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ABSTRACT 

 

 

New ballistic protection systems have been created recently 

based on high-tech materials. One of the industry’s objectives is to 

develop lighter and stronger defensive systems, which allow higher 

mobility and greater safety for both vehicles and humans. This work 

studies mathematically the behavior of a protection against a 

projectile impact. The employed model, originally proposed by Al-

Qureshi et al [1], includes a ceramic and metal layer system 

protection, and describes the projectile behavior and the impact 

absorption properties of the system. The literature also shows that 

the erosion tax and deceleration are highly dependent on the 

geometrical and structure parameters of the protective material. The 

phenomenon is described in different steps, presenting particular 

features for each step. The behavior equations present different 

system properties along the stages. This work presents a 

mathematical simulation performed on a developed model searching 

for best values for further studies. The properties to optimize include 

thicknesses of used plates, deforming profile, ceramic density, in 

addition to other relevant parameters. The program allowed the 

simulation of different parameters in the differential equations. As a 

result, graphs and surface plots were generated, which allowed a 

deeper analysis of the model and built an improved understanding of 

the process of fracture in materials by high velocity impact. Future 

studies will use these results as the basis for the manufacturing of a 

protection, which will be used for a practical experiment.  



 
 

  



 
 

RESUMO 

 

 

Novos sistemas de proteção balística vêm sendo 

recentemente criados com base em materiais de alta tecnologia. Um 

dos objetivos da indústria do ramo é desenvolver sistemas 

defensivos mais leves, porém mais fortes, que possibilitem ao 

portador, veicular ou humano, uma maior mobilidade com um maior 

nível de segurança. Este trabalho, baseado no trabalho original de 

Al-Qureshi et al [1], estuda matematicamente o comportamento de 

uma proteção contra um impacto de projétil. O modelo empregado 

inclui um sistema de proteção em camadas de cerâmica e metal, e 

ainda descreve o comportamento do projétil e as propriedades de 

absorção de impacto do sistema. A literatura ainda mostra que a 

taxa de erosão e desaceleração do projétil são altamente 

dependentes dos parâmetros geométricos e estruturais do material 

da proteção. O fenômeno de impacto e penetração é descrito em 

diferentes estágios, apresentando características particulares entre 

tais. As equações apresentadas demonstram diferentes 

propriedades do sistema ao longo dos estágios. Este trabalho ainda 

apresenta uma simulação matemática realizada sobre o modelo 

desenvolvido e aprimorado em busca de propriedades otimizadas do 

material para estudos futuros. Dentre as propriedades investigadas 

citam-se a espessura das placas utilizadas, o perfil de deformação 

do material metálico, a densidade da cerâmica, dentre outras 

características relevantes para o fenômeno. A rotina computacional 

possibilitou a aplicação de diferentes parâmetros nas equações 

propostas. Como resultado, gráficos e superfícies foram geradas, o 



 
 

que possibilitou uma análise mais profunda do modelo e um maior 

entendimento do processo de fratura em materiais por impacto de 

alta velocidade. Estudos futuros utilizarão estes resultados e 

desenvolvimentos para a produção de uma proteção balística que 

será utilizada para um experimento prático. 
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1 INTRODUCTION 

 

1.1 Motivation 

Ballistic protections are structures that have been much 

studied by different areas of science and engineering. Those 

materials are often applied in the transport, security and 

construction sectors. The impact energy absorption and its effects 

are decisive on the issue of security and reliability to its 

application. In this way, better protection against impacts is a 

milestone for the development of new mobility systems. As the 

research in materials advances, faster and safer protective 

systems for vehicles and/or buildings can be built. 

Al-Qureshi et al.[1] have developed a mathematical 

approach to the high speed impact against a particular type of 

protection and have performed some experiments with the 

proposed geometry as well. The armor cited is a two-layer system 

of ceramic and metal. The ceramic is responsible for the erosion 

of the incident projectile, which reduces its kinetic energy. The 

function of the metal layer is to prevent the projectile of going 

through the shield by absorbing its final kinetic energy as a plastic 

deformation. 

It is important to cite that the high speed impacts are 

phenomena presenting high complexity and limited reproduction. 

Parameters such as pressure, energy and projectile incidence in 

the protection, for example, can hardly be adjusted and/or 

prevented. In the literature [2,3,4,5] there are several high 



22 
 

complexity models using different methods. Modern mathematical 

approaches, such the work of Iqbal et al. [2] and 

Vanichayangkuranont et al. [5], present the interpretation of the 

impact phenomenon based on finite element modeling. On the 

other hand, further models based on simpler approaches with 

different objectives have been developed. The work of Jerz et al. 

[3] and Naik et al. [4] present approaches based on the projectile 

energy and the plastic and elastic deformation theory. 

However, the focus of the presented model is to represent 

the proposed impact situation using a simple approximation by 

ordinary differential equations. 

 

1.2 Objectives 

This work has the main objective of understanding the 

impact phenomenon on the proposed structure with its effects in 

both projectile and protection. 

To achieve this goal, the following objectives were set 

• Solving the movement equations of the proposed 

model using numerical methods; 

• Generating a routine to solve the same problem 

with different parameters of both projectile and 

protection; 

• Improving the model by modifying the proposed 

equations in their deficiencies; 

• Simulating the impact over the proposed structures 

with different types of projectiles. 
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2 LITERATURE REVIEW 

 

2.1 Protection Modeling 

The process of impact is described by Al-Qureshi et al. [1] 

in three different stages, showing different behavior of the 

projectile and the protection for each one. The first one explains 

the initial impact, analyzing the erosion of the head of the 

projectile and the loss of velocity without effective penetration. 

The second stage shows the behavior of the ceramic in the 

energy absorption during the penetration. In this stage, a 

movement of an interface projectile-ceramic as one factor of 

deceleration is considered. The third step of the phenomenon 

reports the absorption of the remaining energy of the projectile. 

For the three stages there are equations representing the 

evolution of the velocity and mass of the projectile. Moreover, for 

the third stage it is presented a deterministic equation for the 

maximum deformation of the metal plate. 

2.2 The Geometry of the Protection 

Generally, impact problems were primarily of concern to 

the military, either for defensive or offensive purposes to develop 

armor or ammunition[1]. High speed impacts must be considered 

in many other situations. For all of them, it is important to prevent 

the complete failure of the protection by improving the mechanical 

properties of the used materials. Impacts of this nature are 

studied by many authors and each one researches the most 
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efficient protection for a specific projectile. For this particular 

geometry, the impact of a metallic projectile, more specifically a 

bullet, is considered. 

Basically, the protection is a double layer system made of 

ceramic and metallic plates as shown in Figure 2.1. The ceramic 

layer cited in the literature is made of alumina and has a 

thickness between 8 and 12 mm. This plate is the one that will 

support the initial impact. The secondary layer is made of metallic 

material. The original work[1] proposes using stainless steel 304 

with 10 mm thickness. This layer also may have a larger area 

than the ceramic plate. In fact, this is not necessary, but helpful in 

the construction of the protection. In addition, a layer of aramide 

ply lined with sikaflex 221 resin was applied over the ceramic 

plate in order to retain the projectile fragments after each test [1] 

This also helps to glue both layers. 

 

Figure 2.1: Proposal of a two layer protection made by Al-Qureshi et al. 

[1] 
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2.3 The Stages of Penetration 

The penetration process is divided in three stages which 

represent the behavior of both projectile and protection during the 

impact and penetration processes. These differences have to be 

considered to understand the system after the high speed impact. 

The first stage is related to the initial impact of the 

projectile in the ceramic. The impact generates a shock wave that 

travels through the shield and reflects back at the end of the 

protection. The generated wave is shown in Figure 2.2. The 

overlap of the incoming and reflected waves will crack the 

ceramic. This crack has a format of a cone due the wave 

overlapping process. 

 

Figure 2.2: First stage of the impact. The collision generates a shock 

wave that travels through the armor. 

