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Strong scaling of numerical solver for supersonic jet �ow 
con�gurations

Carlos Junqueira-Junior1  · João Luiz F. Azevedo2 · Jairo Panetta3 · William R. Wolf4 · Sami Yamouni5

Abstract

Acoustics loads are rocket design constraints which push researches and engineers to invest efforts in the aeroacoustics 
phenomena which is present on launch vehicles. Therefore, an in-house computational fluid dynamics tool is developed in 
order to reproduce high-fidelity results of supersonic jet flows for aeroacoustic analogy applications. The solver is written 
using the large eddy simulation formulation that is discretized using a finite-difference approach and an explicit time integra-
tion. Numerical simulations of supersonic jet flows are very expensive and demand efficient high-performance computing. 
Therefore, non-blocking message passage interface protocols and parallel input/output features are implemented into the 
code in order to perform simulations which demand up to one billion degrees of freedom. The present work evaluates the 
parallel efficiency of the solver when running on a supercomputer with a maximum theoretical peak of 127.4 TFLOPS. 
Speedup curves are generated using nine different workloads. Moreover, the validation results of a realistic flow condition 
are also presented in the current work.

Keywords Computational fluid dynamics · Large eddy simulation · Strong scalability · Supersonic jet flow

1 Introduction

One of the main design issues related to launch vehicles 
lies on noise emission originated by the complex interac-
tion between the high-temperature/high-velocity exhaustion 
gases and the atmospheric air. These emissions, which have 
high noise levels, can damage the launching structure or 
even be reflected upon the vehicle structure itself and the 
equipment onboard at the top of the vehicles. The resulting 

pressure fluctuations can damage the solid structure of 
different parts of the launcher or of the onboard scientific 
equipment by vibrational acoustic stress. Therefore, it is 
strongly recommended to consider the load resulted from 
acoustic sources over large launching vehicles during take-
off and also during the transonic flight.

The authors are interested in studying unsteady property 
fields of compressible jet flow configurations in order to 
eventually understand the acoustic phenomena, which are 
important design constraints for rocket applications. Experi-
mental techniques used to evaluate such flow configuration 
are complex and require considerably expensive apparatus. 
Therefore, the authors have developed a numerical tool, 
JAZzY [17], based on the large eddy simulation (LES) for-
mulation [11] in order to perform time-dependent simula-
tions of compressible jet flows. JAZzY is a compressible 
LES parallel code for the calculation of supersonic jet flow 
configurations. The large eddy simulation approach has been 
successfully used by the scientific community and can pro-
vide high-fidelity numerical data for aeroacoustic applica-
tions [3, 18, 21, 36, 37]. The numerical tool is written in the 
Fortran 90 standards coupled with message passing interface 
(MPI) features [8]. The HDF5 [9, 10] and CGNS libraries 
[19, 26, 27, 30] are included into the numerical solver in 
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order to implement a hierarchical data format (HDF) and to 
perform input/output operations efficiently.

Large eddy simulations require a significant amount of 
computational resources to provide high-fidelity results. The 
scientific community has been using up to hundreds of mil-
lion degrees of freedom on simulations of turbulent flow 
configurations [6, 12, 18, 32]. Researchers and engineers 
need to be certain that calculations are run with maximum 
parallel efficiency when allocating computational resources 
because the access to supercomputers is often restricted 
and limited. Therefore, it is of major importance to perform 
scalability studies, regarding an optimal choice of compu-
tational load and resources, before running simulations on 
supercomputers.

The present work addresses the computational perfor-
mance evaluation of the code when using an Hewlett Packard 
Enterprise (HPE) cluster from a computational center [5]. 
The high-performance computing (HPC) solution provides 
a maximum theoretical peak performance of 127.4 TFLOPS 
using CPUs, NVIDIA GPUs and Xeon Phi accelerators. 
Simulations of a pre-defined perfectly expanded jet flow 
condition are performed using different loads and resources 
in order to study the strong scalability of the solver. More 
specifically, nine mesh configurations are investigated run-
ning on up to 400 processors in parallel. The number of 
degrees of freedom starts with 5.8 million points and scales 
to 1.0 billion points. The speedup and computational effi-
ciency curves are measured for each grid configuration.

