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Abstract—This paper presents a vector control of a 5-

phase drive composed of a 5-leg Pulse Width Modulation
(PWM) Voltage Source Inverter (VSI) supplying a
permanent-magnet Brushless DC (BLDC) machine with
trapezoidal waveform of the back-electromotive force
(EMF). To achieve this control a Multi-machine Multi-
converter model is used: the 5-phase machine is
transformed into a set of two 2-phase fictitious machines
which are each one controlled in a (d,q) frame as 3-phase
machines with sine waveform back-EMF. In comparison
with the 3-phase BLDC drives, the 5-phase ones present one
particularity: a high sensitivity to the 7th harmonic of back-
EMF. Experimental results show that the 7th harmonic of
back-EMF, which represents only 5% of RMS back-EMF,
induces high amplitude parasitic currents (29 % percent of
RMS current). The model allows to explain the origin of this
sensitivity and how to modify simply the control algorithm.
Experimental improvements of the drive are presented.

Index Terms—brushless, multiphase, 5-phase, drive
control.

I. INTRODUCTION

Multi-phase drive systems have several advantages over
conventional 3-phase ones [1]-[2] such as higher
reliability  and reduction of torque ripples. Multi-phase
machines have been initially supplied from Pulse
Amplitude Modulation Current Stiff Inverter (PAM CSI)
[3]-[5]. In this case, a machine with q 3-phase stars can
be considered as the association of q 3-phase machines
mechanically coupled on the same shaft. Each 3-phase
fictitious machine is associated with one of the q stars.
This decomposition is possible in spite of the magnetic
couplings between the stars, because of one property of
the PAM CSI drive: when there is commutation of a
current in a star, the currents in the other stars have
constant values. The mutual inductances between stars
have no impact and the stars can be then considered as
magnetically independent.
With Digital Signal Processor, it is now possible to use
PWM VSI in multi-phase drives [6]-[8].
If vector controls of 3-phase BLDC machines are well
known [9], it is not the case for multi-phase ones,
particularly if the waveform of back-EMF is trapezoidal.
PWM-VSI requires a much more precise modeling than
PAM CSI: it is no more obvious to decompose the multi-
phase machine into a set of 3-phase machines.
For six-phase induction machines, [10] has proposed a
multiple reference frame analysis based on an orthogonal
transformation. The natural frame (a,b,c,d,e,f) of the 6-
phase machine is transformed into a set of three
independent frames (o1,o2), (d,q) and (z1,z2) where
dynamic equations of the machine are totally decoupled.
When currents are sinusoidal, the planes (o1,o2) and

(z1,z2) do not participate to electromechanical conversion.
Recently, using the same transformation, [11] shows the
possibility to improve torque density with the injection of
a third harmonic current, harmonic which is relative to
the plane (o1,o2). For 5-phase induction machines, similar
transformations have been used to achieve a DTC control
[7] or to drive with only a 5-leg VSI supply two series
connected motors [12]. Multi-phase BLDC machines
have been less studied [13]-[15] than multi-phase
induction machines. In [13], torque density has been
increased with 3rd harmonic current injection in a 5-phase
synchronous reluctance motor drive.
In this paper, a 5-phase BLCD supplied by a 5-leg PWM-
VSI is studied. Using a Multi-machine Multi-converter
description, this drive is broken down into two fictitious
machines which can be controlled independently. This
specific modeling shows that the 7th harmonic of the
EMF leads to important parasitic currents. Controls
strategies are deduced from this analysis and
experimental results are provided.

II. MODELING OF THE DRIVE

A. Equivalent  set of two 2-phase fictitious drives
Under assumptions of no saturation and no reluctance
effects, the vectorial approach developed in [16]-[19]
allows to define the equivalence of a 5-phase wye-
connected machine Fig. 1) to a set of two fictitious
independent drives, each one being composed of one
fictitious machine and one fictitious inverter.
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Fig. 1. Symbolic representation  of the 5-leg PWM-VSI and 2p pole 5-
phase machine

The symmetry  and the circularity of the stator
inductance matrix are used to achieve the equivalence
between the actual and the fictitious drives:
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[Ls] matrix has three eigenvalues, named cyclic
inductances, whose associated eigenspaces Gg are
orthogonal each others. The dimension of an eigenspace
Gg is equal to the multiplicity of its corresponding
eigenvalue Lg. In the studied case, the multiplicity of two
of them (noted Lm and Ls) is of order two.
The orthogonality of the three eigenspaces Gm, Gg and G0
implies that three independent flux of energy can be
found. To prove this assertion, an euclidian space with
the usual canonic dot product is associated with the 5-
phase machine. This space is provided with an
orthonormal base { }54321 x,x,x,x,x . In this natural base,
voltage and current vectors are defined:
• 552211 xv...xvxvv +++= (2)

• 552211 ... xixixii +++= (3)
The coordinates of a vector in this base are the
measurable values relative to each phase.
Using the dot product, the electric power is expressed by:
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Then, every vector is split into the sum of three vectors,
each one belonging to an eigenspace, Gm, Gs and G0:

0sm yyyy ++= (5)
As the eigenspaces are orthogonal, the electric power is
also the sum of three powers, associated each one with an
eigenspace:

00... . ivivivivp ssmms ++==  (6)

The wye-connection of the machine implies that 00 =i
Continuing the same energetic approach,  it is easy to
express the torque of the 5-phase machine as the sum of
two torques Tm and Ts associated respectively to the
eigenspaces Gm and Gs:

sm TTT +=            (7)
Each torque Tm and Ts is expressed as the following dot
product:
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with
• θ , the mechanical angular position;
• srφ , the flux vector whose coordinate φsrk is the flux

through the phase k exclusively produced by the
permanent magnets.