An important factor that contributes in the first and second 

stage is the effect of the ceramic against the projectile. As known, 

the ceramic is brittle, but this material is incompressible after 

some pressure, which is very different from a metal. Once the 

projectile is made of metallic material, it is possible to prevent its 
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erosion in the high speed impact against the ceramic. In this 

case, the material of the first layer can be compared with powerful 

cutting tools with efficient machining capacity for the projectile 

material [6]. While the shock waves travel, the head of the 

projectile is eroded, but no effective penetration occurs. 

The first stage ends when the wave returns to the 

generation point. Then, the wave overlapping ends and the 

ceramic is enough cracked to allow the projectile to penetrate 

effectively the first layer. 

The second stage starts at same time. The process of 

effective penetration is analyzed in this stage. The projectile starts 

pushing an interface projectile-ceramic inwards the armor. This 

interface is responsible for the erosion in the projectile in this 

stage. It is important to observe that if there is no difference 

between the velocities of both projectile and interface, there will 

be no erosion. To better understand the process, it is necessary 

to consider the Tate’s law for solids subjected to extremely high 

pressures [7]. According to it, it is assumed that the rod 

(projectile) act as rigid body until a certain pressure is reached, 

which is a constant for a given material. At pressures above this 

value the material behaves hydrodynamically. A similar argument 

may be applied to the target material. In this case, however, the 

pressure required to make material flow hydrodynamically must 

overcome not only the rigidity of the material in the immediate 

neighborhood but also the inertia of surrounding material. In this 

way, Tate introduces the modified hydrodynamic law for solids, 
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which is necessary for the comprehension of penetration 

phenomenon. 

This stage lasts until the velocities of the projectile and 

interface are equal. When this occurs, the erosion stops and the 

rest of the projectile keep penetrating and deforming the metal 

plate, which represents the final stage. The transition between the 

second and third stage is not exactly when the metal plate starts 

deforming, because it happens almost in the end of the 

intermediate stage. In addition, the deflection of the plate is 

studied with deterministic equations, while the velocity of the 

projectile is analyzed using a kinetic approach. 

The third stage is the final deceleration of the projectile. In 

this situation, the interface projectile-ceramic has the same 

velocity of the bullet and both decelerations are equal. The metal 

layer of the protection deforms plastically absorbing the remaining 

energy of the bullet. Moreover, the protection will not fail 

completely if the ceramic has absorbed enough energy before the 

deflection starts. 

2.4 Equations of Movement 

As the penetration process, the equations are also divided 

by stages. Basically there are equations for the erosion and 

deceleration of the projectile for all the stages except the third 

where there is no erosion of the bullet. 

To erode the head of the projectile then the dynamic 

yielding (Yp) of the projectile must be exceeded [1]. Then, the 

force opposing the penetration can be given as 
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pp AYtv
dt

d
tm −=)()(

  2.1 

This Yp is one of the Tate’s [7] constants and represents 

the maximum pressure that a solid supports before start behaving 

hydrodynamically. According to Tabor [8], the dynamic hardness 

of a metal is the pressure with which it resists local indentation by 

a rapidly moving indenter. The actual value of the dynamical yield 

pressure depends on the velocity of impact and on the way it is 

computed.  

Ap is the projectile’s head area. m(t) and v(t) are the 

function for mass and velocity of the projectile respectively. It is 

important to mention that mass is a function of time due the 

erosion of the bullet material. The erosion rate of the projectile is 

given by 

)()( tvAtm
dt

d
ppρ−=

 2.2 

where ρp is the density of the projectile material. 

In this stage there is no movement of interface and the 

head of the bullet is being eroded without effective penetration. 

The shock wave generated by the impact travels through the 

protection and reflects back returning to the collision point. The 

respective necessary time was calculated by Wilkins [9,10] and it 

is given by 

c

e
t c

fs

6=
 2.3 

where ec is the thickness of the plate and c the longitudinal 

velocity of sound in the material.  
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When this time is reached, the rigidity of the material 

neighbor to the collision point is overcome and the bullet starts 

advancing through the ceramic. In this way, the movement of the 

interface projectile-ceramic begins. This fraction of the ceramic 

plate moves with velocity u(t) and is responsible for the erosion of 

the projectile during the second stage. In addition, in this 

intermediate stage, the force opposing the penetration remains 

the same. 

The erosion rate in the second stage is given by 

( ))()()( tutvAtm
dt

d
pp −−= ρ

 2.4 

The configuration of the process during this stage can 

expressed by Tate’s hydrodynamic modified law [8] 

( ) ( )22 )(
2

1
)()(

2

1
tuRtutvY ccpp ρρ +=−+

 2.5 

where Rc is the dynamic resistance strength against penetration 

into the ceramic [11], considered to be constant. This is the 

property related to the rigidity of the target proposed by Tate [7]. 

Simultaneously to the penetration of the projectile, the 

metallic base will move and will be deformed elastically. However, 

the energy produced by this elastic energy will be low and will be 

neglected [1]. The deformation of the metallic plate will be 

discussed in the next chapter. 

As given by Eq. (2.4), the erosion will cease when both 

interface and projectile velocities are equal. Then, the second 

stage ends. After this occurs the projectile will continue 

penetrating the armor with deceleration given by 
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pcpr ARtv
dt

d
m −=)(

 2.6 

Here, mpr is the remaining mass of the projectile and due 

the absence of erosion, and it is not a function of time anymore. 

2.5 Equations for the Metallic Plate Deformation 

Due the deceleration of the bullet caused by the ceramic 

layer, the metallic plate may not be perforated. In this case, the 

secondary layer will suffer plastic deformation and the plastic 

energy consumed by the plate can be expressed in terms of 

effective stress and strain as  

dVE
vp ∫ ∫ 













∂=

ε

εσ
0  2.7 

For a material with effective stress–strain curve of a 

power-law hardening expression 

( )n
A εσ =  2.8 

Then, the total plastic energy becomes 

( ) dV
n

A
E

v

n

p ∫
+

+
=

1

1
ε

 2.9. 

Assuming that the material will be bulged in an axis 

symmetric mode, the effective strain can be written in terms of the 

radial strain as 

rεε 2=  2.10 

For a small displacement, the radial strain can be 

approximated to [1,12,13] 
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2

)(
2

1









∂
∂= rw
rrε

 2.11 

where the function w(r) is the deflection profile of the impact. Thus 

2

)( 








∂
∂= rw
r

ε
. 2.12 

The geometry of the small dimple done by the impact can 

be approximated as a small cylinder. The element of volume can 

be expressed as 

rrhdV ∂= π2  2.13 

where h is the thickness of the plate. The substitution of Eqs. 

(2.12) and (2.13) into Eq. (2.9) gives 

∫
∞ +

∂








∂
∂

+
=

0

)1(2

)(
1

2
rrrw

rn

hA
E

n

p

π

. 2.14 

For the solution of Eq. (2.14) is necessary to determine 

the deflection profile. Al-Qureshi et al. [14] have found that this 

profile can be expressed by an exponential given as 








 −
=

r
d

k

ewrw 0)(  2.15 

where w0 is the maximum deflection of the dimple at r = 0, 

and k is the deflection profile that can be determinate 

experimentally or by numerical adjustment. Moreover, it is 

necessary to consider the effect of the projectile geometry in the 

profile. Then, the constant d, which represents the bullet radius, 

was included in the equation. The differentiation of Eq. (2.15) 

gives 
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






 −








−=
∂
∂ r

d

k

e
d

k
wrw

r 0)(
.  2.16 

that furnishes the deflection profile necessary in the Eq. (2.14).  

Substituting Eq. (2.16) into Eq. (2.14) gives 

( ) ( )

rre
d

kw

n

hA
E d

nkrn

p ∂






−
+

= ∫
∞








 +−+

0

2212

0

1

2π

.  2.17 

It is known that the strain hardening index n is fractional ( 

0 < n < 1 ) and this will generate a complex value as result of 

( )12

0

+








−
n

d

kw
.  

