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The aim of this study is to apply proper generalized decomposition (PGD) to solve

mixed-convection problems with and without mass transport in a two dimensional lid-driven

cavity. PGD is an iterative reduced order model approach which consists of solving a partial
10differential equation while seeking the solution in separated form. Comparisons with results

in the literature and with results from a standard solver are make. For the case of a

mixed-convection problem without mass transfer, three Richardson numbers are considered,

Ri¼ 0.1, Ri¼ 1, and Ri¼ 10. In this case, PGD is seven times faster than the standard sol-

ver with Ri¼ 10 with a similar accuracy. For the case with mass transfer, simulations are
15done with different Lewis numbers, Le¼ 5, Le¼ 25, and Le¼ 50, and with different value of

the ratio N between the solutal and the thermal Grashoff numbers. In this case, too, PGD is

ten times faster than the standard solver.

I. INTRODUCTION

The study of flow in mixed convection is a relevant research topic that has been
20treated by many authors in recent years. In fact, these type of flows can be found in

many engineering applications—for example, cooling of electronic devices, lubrifica-
tion and drying technologies, heat exchangers, and ventilation of rooms to name just
a few of these applications. Two different problems can be treated. The first one,
which has been extensively studied in the literature, is the case where the cavity is

25differentially heated with a single-sided [1–5] or double moving lid [6–8]. The second
case consists of introducing some particles in the cavity and treating the mixed con-
vection with mass transport [9–13].

Mixed-convection problems are not convenient to solve for optimization prob-
lems where multiple solutions are usually required, or for feedback control problems

30where real-time solutions are requested. In fact, such problems give rise to very large
systems that cannot be easily solved numerically. Consequently, in order to decrease
the computation time, it is necessary to develop and use fast numerical methods such
as reduced-order models (ROMs).
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The most popular reduced-order modeling technique is proper orthogonal
35decomposition (POD). This technique has been used to treat problems of particle

dispersion [14, 15] and mixed-convection problems in cavities [16–19]. POD uses a
set of snapshots generated by evaluating the computational solution of a transient
problem at several time points. The POD basis is given by the most representative
vector corresponding to the most dominant eigenvalue of the snapshot vector

40matrix. A low-order dynamic system is then obtained by the Galerkin projection
of the problem onto this basis. Since N is small (a few dozen), the resolution of this
system is fast.

The main drawback of POD is the need for snapshots of the solution in order
to construct the reduced basis. A lengthy computing time may be required for the

45calculation of these snapshots. Furthermore, the basis depends on the information
contained in the snapshots. As a result, the basis is not necessarily valid to study
a phenomenon in a range of parameters different from the initially set parameters.
To overcome these disadvantages it is possible to use the proper generalized
decomposition (PGD) method, which consists of constructing iteratively a reduced

50basis without ‘‘a priori’’ knowledge of the solution. At each iteration of the iterative
process, the basis is improved by adding a new vector.

This method involves looking for a solution to a partial differential equation as
a product sum of the functions of each variables. For example, if we search a field w
dependent on N variables, this can be expressed by

wðx1; � � � ; xNÞ � wQðx1; � � � ; xNÞ ¼
XQ
i¼1

YN
k¼1

FkiðxkÞ ð1Þ

(xi can be any scalar or vector variable involving space, time, or any other
parameter of the problem, such as the conductivity coefficient, for example). Thus,
if M degrees of freedom are used to discretize each variable, the total number of

60unknowns involved in the solution is Q�N�M instead of the MN degrees of free-
dom involved in mesh-based usual discretization techniques. In most cases, where
the field is sufficiently regular, the number of terms Q in the finite sum is generally
quite small (a few dozen), and in all cases the approximation converges toward
the solution of the full grid description [20, 21.] It must be emphasized here that

65the functions are not known ‘‘a priori.’’ These functions are adaptively computed
by introducing the separated approximation of the representation into the model
and then solving the resulting nonlinear problem.

PGD philosophy, originally called ‘‘radial time-space approximation,’’ was
first introduced by Ladevéze [22, 23] in the context of the LATIN method

70(Large Time Increment method) to reduce calculation cost as well in terms of
memory storage as in terms of simulation time. The LATIN method was
developed to solve unsteady nonlinear mechanical problems. It consists of solv-
ing iteratively a nonlinear local problem followed by a global linear problem,
until convergence to the solution of the problem. Solving the full problem

75can be very costly; the introduction of PGD to solve this problem allowed
the use of the LATIN method in cases where a classical resolution would have
been impossible. In this case the solution w(x, t) of the problem defined on a
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space-time domain is searched in the following form:

wðx; tÞ � wmðx; tÞ ¼
Xm
i¼1

Fi
1ðxÞFi

2ðtÞ

The use of PGD combined with the LATIN method is also effective for solving
mechanical problems involving different scales. It provides very satisfactory results
with consequent reduction of the computation time and storage [24, 25]. More
recently, and within the framework of homogenization problems, Lamari et al.
[26] have applied PGD in order to determine, in the linear case, the homogenized
thermal conductivity tensor of a microstructure.

PGD has also been applied to solve stochastic differential partial equations. In
this context the solution w of a given stochastic problem is sought in the following
form:

w �
Xm
i¼1

kiF i

where Fi are deterministic functions weighted by random coefficients ki. Nouy [27,
28] applies the method to solve stochastic linear equations (in this work, the PGD
is initially named generalized spectral decomposition). Nouy shows that the method
saves computing time and storage space compared with Krylov-type methods
traditionally used in this context. Finally, Nouy and Le Maitre [29] proposed an
extension of PGD for solving stochastic nonlinear differential equations.