The supercomputer is described after the introduction 
section. Then, numerical formulations and the implemen-
tation aspects of the tool are discussed. In the sequence, 
the strong scalability results are presented to the reader 
followed by the discussion on the validation of the solver. 
In the end, the one can find the concluding remarks and 
acknowledgements.

2  Computational resources

The current work is included in the CEPID-CeMEAI [5] 
project from the Applied Mathematics department of 
the University of São Paulo. This project is addressed to 
four main research subjects: optimization and operational 
research; computational intelligence and software engineer-
ing; computational fluid mechanics; and risk evaluation. The 
CEPID-CeMEAI provides access to a high-performance 
computer server located at the University of São Paulo, 
named Euler. The system presents a maximum theoretical 
peak performance of 127.4 TFLOPS using a hybrid par-
allel processing architecture which has 144 CPU nodes, 4 
fat nodes, 6 GPU nodes and 1 Xeon Phi node with a total 
of 3428 computational cores. The detailed description of 
each node configuration is presented in Table 1. Two storage 

systems are available with 175Tb each one, the network file 
system (NFS) and the Lustre® file system [23]. The network 
communication is performed using InfiniBand and Giga-
bit Ethernet. Red Hat Enterprise Linux [28] is the operat-
ing system of the cluster, and Altair PBS Pro [1] is the job 
scheduler available.

3  Large eddy simulation formulation

The numerical simulations of supersonic jet flow configura-
tions are performed based on the large eddy simulation for-
mulation [11]. This set of equations is based on the principle 
of scale separation over the governing equations used to rep-
resent the fluid dynamics, the Navier–Stokes formulation. A 
filtering procedure can be used to describe the scale separa-
tion in a mathematical formalism. The idea is to model the 
small turbulent structures and to calculate the bigger ones. 
Subgrid scale (SGS) closures are added to the filtered equa-
tions in order to model the effects of small-scale turbulent 
structures. The Navier–Stokes equations are written in the 
current work using the filtering procedure of Vreman [35] as

in which t and x
i
 are independent variables representing time 

and spatial coordinates of a Cartesian coordinate system, 
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Table 1  Computer cluster configuration

Nodes Processor Memory Nb. cores

104 2 × CPU Intel® Xeon® E5-2680v2 128GB DDR3 20

40 2 × CPU Intel® Xeon® E5-2680v4 128GB DDR3 28

4 2 × CPU Intel® Xeon® E5-2667v4 512GB DDR3 16

6 2 × CPU Intel® Xeon® E5-2650v4 128GB DDR3 24

+ 1 × GPU Nvidia® Tesla® P-100 16GB DDR3 3584

1 2 × CPU Intel® Xeon® E5-2680v2 128GB DDR3 20

+ 1 × Intel® Xeon Phi™ C2108-RP2 8GB DDR3 60



� , respectively. The components of the velocity vector, � , 
are written as ui and i = 1, 2, 3 . Density, pressure and total 
energy per unit volume are written as � , p and e, respec-
tively. The (⋅) and (⋅̃) operators are used in order to represent 
filtered and Favre-averaged properties, respectively.

It is important to remark that the System I filtering proce-
dure [35] neglects the double correlation term, ũiuj , which is 
present into the total energy per unit volume equation in order 
to write

The heat flux, qj , is given by

where T and � stand for static temperature and the ther-
mal conductivity coefficient, respectively. The last can be 
expressed as

in which Cp is the specific heat at constant pressure, � is the 
dynamic viscosity coefficient and Pr is the Prandtl number, 
which is equal to 0.72 for air. The SGS thermal conductivity 
coefficient, �sgs , is written as

where Prsgs is the SGS Prandtl number, which is equal to 0.9 
for static SGS closures and �sgs is the eddy viscosity coef-
ficient that is calculated by the SGS model. In the present 
work, the dynamic viscosity coefficient is calculated using 
the Sutherland Law which is given by

One can use an equation of state to correlate density, static 
pressure and static temperature,

in which R is the gas constant, written as

and Cv is the specific heat at constant volume. The shear-
stress tensor, �ij , is written as,
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where the components of the rate-of-strain tensor, S̃ij , are 
given by

The SGS stress tensor components can be written using the 
eddy viscosity coefficient [31],