Considering the physical nature of most constants it is 

possible to suppress the negative sign generated by the 

derivation demonstrated in Eq. (2.17). Also, the radial variation of 

the deflection profile is mirrored in the x-axis, which demonstrates 

that this ratio can be used as its own module. Now it gives 
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The solution for the expression is given by 
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that can be written as 
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According to Al-Qureshi et al. [1], a close examination of 

Eq. (2.16), reveals that the absorbed energy is directly 

proportional to the plate thickness, and is greatly influenced by 

the work hardening characteristics of the material. 

After the initial impact, the movement of the interface 

starts deforming the metallic plate. It can be argued that, initially, 

the metal layer is compressed due to high pressure generated by 

the impact. In addition, the plate does not move significantly 

because of the low interface velocity. In this way, it is possible to 

affirm that the deflection of stainless steel plate starts at the end 

of the second stage of penetration. 

Considering this, the energy absorbed by the plate can be 

approximately equated to the kinetic energy at the end of the 

second stage, which gives 

pprprk EvmE == 2

2

1

 2.22 

where vpr is the velocity of the projectile in the end of the second 

stage. It gives 

( ))1(2
0

2

2

1 += n
prpr wBvm

 2.23 

and, then, the maximum deflection of the plate can be written as 
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2.6 Initial Results 

Al-Qureshi et al. [1] have performed some experiments 

based on the presented model. The target was attached to a 

special fixture to ensure a normal impact condition. Moreover, the 

experimental apparatus allowed measuring the initial velocity of 

the projectile in the collision. After each test, the maximum central 

deformation of the base (w0) and the residual mass of the 

projectile (mpr) were measured. These tests permitted to compare 

the theoretical and the experimental data. Then, these variables 

were used to determine the influence of the grain size on the 

efficiency of the shield. 

The projectile properties are shown in Table 2.1. The 

same projectile caliber was used for all the experimental tests. 

The ceramic presented a thickness of 7.3, 9.3 and 11.3 mm. The 

ceramic plates were manufactured from the same chemical 

composition, but having different grain sizes. They were obtained 

by mixing different proportions of calcinated alumina A-1000SG 

and tubular alumina T-60 (both provided by Alcoa), and 2% TiO2 

was added for the sintering operation. Table 2.2 lists the 

formulations used for those experiments [1]. 

The mechanical properties of the different ceramic 

compositions are listed in Table 2.3. 
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Table 2.1: Projectile properties. 

Property Steel Nucleus  
of the Projectile 

Initial Velocity ( m/s ) 835 

Mass (g) 9.54 

Vicker’s Hardness ( HV) 817.5 

Dynamic Yield Stress ( GPa) 2.82 

Density ( g/cm³ ) 8.41 

Diameter ( mm ) 7.62 

 

Table 2.2: Ceramic compositions. 

Composition 
Al 2O3  

A-1000SG 
 (wt.%) 

Al 2O3 

 Tubular 
 T-60 (wt.%) 

TiO2 (wt.%) 

A 95 3 2 

B 90 8 2 

C 85 13 2 

D 80 18 2 

 

In addition, the stainless steel 304 had the following 

hardening power law 

( ) MPa
29.0

935 εσ =  2.25 

and density of 7.77 g/cm3. 
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For comparison, the maximum deflection of the metal 

plate was calculated theoretically for all the different thicknesses 

of the ceramic plate. The examination of this values shows that 

the values predicted by the theory are generally in good 

agreement with experimental results. The difference between 

experimental and theoretical data can be attributed to several 

factors such as the fact that the projectile does not collide 

perpendicularly to the target. Also, the variation in the thickness of 

the ceramic and the density may affect the results. Other 

important factor is that the theory considers that the transverse 

sectional area of the projectile (Ap) remains constant during the 

impact. This area is calculated based on the caliber of the 

projectile and then the theoretical fraction of mass lost in the 

impact was expected to be different of the experimental data. This 

comparison is shown in Table 2.4. 
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Table 2.3: Summary of mechanical and physical properties of various 

compositions 

Property  Composition  A B C D 

Modulus of Weibull (m) 14.4 8.4 8.8 15.1 

σ50 (MPa) 203.7 175.0 171.3 161.3 

σ0 (MPa) 209.0 182.8 178.5 165.2 

Vicker’s Hardness (HV) - 1551.4 1259.8 - 

Rc (GPa) - 4.43 3.60 - 

Density (g/cm 3) 3.79 3.90 3.80 3.75 

Average Grain 
Size (µm) - 18±8 22±9 - 

 

V50 is defined as the limit impact velocity for the 

protection. It represents the velocity that causes partial or total 

penetration. From this investigation, it was found that the ceramic 

with composition C has an average V50 higher than the plate with 

composition B. This evidence indicates that the grain size has an 

important influence on the absorber energy. Needless to say, 

more experimental results are needed before any final conclusion 

can be drawn with respect to the influence of grain size on the 

absorbing energy behavior [1]. Thus, it is important to consider 

that is necessary to have more experimental data before any final 

conclusion about the grain effect in the efficiency of the shield. 
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The analytical result for the evolution of both of the 

projectile and the interface velocities is shown in Figure 2.3. In 

this Figure, the projectile velocity v(t) is written as Vp(t) and the 

interface velocity u(t) as Vi(t). The final deceleration (the third 

stage) of the projectile is not demonstrated in this Figure. In this 

case, it is possible to observe that the interface velocity was zero 

during the first stage. On the other hand, the interface starts 

moving in the second stage until it reaches the same speed as 

the projectile. After this, as already mentioned, the erosion 

ceases and both the projectile and the interface move together 

with same velocity. 

 

Table 2.4: Comparison between theoretical and experimental values 

Thickness 
of ceramic, 

ec (mm) 
Composition  

Impact 
Velocity, 
Vp (m/s) 

Maximum 
Deflection, w 0 (mm) 

Exp. Theory 
Error 
(%) 

11.3 B 792.7 16.5 17.0 -2.9 

11.3 C 858.2 20.0 17.6 +13.6 

9.3 B 628.9 18.0 17.8 +1.1 

9.3 C 651.1 17.5 17.7 -1.1 

7.3 B 428.8 15.5 17.3 -10.4 

7.3 C 448.4 13.0 16.6 -21.7 
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The graph also shows that the second stage lasts more 

than the others revealing the importance of the ceramic layer in 

the energy absorption. In this case, it is possible to presume that 

different thicknesses of the ceramic layer will change the behavior 

of the shield in the impact situation. The use of thicker ceramic 

plates will increase the structure weight considerably and will 

reduce the deformation of the metal plate. On the other hand, 

ceramic with low thickness may not absorb enough energy of the 

projectile, which can cause total fracture of the armor. 

 

Figure 2.3: Projectile velocity as a function of penetration time. 
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3 SOLVING THE MODEL 

 

Considering the present mathematical model, it is 

necessary to solve the equations to completely understand the 

behavior of the projectile and target in the situation of impact. 

Basically two different solutions can be found from the equations: 

one for the evolution of the mass and another for the velocity 

during the collision. Then, the solution for the interface velocity 

can be found from the kinematic equations system. On the other 

hand, the maximum deformation of the metallic plate after the 

impact can be calculated by using the deterministic equations of 

absorbed energy. 

The division of the mathematical model in stages makes 

impossible to find a unique solution for the velocity or for the 

mass for the entire phenomenon. Considering this, the search for 

the solution of the impact evolution is also divided in stages, but 

then, all data are merged and a unique curve can be plotted. 

Then, for a more convenient and organized solution, the solutions 

are separated into mass and velocity equations for each stage, 

which makes necessary the manipulation and separation of the 

differential equations in a characteristic mathematical sentence 

for each situation. 

