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A versatile interface model for thermal conduction phenomena
and its numerical implementation by XFEM

J. T. Liu · S. T. Gu · E. Monteiro · Q. C. He

Abstract A general interface model is presented for ther-
mal conduction and characterized by two jump relations. The
first one expresses that the temperature jump across an inter-
face is proportional to the interfacial average of the normal
heat flux while the second one states that the normal heat flux
jump is proportional to the surface Laplacian of the interfacial
average of the temperature. By varying the two scalar pro-
portionality parameters, not only the Kapitza resistance and
highly conducting interface models can be retrieved but also
all the intermediate cases can be covered. The general inter-
face model is numerically implemented by constructing its
weak form and by using the level-set method and XFEM. The
resulting numerical procedure, whose accuracy and robust-
ness are thoroughly tested and discussed with the help of
a benchmark problem, is shown to be efficient for solving
the problem of thermal conduction in particulate composites
with various imperfect interfaces.
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1 Introduction

The interface between two phases of a material, or between
two elements of a structure, is classically assumed to be per-
fect. In the context of thermal conduction, an interface is said
to be perfect if the requirement that both the temperature and
the normal heat flux are continuous across it is satisfied. In
many practical situations and for divers reasons, this require-
ment fails to be fulfilled, so that imperfect interfaces have to
be considered. There are two well-known and widely used
models to describe thermal imperfect interfaces. The first
one is Kapitza’s thermal resistance or lowly conducting (LC)
interface model [1–7]. According to this model, the tempera-
ture is discontinuous and presents a jump across an interface
while the normal heat flux is continuous and proportional to
the corresponding temperature jump across the interface. The
second one is the highly conducting (HC) interface model
[8–14]. In contrast to the former, the latter stipulates that the
temperature is continuous across an interface whereas the
normal heat flux exhibits a jump across it, which is propor-
tional to the surface Laplacian of the temperature. From the
standpoint of numerical analysis, it is important to note that
the LC interface model involves a strong discontinuity and
the HC one comprises a weak discontinuity.

The extended finite element method (XFEM), which was
initially proposed in the works [15,16] and has since then
been considerably developed, is particularly suitable and effi-
cient for the numerical treatment of interfacial discontinuities
[12,17–26]. Yvonnet et al. [20] first applied XFEM and the
level-set method (LSM) to numerically implement the elastic
membrane interface model, which can be viewed as the elas-
tic counterpart of the HC interface model, and to compute
the size-dependent effective elastic moduli of nanocompos-
ites. After that, Yvonnet et al. [5,12] and Zhu et al. [25] fur-
ther developed the XFEM/LSM approach for the numerical



implementation of the HC and LC interface models and the
elastic spring-layer interface model which can be regarded
as the elastic counterpart of the LC interface model.

The LC and HC interface models were initially proposed
on the basis of some phenomenological observations. By con-
sidering a physically sound configuration where a thin inter-
phase of uniform weak thickness is perfectly bonded to two
neighboring bulk phases, Sanchez Palencia [27] and Pham
Huy and Sanchez Palencia [28] applied mathematical asymp-
totic analysis to show that, when the thickness of the inter-
phase tends to zero, the resulting imperfect interface model
corresponds to: (i) Kapitza’s thermal resistance model if the
conductivity of the interphase is much lower than the ones
of the surrounding bulk phases; (ii) the HC interface model
if the inverse takes place. Thus, the LC and HC interface
models are associated to two opposite extreme situations.
Later, Hashin [29] and Benveniste [30] considered the same
physical configuration as in Sanchez Palencia [27] and Pham
Huy and Sanchez Palencia [28] and applied Taylor’s expan-
sion to obtain a more general thermal imperfect interface
model in which the temperature and normal heat flux can be
simultaneously discontinuous across an interface. This gen-
eral imperfect interface model includes the LC and HC inter-
face models as particular cases, because it allows retrieving
them upon requiring the contrast between the conductivity
of the interphase and those of the neighboring phases to be
sharp. In a recent work, Gu and He [31] derived a general
imperfect interface model for coupled linear multifield phe-
nomena and expressed the corresponding interfacial jump
relations in a coordinate-free and compact manner.