Another area where PGD has shown its capacity is in the solving of multidi-
mensional problems. In this case, the solution u(x1, . . ., xn) of a given problem is
sought in totally separated form. So, as already mentioned, the approximation of
order m of the solution is defined as

umðx1; � � � ; xnÞ ¼
Xm
i¼1

Fi
1ðx1Þ � � �Fi

NðxnÞ

where x1, . . . , xn variables can represent spatial, temporal, or controls parameters
(such as the Reynolds number) of the problem. In fact, seeking a solution as a
decomposition on each variable can make the problem much easier (in terms of stor-
age and computation time) to solve. Therefore, Ammar et al. [30–32] introduced
PGD to treat the problems of description of fluids on a microscopic scale through
the resolution of the Fokker-Planck equation. In this type of description, the number
of degrees of freedom associated with a molecule (represented as a simple spring) is
seven (three spatial dimensions, one temporal dimension, and three coordinates used
to define the orientation and elongation of the spring). The method solved the
Fokker-Planck equation using a number of unknowns equal to 105, so that the res-
olution would have necessitated a classic mesh size 1035, which is impossible to treat
with standard method. Chinesta et al. [33] browse different physical descriptions
involving different scales (quantum mechanics, molecular dynamics, Brownian
dynamics, kinetic theory) and focus on the difficulties encountered due to the large
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number of degrees of freedom, and thus the benefits of the PGD method to address
these problems. Recently, PGD was also used to solve problems of fluid mechanics
[34, 35]. In this context, PGD is applied to solve the Navier-Stokes equation in order
to reduce CPU time, by decreasing the cost of the space representation, and to obtain
a sufficiently accurate solution. An incremental approach is keeping and the separ-
ation is doing over the physical space at each time step.

The aim of this work is to study the ability of PGD to treat the problems of
mixed convection with and without mass transport. In the same way as what has been
done in [34], a fractional step algorithm is used to decouple the velocity and pressure.

This article is organized as follows. First, we summarize briefly the numerical
strategy used to solve the problem, including the governing equations and the discre-
tization used to solve the problem. Furthermore, the PGDmethod is presented in this
section. Then the PGD method is applied to solve mixed-convection problems with
and without mass transfer in a 2-D square lid-driven cavity. Results obtained by
PGD are compared to these obtained with a standard solver and with these of the
literature.

2. GOVERNING EQUATIONS

In the following, the 2-D nonisothermal Navier-Stokes equations with mass
transport will be described in dimensionless form. The fluid is considered Newtonian,
incompressible, and with constant properties. The flow is laminar and the mixture is
assumed to be perfect. Boussinesq approximation is performed, i.e., the fluid properties
are assumed to be constant except for the density, q, which is assumed to vary linearly
with both temperature and concentration [36, 37] such that q¼ q0[1� bT(T�Tc)�
bC(C�CC)], where TC and CC are temperatures imposed by the boundary conditions.
q0 is a characteristic density; bT and bC are volumetric expansion coefficients with tem-
perature and mass (concentration) fraction, respectively. The equations of the problem
will be written in dimensionless form using the new dimensionless variables as follows:

H ¼ T � Tc

Th � Tc
U ¼ C � Cc

Ch � Cc
s ¼ tU0

d
P ¼ p

q0U
2
0

X ¼ x

d
Y ¼ y

d
U ¼ u

U0
V ¼ v

U0

ð2Þ

where x and y are the Cartesian coordinates measured along the horizontal and vertical
145axes of the cavity, u¼ (u, v) is the velocity vector, T is the temperature of the fluid, C is

the concentration of the species, and t is the time. U0 and d are the characteristic velo-
city and length of the studied problem, U¼ (U, V) is the dimensionless velocity, H
represents the dimensionless temperature, and U the dimensionless concentration.
The equations of the problem in dimensionless form can be written as follows:

r �U ¼ 0:
qU
qs � 1

Rer2Uþ ðU � rÞU ¼ �rPþRi Hþ GrC
GrT

U
� �

� y
qH
qs � 1

RePrr2Hþ ðU � rÞH ¼ 0
qU
qs � 1

ReScr2Uþ ðU � rÞU ¼ 0

8>><>>: ð3Þ
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where Re is the Reynolds number, Sc the Schmidt number, Ri the Richardson number,
and Pr the Prandtl number. GrT andGrc are the thermal and solutal Grashof numbers,
respectively. These dimensionless numbers are defined by

Re ¼ U0d

n
Sc ¼ n

D
Pr ¼ n

a
Ri ¼ GrT

Re2

GrT ¼ gbTðTh � TcÞd3

n2
GrC ¼ gbCðCh � CCÞd3

n2

ð4Þ

155where n is the kinematic viscosity of the fluid, D the diffusion coefficient, and a the
thermal diffusivity.

The Richardson number characterizes the importance of natural convection
relative to the convection induced by forced training of the cavity on the top, while
the thermal Grashoff number represents the strength of natural convection and the

160Reynolds number the strength of the forced convection. For a very small value of
Richardson number we are in forced-convection regime, while Richardson is great
when we are in a so-called natural convection.