After finding the equations of mass and velocity for each 

stage, it is possible to solve them by using numerical methods. In 

this way, initial conditions and constants values are required and 

can be easily found in the original work. At the shift of the first to 

the second stage the conditions of continuity are applied for both 
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mass and velocity. At the shift for the third stage, the continuity 

condition for the velocity is once more applied, but not for the 

mass since it is constant in this stage.  

Since the kinematic equations are solved and the 

solutions are merged, it is possible to predict how much the metal 

plate will be deformed by applying values in the deterministic 

equation of deflection. The resulting values can be compared with 

some few results found in the original work. Moreover, the 

numeric values necessary for the constants involved in this 

equation can be found in Al-Qureshi’s work [1]. 

In the next chapters, the general method presented above 

will be explained in detail. 

3.1 Equation for the Projectile Velocity in the First Stage 

For the three stages, it is necessary to manipulate the 

equations to find a unique differential equation for the function of 

the mass and the velocity of the projectile. Needless to say, the 

function for the mass does not have to be solved for the third 

stage because it is constant. 

The differential equation for the velocity on the first stage 

can be found firstly considering both equations of the model for 

the first stage. The force against the projectile is given by 

pp AYtv
dt

d
tm −=)()(

 2.1 

and the erosion tax is given by 

)()( tvAtm
dt

d
ppρ−=

. 2.2 
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First, the equation (2.1) can be derived in function of time 

giving 

0)()()()(
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Now it is possible to substitute the erosion tax given by 

(2.2) in the equation (3.1). It gives 
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Also, it is possible to isolate the function m(t) in the 

equation (2.1), which is necessary for the equation (3.2). It gives 
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Substituting equation (3.3) into (3.2) gives 

0
)(

)(

)()(
2

2

=


















−






−
tv

dt

d

tv
dt

d
AY

tv
dt

d
tvA

pp

ppρ

 3.4 

that can be simplified and written as 

p

p
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The differential equation given by the expression (3.5) can 

be solved using numerical methods. The computational structure 

of the solving method will be explained in the next chapters. 
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It is interesting to mention that the velocity does not 

depend on the effective area of the projectile. On the other hand, 

it was expected that the higher the dynamic yielding Yp of the 

projectile material, the lower the deceleration. 

3.2 Equation for the Projectile Mass in the First Stage 

To find the differential equation for the mass of the 

projectile in the first stage, it is again necessary to manipulate the 

expressions in function of the time for the first stage given by the 

equation (2.1) and (2.2). The derivation of equation (2.2) gives 






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2

2

tv
dt

d
Atm

dt

d
ppρ

 3.6 

By isolating the acceleration term in the equation (2.1) it 

gives 

)(
)(

tm

AY
tv

dt

d pp−=
 3.7 

and this expression can substituted in the equation (3.6). Then 

the expression for the mass of the projectile in the first stage can 

be written as 

)(
)(

2

2

2

tm

YA
tm

dt

d pppρ
=

 3.8 

Here the importance of the geometry of the material can 

be noticed. The effective area, which is calculated using the 

diameter of the projectile, has a very high influence in the erosion 

tax. It is possible to note that the erosion tax will become lower 
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with the time. This can be explained by the drastic decrease of 

kinetic energy due to reduction of speed and mass. 

In addition, it is known that the variation of the mass 

during the impact implies a variation in the projectile geometry. 

However, in this work the projectile area (Ap) during the whole 

phenomenon is considered constant. 

3.3 Equation for the Projectile Velocity in the Second Stage 

The second stage starts when the wave generated by the 

impact reflects back in the end of the protection and returns to the 

original point. After this, the movement starts being governed by 

different equations due to the existence of the interface projectile-

ceramic movement. Again, to find the characteristic differential 

equation for the velocity in the second stage of penetration it is 

necessary to manipulate the equations given by Al-Qureshi’s 

model. 

The force against the projectile remains the same as the 

first stage and it is given by 

pp AYtv
dt

d
tm −=)()(

  2.1 

and the erosion tax is now given by 

( ))()()( tutvAtm
dt

d
pp −−= ρ

  2.4 

where u(t) represents the interface velocity. 

Then, for dealing with the problem of the velocity and 

mass for the second stage, it is necessary to use the Tate’s 

hydrodynamic modified law for solids given by 
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where Rc is the resistance of the ceramic against the penetration 

and ρc is the ceramic density. 

From the equation (2.4) is possible to obtain 
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and from equation (3.1), which is also valid for the second stage, 

is possible to isolate the erosion tax, which gives 
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The replacement of equation (3.10) into (3.9) gives 
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and can be simplified using equation (3.3), which gives 
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Tate’s equation (2.5) presents only the functions for the 

projectile and interface velocities and also can be manipulated to 

be written as a second degree equation for the function u(t): 

( ) 0)(22)()(2)( 22 =−−++− tvYRtutvtu ppcppc ρρρρ
 3.13 

where, in the ax²+bx+c=0 format, the constants a, b and c are 

( ) 2)(22;)(2; tvYRctvba ppcppc ρρρρ −−==−=
 3.14 

The solution for the equation (3.13) is given by 
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Now, substituting equation (3.15) into (3.12) is obtained 
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that can be simplified finding the characteristic differential 

equation for the velocity on the second stage: 
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The positive signal in the solution of the second degree 

equation was suppressed due to the possible complex solutions. 

Since the phenomenon is purely physical and real, it makes 
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absolutely no sense to consider imaginary solutions for the 

problem. 

3.4 Equation for the Projectile Mass in the Second Stage 

The same manipulation has to be done to find the 

differential equation for the erosion of the projectile in the second 

stage. Initially, it is possible to substitute equation (3.9) into 

(3.15), which gives 
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that needs to be manipulated by isolating the function of velocity, 

which gives 
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This equation can be derived in function of t giving 
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Here it is possible to use the equation (3.7) once more. 

Then it gives 
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that can be written with the second derivative of the mass function 

isolated, which gives 
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The expression above is the characteristic differential 

equation for the loss of the mass in the second stage of 

penetration. Needless to say, both mass and velocity evolutions 

in the intermediary stage are strongly influenced by the projectile 

and ceramic materials properties. Then, at the end of this stage a 

small compression in the metal layer is initiated. However, due to 

the high speed and kinetic energy of the projectile, the effect of 

the resistance to the plastic deformation of the stainless steel 

plate was neglected. 

The second stage ends when the erosion ceases. In this 

situation both interface and projectile velocities are equal and the 

loss of mass flux becomes zero. This is easily observable in 

equation (2.4). Considering this, the constant mass can be 

represented as mpr in the third stage equation given by 
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pcpr ARtv
dt

d
m −=)(

  2.6 

that can be solved with simple analytical methods. 

However, respecting the chosen methodology, the numerical 

method was once more chosen to find the solution. The method 

will be demonstrated in the next chapters. 

3.5 Duration of the First Stage 

To start solving the differential equations of the first stage, 

it is necessary to know how much time this initial part of the 

phenomenon will last. Considering the equation (3), it is possible 

to calculate this time due to the geometric parameters of the 

protection. The time of the first stage is given by 

 c

e
t c

fs

6=
  2.3 

where ec is the thickness of the ceramic layer and c the 

longitudinal velocity of sound in the material. For plates having 10 

mm thickness, the time to form the fracture cone is approximately 

equal to 6 µs [1], which was used for the initial calculations. 

In the end of the first stage, it is necessary to apply 

continuity conditions to the problem. It means that the final values 

for mass and velocity and their rates must be equal at the end of 

the first stage and at the beginning of the second stage. The 

same occurs at the end of the second stage with the velocity. It is 

necessary to mention that the influence of the epoxy resin 

between the ceramic and metal layer was not considered in the 

solution since it was also not take in account in the original model. 
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The erosion rate in the third stage is zero and the continuity 

condition does not need to be applied in this case. Moreover, the 

numerical method for solution and the storage method for the 

numerical values of the solution allow the easier manipulation of 

the data. These methods will be explained in the next chapters. 