To the best of the authors’ knowledge, the aforementioned
general imperfect interface model involving both the temper-
ature and normal heat flux jumps for thermal conduction has
never been numerically implemented within the XFEM/LSM
framework. This observation has motivated the present work
aiming to fill this gap. Compared with the LC and HC inter-
face models, the general interface model is much more com-
plicated to be numerically implemented for two reasons.
First, the governing equations of the model consists of a first-
order partial differential equation (PDE) and a second-order
PDE defined on a curved surface. Next, a weak discontinuity
and a strong discontinuity occur simultaneously.

The present work concerns the general interface model
derived for the most important case from a practical point of
view, i.e. the case where the interphase and the surrounding
bulk phase are all isotropic. In the previous relevant stud-
ies [30,31], the jump relations characterizing the general
model in this case are specified by the equations involving 4
independent parameters. However, in the recent paper [32]
, we have shown for the first time that those equations are
in fact equivalent to Eqs. (3) and (4) which are simpler and
contain only two independent parameters. Further, Eqs. (3)
and (4) lend them to interpretation. Precisely, Eq. (3) means

that the interfacial jump of the temperature is proportional to
the interfacial average of the normal heat flux via a thermal
resistance compensating parameter; Eq. (4) signifies that the
interfacial jump of the normal heat flux is proportional to
the surface Laplacian of the interfacial average of the tem-
perature through a thermal conductivity compensating para-
meter. According as the thermal conductivity or resistance
compensating parameter is set to zero, we recover the LC or
HC interface model. When both of them are different from
zero, the general model describes the intermediate situations
between the two opposite extreme cases characterized by the
LC and HC models. If both of them are equal to zero, we
have the perfect interface. So, the general interface model
considered in this work is simple and versatile in studying
thermal interfacial effects.

Most of the works in which XFEM and LSM are used
to numerically treat interfacial discontinuities are concerned
either with weak or strong discontinuity, as mentioned above.
Those accounting for both the weak and strong interfacial
discontinuities are quite limited. Dolbow and Harari [33,34]
proposed a finite element method based on the Nitsche
technique to deal with a transport problem in which weak
and strong interfacial discontinuities intervene. To study
surface and interface effects on the elastic properties of
nanomaterials, Farsad et al. [23] elaborated an XFEM/LSM
approach similar to the one of Yvonnet et al. [20] but with
the capacity to handle strain and displacement discontinu-
ities simultaneously. In the present work, an XFEM/LSM
procedure is further developed to numerically implement
the general imperfect interface model for steady thermal
conduction.

The paper is organized as follows. In the next section, the
physical background of the general interface model for steady
thermal conduction is recalled, and the equations character-
izing it with isotropic interphase and bulk phases are recasted
so as to take a considerably simplified but equivalent form
with only two parameters. In Sect. 3, the strong and weak
formulations are given for the boundary value problem of
steady thermal conduction in a particulate composite with
the interfaces characterized by the general interface model. In
particular, by varying the parameters of the interface model,
the weak formulations for LC and HC interfaces can be eas-
ily retrieved. Section 4 is dedicated to the discretization of
the weak formulation by XFEM and LSM. Since the tem-
perature and its gradient exhibit jumps across an interface,
two kinds of enrichment functions are used in the finite ele-
ment approximation of the temperature field. In Sect. 5, a
benchmark problem is first analytically and exactly solved.
An convergence analysis is then carried out for the numerical
procedure proposed in Sect. 4 with the aid of the analytical
exact solution for the benchmark problem. The efficiency and
robustness of the proposed numerical procedure are tested for
extreme and intermediate cases. The effects of the shapes and



distribution of the inclusions on the temperature field are also
examined. In Sect. 6, a few concluding remarks are drawn.

2 A simple and versatile interface model for thermal
conduction

We are interested in the phenomenon of thermal conduction
in a composite consisting of a matrix in which particulates are
embedded. The interface between the matrix and a generic
particulate is assumed to be imperfect. A physically sound
and mathematically rigorous way to obtain a class of imper-
fect interface models [30,31,35] is now recalled as follows.

