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INTRODUCTION

The structural evolution of metallic materials dur�
ing plastic deformation has been extensively studied
for the last hundred years. As a result, the most impor�
tant sign of a plastic flow was found to be the localiza�
tion of plastic deformation, which is accompanied by
the localization and intensification of heat sources in a
material. When calculating the intensity of heat
sources in a material and determining the total energy
consumed for its deformation, one can perform an
integral estimation of the energy stored in an ensemble
of mesodefects in order to determine the current stage
of its evolution.

The thermodynamic and mechanical features of
the elastic–plastic transition were studied in [1–7]. In
[1], we proposed a method to estimate the energy stor�
age rate in a material using the results of infrared scan�
ning. In [2], this process was considered from the for�
mal points of the mechanics of continua using an
additionally introduced structure�sensitive tensor
variable, which describes the growth of mesoscopic
defects. The wave character of heat dissipation in steel
during the elastic–plastic transition was first experi�
mentally detected in [3]. The authors of [4] experi�
mentally studied the propagation of deformation
localization waves in fcc metal single crystals (copper,
nickel). Then, researchers used speckle interferometry
and detected wave deformation processes in a wide
range of plastic and quasi�plastic materials. Kiselev [5]
suggested a mathematical model for the propagation
of localized plasticity waves in crystals; it is based on
the double cross slip of screw dislocation segments.

In this work, we continue the study of the energy
dissipation [1, 2] during the elastic–plastic transition
by infrared scanning. We determine the main thermo�
physical features of this transition at various strain
rates and study the temperature kinetics of the sample
and the dependence of the heat�wave velocity on the
number of waves and the strain rate.

EXPERIMENTAL

We investigated the elastic–plastic transition in
iron subjected to uniaxial quasi�static tension. The
chemical composition of iron is given in the table.

The experiment was carried out under isothermal
conditions. The strain rate was varied from 10–4 to 2 ×
10–3 s–1. To obtain reliable results, we analyzed two
series of samples that were made from the same batch
of armco iron and subjected to the same mechanical
and heat treatment.

After mechanical treatment, the samples were
annealed in an oxygen�free atmosphere at 800°C for 8 h.
The oxygen�free atmosphere was created by simulta�
neous annealing of the iron samples under study and
additional copper samples with a developed surface.

The geometry of the iron samples is shown in Fig. 1.
An additional neck on the lateral surface was made on
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Chemical composition of armco iron

C, % Mn, % Si, % S, % P, % Ni, % Cr, % Mo, %

0.004 0.04 0.05 0.005 0.005 0.06 0.038 0.01



some samples to extend the range of strain rates and to
study the nucleation of localized deformation bands.

The samples were tested on a servo�hydraulic
INSTRON 8500 machine and an electromechanical
Zwick 100 machine. To monitor energy dissipation,
the sample surface was mechanically polished (a dia�
mond suspension with a grain size of 3 µm was used at
the last stage of polishing) and covered with dull black
paint. To record the evolution of the temperature field
in a sample, we used a CEDIP Jade III infrared cam�
era. The spectral range of the camera was 3–5 µm. The
maximum frame size was 320 × 240 points at a mini�
mum “heat” point size of 10–4 m. The minimum dif�
ference in the temperatures was 25 mK at 300 K, and
the maximum photography speed was 500 Hz.

After loading, the sample surface was examined
with a New View 5000 optical interferometer–profilo�
meter, which forms a three�dimensional image of the
surface relief at a horizontal resolution of 0.5 µm and
a vertical resolution of 1 nm.

THERMODYNAMIC FEATURES
OF THE ELASTIC–PLASTIC TRANSITION

IN IRON

During the elastic–plastic transition, deformation
in a sample localizes and propagates as a wave from the
machine grips toward the center of the sample. In a
shaped sample, a wave nucleates in the neck normal to
the tension direction and acquires a characteristic tilt
of 50°–70° in a certain time (Fig. 2). The characteris�
tic transverse size of the initial localized�deformation
region varies from several millimeters to the entire
sample width.

When two waves form, their tilts are independent of
each other and become the same when the waves
touch each other. During the elastic–plastic transi�
tion, deformation in the sample is localized in a nar�
row region at the wave front. The characteristic longi�
tudinal size of the localization zone is 10–15 mm.
Wave propagation causes a yield plateau, the length of

which depends on both the strain rate and the geome�
try of the sample.