3. RESOLUTION TECHNIQUE

3.1. Discretization of the Problem

165The main difficulty encountered in the resolution of the Navier-Stokes equa-
tions lies in the velocity–pressure coupling within the continuity equation. In this
work these fields are decoupled using a fractional step method which consists of solv-
ing the momentum equation in order to find an estimated velocity and then solving
Poisson equation from this estimated velocity, thus providing a pseudo-pressure.

170These two equations are solved at each time step. Solving these two equations gives
a reconstruction of the velocity and the pressure within these two estimated fields
with respect to the continuity equations. In this work we use the Van-Kan algorithm
(see [38]), which will be described in the following.

A Crank-Nicholson discretization is applied to the diffusion term, and the
175convective term, is discretized with an Adams-Bashforth scheme. The temperature

and the concentration are discretized in an explicit way. Then, at time step nþ 1,
we are looking for Unþ1 and Pnþ1 such as

Unþ1 �Un

dt
�r2

�
Unþ1

Re

�
þrPnþ1 ¼ � 3

2
r � ðUUÞn þ 1

2
r � ðUUÞn�1

þRi

�
Hn þGrC

GrT
Un

�
�~yy in X

r �Unþ1 ¼ 0 in X
Unþ1 ¼ f on qX

8>>>>>>><>>>>>>>:
ð5Þ

where f¼ (fx, fy) corresponds to the imposed boundary conditions on qX. The inter-
180mediate velocity is then defined by

Unþ1 ¼ eUU� dt
2
rePP ð6Þ

where ePP ¼ Pnþ1 � Pn is the pressure correction.
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Injecting (6) in problem (5) and neglecting the second-order term dt
Re

� �
r2ðrePPÞ,

the intermediate velocity eUU satisfies

eUU�Un

dt
�r2

� eUU�Un

2Re

�
¼ �rPn � 3

2
r � ðUUÞn þ 1

2
r � ðUUÞn�1

þRi Hn þGrC
GrT

Un

� �
�~yy in XeUU ¼ f on qX

8>>>>><>>>>>:
ð7Þ

Then, by taking the divergence of Eq. (6), we get the following problem for the
pressure correction:

r2ePP ¼ 2
dtr � eUU

qePP
qn ¼ 0 on qX

(
ð8Þ

Therefore, in order to compute Unþ1 and Pnþ1, systems (5) and (8) must be solved
190successively to obtain the intermediate velocity eUU and therefore the pressure correc-

tion ePP. Finally the velocity and the pressure at time step nþ 1 are updated using
Eq. (6) and the definition of the pressure correction.

In the same way, by using a Cranck-Nicholson scheme to discretize the
diffusive term and an Adams-Bashforth scheme to discretize the convective term,

195the temperature is a solution of

Hnþ1

dt
� 1

2RePr
r2Hnþ1 ¼ Hn

dt
þ 1

2Re Pr
r2Hn � 3

2
ðUn � rÞHn

þ 1

2
ðUn�1 � rÞHn�1 in X

Hnþ1 ¼ H1 on qX1

rHnþ1 � n ¼ H2 on qX2

8>>>>>><>>>>>>:
ð9Þ

and the concentration is a solution of

Unþ1

dt
� 1

2Re Sc
r2Unþ1 ¼ Un

dt
þ 1

2Re Sc
r2Un

� 3

2
ðUn � rÞUn þ 1

2
ðUn�1 � rÞUn�1 in X

Unþ1 ¼ U1 on q X1

rUnþ1 � n ¼ U2 on qX2

8>>>>>><>>>>>>:
ð10Þ

with qX1

S
qX2 ¼ qX and qX1

T
qX2 ¼ ;.

2003.2. PGD Algorithm

3.2.1. Strategy. In the context of transient problems, in order to compute the
unknown w, PGD can be applied using one of the three following decompositions.

6 A. DUMON ET AL.



1. The first possibility consists of a time space decomposition:

wðt; xÞ ¼
X
i

F i
t ðtÞFi

xðxÞ

In this case we are looking for a similar representation to an ‘‘a priori’’ reduced
model but obtained using a nonincremental approach. We are looking directly for
a time=space solution. The main drawback encountered here is that a full grid
description is required to define the Fx functions over the physical space.

2. To circumvent this difficulty, the second possibility consists of writing a full
decomposition involving the two dimensions of the physical space:

wðt; x; yÞ ¼
X
i

F i
t ðtÞFi

xðxÞFi
yðyÞ

In practice, making such a decomposition leads to a significant increase in the
number of terms required in the sum.

3. The third possibility consists of keeping the incremental approach and doing the
separation over the physical space at each time step n:

wnðx; yÞ ¼
X
i

F i
xðxÞFi

yðyÞ

This last decomposition will be used in this work.

Thus, in this article, the velocity fields, the pressure, the temperature, and the
mass concentration are searched at each time step on the following separated form:

eUUnþ1ðx; yÞ ¼
XneUU
i¼1

aieUUFieUUðxÞGieUUðyÞ eVVnþ1ðx; yÞ ¼
XneVV
i¼1

aieVVFieVV ðxÞGieVV ðyÞ
ePPnþ1ðx; yÞ ¼

XnePP
i¼1

aiePPFiePPðxÞGiePPðyÞ Hnþ1ðx; yÞ ¼
XnH
i¼1

aiHF
i
HðxÞGi

HðyÞ

Unþ1ðx; yÞ ¼
XnU
i¼1

aiUF
i
UðxÞGi

UðyÞ

ð11Þ

where each function Fw, Gw and integer nw (w could be eUU , eVV , ePP, H, or U) depend of
the time nþ 1. In order to alleviate the notation, this dependency is not written
explicitly.