We first consider a three-phase configuration where a
particulate is bonded to the matrix through an interphase
of small uniform thickness h (Fig. 1a). In this three-
phase configuration, the domains occupied by the matrix,
a generic particulate i and their interphase are denoted by
Ω̂(M), Ω̂(i) and Ω(0). The interface SM between Ω̂(M) and
Ω(0), and the interface Si between Ω̂(i) and Ω(0), are both
taken to be perfect. The middle surface of the interphase
Ω(0) is symbolized by Γi . The unit vector normal to Γi (also
to SM and Si ) oriented from Ω̂(i) to Ω̂(M) is noted as ni . The
constituent materials of Ω̂(M), Ω̂(i) and Ω(0) are assumed to
be individually homogeneous and comply with the Fourier
law of thermal conduction, so that

q(r) = −K(r)∇ϕ(r) (r = M, i , 0) (1)

where ϕ(r) and q(r) represent the temperature and heat flux
fields defined over Ω̂(r), respectively, and K(r) is the second-
order thermal conductivity tensor of the material forming
Ω̂(r), which is positive definite.

Next, a two-phase configuration is obtained through
replacing the interphase in the aforementioned three-phase
configuration by an imperfect interface of null thickness
whose geometrical location is that of the middle surface
Γi (Fig. 1b). At the same time, the materials forming
Ω̂(M) and Ω̂(i) are extended to Γi , respectively, so that
Ω̂(M) and Ω̂(i) are replaced by Ω(M) and Ω(i) separated

(M)(i)ni

h

(0)

SM

Si

i

(M)
(i)

i

(a) (b)

ni

Fig. 1 Physical configurations used to derive the general thermal
imperfect interface model: a three-phase configuration; b two-phase
configuration

directly by Γi in the two-phase configuration. The interfa-
cial relations to be satisfied by the imperfect interface Γi

are required to be such that the two-phase configuration is,
to within a fixed error, equivalent to the initial three-phase
configuration. More precisely, the jumps of the temperature
and normal heat flux across the zone bounded by the sur-
faces SM and Si in two-phase configuration are required to
be equal, to within a given error, to those across the interphase
Ω(0) in the three-phase configuration.

In Refs. [30,31] and [35], the general interfacial relations
to be satisfied by Γi in the two-phase configuration were
derived. These interfacial relations present several salient
features: (i) both the temperature and normal heat flux are
allowed to be discontinuous across the imperfect interface
Γi ; (ii) the contrast between the thermal conductivities of
the matrix, particulate and interphase can be arbitrary; (iii)
each of K(M), K(i) and K(0) can be anisotropic; (iv) each
of K(M), K(i) and K(0) can be inhomogeneous. In what fol-
lows, we are interested in the most important particular
case when each of K(M), K(i) and K(0) is homogeneous and
isotropic, so that

K(r) = k(r)I (r = M, i, 0) (2)

where k(r) is a positive constant and I is the second-order
identity tensor. In this situation, Gu et al. [32] have recently
proved that the general interfacial relations can be recast into

[[ϕ]]i = h

2
a(i) 〈qn〉i + 0(h2), (3)

[[qn]]i = h

2
b(i)�s 〈ϕ〉i + 0(h2). (4)

In these expressions, qn denotes the normal heat compo-
nent given by qn = q · n(i); [[•]]i and 〈•〉i are the interfacial
jump and average operators relative to Γi , which are defined
by

[[•]]i = •(+) − •(−), 〈•〉i = 1

2
(•(+) + •(−)). (5)

where •(+) and •(−) stand for the values of a quantity • evalu-
ated atΓi on the matrix side and the i th inclusion side, respec-
tively. In addition, the surface gradient ∇s (•) and Laplacian
�s (•) of a scalar quantity (•) are, by definition, given by

∇s (•) = ∇ (•) · T(i),

�s (•) = divs(∇s (•)) = ∇(∇s (•)) : T(i). (6)

where T(i) = I−n(i) ⊗n(i) is the tangential projection opera-
tor. The material parameters a(i) and b(i) in (3) and (4) depend
on the material parameters k(M), k(i) and k(0) as follows:

a(i) = 1

k(M)
+ 1

k(i)
− 2

k(0)
, b(i) = 2k(0) − k(i) − k(M).

