tested samples made non-
viable the application of X-ray diffraction technique for

Detail: 
Grain partially transformed

Martensite
(Different variants)

Martensite
(Different variants)

Detail: 
Grain partially transformed

Grain boundary

Fig. 19. SEM micrograph of the zone directly affected by the impact in AISI 304 tested plates, V0¼4.4 m/s.

Fig. 18. Illustration of the zones of the impacted plates examined by an SEM.



determining the volume fraction of martensite. Unfortunately, the
analysis conducted is merely qualitative.

The previous analysis leads to the conclusion that the AISI 304
steel can be an effective material for building protection
structures in charge of absorbing energy under dynamic solicita-
tions. Large hardening rate and elevated ductility, which are still
remarkable under high loading rates, are the main responsible for
such a behaviour.

Formation of martensite under dynamic solicitation seems to
play a relevant role in the afore-mentioned considerations.

In order not to restrict previous findings to a particular
boundary value problem, AISI 304 sheets are impacted, using a
different experimental arrangement.

4.2. The high velocity impact tests

The results obtained for the AISI 304 sheets are compared with
those reported by Rodrı́guez-Martı́nez et al. [21] for the perfora-
tion of ES steel sheets (both AISI 304 and ES steels samples are of

the same size and thickness). Differences in the response of both
materials under perforation are discussed.

Experiments within the range of impact velocities
25 m/srV0r85 m/s are carried out using the pneumatic gas
gun setup. The ballistic limit found from the tests is Vbl-AISI 304

E75 m/s. It is necessary to highlight that in comparison
with ES steel, Vbl-ESE45 m/s [21], AISI 304 steel shows a
much greater ballistic limit value. Larger ductility and flow
stress of the AISI 304 increase the ballistic limit value,
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It seems to be confirmed that the AISI 304 steel displays
excellent mechanical properties for the absorption of energy
under dynamic solicitations.
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Projectile diameter: 10 mm 
Projectile mass: 0.063 kg 
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Fig. 20. Final stage of the impact process for different initial velocities at room temperature, AISI 304 steel: (a) V0¼72.15 m/s, (b) V0¼74.62 m/s and (c) V0¼78.15 m/s.
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In Fig. 20. shows the final stage of the impact process for
different initial impact velocities. Large bending of the steel
sheets during perforation leads to considerable radial sliding
projectile/plate. Necking formation and subsequent propagation
of cracks is the recurrent failure mode of the plates. Necking
takes place close to the dome of the contact projectile/plate and
petals are formed as the final stage of the perforation process,
Fig. 20.

Next, permanent deflection of impacted AISI 304 samples is
compared with that of impacted ES steel specimens, Fig. 21. For a
given initial velocity, V0E48 m/s, the AISI 304 and the ES steel

sheets show quite similar permanent deflections. In the case of ES
steel such a loading condition corresponds to maximum bending
(Eballistic limit). However, in the case of AISI 304 bending is
even more increased until the ballistic limit velocity is reached,
Fig. 22.

As mentioned previously for the drop weight tower tests,
plastic work under the form of bending, acts as the main
mechanism responsible for energy absorption during perforation.

In order to understand the good performance of the AISI 304
sheets in the gas gun tests, the procedure followed for analyzing
the martensite transformation in the drop weight tower tests has

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Material: AISI 304
Vo = 29.11 m/s
Vo = 78.15 m/s

Passage of the projectile

10 %
Impacted side
Shortest length

Clampled partClampled part

To = 293 K

No perforation

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Vo = 78.00 m/s
Vo = 67.65 m/s

Material: AISI 304

Passage of the projectile

10 %

Clampled partClampled part

Impacted side
Shortest length

To = 293 K

-60

D
ef

le
ct

io
n 

of
 th

e 
pl

at
e,

 δ
p 

(m
m

) 

D
ef

le
ct

io
n 

of
 th

e 
pl

at
e,

 δ
p 

(m
m

) 

Target length, Lt (mm) Target length, Lt (mm)
-50 -40 -30 -20 -10 0 10 20 30 40 50 60 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

Fig. 22. Post-mortem deflection of the target for different initial impact velocities at room temperature, AISI 304 steel.
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Fig. 23. SEM micrographies of the zone directly affected by the impact in a tested plate for V0¼78.15 m/s at room temperature, AISI 304 steel.



been repeated. Again, martensite has been found for the whole
range of impact velocities considered, particularly in the petals
and around the cracks (strong material deformation makes the

observation of the microstructure difficult; however, traces of

martensite are visible in all cases), Fig. 23.
Thus, from previous analysis it has been proven that in the AISI

304 steel martensite is formed by material straining even under
high velocity impact events. It makes this material suitable for
bearing dynamic solicitations.

In forthcoming investigations, it is necessary to determine
accurately which variants are activated in the martensitic

transformation, Figs. 19 and 23, and the causes behind such
preferential activation (crystallographic orientation of grains,

loading path). In addition, it would be interesting to identify
precisely the strain rate and temperature levels under which
austenite transforms into martensite during perforation of AISI 304
sheets. For that task, advanced measuring techniques like infrared
recording and picture image correlation may be applied.

Moreover, other engineering metals and alloys like two-phase
and multiphase steels susceptible of martensitic transformation
under high loading rates should be examined.

5. Conclusion and remarks

In this work, the behaviour of AISI 304 steel sheets subjected
to perforation under wide ranges of impact velocities
2.5 m/srV0r85 m/s has been examined. For that task, two
different experimental arrangements have been used, a drop
weight tower and a pneumatic gas gun. The results from these
perforation tests are compared with those previously published
by the authors in [18,21] for mild steel ES and TRIP 1000 steel.
The comparison reveals the good performance of the AISI 304
under high loading rates. The high work hardening and ductility
exhibited by this steel under dynamic solicitations are identified
as responsible for such behaviour. It has been proven that those
characteristics are enhanced by the martensitic transformation
taking place in this material during perforation. The transformation
delays flow localization improving the capability of the AISI 304 for
absorbing energy under impact events.
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