All the unknowns of the problem, except the pressure, are each the solution,
225after temporal discretization, of equations which all have the same generic structure,

namely,

wnþ1

dt
� bw

2
r2 wnþ1 ¼ gnþ1

w ð12Þ

Thus, for the sake of clarity, the PGD procedure will be described to solve the gen-
eral equation (12). PGD, which is an iterative method, consists of finding, at time

TRANSPORT IN A SQUARE LID-DRIVEN CAVITY 7



230step nþ 1, an approximation of the solution wnþ 1(x, y)2X¼X�Y�R2 with
x2X�R and y2Y�R as

wnþ1ðx; yÞ � wnþ1
m ðx; yÞ ¼

Xm
i¼1

aiwF
i
wðxÞGi

wðyÞ ð13Þ

where wnþ1
m ðx; yÞ is the approximation of the solution of order m. At each iteration,

the solution is enriched with an additional term amþ1
w Fmþ1

w ðxÞGmþ1
w ðyÞ. PGD should

235be decomposed in three steps. During the first step, called ‘‘the enrichment step,’’ the
Fmþ1

w and Gmþ1
w functions are obtained by solving a small-size nonlinear problem.

Then, for the second step, called the ‘‘projection step’’, in order to improve the
quality of the reconstruction, the mþ 1 amþ1

w coefficients are determined by solving
a linear system of size (mþ 1). Finally, the ‘‘check convergence step’’ consists of

240computing the norm of the full model residual in order to decide if the solution needs
more enrichment or not. In the following these three steps will be described in detail.

3.2.2. Enrichment Step. At the mth stage, the solution approximation of
order m� 1 is supposed to be known. At this step, we search to compute the
functions Fm

w ðxÞ and Gm
w ðyÞ. We search wnþ1

m ðx; yÞ as

wnþ1
m ðx; yÞ ¼ wnþ1

m�1ðx; yÞ þ Fm
w ðxÞGm

w ðyÞ ¼
Xm�1

i¼1

aiwF
i
wðxÞGi

wðyÞ þ Fm
w ðxÞGm

w ðyÞ ð14Þ

Introducing Eq. (14) into Problem (12) gives

Fm
wG

m
w

dt
� bw

2

d2Fm
w

dx2
Gm

w þ Fm
w

d2Gm
w

dy2

 !
¼ Sm

w þResmw ð15Þ

where Resmw is a residual due to the fact that wnþ1
m is an approximation of the

solution. The second member is given by

Sm
w ¼ gnþ1

w �
Xm�1

i¼1

aiw
F i

wG
i
w

dt
� bw

2

d2Fi
w

dx2
Gi

w þ Fi
w

d2Gi
w

dy2

 !" #
ð16Þ

Equation (15) is then projected onto each of the unknowns Fm
w and Gm

w and the
residual Resmw is forced to be orthogonal to each of these functions. This gives the
two following problems:

Fm
w G

m
w

dt
� bw

2

d2Fm
w

dx2
Gm

w þ Fm
w

d2Gm
w

dy2

 !
; Fm

w

* +
dL2ðXÞL2ðXÞ

¼ hSm
w ; Fm

w i dL2ðXÞL2ðXÞ
ð17Þ

Fm
wG

m
w

dt
� bw

2

d2Fm
w

dx2
Gm

w þ Fm
w

d2Gm
w

dy2

 !
; Gm

* +
dL2ðYÞL2ðYÞ

¼ hSm
w ; Gm

w i dL2ðYÞL2ðYÞ
ð18Þ

8 A. DUMON ET AL.



where < �; � > dL2ðxÞL2ðxÞ
(< �; � >dL2ðyÞL2ðyÞ

, respectively) are the scalar products on L2, in the x

direction, (in the y direction, respectively).
Equations (17) and (18) are solved using the fixed-point method. After conver-

gence of the fixed-point method, the functions Fm
w and Gm

w are normalized. It is
260important to note that the resolution of this system of two sets of nonlinear equa-

tions by a fixed-point method corresponds to the resolution of two linear systems
of size N. Instead of solving a large 2-D problem, PGD consists of solving many
1-D problems. For example, if we consider a problem with N nodes of discretization
in each direction, PGD consists of solving some linear systems of size N, while a clas-

265sic approach consists of solving a linear system of size N2. Thus, if N is large enough,
the PGD will be faster than traditional methods.

3.2.3. Projection Step. In order to increase the accuracy of the decompo-
sition, the m aiw coefficients are now searched in such a way that the residual is
orthogonal to each of the m products of the Fi

wG
i
w functions. At this step, we search

270wnþ1
m ðx; yÞ as

wnþ1
m ðx; yÞ ¼

Xm
i¼1

aiwF
i
wðxÞGi

wðyÞ ð19Þ

Then, by introducing this expression into Eq. (12),

Xm
i¼1

aiw
F i

wG
i
w

dt
� bw

2

d2Fi
w

dx2
Gi

w þ Fi
w

d2Gi
w

dy2

 !" #
¼ gnþ1

w þResmw ð20Þ

By projecting the above equation according to the Fi
wG

i
w, a system satisfied by the aiw

275coefficients is obtained. For 1� k�m,

Xm
i¼1

aiw
F i

wG
i
w

dt
� bw

2

d2Fi
w

dx2
Gi

w þ Fi
w

d2Gi
w

dy2

 !" #
; Fk

wG
k
w

* +
dL2ðXÞL2ðXÞ

¼ hgnþ1
w ; Fk

wG
k
wi dL2ðXÞL2ðXÞ

ð21Þ

Equation (21), which represents a small linear system (of size m), can be easily solved
by using a classical solver. At this point we know the approximation of the solution
of order m, wnþ1

m ðx; yÞ.