3.6 Solving the Movement and Mass Problems 

The software Maplesoft Maple V12 was used to solve the 

equations and also to manipulate the data generated by the 

process of numerical solution. Firstly it was necessary to declare 

the characteristic differential equations for mass and velocity for 

the first stage. Then, it was also necessary to input the initial 

conditions for the problem. The second degree ordinary 

differential equation need two initial conditions: the primary 

condition is a value of the function in a specific value of abscise, 

and the secondary condition is a value of the first derivative in the 

same value of abscise of the primary condition. Needless to say 

that was also necessary to declare the numerical value for all the 

constants in the equations. 

All the required constants values can be found in Al-

Qureshi’s [1] work and are presented in Table 3.1. 
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Table 3.1: Values for the constants of the differential equation. 

Constant Value 

Yp 2.82 GPa 

Ap 45.58 mm² 

ρp 8.41 g/cm³ 

Rc 4.43 GPa 

ρc 3.90 g/cm³ 

 

The dynamic yielding Yp of the projectile material is 

considered constant during all collision. Moreover, the value of Ap 

was calculated using the diameter of the projectile (7.62 mm) and 

it was also considered constant during all impact. The values of 

Rc and ρc are from the composition B (90% Al2O3 A-1000SG , 8% 

Al2O2 tubular T-60 , 2% TiO2 ) which had an average grain size of 

18.4 µm. 

The primary initial conditions for the ordinary differential 

equations can be also find in the original work and are shown in 

Table 3.2 

Table 3.2: Basic initial parameters. 

Input Value 

Initial velocity : v(t=0) 835.0 m/s 

Initial mass : m(t=0) 9.54 g 
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Considering the second degree differential equations, it is 

also necessary to introduce the secondary initial conditions. 

Those conditions can be deduced from the original equations. 

Table 3.3 presents those conditions. 

The process of computing also must be stopped at the 

correct time, otherwise the solution will be obtained for times 

longer than the duration of the first stage. For the same stage the 

software was programmed to generate sixty values for the 

evolutions of mass and velocity. With these values, it is already 

possible to plot the first stage curves of mass and velocity. 

To the second stage, it is necessary to apply continuity 

conditions. The final values in the first stage have to be 

considered the initial parameters for the second stage equations. 

Then, considering the second order ordinary differential 

equations, it is necessary to input the final values of the derivative 

of mass and velocity in the first stage as initial parameters for the 

second stage too.  

Table 3.3: Secondary initial conditions. 

Input Value 

Initial acceleration 

)0(
)0(

=
−==

tv

AY
tv

dt

d pp  
-1.34*107 m/s² 

Initial mass rate 

)0()0( =−== tvAtm
dt

d
ppρ  

-320.08 kg/s 
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The values of mass and velocity in the end of the first 

stage can be picked from the numerical solutions. Otherwise, the 

values of the derivatives must be calculated using the main 

equations of the second stage of penetration. The equations are 

)(
)(

tm

AY
tv

dt

d pp−=
  3.7 

and 

( ))()()( tutvAtm
dt

d
pp −−= ρ

.  2.4 

In the second stage the interface projectile-ceramic starts 

to move with velocity u(t). This velocity is null in the beginning of 

this stage and can be considered this way in equation 2.4 to find 

the secondary initial parameters. The final results for mass and 

velocity in the first stage are demonstrated in Table 3.4 and the 

secondary initial parameters are shown in Table 3.5. 

With the equations and initial conditions declared, it is 

now possible to program the software to solve the second stage 

equations. The stop criteria for the calculations must be the value 

of time when the velocity of projectile is the same as the speed of 

the interface projectile-ceramic. For this, it is necessary to 

compare both numerical solutions. Unfortunately, the solution for 

the interface velocity depends on the solutions for velocity and 

erosion rate, as shown in equation (3.9). 
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Table 3.4: Initial parameters for the second stage differential equations. 

Input Value  

Velocity at the end of 1 st 
stage 

v(t=6µs) 

745.11 m/s 

Mass at the end of first stage 

m(t=6µs) 
7.71 g 

 

Table 3.5: Secondary initial parameters for the second stage differential 

equations. 

Input Value 

Acceleration: beginning of the 2 nd stage 

)6(
)6(

stv

AY
stv

dt

d pp

µ
µ

=
−==  

-1.66*107 
m/s² 

Erosion rate: beginning of the 2 nd stage 

( )







 =−=−==
= sm

pp stustvAstm
dt

d

/0
)6()6()6( µµρµ  

-285 kg/s 

 

This problem is solved by firstly guessing an exaggerated 

value for the duration of the second stage. Then the equations of 

velocity and mass are solved for this amount of time. After that, it 

is possible to apply those values into the equation (3.9) 

generating the solution for the interface. Comparing both velocity 

solutions, it is now possible to exclude the extrapolated data and 
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find the correct duration for the second stage. This can be done 

by comparing the plots of interface and bullet velocities or 

comparing the row of generated data for both solutions. 

Moreover, if the guessed time was not enough to find the value of 

t when v(t)=u(t), it is still possible to change the guessed value 

and compute the solution once more.  

Considering and applying the process mentioned above, 

the duration for the second stage was 17.6 µs, with overall time of 

23.6 µs in the end of the same stage. 

The data generated for mass and velocity of the projectile 

in the end of the second stage are the values that must be 

applied in the formula for deformation of the metallic plate. It is 

also important to remember that the model considers that before 

the third stage the metallic plate suffers only small elastic 

deformation and, taking this into account, such effect is neglected 

in the equations. Applying the data in the deflection equation will 

be presented in the next chapters. 

The third stage problem for the velocity can be solved 

using analytical methods. However, the numerical method is once 

more selected to solve the differential equation. This choice 

allows the solution to be manipulated equally as the solutions for 

the first and second stages. 

The differential equation for the third stage can be found 

from equation 2.6, that gives 

pr

pc

m

AR
tv

dt

d −=)(
 3.23 

with the primary initial condition 
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smstvvpr /03.322)6.23( === µ
 3.24 

Considering that the first order differential equations 

require just one initial condition, here it is not necessary to 

declare the secondary initial parameters. Then, the remaining 

mass of the projectile mpr is obtained from second stage 

solutions. Its value is  

gantconststmmpr 01.3)6.23( ==== µ
 3.25 

The duration of the third stage can be deducted from the 

analytical solution of equation (3.23) that gives 

pc

prpr
ts AR

mv
t −=

 3.26 

where tts is the duration of the third stage and vts is the initial 

velocity of the third stage. Then, the complete numerical solution 

for the problem of mass and velocity during the impact is solved. 

The numerical data generated by the program can be 

plotted in a graph of velocity against time presented by Figure 

3.1. 
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Figure 3.1: Evolution of the velocities of projectile and interface. 

 

The regions in the plot show the different stages of 

penetration. The yellow region represents the second stage and 

starts with the interface velocity. The third region shows the third 

stage and starts when the speed of the projectile and interface 

are equal. 

The blue line shows a shift in the curvature when the third 

stage begins. This can be explained due to the nature of the 

differential equations of velocity for each stage. Due to the 

independency of the own function, the solution of a first order 

differential equation is represented by a linear drawing. 

The ceramic plate acts mainly in the first and second 

stages, when most of the kinetic energy is absorbed. The loss of 

velocity in the third stage can be associated principally to the 
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effect of the plastic deformation in the metallic plate. Table 3.6 

shows the absorption of velocity, the loss of mass and the energy 

absorbed during the stages in percentages. 

The results for the projectile velocity in the second stage, 

when the main penetration occurs, also permit the calculation of 

the depth reached by the projectile inside the ceramic tile. This 

can be easily performed by simple numerical integration of the 

values generated by the software. Using this technique with the 

generated values, the calculated depth is 9.8 mm. 
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Table 3.6: Deceleration, erosion and energy absorption rates among the 

stages. 