(7)



The general isotropic thermal imperfect interface model
characterized by (3) and (4) together with (7) will be numeri-
cally implemented in the afterward sections. The relation (3)
means that the interfacial jump of the temperature is propor-
tional to the interfacial average of the normal heat flux while
the expression (4) signifies that the interfacial jump of the
normal heat flux is proportional to the surface Laplacian of
the interfacial average of the temperature. Both the material
parameters a(i) and b(i) involved in the model can be positive
or negative. From the physical point of view, a(i) and b(i) can
be, respectively, interpreted as thermal resistance and con-
ductivity compensating parameters in the process of replac-
ing the interphase in the three-phase configuration (Fig. 1a)
by an imperfect interface Γi in the two-phase configuration
(Fig. 1b) with the inclusion and matrix phases extended up
to Γi .

From Eqs. (3), (4) and (7), we can retrieve the well-known
Kapitza’s thermal resistance interface model [5] and the HC
interface model [12] as two extreme particular cases. First,
when h is very small and when k(0) � k(M) and k(0) �
k(i), we have ha(i) ≈ −2h/k(0) and hb(i) ≈ 0 to within an
error of order 0 (h). In this case, we obtain Kapitza’s thermal
resistance interface model:

[[ϕ]]i = − h

k(0)
〈qn〉i + 0(h), (8)

[[qn]]i = 0(h). (9)

Second, when h is very small and when k(0) � k(M) and
k(0) � k(i), we can deduce from Eqs. (3), (4) and (7) that
ha(i) ≈ 0, hb(i) ≈ 2hk(0) and

[[ϕ]]i = 0(h), (10)

[[qn]]i = hk(0)�s 〈ϕ〉i + 0(h). (11)

These two relations characterize the HC imperfect interface
model.

It is interesting to mention two very special situations. The
first corresponds to the case where 2k(0) = k(i)+k(M). Then,
it follows from (3), (4) and (7) that

[[ϕ]]i = −ha(i)

2
〈qn〉i + 0(h2), (12)

[[qn]]i = 0(h2). (13)

The second takes place when 1/k(M) + 1/k(i) = 2/k(0). In
such a situation, it is immediate from (3), (4) and (7) that

[[ϕ]]i = 0(h2), (14)

[[qn]]i = hb(i)

2
�s 〈ϕ〉i + 0(h2). (15)

Note that, under the aforementioned very special conditions,
two pairs of relations (12)–(13) and (14)–(15) are exact to
within an error of order 0(h2), in contrast with (8)–(9) and
(10)–(11) which are exact to within an error of order 0(h).

3 Thermal conduction in a particulate composite with
imperfect interfaces: strong and weak formulations

The problem under investigation concerns a particulate com-
posite consisting of m homogeneous particulate phases
embedded in a homogeneous matrix phase (see Fig. 2). Let
Ω be the 3D domain occupied by the composite and ∂Ω the
external boundary ofΩ . The subdomains of Ω inhabited by
the matrix phase and the j th particulate phase are designated
by Ω(M) and Ω( j) such that

Ω = Ω(M) ∪Ω(1) ∪Ω(2) ∪ · · · ∪Ω(m). (16)

The interface between Ω(M) and Ω( j)( j = 1, 2, . . . ,m) is
symbolized by Γ j = Ω(M) ∩ Ω( j). The particulates are
assumed to be distributed inside the matrix in such a way
that any particulate does not intersect the composite bound-
ary ∂Ω and there is no contact between any two particulates.
Thus, the boundary ∂Ω( j) of the j th particulate and the one
of the matrix Ω(M) can be written as

∂Ω( j) = Γ j ∂Ω(M) = ∂Ω ∪ Γ1 ∪ Γ2 ∪ · · · ∪ Γm . (17)