In the present article, the eddy viscosity coefficient, �sgs , 
and the components of the isotropic part of the SGS stress 
tensor, �

kk
 , are not considered for the calculations. Previous 

validation results performed by the authors [17, 18] indicate 
that the characteristics of numerical discretization of JAZzY 
can overcome the effects of subgrid scale models. The same 
conclusion can be found in the work of Li and Wang [20]. 
Therefore, one can write the large eddy simulation set of 
equations can be written in a more compact form as

where � stands for the conservative properties vector, given 
by

and ��� , which stands for the right-hand side of equation, 
represents the contribution of inviscid and viscous fluxes 
terms from Eq. 1. The components of the right-hand-side 
vector are written as

in which E
i
 and F

i
 are the components of inviscid and vis-

cous flux vectors, respectively, given by

Spatial derivatives are calculated in a structured finite-dif-
ference context and the formulation is re-written for the gen-
eral curvilinear coordinate system [17]. The numerical flux 
is computed through a central difference scheme with the 
explicit addition of anisotropic scalar artificial dissipation 
model of Turkel and Vatsa [34]. The time-marching method 
is an explicit 5-stage Runge–Kutta scheme developed by 
Jameson et al. [16].

Boundary conditions for the LES formulation are 
imposed in order to represent a supersonic jet flow into a 3-D 
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computational domain with cylindrical shape. Figure 1 pre-
sents a lateral view and a frontal view of the computational 
domain used in the present work and the positioning of the 
entrance, exit, centerline, far field, and periodic boundary 
conditions.

A flat-hat velocity profile is implemented at the entrance 
boundary condition through the use of the 1-D character-
istic relations for the 3-D Euler equations in order to cre-
ate a jet-like flow configuration. The set of properties, then, 
determined is computed from within and from outside the 
computational domain. Riemann invariants [22] are used in 
order to calculate properties at the far-field surfaces where 
the normal-to-face components of the velocity are com-
puted by a zero-order extrapolation from inside the compu-
tational domain. The angle of flow at the far-field boundary 
is assumed fixed. The remaining properties are obtained as a 
function of the jet Mach number, which is a known variable.

The flow configuration is assumed to be subsonic at the 
exit plane of the domain. Therefore, the pressure is obtained 
from the outside, i.e., it is assumed given the internal energy 
and components of the velocity are calculated by a zero-
order extrapolation from the interior of the domain. Then, 
density, � , and total energy per unit volume, e, are computed 
at the exit boundary using the extrapolated properties and 
the imposed pressure at the output plane. The first and last 
points in the azimuthal direction are superposed in order to 
close the 3-D computation domain and create a periodicity 
boundary condition. An adequate treatment of the centerline 
boundary is necessary since it is a singularity of the coordi-
nate transformation. The conserved properties are extrapo-
lated from the adjacent longitudinal plane and averaged in 
the azimuthal direction in order to define the updated prop-
erties at the centerline of the jet. Furthermore, the fourth-
difference terms of the artificial dissipation scheme of Turkel 
and Vatsa [34] are carefully treated in order to avoid five-
point difference stencils at the centerline singularity.

The reader can find further details about the spatial dis-
cretization, time-marching scheme and implementation of 
boundary conditions in the work of Junqueira-Junior [17] 
and Junqueira-Junior et al. [18] which present the validation 
of the large eddy simulation solver.

4  Parallel implementation aspects

The solver is developed to calculate the LES set of equa-
tions, Eq. 12, for supersonic jet flow configurations using 
the Fortran 90 standard. The spatial discretization of 
the formulation is based on a centered finite-difference 
approach with the explicit addition of anisotropic scalar 
artificial dissipation model of Turkel and Vatsa [34], and 
the time integration is performed using an explicit second-
order 5-stage Runge–Kutta scheme [16].

Parallelism is achieved using the single program mul-
tiple data, SPMD, approach [7] and the exchange of mes-
sages provided by MPI protocols [8]. The algorithm of 
the LES solver is structured in two main steps. Firstly, a 
preprocessing routine reads a mesh file and performs a bal-
anced partitioning of the domain procedure. Then, in the 
processing routine, each MPI rank reads its correspondent 
grid file and starts the calculations.

The preprocessing routine is run separately from the 
processing step. It reads an input file with the partitioning 
configuration and a 2-D grid file. Next, the preprocessing 
code calculates the number of points in the axial and azi-
muthal directions in order to perform the partitioning and 
the extrusion in the third direction for each sub-domain. The 
segmentation of the grid points is illustrated in Fig. 2a. A 
matrix index notation is used in order to represent positions 
of each partition where NPX and NPZ denote the number of 
partitions in the axial and azimuthal directions, respectively.