Moreover, as the control of the 5-leg VSI is achieved
with a 2-level PWM, only average values of voltages are
assumed to be imposed by the VSI. Using the same
transformation as with the machine, the VSI is
decomposed into two fictitious VSI. To get a
characterization of each fictitious VSI it is sufficient to
project the 25 characteristic vectors of the 5-leg VSI onto
the two eigenspaces Gm and Gs. Two polyhedrons are
obtained (Fig. 2 and Fig. 3).
Consequently there are two 2-phase machines
represented in Fig. 4 by MM, the Main Machine and by
SM, the Secondary Machine. The MM (resp. SM) is

characterized by its back-EMF me  (resp. se ), its
cyclic inductance Lm (resp. Ls) and its torque Tm (resp.
Ts). These two drives are mechanically coupled: they
have the same mechanical angular velocity Ω. They are
supplied each one by a VSI, these two VSI being
electrically coupled by a mathematical  transformation.
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Fig. 2 Space Vector Representation of  to the VSI which supplies MM
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Fig. 3: Space Vector Representation of  to the VSI which supplies SM

B. Harmonic analysis of  fictitious drives
It is now interesting to characterize these fictitious
machines to be able to control and supply them correctly.
The expression (8) shows that the torque Tm and Ts are
the dot product of the vectorial projections of two
vectors. The first one is only depending on the design of
the machine, the second one is imposed by the power
supply.
As θφ dd sr /  is a 2π/p periodic function, it can be
expanded into a Fourier series and consequently
expressed as a sum of vectors associated with space
harmonic order number k. Properties of symmetry, due to
the regular manufacturing assumption, involve, as usual,
the cancellation of cosine terms and of even sine terms.



Moreover, when a vector linked to a the space harmonic
number k is projected onto an eigenspace the result
depends on k. According to the considered eigenspace
associated with the fictitious studied machine, the null
terms of the Fourier series are not the same. There is a
distribution of the different space harmonics between the
eigenspaces.
This particularity is verified for every vector which  has
the same mathematical properties as θφ dd sr / . Thus, it is
possible to associate to each fictitious machine a
characteristic family of time or space harmonics:
• the Main Machine (MM) is associated with odd

harmonics of 15 ±h  order: 1, 9, 11, 19,…
• the Secondary Machine (SM) is associated with odd

harmonics of 25 ±h  order: 3, 7, 13, 17,…
• the G0 eigenspace is associated with odd harmonics

of h5 .
In TABLE I is given harmonic decomposition of
experimental back EMF Fig. 5).

TABLE I
 HARMONIC DECOMPOSITION OF BACK-ELECTROMOTIVE OF ONE PHASE

Order of
harmonic

1 3 5 7 9

Relative RMS
amplitude

E1=100% E3=29% E5=12,4% E7=5,1% E9=1,7%
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Fig. 5. Back-EMF of the machine

One can remark that the MM is almost a machine with a
sinusoidal back-EMF since the 9th

 represents only 1,7%
of the first harmonic. For the SM  the 7th harmonic of

back-EMF, which is only 5,1% of the fundamental,
represents 18% of the 3rd harmonic. Consequently, the
back-EMF of  SM can not be considered sinusoidal
because it is composed of 3rd and 7th harmonics.

III. DEDUCED CONTROL OF EXPERIMENTAL  SET UP

Using causal EMR formalism (see Appendix on EMR
formalism) , the control structure is easily deduced by
systematic inversion (Fig. 7). Thanks to this structure it
appears clearly that a choice must be done to define the
two references Tm-ref  and Ts-ref from a torque reference
Tem-ref. This is due to the mechanical coupling expressed
by equation (7). This kind of choice is common in Multi-
Machine Multi-Converter systems and has been
formalized in [20].
The control laws are then easy to implement because
algorithms, already developed for 3-phase drives, can be
directly used for each fictitious machine. Nevertheless,
both fictitious machines have not the same reference
frame. The first space harmonic of MM is the
fundamental and implies that the angular velocity of the
frame is pΩ. The first harmonic of SM is the 3rd space
harmonic and implies that the angular velocity of the
frame is 3pΩ. A more usual synopsis of the control is
presented in Fig. 8.