In what follows, nM stands for the outward unit vector normal
to ∂Ω and n j the unit vector normal toΓ j oriented fromΩ( j)

into Ω(M).
The steady heat conduction in the absence of heat source

is governed by the energy conservation equation

divq(l) = 0 in Ω(l) (l = M, 1, 2, . . . ,m) (18)

where q(l) represents the heat flux vector defined over Ω(l)

and is related to the temperature field ϕ(l) through the
isotropic Fourier law

q(l) = −k(l)∇ϕ(l) (19)

with k(l) the conductivity of phase Ω(l). The interface
Γ j between Ω(M) and Ω( j) is assumed to be imperfect and
described by Eqs. (3) and (4). The boundary conditions pre-
scribed on ∂Ω are the following ones:
{
ϕ = ϕ on ∂Ωϕ,

qn = qn on ∂Ωq .
(20)

(M)

qnM

q=q

( j)

nj

j

=

Fig. 2 Schematic of the composite material under investigation
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where ϕ and qn denote the temperature and normal heat flux
imposed on ∂Ωϕ and ∂Ωq with ∂Ω = ∂Ωϕ∪∂Ωq and ∂Ωϕ∩
∂Ωq = ∅.

Equations (18)–(20) together with the interfacial relations
(3) and (4) constitute the strong formulation for the bound-
ary value problem of steady thermal conduction in the com-
posite Ω . For the numerical solution of this problem, the
corresponding weak formulation is needed. Thus, we first
introduce a piecewise differentiable virtual temperature field
δϕ defined overΩ , such that δϕ = 0 on ∂Ωϕ . Then, starting
from the energy conservation Eq. (18), we can show that∫

Ω(M)

q(M) · ∇δϕ(M)dv =
∫
∂Ωq

q(M)n δϕ(M)ds

−
m∑

j=1

∫
Γ j

q( j)
n δϕ( j) ds, (21)

∫

Ω( j)

q( j) · ∇δϕ( j)dv =
∫
Γ j

q( j)
n δϕ( j)ds.

Adding these two equations leads to
∫
Ω

q · � (δϕ) dv +
m∑

j=1

∫
Γ j

[[qnδϕ]] j ds =
∫
∂Ωq

qnδϕds

(22)

with

[[qnδϕ]] j = q(M)n δϕ(M) − q( j)
n δϕ( j)

= q(+)n δϕ(+) − q(−)n δϕ(−). (23)

Using the identity (see, e.g., Gurtin and Murdoch [36])

[[qnδϕ]] j = [[qn]] j 〈δϕ〉 j + 〈qn〉 j [[δϕ]] j , (24)

and accounting for the interfacial relations (3) and (4), we
obtain

[[qnδϕ]] j = h

2
b( j)�s 〈ϕ〉 j 〈δϕ〉 j + 2

ha( j)
[[ϕ]] j [[δϕ]] j .

(25)

Introducing (19) and (25) into (22), it follows that

−
∫
Ω

k∇ϕ · ∇ (δϕ) dv + h

2

m∑
j=1

∫
Γ j

b( j)�s 〈ϕ〉 j 〈δϕ〉 j ds

+ 2

h

m∑
j=1

∫
Γ j

1

a( j)
[[ϕ]] j [[δϕ]] j ds =

∫
∂Ωq

qnδϕds. (26)

By Stokes’ divergence theorem, we have∫
Γ j

b( j)�s 〈ϕ〉 j 〈δϕ〉 j ds = −
∫

Γ ( j)

b( j)∇s 〈ϕ〉 j · ∇s 〈δϕ〉 j ds

(27)

while the interface Γ ( j) is taken to be closed. Finally,
the weak formulation of the problem in question is given
by

∫
Ω

k∇ϕ · ∇ (δϕ) dv + h

2

m∑
j=1

∫
Γ j

b( j)∇s 〈ϕ〉 j · ∇s 〈δϕ〉 j ds

− 2

h

m∑
j=1

∫
Γ j

1

a( j)
[[ϕ]] j [[δϕ]] j ds = −

∫
∂Ωq

qnδϕds. (28)