In the case of a non-exact domain division, the remain-
ing points are spread among the partitions in order to have 
a well-balanced task distribution. Algorithm 1 presents the 
details of this division, and Fig. 2b illustrates the balanc-
ing procedure in one direction, where LocNbPt, TotNbPt, 
NbPart and PartIndex stand for local number of points 
in one direction, total number of points in one direction, 
number of partitions in one direction, and the index of the 
partitions in one direction. The same algorithm is used 
to perform the partitioning procedure in both axial and 
azimuthal directions. This preprocessing part of code is 
executed sequentially.

Algorithm 1: Optimized partitioning approach.

1 begin

2 int LocNbPt // Loc. nb. of pt. in one dir.;

3 int TotNbPt // Tot. nb. of pt. in one dir.;

4 int NbPart // Nb. of part. in one dir.;

5 int PartIndex // Part. index in one dir.;

6 LocNbPt = (TotNbPt/NbPart) ;

7 if [PartIndex < mod(TotNbPt,NbPart)] then

8 LocNbPt = LocNbPt + 1 ;

The mesh files, for each domain, are written after the opti-
mized partitioning procedure using the CFD General Nota-
tion System (CGNS) standard [19, 26, 27, 30]. This standard 
is based on the HDF5 [9, 10] libraries which provide tools 
for hierarchical data format (HDF) and can perform input/
output operations efficiently. The authors have chosen to 
write one CGNS grid file for each partition in order to have 
each MPI rank performing I/O operations independently, 



i.e., in parallel, during the processing step of the calcula-
tions. Moreover, each MPI rank can also write its own time-
dependent solution to a local CGNS file. Such an approach 
avoids synchronizations during checkpoints, which can be a 
significant drawback in HPC applications.

Algorithm 2: Implementation of large eddy simulation formulation.

1 begin

2 Read(Input) ; // Read flow conf.

3 Read(Mesh) ; // Read local mesh

4 Calc(Jacob.,Metric) ;

5 Create(Ghost pts.) ;

6 if Restart then

7 Read(Rest. data); // Read check-point sol.

8 else

9 Calc(I.C.) ; // Impose I.C.

10 Comm(Jacob.,Metric,I.C.);

11 while Nb. it. do // Main It. loop

12 for ℓ ← 1 to 5 do // 5-steps Runge-Kutta

13 MPI Sync. ; // MPI Barrier Func.

14 for i,j,k do // 3-D spatial loop

15 Calc(Inv. Flux); // Calc. of inviscid vec.

16 Calc(Art. Diss.); // Calc. of artficial dissip. terms

17 Calc(Visc. Flux); // Calc. of viscous vec.

18 Calc(RHS Vec.); // Calc. of RHS vec.

19 Update(Cons. Vec.,αℓ); // ℓ-th R-K step

20 Update(B.C.,Visc.); // Update B.C. and viscosity coef.

21 Comm(Cons. Vec..); // Asynchronous MPI comm.

22 Write(Output); // Writes time-dependent CGNS sol.

After the preprocessing routine, the solver can start the 
simulation. A brief overview of the computing part of the 
LES code is presented in Algorithm 2. Primarily, every 
MPI process reads the same ASCII file with input data 
such as flow configurations and simulation settings, as 
indicated in line 2 of Algorithm 2. In the sequence, lines 

3 and 4 of the same algorithm, each rank reads a local-
domain CGNS file and calculates Jacobian and metric 
terms, which are used for the general curvilinear coordi-
nates transformation. Ghost points are added to the bound-
aries of local mesh at the axial and azimuthal directions 
in order to carry information of neighbor partition points, 

line 5 in Algorithm 2. The artificial dissipation scheme of 
Turkel and Vatsa [34] implemented in the code [15] uses 
a five points stencil which requires information of the two 
neighbors of a given mesh point. Hence, two-layer ghost 
points are created at the beginning and at the end of each 
partition. Figure 3 presents the layer of ghost points used 



in the present code. The yellow and black layers repre-
sent the axial and azimuthal ghost points, respectively. 
The green region represents the local partition grid points.