Fig. 6. experimental bench
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To exhibit easily at first the sensitivity of the 7th space
harmonic of back-EMF, the adopted strategy consists in
using only the MM: Tm-ref = Tem-ref ; Ts-ref = 0. As the most
important harmonics in the SM are the 3rd and 7th ones,
the choice of  Ts-ref = 0  induces that the 3rd time harmonic
current must be equal to zero. Then the 7th time harmonic
is almost the only one in the SM as it appears in (Fig. 12,
Fig. 14).

A. Analysis of 7th harmonic back-EMF effect
The 7th harmonic of back-EMF induces currents in the
SM.
i1-7, the RMS magnitude of these currents, is estimated by

the following formula: 
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Fig. 7: Control structure of the 5-phase BLCD deduced from EMR
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the inductance Lm of the MM, this explains that even if E7
is equal to 5,1% of  E1  then i1-7 represents 29 % of  i1-1
(Fig. 12).

B. Compensation of 7th  harmonic back-EMF effect
A compensation of this back-EMF in the SM has been
implemented: Fig. 11, Fig. 13 and Fig. 15 show
improvements of the control. Fig. 9 gives more global
results of the control.

C. Increasing torque using both fictitious machines
As the back-EMF of SM is not equal to zero, it is
possible to increase the torque with a same modulus of

i . Considering that Tem is the dot product of

θφ dd sr / by i , the instantaneous value of Tem is

maximum if θφ dd sr / and i are collinear vectors.
Taking into account only the 1st and the 3rd harmonics,
the repartition between Tm-ref  and Ts-ref  is then 29% (the
same repartition as between E1 and E3, TABLE I).

IV. CONCLUSION

An original modeling of a 5-phase machine allows to
exhibit particularity of this kind of machine compared
with 3-phase one. The sensitivity of the 5-phase drive to
the 7th space harmonic is easily explained. Moreover, the
EMR modeling allows to find how to compensate the
high magnitude parasitic currents induced by the 7th

harmonic of back-EMF. Experimental results show then
improvements. Finally, a control where the two fictitious
drives are simultaneously supplied is presented. The
algorithms are the same as those already used in 3-phase
machines.
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APPENDIX ON EMR FORMALISM

The Energetic Macroscopic Representation (EMR) [22]
is a synthetic graphical tool based on the principle of
action and reaction between elements [21]. It leads to a
synthetic description of an overall conversion system
between two sources (oval green pictogram). It uses
elements which accumulate energy (rectangular orange
pictogram with an oblique bar) and elements which
convert energy without energy or storage (orange square
for electrical conversion, circle for electromagnetic
conversion and triangle for mechanical conversion).
From the EMR of an electromechanical conversion, one
can deduce a control structure, which is composed of the
maximum of control operations and measurements [22].
This modeling has successfully been applied to electric
vehicles, high-speed railway traction systems, wind
energy conversion systems, ship propulsion with double-
star induction machines.

EMR of an energy conversion — An energy conversion
between two sources S1 and S2 is represented by an
association of power components (Fig. 20): a conversion
element and two accumulation elements. All of them are
connected  by exchange vectors.
A source element produces a state variable (output). The
source is either a generator or receptor. It is disturbed by
the reaction of the connected element (input), for
example, the absorbed current for a voltage grid.

A conversion element yields an energy conversion
without energy loss nor storage. Its tuning is ensured by
an input vector ectun which consumes less power than the
transferred one. In some case, there is no tuning input
and the conversion transfer is realized with a fixed rate.
An accumulation element connects an energy source to a
conversion element, thanks to an energy storage, which
induces at least one state variable. Such element has no
tuning input.
The exchange vectors yield the energy to be transferred
between the connected components according to the
principle of action and reaction. On Fig. 20, the source S1
is chosen arbitrarily as the upstream source. It produces
an action which is transmitted then to the downstream
source S2 which answers by a reaction. So, one defines a
chain of action variables (ai) and a chain of reaction
variables (ri). These variables can be scalar or vector. The
two connected components are dual each other: if the
action is potential, the reaction is kinetic.

Extension to Multi-machine Multi-converter Systems
(MMS) — A MMS is composed of several mono-
machine mono-converter systems, which share one or

S1

ae1

CE

ae2
cetun

S2

a1 a2 a3 a4

r1 r2 r3 r4

Fig. 20: EMR between two sources



more power devices. Thus, it yields energy distribution
between electric and mechanical sources through coupled
conversion chains, which can yield interactions
(disturbances) between power structures. The MMS have
to enable best power repartition with lower cost
equipment.
The energy distribution is obtained by specific
conversion structures [19]. These power components are
common to several conversion chains. They are called
coupling structures. A coupling conversion structure
links an upstream device with many downstream one's, or
vice versa. Such structures are drawn by forms with
intersections (Fig. 21).
The electric coupling is associated with electric
converters. It corresponds to a common electric device of
several converters (power switch, capacitor...). It leads to
a common electric variable (voltage, current...).
The magnetic coupling is associated with electric
machines.
The mechanical coupling is associated with mechanical
converters.
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