2803.2.4. Check Convergence Step. If the L2 norm of this residual, defined by

Resmw ¼
Xm
i¼1

aiw
F i

wG
i
w

dt
� bw

2

d2Fi
w

dx2
Gi

w þ Fi
w

d2Gi
w

dy2

 !" #
� gnþ1

w ðx; yÞ ð22Þ

is lower than a coefficient E set by the user, the PGD algorithm is converged. Other-
wise, one more iteration at least is needed, and the enrichment and projection steps
are repeated until convergence, which increases the value m gradually.

TRANSPORT IN A SQUARE LID-DRIVEN CAVITY 9



2853.2.5. Summary of the Algorithm. The PGD resolution algorithm combin-
ing the enrichment phase and the computation of the coefficients using a projection
based on an approximation called is summarized below.

1. for m¼ 1, mmax do

2. Solving equations (17) and (18) by a fixed point method in order to compute Fm
w

290and Gm
w .

3. Computation of faiwg
m
i¼1 by solving equation (21)

4. Then wm ¼
Pm
i¼1

aiwF
i
wG

i
w

5. Computation of the residual defined by Eq. (22)
6. Check convergence: if kResw� ek then stop

2957. end for

In the following, the only equations to solve are the unsteady and the steady dif-
fusion equation. For the sake of clarity, PGD was described in a continuous form;
however, this is the algebraic form of the algorithm which is used in practice. That is
why an algebraic version of the resolution of these equations is given in the Appendix.

3004. APPLICATION OF PGD TO SOLVE A MIXED-CONVECTION PROBLEM

4.1. Problem Description

We consider an incompressible Newtonian fluid within a square cavity. Verti-
cal walls are differentially heated and isothermal, while the left wall has a higher tem-
perature than the right wall and horizontal walls are kept adiabatic. The top lid of

305the cavity moves in the~xx direction with constant velocity U0. In this case the problem
(3) is solved regardless of the equation governing the concentration and taking that
GrC¼ 0. Figure 1 presents the studied case.

Figure 1. Configuration for studied case (color figure available online).

10 A. DUMON ET AL.



Simulations have been done with a time step equal to dt¼ 10�3. Since we were
looking for a stationary flow, we defined the following convergence criteria:

kuki � uk�1
i k

kuki k
� Eu for i ¼ 1; 2

kpk � pk�1k
kpkk � Ep

kTk � Tk�1k
kTkk

� ET

In the following cases the values Eu¼ 10�10, Ep¼ 10�8, and ET¼ 10�10 were con-
sidered. The simulations were performed using the PGD method and using a tra-
ditional solver (bi-conjugate gradient) for a Grashoff number set at 105 and a
Prandtl number equal to 0.71 (characteristic of the air). In the following, three
Richardson numbers will be considered (Ri¼ 0.1, Ri¼ 1, and Ri¼ 10). Nh represents
the number of nodes in each direction.

4.2. Results

Figures 2 and 3 compare the velocity field and isotherms obtained by PGD
with those obtained by Sun et al. [39]. We note that for Ri¼ 10, the flow is mainly
due to the temperature gradient and we can see a double vortex at the center of the
cavity. For the case where the Richardson number is equal to 1, forced convection
due to imposed velocity on the top of the cavity starts to become important, it shows
especially by observing the size of the boundary layer temperature on the left wall of
the cavity. Finally, for a Richardson number equal to 0.1, we observe that the forced
convection becomes dominant in relation to temperature. In this case the results are
very similar to those obtained for the 2D isothermal lid driven cavity for Re¼ 1000

1

.
Concerning the isotherms, we observe that more Richardson number is important
more the temperature tends to stratify. These figures show that whatever the
Richardson number considered, PGD results are very closed to the results of the
literature.

In order to compare more precisely the PGD results with those of the litera-
ture, the Nusselt numbers on the right wall (east) (Nue) and on the left wall (west)
(Nuw) are defined as

Nue ¼ �ðqH=qXÞe
Hh �Hc

Nuw ¼ �ðqH=qXÞw
Hh �Hc

ð23Þ

and the average Nusselt numbers, calculated by integrating the local Nusselt along
the wall, as

Nue ¼
Z 1

0

Nue dY Nuw ¼
Z 1

0

Nuw dY ð24Þ

340Average Nusselt numbers at convergence of the chosen method (PGD or
standard solver without separated representation) defined in Eq. (24) are com-
pared with those obtained by Sun et al. [39]. Results are listed in Table 1. It
can be noticed that the average Nusselt number increases with decreasing

1Recall that Re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gr=Ri

p
and thus Ri¼ 0.1)Re¼ 1000
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Richardson number, which indicates that the more dynamic effects are stronger
345the higher the heat transfer on the left and right borders of the cavity is impor-

tant. We can also note that the average Nusselt numbers obtained by PGD are
similar to those by Sun et al., even if a slight difference is observed for Ri¼ 1
and Ri¼ 10. This difference is not due to PGD, since the same results are
obtained with the standard solver.

350Figure 4 shows also a good match between the simulations and the literature
concerning the Nusselt numbers. Indeed, Nusselt numbers at the west and at east cal-
culated with the standard solver and with the PGD are the same.