The initial conditions of the flow configurations are 
imposed following the sequence of tasks of the processing 
algorithm. They are calculated using data from a previous 
checkpoint or, from the input data depending on if it is a 
restart simulation or not, as presented in lines 5 to 9 of Algo-
rithm 2. An asynchronous MPI communication of metric 
terms, Jacobian terms, and conservative properties, set as 
initial conditions, is performed between partitions which 
share neighbor surfaces in order to update all ghost points 
before starting the time integration.

The core of the code consists of the while loop indicated 
in line 11 of Algorithm 2. This specific part of the code 

is evaluated in the scalability study presented in Sect. 5, 
Computational Performance Study. This loop performs the 
Runge–Kutta time integration iteratively, for all grid points 
of the computational domain, until reaching the requested 
number of iterations. A succession of computing subroutines 
is performed at each call for the time-marching scheme. It 
starts with synchronization of MPI ranks in order to avoid 
race conditions followed by the calculation of the inviscid 
flux vectors, artificial dissipation terms, viscous flux vector 
and right-hand side vector, chronologically. The boundary 
condition and the dynamic viscosity coefficient are updated 
at the end of each time-marching step followed by a non-
blocking communication of the conservative properties at 
the partition boundaries. If necessary, a time-dependent 
solution is incremented to the CGNS output le at the end of 
the main loop iteration.

5  Computational performance study

The numerical discretization approach used in the present 
article requires very refined grids in order to reproduce high-
fidelity results for the simulation of supersonic jet flows 
configurations. Therefore, parallel computing with efficient 
inter-partition data exchanges is mandatory. The parallel 
efficiency of the code is measured using different compu-
tational loads, and the results are presented in the present 
section. The calculations performed in the current article Fig. 3  The positioning of ghost layer points

Fig. 2  Partitioning and balanc-
ing approaches

Fig. 1  Two-dimensional lateral 
and frontal illustrations of the 
domain which indicate the posi-
tioning of boundary conditions
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are run using the 104 nodes of the Euler supercomputer with 
the Intel® Xeon® E5-2680v2 architecture and 128GB DDR3 
rapid access memory.

The Intel® Composer XE compiler, version 15.0.2.164, 
is used in the present work. A set of compiling flags which 
have been tested in previous work [17] are used in the pre-
sent paper:

where O3 enables aggressive optimization such as global 
code scheduling, software pipelining, predication and specu-
lation, prefetching, scalar replacement and loop transforma-
tions; xHost tells the compiler to generate instructions for 
the highest instruction set available on the compilation host 
processor; ipo uses automatic, multi-step process that allows 
the compiler to analyze the code and determine where you 
can benefit from specific optimizations; no-prec-div enables 
optimizations that give slightly less precise results than full 
division; assume-buffered_io tells the compiler to accumu-
late records in a buffer; and override-limits deals with very 
large, complex functions and loops.

5.1  Scalability setup

Simulations of an unheated perfectly expanded jet flow are 
performed using different grid sizes and number of pro-
cessors in order to study the strong scalability of JAZzY. 
The jet entrance Mach number is 1.4. The pressure ratio, 
PR = Pj∕P∞ , and the temperature ratio, TR = Tj∕T∞ , 
between the jet entrance and the ambient freestream con-
ditions, are equal to one, i.e., PR = 1 and TR = 1 where 
the j subscript identifies the properties at the jet entrance 
and the ∞ subscript stands for properties at the far-field 
region. The Reynolds number of the jet is Re = 1.57 × 106 , 
based on the jet entrance diameter, D. The time increment, 
�t , used for the validation study is 1 × 10

−4 dimensionless 
time units. A stagnated flow is used as the initial condition 
for the simulations.

The same geometry is used for the computational evalu-
ation, where the 2-D surface of this computational domain, 
as presented in Fig. 1, is 30 dimensionless length and 10 

–O3 –xHost –ipo –no-prec-div –assume-buffered –override-limits

Fig. 4  A two-dimensional surface, colored by the velocity magnitude 
contours, extracted from the complete geometry used on the strong 
scalability study

Table 2  Configuration of computational meshes used in the current 
study

Mesh No. Pt. Axial Dir. No. Pt. Radial Dir. No. Pt.

A 128 128 5.9M

B 256 128 11.8M

C 256 256 23.7M

D 512 256 47.3M

E 512 512 94.6M

F 1024 512 189.3M

G 1024 1024 378.5M

H 2048 1024 757.1M

I 1700 1700 1.0B

Table 3  Number of partitions 
in the azimuthal direction for a 
given number of processors

Nb. Proc. Nb. of Part. in the Azimuthal Dir.