The weak formulation (28) is more compact and more
structured than the one provided by Gu et al. [35]. More-
over, it includes as special cases the weak formulations estab-
lished by Yvonnet et al. [5,12] for the HC imperfect interface
model and for Kapitza’s resistance imperfect interface model.
Indeed, by setting hb( j) = 2hk(0) and by using ha( j) = 0 as
a penalty parameter in (28), we have

∫
Ω

k∇ϕ · ∇ (δϕ) dv + h
m∑

j=1

∫

Γ ( j)

k(0)∇s 〈ϕ〉 j · ∇s 〈δϕ〉 j ds

= −
∫
∂Ωq

qnδϕds; (29)

by putting ha( j) = −2h/k(0) and hb( j) = 0 in Eq. (28), it
comes that
∫
Ω

k∇ϕ · ∇ (δϕ) dv + 1

h

m∑
j=1

∫
Γ j

k(0)[[δϕ]] j [[δϕ]] j ds

= −
∫
∂Ωq

qnδϕds. (30)

The weak forms Eqs. (29) and (30) correspond to those pro-
vided and numerically implemented by Yvonnet et al. [5]
and [12].

4 Discretization by XFEM and LSM

Now, we turn to the elaboration of a numerical strategy to
solve the boundary value problem whose weak formulation is
given by expression (28). In this problem, both the strong and
weak interfacial discontinuities, namely the discontinuity of
the temperature and that of its gradient, are involved. To deal
with these discontinuities numerically, we adopt the XFEM
and the LSM in what follows.

Recall that the basic idea of XFEM applied to the prob-
lem under consideration consists in adding appropriate local
enrichment functions to the standard finite element approxi-
mation so as to account for interfacial jumps. More precisely,
considering a domain Ω containing imperfect interfaces Γ j

and discretized by nnd nodes that do not necessarily match



Γ j , the temperature field over Ω can be approximated by
(see, e.g., [23])

ϕh(x) =
nnd∑
s=1

Ns(x)ϕs +
mnd∑
p=1

Np(x)χp(x)ϕ p

+
mnd∑
p=1

Np(x)ψp(x)ϕ p. (31)

In this expression, Ns are standard shape functions; ϕs

denotes the temperature value at the sth node; the unknowns
ϕ p and ϕ p are the enriched degrees of freedom (DOFs) asso-
ciated with the strong and weak discontinuities; the enrich-
ment functions χp and ψp are defined for the nodes belong-
ing to the elements cut by an imperfect interface; the num-
ber mnd of enriched nodes is required to be mnd ≤ nnd .
In what follows, the four-node tetrahedral linear finite ele-
ment is employed. Concerning the use of higher-order finite
elements, we refer to [37].

A key step towards solving the problem in question lies in
selecting appropriate enrichment functions. These functions
are required to fulfill two tasks: (i) to locate the position of
an imperfect interface inside the intercepted elements; (ii) to
describe the discontinuities of the temperature and the nor-
mal heat flux across the imperfect interface. For the achieve-
ment of the task (i) and with no loss of generality, a generic
imperfect interface Γ is defined as the zero level-set of a
scalar-value function φ:

Γ = {x ∈ R
3|φ(x) = 0}. (32)

Thus, the function φ takes negative values on one side of the
interface and positive ones on its other side. To be consistent
with the previous formulation of the problem, we assume that
the level-set function φ is defined so as to be positive in the
matrix phase and negative in any inclusion phase. In the con-
text of finite elements, the level-set function is approximated
by

φh(x) =
ne∑

s=1

Ns(x)φs (33)

where φs denotes the value of φ at the sth node and ne is
the total number of nodes in an element. In addition, the unit
normal vector at point x on Γ can be numerically evaluated
by

nh(x) = ∇φh(x)
||∇φh(x)|| with ∇φh(x) =

ne∑
s=1

∂Ns(x)
∂x

φs .