Figure 2. Velocity vectors from Sun et al. [39] (left) and streamlines from PGD (right) for different

Richardson numbers and Nh¼ 100.
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4.3. Computational Time Comparison

The ratio of computation time between the standard solver and the PGD
355method is recorded in Table 2 for simulations done with a number of nodesNh ranging

from 61 to 301. First, it can be noticed that from 200 nodes in each direction, PGD is
faster than the standard solver for each of the Richardson numbers considered.
Second, the higher the Richardson number, the more the time saving by using PGD
is important. Indeed, with Nh¼ 301, at Ri¼ 10, PGD is six times faster than the stan-

360dard solver, whereas with the same number of nodes, at Ri¼ 0.1, PGD is four times
faster than the standard solver. From these results it can be concluded that the higher
the Richardson number (the more the effect of temperature is important in compari-
son with forced convection), the more the PGD method is efficient.

Figure 3. Isotherms from Sun et al. [39] and from PGD for Richardson numbers equal to 10, 1, and 0.1

(color figure available online).
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Figure 4. Values of Nusselt numbers on the western and eastern walls from the literature, the standard

model, and PGD for Richardson numbers equal to 0.1, 1, and 10 (color figure available online).

Table 1. Values of average Nusselt numbers on the right wall (east) and on the left

wall (west) from the literature, from PGD and from standard solver for Richardson

numbers equal to 0.1, 1, and 10

Nueast Nuwest

Sun et al. PGD Standard Sun et al. PGD Standard

Ri¼ 10 4.61 4.49 4.49 4.61 4.54 4.54

Ri¼ 1 5.29 5.19 5.20 5.29 5.20 5.20

Ri¼ 0.1 7.46 7.44 7.45 7.46 7.48 7.48
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4.4. Optimality of the PGD

365Singular value decomposition (SVD) [40, 41] is a procedure which decomposes
optimally a 2-D field into 1-D product functions. So, if the PGD method is optimal,
the number of PGD functions should be the same as (or very close to) the number of

Table 2. Ratio of computation time for solving the Navier-Stokes isothermal equations

(Standard computation time)/(PGD computation time)

Number of nodes in each direction Ri¼ 10 Ri¼ 1 Ri¼ 0.1

61 0.2 0.14 0.17

101 0.5 0.7 0.57

151 1.25 1.06 0.82

201 4.4 3.67 1.60

301 6.33 5.20 3.7

Figure 5. Norm of the residual depending of the number of functions keeping for each of PGD decompo-

sition, SVD on the PGD result (PGD SVD) and SVD on the standard model results (FULL SVD) for the

horizontal (a) and vertical (b) velocity and for the pressure correction (c) and the temperature (d) with

Ri¼ 1 and Nh¼ 201 (color figure available online).
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functions obtained by SVD. To discuss the optimality of the PGD, the number of
PGD functions is compared with the number of functions from a SVD. To achieve

370this, the evolution of the norm of the residual of each equations solved with regard to
the number of PGD functions or SVD functions kept is considered. The residual is
defined as

Resmw ¼ Aw

Xmw

i¼1

Fi
wG

i
w

" #
� SMw ð25Þ

where w corresponds to the different unknowns of the problem, namely, the horizon-
375tal and vertical velocities, the pressure, or the temperature. Aw (respectively SMw) is

the operator (resp. the second member) associated to the equation which is used to
calculate the variable w. Functions Fi

w, G
i
w are the PGD functions or the SVD func-

tions of the unknown w. In the following, we de-note by ‘‘FULL-SVD’’ the results
obtained with a SVD on the standard solver solution, and by ‘‘PGD-SVD‘‘ the

380results obtained with a SVD on the PGD solution.
The norm of the residual associated to the equation satisfied by the velocity,

the pressure, and the temperature with regard to the number of functions mu, mv

(resp. mp, mH) retained are plotted in Figure 5 with Nh¼ 201 and Ri¼ 1. The residual
associated to the velocity and temperature obtained by PGD, PGD-SVD, and

385FULL-SVD gives the same curve of residual with regard to the number of products
of function kept. It proves that, for these variables, the PGD gives the same optimal
representation as can be provided by a SVD of the full solution.

Concerning the pressure, Figure 5 c shows that the PGD is able to find a sol-
ution with a norm of the residual inferior to 10�2 with approximatively 50 products

Figure 6. Geometry of the nonisothermal cavity with mass transport (color figure available online).
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390of functions, while FULL-SVD needs only 10 products of functions to reach the same
norm of the residual. In this case it is clear that the PGD is not optimal. Moreover, the
PGD-SVD gives a norm of the residual different from the FULL-SVD, which implies
that the solution obtained by PGD is slightly noisy compared with the solution
obtained by the standard solver. Results obtained for Ri¼ 0.1 and Ri¼ 10 are quite

395the same as those obtained with Ri¼ 1, which is why they are not plotted here. The
performance of the global PGD algorithm is somewhat reduced by the resolution of
the pressure problem. In fact, it is not possible to be more optimal for the resolution
of the other equations.

Figure 7. Isoconcentrations from literature and from the PGD for different Lewis numbers with Nh¼ 250

(color figure available online).
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5. APPLICATION OF PGD TO SOLVE A MIXED-CONVECTION PROBLEM
400WITH MASS TRANSPORT

5.1. Problem Description

The cavity studied here is such that its north wall is animated by a constant
horizontal velocity equal to U0, while the velocity on all other walls is equal to
zero. A temperature gradient from south to north is imposed, i.e., the tempera-

405ture Th imposed on the south side is higher than the temperature imposed on
the north face Tc. In the same way, the concentration of species on the south side
Ch is greater than the concentration imposed on the north side, denoted CC. The
east and west sides are considered adiabatic and impermeable. Figure 6 shows the
cavity studied.