1 1

2 1 2

5 1 5

10 1 2 5 10

20 1 2 4 5 10 20

40 1 2 4 5 8 10 20 40

80 2 4 5 8 10 20 40

100 2 4 5 10 20 25

200 4 8 10 20 25 50

400 8 16 20 25 50
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dimensionless height. Figure 4 illustrates a 2-D cut of the 
geometry colored by velocity contours.

The present work uses nine different mesh configurations 
whose total number of points doubles every time. Table 2 
presents the details of each grid design where the first col-
umn presents the name of the mesh, while the second and 
third columns present the number of points in the axial and 
radial directions, respectively. The last column indicates the 
total number of points of the mesh. The grid point distribu-
tion in the azimuthal direction is fixed at 361. The small-
est grid, named as Mesh A, has approximately 5.9 million 
points, while the biggest grid presents approximately 1.0 
billion points.

The solver is able to have different partitioning configura-
tions for a fixed number of sub-domains since the division of 
the mesh is performed in the axial and azimuthal directions. 
Therefore, different partitioning configurations are evaluated 
for a given number of processors. Each simulation performs 
1000 iterations or 24 h of computation, and the average of 
the CPU time per iteration of the while loop indicated in 
Algorithm 2 is measured in order to calculate the speedups 
of the solver at the Euler supercomputer. The partitioning 
configurations which provides the fastest calculation are 
used to evaluate the performance of the solver. Table 3 pre-
sents the number of partitions in the azimuthal direction for 
each number of processors used to study the scalability of 
the solver. The first column stands for the number of com-
putational cores, while the second column represents the 
number of zones in the azimuthal direction used to evaluate 
the effects of the partitioning on the computation. Calcula-
tions performed in the present study are run using one single 
core up to 400 MPI processes.

A sequential computation is the ideal starting point, s, 
for a strong scalability study. However, frequently, the com-
putational problem cannot be allocated in one single cluster 
node due to hardware limitations of the system. Therefore, it 
is necessary to shift the starting point to a minimum number 
of resources in which the code can be run. The LES solver 
has shown to be capable of allocating the five smallest grids, 
from mesh A to mesh E, in one single node of the Euler 
computer. Aforementioned indicates that it is possible to 
run a simulation with 94.6 million grid points using 128GB 
of RAM. The starting points of mesh F and mesh G are 
40 cores, allocated in two nodes, and 80 cores, allocated 
in four nodes, respectively. Meshes H and I start the strong 

scalability study using 200 cores in 10 nodes of the Euler 
computer. Table 4 presents the minimum number of com-
putational cores used by each mesh configuration for the 
strong scaling study.

5.2  Strong scalability study

The speedup, Sp, is used in the present work to measure the 
strong scaling of the solver and compare it with the ideal 
theoretical case. There are different approaches used by 
the scientific community to calculate the speedup [14, 33], 
which is written in the current article as

(16)Sp(m, N) =
T(m, s)

T(m, N)
.

Table 4  Scalability starting 
point for each mesh 
configuration

Mesh s

A–E 1

F 40

G 80

H–I 200

Fig. 5  Speedup curve of the LES solver for different mesh sizes

Fig. 6  Parallel efficiency of the LES solver for different mesh sizes



in which T stands for the time spent by mesh m to perform 
one thousand iterations, N represents the number of com-
putational cores and s is the starting point of the scalability 
study. The strong scaling efficiency of a given mesh configu-
ration, as a function of the number of processors, is written 
considering the law of Amdahl [2] as

More than 300 calculations are performed when consider-
ing all the partitioning configurations and different meshes 
evaluated in the present paper. The averaged time per itera-
tion is calculated for all numerical simulations in order to 
study the scalability of the solver. The evolution of speedup 
and efficiency, as a function of the number of processors, 
for the nine grids used in the current work is presented in 
Figs. 5 and 6. The investigation indicates a good scalabil-
ity of the code. Meshes with more than 50 million points 
present efficiency bigger than 75% when running with 400 
computing cores in parallel. Moreover, mesh E, which has 
≈ 95 million degrees of freedom, presented an efficiency 
which equivalent to the ideal case, ≈ 100%, when using the 
maximum number of resources evaluated. One can notice a 
superlinear scalability for the cases evaluated in the present 
article. This behavior can be explained by the fact that cache 
memory can be accessed more efficiently when increasing 
the total number of processors for a given grid configuration 

(17)�(m, N) =
Sp(m, N)

N
.

since more computational resources for the same load mean 
less cache miss [13, 29].