Stage Velocity Loss 
(%) Erosion (%) Absorbed 

Energy (%) 

1° 10.77 19,18 35.65 

2° 50.67 49.27 59.66 

3° 38.57 ------- 4.69 

 

3.7 Calculating the Metallic Deformation 

The main work made by Al-Qureshi et al. [1] also presents 

some experimental results. However, in the same work, there are 

only results for the final deformation w0 of the metallic plate after 

the impact and no results for the remaining mass of projectile is 

furnished. Those experimental values were also compared with 

theoretical results calculated using the equation for the metallic 

plate deformation 

)1(2

1
2

0 2

1 +














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w

  2.24 
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n
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B

2
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1









+
= π

  .2.21 

The final deformation of the metallic plate can also be 

calculated using the results of mass and velocity given by 

equations (3.24) and (3.25). Further constants involved in the 
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equation are also presented in the original work, except for the 

deflection profile k that, according to the author, can be 

determined experimentally [1]. Due to the necessity of this 

constant in the calculations, its value has to be calculated using 

the presented results with a regression procedure solving the 

equation 2.24 by isolating the value of k. Then, this parameter is 

considered as a property of the metallic material and also 

invariable. The value of other parameters present in the equations 

2.24 and 2.21 are presented in Table (3.7): 

 

Table 3.7: Values of the constants involved in equations 2.24 and 2.21. 

Constant Value 

n 0.29 

h 1.5 cm 

A 935 MPa 

d 3.81 mm 

k 0.0017 

 

With these values the result for the final deformation of 

the metallic plate is 16.2 mm, which is suitable to the theoretical 

results presented in the main work [1] according to Table 2.4. 
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4 MODIFYING THE MODEL 

4.1 Duration of the First Stage 

The original equation for the first stage duration was 

proposed by Wilkins [9,10] for a three layered ceramic structure. 

In the present work, the same approach was considered for the 

ceramic layer. However, it was necessary to improve the 

accuracy of the model and it was also possible to consider that 

the shock waves travel through all the structure. Thus, a 

modification in the proposed sentence for the duration of the first 

stage was done. 

For a solid two layered system, it is necessary to consider 

the time needed for the generated wave to reflect in the back part 

of the protection and return to the initial point and, furthermore, 

start to crack the ceramic layer. The time needed for the wave to 

travel and reflect back is given by 

m

m

c

c
i c

e

c

e
t

22 +=
 4.1 

where ec and cc are, respectively, the thickness and the 

longitudinal velocity of sound for the ceramic material, and em and 

cm are the same constants for the metallic material.  

It is known that the shock wave travels with the 

longitudinal velocity of sound in the solid, and this velocity can be 

calculated by 

ρ
E

c =
 4.2 

where E is the elastic modulus of the material[15]  
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The substitution of equation 4.2 in 4.1 gives: 

m

m
m

c

c
ci E

e
E

et
ρρ

22 +=
 4.3  

where Ec and Em are the elastic modulus for the ceramic and 

metallic material respectively. Equation 4.3 allows a better use of 

system’s properties in the model. 

4.2 The Resistance to the Penetration on Ceramic 

The simulation for the impact phenomenon must 

represent the reality by considering experimentally measurable 

parameters. The present mathematical model is an initial simple 

approach to the high speed impact situation. The equations of 

movement and erosion were modeled based on the system 

properties, considering both bullet and shield materials. However, 

these equations also involve certain constants, such as Rc  and 

Yp, that are not usually found experimentally. According to Tate 

[7] both values represent the pressure that the solid material can 

support without reaching the hydrodynamic behavior. Tabor [8] 

also explains that the dynamic yielding Yp of a metallic material is 

a function of the velocity of the indentation. Considering the high 

speed of the impact the same is assumed for the resistance 

against penetration in the ceramic Rc.  

The hardness of a material is measured by different types 

of indentations in the plane surface of the material. During the low 

speed indentation test, both plastic and elastic domains act in the 

resistance of the material. After the removal of the indenter, also 

in low speed, a material relaxation in the neighborhood of the 
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indentation hole is expected, which represents the elastic 

behavior of the material. In the brittle materials this effect is 

almost absent, but for the ductile materials, such as the material 

of the bullet, it is an important effect and must be considered in 

during the experiments or calculations.  

In the high speed impact phenomenon the amount of 

energy per unit of time over the material surface is much higher 

than in a common indentation process. In this way, the material 

does not present a full resistance of its elastic domain. 

Considering this, depending on the velocity of the impact, 

geometry of the indenter (projectile) and material of both projectile 

and target bodies, the resistance against penetration or plastic 

deforming, in the case of the projectile, will be different.  

By observing Al-Qureshi’s work [1], it is possible to notice 

that the dynamic yielding Yp for the projectile material is directly 

presented. However, the resistances against penetration for the 

ceramic layer are different for the compositions B and C 

presented in the literature. Moreover, the same work presents the 

Vicker’s Hardness of both types of ceramics. The values are 

presented in Table (4.1). 
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Table 4.1: Vicker’s hardness and resistance against penetration in the 

ceramic for compositions B and C. 

 
Composition 

B C 

Hardness 
(HV/GPa) 1551.4 15.21 1259.8 12.35 

Rc (GPa) 4.43 3.60 

 

Comparing the presented values, it is possible to notice 

that 

)(

)(

)(

)(

c

cc

b

bc

HV

R

HV

R
=

 4.4 

Once the applied load over the surface of the ceramic 

material is very high and it is done in an extremely short time, 

even the small plastic or elastic resistances do not fully act during 

the indentation. Considering this, the presented relation and the 

Tabor [8] commentaries for the resistance of the materials against 

penetration by fast indentation, the constant Rc is considered a 

fraction of the Vicker’s hardness of the material. 

Then, Tate’s equation was modified and a new one is 

given by: 

( ) ( )232 )(
2

1
10*84.2)()(

2

1
tuHVtutvY cpp ρρ +=−+ −

 4.5 

where HV is the Vicker’s Hardness of the material.  
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It is important to mention that this modification does not 

affect the model or the results. This fact also contributes to further 

experimental tests using this model as basis. 

4.3 Metallic Plate Deflection Profile 

The metallic layer is responsible for absorbing the 

remaining energy of the projectile after the second stage. The 

original mathematical model proposed that the plastic deformation 

in this plate can be deduced from the effective stress and strain 

relation. It is given by 

( )

∫
+










+
=

V

n

p dV
r

w

n

A
E

12

1 δ
δ

 4.6 

However, the considered profile of deformation 
r

w

δ
δ

 and 

also the considered geometry dV for the dimple are simple and 

could be modified to improve the accuracy of the model. 

In the original work, the geometry of a small cylinder for 

the shape of the dimple after the impact was considered. It was 

given by 

rrhdV ∂= π2 .  2.3 

Taking into account that the dimple shape, as shown in 

Figure 4.1, it can be well represented by the volume of a 

paraboloid. 
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Figure 4.1: Shape of the metallic plate after impact. 

 

The 3D equation of this curve is given by 

22 yxz +=  4.7 

that has to be transformed to cylindrical coordinates for further 

steps. It gives 

2222 sincos θθ rrz +=  4.8 

Integrating the curve it is possible to calculate the volume 

of the solid paraboloid. It is given by 

( )∫ ∫ ∫ +=
h r

dzddrrrV
0

2

0 0

2222 sincos
π

θθθ
 4.9 

that becomes 
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hrV 2

3

2 π=
 4.10 

In addition, equation 4.9 can be derived to provide the 

necessary element of volume 

rrhdV ∂= π2  4.11 

The modification in the deformation profile is related to the 

shape of the curve in the considered parameters. 

  

Figure 4.2 Deflection of the metal plate as a function of the radial 

distance with the original model equations. 