The surface temperature kinetics has several pro�
nounced stages. Figure 3a shows the main stages of
changes in the maximum sample surface temperature
during the propagation of localized�deformation
waves. In stage I, the sample temperature decreases
due to the thermoelastic effect. Stage II is character�
ized by a sharp increase in the temperature during the
nucleation of a localized�deformation zone and by the
propagation of a single wave. At stage III, the process
passes to a steady state, which is accompanied by the
propagation of two waves and a slow increase in the
maximum temperature. At the final stage, localized�
plasticity waves meet each other and the sample tem�
perature increases sharply.

As the strain rate changes, the wave velocity also
changes. The wave velocity was determined by solving
the inverse problem of restoring the intensity and posi�
tion of heat sources from the surface temperature dis�
tribution. The dependence of the wave velocity on the
strain rate is linear (see Fig. 3b). The points indicated
by circles and falling outside the general linear depen�
dence correspond to shaped samples in which three or
four competing wave fronts nucleate during plastic
deformation; as a result, each front is retarded.

RESULTS OF STRUCTURAL STUDIES

Figure 4 shows the initial structure of the material
after etching. The average grain size after heat treat�
ment is 200 µm, and the surface relief height oscilla�
tions do not exceed 1 µm.

Wave propagation leads to a substantial increase in
the sample surface roughness (Fig. 5). As a localized�
deformation wave nucleates, a depression from 5–
7 µm to several tens of micrometers appears on the
sample surface. Behind the wave front, deformation
develops on the scale of the grain size (Fig. 6) and on
substantially smaller scales.
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Fig. 1. Geometrical dimensions of the samples (all dimen�
sions are given in millimeters).
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Fig. 2. Temperature distribution on the sample surface
when a heat wave moves.



Deformation localization results in macroscopic
bending of a sample at the wave front. The measure�
ment of the characteristic tilt angles in unfailed sam�
ples demonstrates that a sample bends through 1° in
both the longitudinal and transverse planes.

ENERGY DISSIPATION AND STORAGE 
DURING THE ELASTIC–PLASTIC 

TRANSITION

To theoretically describe the energy storage in a
metal during its plastic deformation, we have to use the
law of conservation of momentum and the first and
second laws of thermodynamics.

In the case of small strains, these equations include
the following thermodynamic variables: T(x, t) is the
absolute temperature field; x is the position of a parti�
cle in a fixed reference configuration; t is the time, ρ is
the density; e is the specific internal energy;  and 
are the small strain and Cauchy stress tensors, respec�

ε̃ σ̃

tively; q is the heat flow vector; F is the specific free
energy; and η is the specific entropy. These equations
can be written in the form

(1)

(2)

where

Assume that the medium under study obeys the
kinematic relationship

(3)

where  is the elastic strain tensor,  is the plastic
strain tensor (which describes the motion of defects),

 is the structural strain tensor,  is the thermal
expansion coefficient tensor, and T ' is the reference
temperature.

In Eq. (3), the plastic strain in the material is

divided into the following two components:  is the
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Fig. 3. (a) Time dependence of the maximum sample sur�
face temperature during the propagation of localized�plas�
ticity waves and (b) localized�plasticity wave velocity vs.
the strain rate.
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Fig. 4. Microstructure of an undeformed armco iron
sample.
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Fig. 5. Changes in the structure and profile of the sample
during the propagation of a localized�deformation wave.
The surface profile is plotted along the line shown in the
micrograph.
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plastic (or dissipative) strain and  is the structural
strain. The value of structural strain  can be deter�
mined using thermodynamic measurements or by
solving the corresponding statistical problem of the
evolution of mesodefects [8].

We assume that the free energy of the material is a
function of the temperature and elastic and structural
strains and rewrite Eqs. (1) and (2) in the form

(4)

(5)

where Fa is the partial derivative of function F(a, …)
with respect to a.

Allowing for definition (3) and the requirement of
the validity of Eq. (5), we rewrite Eq. (4) for any ther�
modynamic process in the form

(6)

where Qe =  :  is the heating induced by the

thermoelastic effect,

is the heating due to plastic deformation, and c = –TFTT

is the specific heat.
Equation (6) determines the energy storage rate

during plastic deformation of the material,

(7)

We assume that FTp = 0, which corresponds to a
neglected effect of temperature on the intensity and
number of defects in the material, take into account
the smallness of the elastic strains, and rewrite Eq. (7)
in the simple form
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In the case of small deviations from an equilibrium
position and a linear relation between the thermody�
namic forces and flows, we can write the following
defining relationships

(9)

(10)

The main problem for using Eqs. (9) and (10) is to
determine the form of dependence Fp, which describes
the energy storage in the material when a defect
appears. The form of this dependence can be deter�
mined by the following two independent methods: by
solving the statistical problem of the evolution of an
ensemble of mesodefects in a solid body and by pro�
cessing infrared scanning data. The statistical problem
of the evolution of an ensemble of microshears in a
material was solved in [2] with allowance for the non�
local effects in an ensemble of mesodefects. When
analyzing the self�similar solutions to the defining
relationships in combination with infrared scanning
data, we were able to propose a procedure for estimat�
ing the nonlocality constants in the expansion of the
free energy of the system in terms of an order parame�
ter (structural strain) and to numerically simulate the
propagation of heat waves.