Increasing the size of a computational problem can gener-
ate a better scalability study. The time spent with computa-
tion becomes more significant when compared to the time 
spent with communication with the growth of a problem. 
One can notice such effect for meshes A, B, C, D and E. The 
speedup and the efficiency increase with the growth of the 
mesh size. However, such scalability improvement does not 
happen from mesh E to meshes F, G, H and I. This behavior 
is originated because the reference used to calculate speedup 
and efficiency is not the same for all grid configurations. The 
studies performed using meshes F, G, H and I does not use 
the serial computation as a reference, which is not the case 
of calculations performed using meshes A, B, C, D and E.

6  Compressible jet �ow simulation

This section presents a compilation of results achieved from 
the simulation of a supersonic jet flow configuration. This 
calculation was performed in order to validate the LES code, 
and it is included here simply to demonstrate that the numer-
ical tool is indeed capable of presenting physically sound 
results for the problem of interest. Results are compared to 
numerical [24, 25] and to experimental data [4]. The details 
of this particular simulation are published in the work of 
Junqueira et al. [18].

Fig. 7  Illustration of geometry and mesh used in the validation of the LES solver



 A geometry is created using a divergent shape whose 
axis length is 40 times the jet entrance diameter, D. Fig-
ure 7 illustrates a 2-D cut of the geometry and the grid point 
distribution used on the validation of the solver. The mesh 
presents approximately 50 million points. The calculation is 
performed using 500 computational cores.

An unheated perfectly expanded jet flow is studied for 
the present validation. The jet entrance Mach number is 
1.4. The pressure ratio, PR= Pj∕P∞ , and the temperature 
ratio, TR= Tj∕T∞ , between the jet entrance and the ambi-
ent freestream conditions, are equal to one, i.e., PR= 1 
and TR= 1 . The j subscript identifies the properties at 
the jet entrance, and the ∞ subscript stands for properties 
at the far-field region. The Reynolds number of the jet is 
Re= 1.57 × 106 , based on the jet entrance diameter, D. The 
time increment, �t , used for the validation study is 1 × 10

−4 
dimensionless time units.

The boundary conditions previously presented in the 
Large Eddy Simulation Formulation section are applied in 
the current simulation. The stagnation state of the flow is 
set as an initial condition of the computation. The calcula-
tion runs a predetermined period of time until reaching the 
statistically steady flow condition. This first pre-simulation 
is important to assure that the jet flow is fully developed and 
turbulent. Computations are restarted and run for another 
period after achieving the statistically stationary state flow. 
Hence, data are extracted and recorded in a predetermined 

frequency. Figure 8 indicates the positioning of the two sur-
faces, (A) and (B), where data are extracted and averaged 
through time. Cuts (A) and (B) are radial profiles at 2.5D 
and 5.0D units downstream of the jet entrance. Flow quanti-
ties are also averaged in the azimuthal direction when the 
radial profiles are calculated.

Figure 8a and b presents distributions of time-averaged 
axial component of velocity and root-mean-square values 
of the fluctuating part of the axial component of velocity, 
which are represented in the present work as ⟨U⟩ and u∗

RMS
 , 

respectively. The solid black line indicated in Fig. 8a rep-
resents the potential core of the jet, which is defined as the 
region where the time-averaged axial velocity component is 
at least 95% of the velocity of the jet at the inlet.

Dimensionless profiles of ⟨U⟩ and u∗

RMS
 at the cuts along 

the mainstream direction of the computational domain 
are compared with numerical and experimental results in 
Figs. 9 and 10, respectively. The solid line stands for results 
achieved using the JAZzY code, while square and triangular 
symbols represent numerical [24, 25] and experimental [4] 
data, respectively.

The averaged profiles obtained in the present work cor-
relate well with the reference data at the two positions com-
pared here. It is important to remark that the LES tool can 
provide good predictions of supersonic jet flow configura-
tions when using a sufficiently fine grid point distribution. 