410The following simulations are done with Pr¼ 1 and Re¼ 100. Nh represents the
number of nodes in each direction. A time step equal to Dt¼ 10�3 and a convergence
criterion on the concentration is added to those defined above in the isothermal case
[Eq. (23)]:

kCk � Ck�1k
kCkk

� EC ð26Þ
415

Here the convergence criteria have been taken equal to Eu¼ 10�10, Ep¼ 10�10,
ET¼ 10�10, and EC¼ 10�10.

Figure 8. Streamlines and isotherms from Al-Amiri et al. [42] and from PGD for a Lewis number equal to

5 (color figure available online).
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5.2. Results

In a first time, we fix the Richardson number equal to 0.01 and the Grashof
420number to 102. The Lewis number, defined by Le¼ Sc=Pr, varies from 5 to 50.

Figure 7 shows a good match between the isoconcentrations obtained by PGD
and those of Al-Amiri et al. [42]. In this case, we see that the boundary layer on
the southern wall appears to decrease with increase of the Lewis number, which is
due to the fact that when the Lewis number increases, the diffusivity of the species

Figure 9. Streamlines from the literature and from PGD for different value of the ratio GrC=GrT.
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425decreases. In addition, regardless of the Lewis number (Le¼ 5, 25, or 50), the
velocity field and temperature remain unchanged, because of the dominant forced
convection, which had already been noted by Al-Amiri et al. In Figure 8 we plot
the streamlines and isotherms for Le¼ 5. Once more, we see that the PGD results
are similar to those of the literature.

430In a second time, we fix the Richardson number to 0.01, the Reynolds num-
ber at 100, which requires a value of thermal Grashoff number equal to 100. The
ratio GrT=Grc is taken equal to 0, �25, �50 and �100. This implies that the
solutal Grashoff numbers varies from 0 to �10, 000. The streamlines obtained
by PGD are compared with those obtained by Al-Amiri et al. [42] in Figure 9.

435This figure shows that the PGD results are very close to the results of the litera-
ture. In this case the temperature fields are the same as the concentration fields, so
they are not represented in the following. Indeed, if Le¼ 1 and Pr¼ 1, it implies
that Sc¼ 1 and equations which gives the temperature and the concentrations are
exactly the same.

4405.3. Computation Time

The ratio of the computation time with the standard solver on computation
time required for PGD are reported in Table 3. The simulations were performed
for a number of nodes ranging from 61 to 301 in each direction and with Le¼ 1.
We observe that from 200 nodes in each direction, PGD is faster than the standard

445solver for each of the Richardson numbers considered. The more ratio N is impor-
tant, the more the time saving by PGD is important. Indeed, with Nh¼ 301 and
N¼ 0, PGD is six times faster than the standard solver, while with N¼�100,
PGD is 10 times faster than the standard solver. So, the more the solutal effects
are important, the more the PGD is efficient in comparison to the standard solver.

450In this case, optimality curves are not presented because the results are identical
to those obtained for mixed convection without mass transport; in this case again,
only the pressure equation is not optimal.

6. SUMMARY AND CONCLUSIONS

To conclude, one can note the performance of PGD to treat mixed-convection
455problems with and without mass transfer. Indeed in the first test case (i.e., without

Table 3. Ratio of computation time for solving the Navier-Stokes isothermal equations with mass trans-

port

(Standard computation time)/(PGD computation time)

Number of nodes in each direction N¼ 0 N¼�25 N¼�50 N¼�100

61 0.27 0.18 0.13 0.1

101 0.53 0.45 0.31 0.3

201 1.93 1.83 7.1 7.1

301 5.47 6.42 9.42 9.42
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mass transfer), we have demonstrated that PGD is able to provide good values of
average Nusselt in comparison with the standard solver and with results of the litera-
ture. Moreover, values, of Nusselt numbers at west and at east are very close to these
given by the literature. In addition, the time saved by using the PGD is relatively high

460compared to traditional solvers. Indeed, for a mesh of size 301� 301 there is time sav-
ings of about 7 for a Richardson number equal to 10 and about 4 for a Richardson
number equal to 0.1. In the second test case, where the mass transfer is taken into
account, PGD results are close to these of the literature. In this case, too, application
of PGD allows one to save time. Indeed, PGD should be 10 times faster than the

465standard solver for a mesh of size 301� 301 with a ratio N equal to �100.
This work is the first step in dealing with a 3-D situation, where the time coor-

dinate can be included in the decomposition, or where a 3-D problem (with x, y, z
space coordinates) can be solved. Indeed, in 2D, the full model has N2 degrees of
freedom (N is the number of nodes in each direction), while PGD consists of success-

470ive enrichments of 2 times N degrees of freedom. Moreover, in 3D, full description
involves N3 degrees of freedom. However, with PGD, successive enrichments involv-
ing 3 times N degrees of freedom are required. In such a situation, the benefit of the
method goes beyond simple saving of CPU and provides a feasible solution for
otherwise intractable problems.
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APPENDIX: ALGEBRAIC FORMULATION OF PGD

A.1. Preliminaries

PGD is an iterative procedure which can be described as follows. At each
iteration, the solution is enriched with an additional term,

amwF
m
w ðxÞGm

w ðyÞ
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The Fm
w and Gm

w functions are obtained by solving a small-size nonlinear
problem (NxþNy), where Nx is the number of nodes in the direction x and Ny is
the number of nodes in the direction y. Then, m aiw coefficients are determined by

605solving a linear system of size (m).
The PGD algorithm is summarized in three steps:

1. We assume we are at iteration m. The first step consists of computing the new Fm
w

and Gm
w functions, and will be referred to as the ‘‘enrichment’’ step.