 

The proposed deflection profile is given by 
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= d
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ewrw 0)(
  2.15 

and with the calculated and given constants (k and d respectively) 

the plot of this constant does not fit well, compared to Figure 4.2. 

The central deformation (in r = 0) of the metallic plate is 
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represented by a sharp edge in Figure 4.2 and the function is not 

mirrored in the y axis. Considering this, an approach based on the 

normal distribution curve was done and the modified profile is 

now given by 











−

= d

rk

ewrw

2
mod

0)(  4.12 

where kmod represents the modified profile constant for the 

deflection equation. Differentiating the proposed profile it is 

encountered the necessary term 
r

w

δ
δ

 for the plastic energy 

absorbed by the metallic layer. It is given by 
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By substituting the profile given, by equation 2.15 and 

also the volume element gave by equation 4.11 in equation 4.6 it 

is possible to write the modified expression. The simplified 

equation is given by 
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and its solution can be written as 
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where Γ represents the gamma function.  
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As same as the original result, it is known that the 

hardening exponent n is fractional ( 0 < n < 1 ) and this generate 

a complex value as result of 
22

0mod2
+








−
n

d

wk
 because of the 

negative signal. However, as mentioned in previous chapters, the 

module of this sentence is considered due to the mirrored y-axis 

plot of
r

w

δ
δ

, which generates these constants. With this, the 

sentence becomes 

( )

1

12
2
52 2

5

mod

22

0mod

+








 +







 +Γ








=

−−+

n
d

nk
n

d
wk

hA
E

nn

p

π

 4.16  

Considering that the energy absorbed by the plate can be 

approximately equated to the kinetic energy at the end of the 

second stage, which is given by 

pprprk EvmE == 2

2

1

  2.22 

the expression for the maximum deflection of the metal plat can 

be written as 
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With this new solution for the metallic plate maximum 

deformation, it is also necessary to calculate the modified 

deflection profile constant kmod using the experimental data given 

by the original work. The same procedure for the constant k 

calculation in the previous chapters has been adopted and the 

value found for this constant is now 0.0018 m-1. 

4.4 Comparison to the Modified Duration of First Stage  

To compare the modified theory results with the data 

furnished by Al-Qureshi’s work [1], the movement equations had 

to be once more solved due the new duration of the first stage 

calculated by equation 4.3. The modified deflection theory was 

also considered using the constant values given by the same 

work and the motion input data generated by the movement 

solution. Moreover, to generate a broader range of comparisons, 

the solutions were performed using the same composition 

characteristics and initial velocity data presented in Table 3, given 

by Al-Qureshi’s article as well[1]. 

Ceramic compositions B and C, mentioned in the article, 

had different densities and resistance against penetration (related 

to Vicker’s Hardness) which had to be considered in both 

equation 4.3 and Tate’s modified hydrodynamic law 4.5, 

respectively. To calculate the duration of the first stage, the 

elastic modulus of 96% pure alumina (Al2O3) , given by Accuratus 

[16], and stainless steel 304 presented by AZoM materials 

database [17], were considered. The other properties involved in 

the calculation are shown in Table 4.1.  
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Table 4.2: Values of the constants used in the modified model. 

Symbol Property Value 

ρc Ceramic Density 
Composition B 

3.9 g/cm3 

Composition C 

3.8 g/cm3 

Ec 
Ceramic Elastic 

Modulus 
300 GPa 

ec Ceramic Thickness 
11.3 
mm 

9.3 
mm 

7.3 
mm 

Rc 
Resistance against 

penetration on ceramic 
Composition B 

4.43 GPa 

Composition C 

3.60 GPa 

ρm Metal Density 7.77 g/cm3 

Em Metal Elastic Modulus 193 GPa 

em and h Metal Thickness 15 mm 

A Metal Strength  935 MPa 

n Metal Hardening 
Exponent 

0.29 

Kmod  
Metal Modified 

Deflection Profile 
Constant 

0.0018 m-1 

Y Projectile Dynamic 
Yielding 

2.82 GPa 

ρp Projectile Density 8.41 g/cm3 

 

Table 4.3 presents the experimental maximum deflection 

values and also the calculated results and the respective errors 

considering the old and new theories. 
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It is possible to note that the new theories presented 

higher error rate than the old theory results in some of the test. 

However, the results of the maximum deflection showed that the 

new theories can generate good results not only for the high 

speed impacts, but also for lower velocities, differently from the 

old theory. 

 

Table 4.3: Comparison of the results between the original and modified 

theories of first stage duration and plastic deformation. 

Composition 
Thickness 

(mm) 

Duration 
of the 1 st 

stage 

(µs) 

Impact 
velocity 

(m/s) 

Maximum Deflection Errors 

Experimental 
Data 

(mm) 

Original 
Theory 

OT 

(mm) 

Modified 
Theories 

MT 

(mm) 

OT 

(%) 

MT 

(%) 

B 11.3 8.6 792.7 16.5 17.0 17.24 2.9 4.29 

C 11.3 8.7 858.2 20.0 17.6 18.38 -
13.6 

-
8.81 

B 9.3 8.2 628.9 18.0 17.8 18.8 -1.1 4.25 

C 9.3 8.2 651.1 17.5 17.7 18.29 1.1 4.31 

B 7.3 7.7 428.8 15.5 17.3 14.62 10.4 
-

6.01 

C 7.3 7.8 448.4 13.0 16.6 13.0 21.7 0 



73 
 

5 SIMULATIONS BASED ON THE MODIFIED THEORIES 

 

The simulations are useful to evaluate the performance of 

the designed code. In addition, it would be even better to 

reproduce the simulated phenomena experimentally. However, it 

was not possible to generate the impact situation in laboratory 

due to several factors. Considering the bureaucracy and the 

constraints related to fire weapons and licenses to handle them, it 

was practically impossible, in this case, to find a person and a 

place where those tests could be performed in the available time.  

The simulations were done to evaluate the effect of the 

variation of some parameters in the system. 

5.1 Simulation on the Thicknesses of the Ceramic Layer 

Initially, different thicknesses of the ceramic plate are 

applied in the program in order to analyze the effect on the 

absorbed energy, duration of the impact and deformation of the 

metallic plate. In every simulation it was necessary to keep 

constant the elastic modulus and density for metal and ceramic in 

order to vary the ceramic thickness. The values for these 

constants are presented in Table (4.2) in last section.  

The base thickness for the ceramic layer, mentioned by 

the authors of the original theory [1], was 10 mm. Here, the value 

is modified by expressing the thickness difference by fractions of 

the original proposed value. In this way, it is possible to control 

the thickness of the layer in the program with dimensionless 

parameters. The selected values to be applied in the code are 
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50%, 75%, 100% (original), 125% and 150% of the original value 

proposed by the authors. The aforementioned values are applied 

into the equation 4.3, from which different time results are 

obtained for the first stage and, as consequence of this, important 

consideration about the calculation of the thickness. 

The time for the first stage, considering the different 

thicknesses of the ceramic layer, is presented in Table 5.1. 

Figure 5.1 presents the end of the second stage and the 

final deceleration of the projectile. It is possible to note that the 

different thicknesses of the ceramic layer do not affect 

considerably the duration of the phenomenon. Moreover, the 

same image shows the insignificant differences between the 

velocities (in the different runs) at the start of the third stage (shift 

in the curvature). In addition, in the first stage, the different 

ceramic layers’ thicknesses do not affect the duration of this step 

considerably; it just changes the time between the runs by 0.1 µs.  

From this simulation, it is also possible to calculate how 

much the metal will deflect. The deflection depends on the 

velocity and the remaining mass by the end of the second stage. 

For the equation 4.17, most of the values of Table 4.2 were used, 

except for the remaining mass (mpr) and the velocity in the end of 

the second stage (vpr). These two values were replaced by the 

data generated by the simulation. Due to the little difference 

presented in the simulated results, the metallic layer`s final 

deflection values were practically the same, presenting 

differences of 0.1 mm, which were considered negligible. 
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Table 5.1: Duration of the first stage for different ceramic thicknesses. 