Fig. 8  Lateral view of distributions of ⟨U⟩ and u∗
RMS

 . The white dashed lines indicate the positioning of radial cuts where data are extracted and 
averaged. The solid black line in a represents the potential core of the jet



 

Fig. 9  Profiles of the averaged axial component of velocity, ⟨U⟩ , at 2.5D and 5.0D from the entrance: (–) JAZzY results; (  ) numerical data [24, 
25]; (  ) experimental data [4]

Fig. 10  Profiles of the RMS of the fluctuation part of axial component of velocity, u∗
RMS

 , at 2.5D and 5.0D from the entrance: (–) JAZzY results; 
(   ) numerical data [24, 25]; (  ) experimental data [4]



 

Therefore, efficient massive parallel computing is mandatory 
in order to achieve good results.
Figures 11 and 12 present a lateral view of an instanta-
neous visualization of the pressure contours, in grayscale, 
superimposed by 3-D velocity magnitude contours and 
vorti-city magnitude contours, respectively, in color, 
calculated by the LES tool discussed in the present paper. 
A detailed visu-alization of the region indicated in yellow, 
at the jet entrance, is shown in Fig. 12. The resolution of 
flow features obtained from the jet simulation is more 
evident in this detailed plot of the jet entrance. One can 
clearly notice the compression 

waves generated at the shear layer, and their reflections at the 
jet axis. Such resolution is important to observe details and 
behavior of such flow configuration in order to understand 
the acoustic phenomena which is present in supersonic jet 
flow configurations.

7  Concluding remarks

The current work is concerned with the performance of a 
computational fluid dynamics tool for aeroacoustics applica-
tions when using a national supercomputer. The HPC sys-
tem, Euler, from the University of São Paulo presents more 
than 3000 computational cores and a maximum theoretical 
peak of 127.4 TFLOPS. The numerical solver is developed 
by the authors to study supersonic jet flows. Simulations of 
such flow configurations are expensive and need efficient 
parallel computing. Therefore, strong scalability studies 
of the solver are performed on the Euler supercomputer in 
order to evaluate whether the numerical tool is capable of 
efficiently using computational resources in parallel.
The computational fluid dynamics solver is developed 
using the large eddy simulation formulation for perfectly 
expanded supersonic jet flow. The equations are written 
using a finite-difference centered spatial discretization with 
the addition of artificial dissipation. The time integration is 
performed using a five-step Runge–Kutta scheme. Parallel 
computing is achieved through non-blocking message 
pass-ing interface protocols, and inter-partition data are 
allocated using ghost points. Each MPI partition reads and 
writes its 

Fig. 11  Instantaneous lateral view of pressure contours, in grayscale, 
superimposed by 3-D velocity magnitude contours, in color

Fig. 12  Lateral and detailed view of pressure contours, in grayscale, superimposed by vorticity magnitude contours, in color. The yellow box 
indicates the region illustrated in the detailed view



 

own portion of the mesh that is created on preprocessing 
routine.

A geometry and a flow condition are defined for the 
scalability study performed in the present work. Nine point 
distributions and different partitioning configurations are 
used in order to evaluate the parallel code under differ-
ent workloads. The size of the grid configurations starts 
with 5.9 million points and rises up to approximately 1.0 
billion points. Calculations perform 1000 iterations or 24 
h of computation using up to 400 cores in parallel. The 
CPU time per iteration is averaged when the simulation 
is finished in order to calculate the speedup and scaling 
efficiency. More than 300 simulations are performed for 
the scalability study when considering different workloads 
and partitioning configurations.

The code presented a good scalability for the calcula-
tions run in the current paper. The averaged CPU time 
per iteration decays with the increase in the number of 
processors in parallel for all computation performed by 
the large eddy simulation solver evaluated in the present 
work. Meshes with more than 50 million points indicated 
an efficiency greater than 75%. The problem with approxi-
mately 100 million points presented speedup of 400 and 
efficiency of 100% when running on 400 computational 
cores in parallel. Such performance is equivalent to theo-
retical behavior in parallel. It is important to remark the 
ability of the parallel solver to treat very dense meshes as 
the one tested in the present paper with approximately 1.0 
billion points. Large eddy simulation demands very refined 
grids in order to have a good representation of the physical 
problem of interest. Therefore, it is important to perform 
simulations of such configuration with a good computation 
efficiency, and the present scalability study article can all 
be seen as a guide for future simulations using the same 
numerical tool on the Euler supercomputer.
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