2. Once these functions have been calculated, the m coefficients aiw have to be
610updated. This is the ‘‘projection’’ step.

3. Finally, the convergence has to be checked. If the residual norm exceeds a given
tolerance, enrichment is performed again, until convergence is achieved. This is
the ‘‘checking convergence’’ step.

The problem (12) can be written in a discrete form:

LhðwhÞ ¼ Gh ð27Þ
with

Lh ¼
XnL
j¼1

A
j
x �A

j
y Gh ¼

XnG
j¼1

f jx � f jy wh ¼
Xm
i¼1

aiwF
i
w �Gi

w ð28Þ

The operator L is discretized as a tensor product of operatorsAj
x and A

j
y in the

620directions x and y, respectively The discretized operatorAj
x (resp. Aj

y) is a square
matrix whose size is Nx (resp. Ny). The second term is decomposed as products of
the sum of vectors f jx and f jy of size Nx and Ny. Finally, the unknown wh is calculated
as a product sum of vectors Fi

w and Gi
w of size Nx and Ny using a weight coefficient

aiw.nL (resp. nG) represents the number of tensor products required to represent the
625separated form of the initial operator L (resp. the second member G).

Taking into account the property of the tensor product, Eq. (27) can be
written as: XnL

k¼1

Xm
i¼1

aiw A
k
xF

i
w �A

k
yG

i
w

� �
¼
XnG
j¼1

f jx � f jy ð29Þ

630The three steps of enrichment, projection, and checking convergence will now
be described with these notations.

A.2. The Enrichment Step

At this stage, the solution wm�1
h is supposed known and can be written as

wm�1
h ¼

Xm�1

i¼1

aiwF
i
w �Gi

w ð30Þ
635

The unknown wm
h is searched as

wm
h ¼ wm�1

h þ R� S ð31Þ
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where R and S are unknowns. Introducing this new approximation of the solution
into Eq. (29), we have to solve

XnL
k¼1

A
k
xR�A

k
yS

� �
¼ Gh �

XnL
k¼1

Xm�1

i¼1

aiw A
k
xF

i
w �A

k
yG

i
w

� �
ð32Þ

This nonlinear system is solved within a fixed-point strategy. Thus, in order to
compute R, we choose to fix S and we project Eq. (32) onto the vector S. This gives
the following problem, corresponding to Eq. (18) in continuous form:

XnL
k¼1

c1kA
k
xR ¼

XnG
j¼1

c2j f
j
x �

XnL
k¼1

Xm�1

i¼1

c3i;ka
i
wA

k
xF

i
w ð33Þ

with

c1k ¼ tSAk
yS 2 R c2j ¼ tSf jy 2 R c3i;k ¼ tSAk

yG
i
w 2 R ð34Þ

Similarly, in order to compute S, we set R at the value just computed in Eq.
650(33) and we project Eq. (32) onto the vector R. This gives the following problem,

corresponding to Eq. (17) in continuous form

XnL
k¼1

g1kA
k
yS ¼

XnG
j¼1

g2j f
j
y �

XnL
k¼1

Xm�1

i¼1

g3i;ka
i
wA

k
yG

i
w ð35Þ

with

g1k ¼ tRAk
xR 2 R g2j ¼ tRf jx 2 R g3i;k ¼ tRAk

xF
i
w 2 R ð36Þ

655

Problems (33) and (35) are solved iteratively. The fixed-point procedure stops
when the kth iteration satisfies:

kðR� SÞk � ðR� SÞk�1k � E ð37Þ

where k�k is the L2 norm and E is a parameter chosen by the user. The new Fm
w and

660Gm
w are then given by the next normalization:

Fm
w ¼ R

kRk Gm ¼ S

kSk ð38Þ

A.3. Projection Step

Assuming the Fi
w and Gi

w functions are known, aiw (1� i�m) has to be
665computed. For this purpose, we project Eq. (32) onto Fj

wG
j
w. Thus the following

linear problem, whose size is m, corresponding to Eq. (14) in continuous form, is
obtained

Haw ¼ J withtaw ¼ fa1w; � � � ; amwg ð39Þ
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where the components of H and J are defined by

Hij ¼
XnL
k¼1

tFj
wA

k
xF

i
w:

tGj
wA

k
yG

i
w and Jj ¼

XnG
k¼1

tFj
wf

k
x:

tGj
wf

k
y ð40Þ

A.4. Check Convergence

In order to estimate the convergence of the algorithm, a computation is
performed of the residual Res of Eq. (12) defined by

Res ¼
XnL
k¼1

Xm
i¼1

aiw A
k
x

h i
Fi
w � A

k
y

h i
Gi

w

� �
�
XnG
k¼1

fkx � fky ð41Þ

When the L2 norm of this residual becomes lower than a coefficient E set by the
user, the algorithm is considered to be at convergence, and the solution of the
problem is expressed ass

wh ¼
Xm
i¼1

aiwF
i
w �Gi

w ð42Þ
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