Percentage of the original 
value (10 mm) 

Duration of the first stage 
(µs) 

50 7.1 

75 7.7 

100 8.2 

125 8.8 

150 9.3 

 

Together with the evolution of the velocity, it is possible to 

calculate how much the projectile advances into the ceramic 

during the penetration process, which is described by the second 

stage equations. This can be easily computed by integrating 

numerically the projectile velocity data during the second stage. 

Moreover, by knowing the size of the time intervals (0.1 µs) it can 

be assumed that the approximation is valid. Table 5.2 presents 

the advance of the projectile into the ceramic for the different 

thicknesses used. 
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Figure 5.1: evolution of the projectile velocity for different ceramic 

thicknesses. 

 

It is possible to observe according to Table 5.2 that the 

two finer ceramic plates are not capable to absorb properly the 

impact, allowing the projectile to pass through it, compromising 

the metallic structure. On the other hand, it is obvious that thicker 

ceramics are not going to be crossed very easily. However, the 

thickness of the ceramic plate can increase drastically the weight 

of the whole structure. 
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Table 5.2: Advance of the projectile in the ceramic tile for different 

considered plate thicknesses 

Thickness of the ceramic 
plate 

 (mm) 

Projectile penetration in the 
plate 

 (%) 

5 179.39 

7.5 113.69 

10 81.62 

12.5 61.86 

15 49.21 

 

5.2 Simulation on Different Types of Projectiles 

The effect of a bullet impact can be compared to the 

impact of a high-velocity asteroid (or another solid body in space) 

in an aerospace protection. This comparison is also valid for the 

collision between a still body in space and an aircraft travelling at 

high speed. This second round of simulations is based on 

different types of projectiles. The model has to show clear 

responses for the different geometries and masses of the 

projectile, otherwise it will not be omnivalent and all the equations 

will have to be changed for the different numerical parameters 

inserted. 

The geometry data used for the projectiles are from the 

National Institute of Justice Standards (USA) – Ballistic 

Resistance of Body Armor [18]. The literature classifies the 
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different types of body armor by the specifications of each bullet`s 

type and velocity. It would take a long time if all the different 

parameters were used in the simulation. Then, one or two 

parameters for each type of protection were used. Table 5.3 

shows the projectiles` data that were used. 

 

Table 5.3: Parameters used in the simulation for different type of 

projectiles. 

Type Specification  
Bullet 

Diameter 
(mm) 

Mass 
(g) 

Initial Velocity 
(m/s) 

II .357 Magnum 10,2 10,2 453 

IIA 9 mm 9 8 373 

IIA .40S&W 10,2 12 300 

IIIA .357 SIG 9,02 8,1 440 

IIIA .44 Magnum 10,9 16 460 

 

From the input parameters presented in Table 5.3, it is 

possible to run the simulations and plot the velocity evolution 

graph for the different types of projectiles. This graph is shown in 

Figure 5.2 
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Figure 5.2: Velocity(m/s) versus time(s) for the different parameters of 

mass, diameter and initial velocity of the projectiles. 

 

As known, the shift in the curvatures demonstrates the 

end of the second stage for every simulation. At this point, the 

velocity of the interface, which is not shown in the above plot, is 

equal to the bullet velocity. The marked region in the graph 

corresponds to the probable area of velocity and time where the 

erosion does not occur. This helps to investigate the effect of the 

ceramic`s characteristics in the impact absorption and in the 

erosion. This graph and this model of simulation can be used to 

search for specific properties in the ceramic plate and/or to 

improve its shock absorption property. 

Similarly to the simulation on the different ceramic 

thicknesses, it is possible to calculate the final deflection of the 
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metal plate. Using the velocity and the mass at the end of the 

second stage for each simulation plus the constants` data given 

by Table 4.2, the deflection values for each type of projectile 

together with the percentage of advance inside the ceramic layer 

are shown in Table 5.4. 

Table 5.4: Values of final deflection and penetration in the ceramic layer 

Type Specification Velocity 
(m/s) 

Mass 
(g) 

Deflection  
Value 
(mm) 

Penetration 
in the 

Ceramic 

(%) 

II .357 
Magnum 170 6.66 19.48 87.5 

IIA 9mm 129 5.80 18.71 41.4 

IIA .40S&W 104 9.45 18.63 49.6 

IIIA .357 SIG 163 5.36 17.40 84.4 

IIIA .44 
Magnum 197 10.38 20.15 90.1 

 

In Table 5.4, it is possible to notice that the mass of the 

projectile is also another important factor in the impact. Heavier 

projectiles tend to penetrate more in the protection and deform 

more the metallic back plate, as expected. However, the low 

velocity of the projectile imposes also low erosion rates to the 

projectile, which loses lower amounts of mass. 
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5.3 Simulation on the Metal Layer Properties 

Another important part of the protection is the back metal 

plate, which is responsible for the absorption of the final kinetic 

energy. The characteristics of this metal can determine if the 

protection will fail or not. Considering this, a deterministic 

simulation was made based on the equation 4.17 together with 

equation 4.12, which gives 
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In this equation, it is possible to find two constants plus 

the radial distance value (r) that can be changed at will. Those 

are the dimensionless constant n and the thickness of the plate h. 

Moreover, the value of another mechanical property of the metal 

A could be modified, but the result would be similar to the 

variation in the thickness h of the material. 

Figure 5.3 presents the surface plot of the maximum 

deformation as a function of r and n and Figure 5.4 presents the 

same deflection in function of h and r. 
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Figure 5.3: Deformation w in function of the radial distance r and the 

hardening exponent n. 

 

Based on Figures 5.3 and 5.4, it is possible to affirm that 

the mechanical property n and the thickness h of the metal layer 

have an important effect on the maximum deflection. The n 

constant demonstrates the ductile behavior of the material. 

However, if a lower deflection is required, it is important to note 

that a harder material could shear more easily depending on the 

energy of the projectile. Moreover, a change in the thickness of 

the metal plate will certainly affect the structure weight, which 

could be an aggravating factor in the carrier’s mobility. 
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Figure 5.4: Deflection of the metallic plate w in function of the metal 

thickness h and radial distance r. 
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6 CONCLUSIONS 

6.1 Concluding Remarks 

 

The model has proved to be reliable to represent the 

impact of a colliding bullet on a ceramic-metal system. However, 

the proposed equations and stages are a simplification of a 

complex phenomenon, which is the high speed impact. The 

results and comparison presented in the tables and graphs 

validated the model in its original solution, even not considering 

several side effects that can affect drastically the experimental 

results. In addition, the modified equations could approximate the 

results with the experimental data presented in the literature by 

preventing the behavior of the system even in impacts with lower 

velocity.  

In addition, the simulation demonstrated different aspects 

of the model and some predictable effects in collision 

phenomena. The control of the properties and its effects were 

analyzed with the developed computational method. Some of the 

effect predicted by the program could not be studied 

experimentally. However, future studies can use the presented 

results to validate the theory and, then, analyze some internal 

phenomena in a deeper way. 
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6.2 Future Studies 

 

The presented work is a theoretical analysis of the impact 

phenomenon in a specified type of protection. In the future 

studies, the current model, its solutions and simulations can be 

used to perform experimental test to evaluate the reliability of the 

model. Also, if the model can be considered valid for the impact, 

the considerations and formulations can be kept or improved to a 

more advanced modeling as FEM (finite element modeling). In 

addition, the experimental confirmation of the presented modeling 

also permits deeper investigations of the impact phenomenon, 

such as the effect of the interfacial friction between the projectile 

and sheared surfaces. 

Moreover, in a partnership with Construções Mecânicas 

Cocal LTDA., which leads a project of armor development, the 

presented study will be improved and used as a resource to 

investigate the effects of the collision in the already developed 

armor prototype involving ceramic, polymeric and metallic 

materials. 
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