To determine the form of the dependence of the
thermodynamic potential of the medium from the
temperature kinetics data, we have to develop a proce�
dure for processing the experimental data.

DETERMINATION OF THE ENERGY 
STORAGE RATE IN A PLASTICALLY 

DEFORMED MATERIAL

To estimate the energy storage rate, it is convenient
to introduce an average temperature in a certain vol�
ume in the material,

where t is the time; a, b, and c are averaged�volume
sizes; T(x, y, z, t) is the temperature; and T0 is the
ambient temperature.

We write the boundary conditions in a form analo�
gous to [3],

where k is the thermal conductivity and hx is the coef�
ficient of the heat exchange with the environment.
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Fig. 6. Small�scale fluctuations of the sample surface
behind a localized�deformation wave (surface profile).



We assume an analogous form of boundary condi�
tions with different values of coefficients hi, where i ∈
{x, y, z}, for all three directions and write law of con�
servation of energy (6) for the volume under study in
the form

(11)

Allowing for Eq. (8), we rewrite Eq. (12) as

(12)

where L(V, h) is the coefficient of the heat exchange
between the volume in the sample and the environ�
ment.

On the assumption of a uniform stress field, the
first term can be estimated as

To estimate the second term after the end of the
experiment, the sample was subjected to a constant
stress for 5 min (  = 0). In this case, it is natural to

assume that  = 0, and coefficient L(V, h) can be esti�

mated by solving the equation cρ (t) = –L(V, h)θ(t)

in the form L(V, h) = – log . Using exponen�

tial dependences θ(t) experimentally obtained during
cooling, we estimated L(V, h) at L(V, h) = 0.0080 ±
0.0012 J/K.

With Eq. (12), we can calculate the energy storage
rate in the sample using thermographic analysis data.
The strain dependence of the specific free energy of a
plastically deformed sample can be calculated from
Eq. (8) written as

(13)

Figure 7a shows the temperature dependences of
the maximum temperature, the strain, and the energy
storage rate in the sample at various strain rates. For
convenience, the stress and temperature are normal�
ized by their maximum values and the energy storage
rate is written as

The change in the temperature during fracture of
the sample depends substantially on the strain rate and
achieves 35°C at a strain rate of 5 × 10–3 s–1. The
mechanical characteristics weakly depend on the
strain rate. A decrease in the strain rate leads to the
disappearance of a yield drop and a decrease in the
plastic�plateau length. The energy storage rate behaves
similarly at all strain rates. For the curve correspond�
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ing to a strain rate of 2 × 10–3 s–1, we constructed con�
fidence intervals at a probability of 0.95; the curves
corresponding to the other strain rates fall inside them.

When analyzing the data in Fig. 7b, we can distin�
guish the following stages of energy storage in iron
during plastic deformation. The propagation of local�
ized�plasticity waves results in intense heating of the
sample and a decrease in the energy storage rate. The
transition to hardening involves new structural mech�
anisms, which again leads to intense energy storage in
the material at the initial stage of hardening. As the
degree of plastic deformation increases, dissipative
processes begin to play a key role in the material and
the energy storage rate decreases. At the stage of hard�
ening, the energy storage rate is approximately the
same.
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CONCLUSIONS

We experimentally studied energy dissipation and
storage during plastic deformation of armco iron.
Based on the results of structural examination, we
showed that the deformation of an iron sample during
the elastic–plastic transition is nonuniform and
involves a wide range of spatial scales. Analysis of
infrared scanning data demonstrates that the energy
storage rate in armco iron weakly depends on the
strain rate and can be used to determine the type of
thermodynamic potential of the system.

Using the experimental data on the thermodynam�
ics of plastic deformation, we designed a procedure for
an experimental determination of the evolution of the
energy stored in an ensemble of mesodefects during
deformation. With this evolution, we can close a theo�
retical model that describes the energy balance in the
metal and suggest an experimental technique to divide
plastic strain into the following two parts: plastic strain

 related to the kinetics of defects (dissipative part)
and structural strain  (nondissipative part).

With this approach, we can consider the structural
part of plastic deformation as an independent thermo�
dynamic variable and adequately describe the thermo�
dynamics of the process.
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