(34)

With the help of the level-set function φ and its nodal val-
ues φp, the following enrichment functions are adopted to
describe the temperature and normal heat flux jumps:

χp(x) = sign(φ(x))− sign(φp), (35)

ψp(x) =
ne∑

s=1

Ns(x)|φs | − |
ne∑

s=1

Ns(x)φs |, (36)

where the function sign(•) is defined by sign(•) =
−1, 0 or 1 according as (•) is negative, equal to zero or pos-
itive. The derivation of χp and ψp gives

∂χp(x)

∂x
= 0, (37)

∂ψp(x)

∂x
=

ne∑
s=1

{
∂Ns(x)
∂x

[
|φs | − sign

( ne∑
s=1

Ns(x)φs φs .

(38)

Formulae (37) and (38) are meaningful provided φ(x) �=
0 and

∑ne
s=1 Ns(x)φs �= 0, respectively.

Equation (35) allows to capture a jump in the tempera-
ture field (strong discontinuity) and the shifting procedure
guarantees that any nodal value ϕs keeps its meaning of true
temperature. Equation (36) makes it possible to produce a
jump in the heat flux field (weak discontinuity) across the
imperfect interface since it is related to the temperature gra-
dient. Hence, the use of the enrichment functions (35) and
(36) allows accounting for both the jumps within the frame-
work of finite elements. The effect of the enrichment func-
tions on the standard linear finite element shape functions is
depicted in Fig. 3 for the 1D case. In addition, as the enrich-
ment function ψp defined by (36) and its derivative given
by (38) are zeros in both the blending elements of type 1
and type 2 [25], no wanted higher order terms [38] need
being added in the blending elements. Consequently, addi-
tional treatments are not necessary for these elements. Fur-
ther, the enrichment function χp(x) is constant in all blend-
ing elements and the partition of unity function Np(x) is
of the same order compared with the standard shape func-
tion Ns(x), so that the unwanted term in the blending ele-
ments due toχp(x) can be compensated by the standard finite
element shape functions [39] and no supplementary treat-
ment is required for the enrichment functions. It is worth
noting that the blending elements of type 1 [25] necessi-
tate additional treatment on the DOFs ϕ. Since χp(x) equals
to sign(φ(x)) on the Gauss integration points when xp is
located on the interface, the thermal conductivity contributed
by these elements must be integrated and complementary
implement becomes indispensable for such partially enriched
elements.

An important aspect to be emphasized is the numerical
integration within an intercepted element when discontinu-
ities occur. To ensure accuracy, the intercepted element is
subdivided into sub-elements whose edges conform to the
interface, so that Gauss quadrature can be used in these



Fig. 3 Illustration of the
enrichments used to capture the
strong and weak discontinuities
in the 1D case. a Enrichment
function χp(x). b Enrichment
function ψp(x). c Derivative
∂ψp(x)
∂x

(a)

(b)

(c)

Fig. 4 Illustration of the subdivision of an intercepted element

sub-elements. Furthermore, the usual Gauss rule involving
integration points on the interface is employed to evalu-
ate the surface contribution. Figure 4 shows an instance
of the subdivision and the distribution of the integration
points.

For the aforementioned specific integrands, some quan-
tities must be evaluated on both sides of an imperfect inter-
face to incorporate the interface contribution. The enrichment
functions on the two sides of the imperfect interface are taken
to be

χ(+)p = 1 − sign(φp), χ
(−)
p = −1 − sign(φp). (39)

∂ψ
(+)
p (x)
∂x

=
ne∑

s=1

{
∂Ns(x)
∂x

[|φs | − φs]

∂ψ
(−)
p (x)
∂x

=
ne∑

s=1

{
∂Ns(x)
∂x

[|φs | + φs] . (40)

Finally, the discretization of the weak form (28) yields the
following linear discrete system

(K + Ks)� = F (41)

where the vector � contains all the DOFs, i.e. the classi-
cal DOFs ϕs and the enriched DOFs ϕ p and ϕ p. The bulk
conductivity matrix K is computed by

K =
nem∑
s=1

∫
Ωe

s

BT K(l)
s B dΩe

s (42)

where nem is the total number of elements in Ω, Ωe
s

denotes the domain occupied by the sth element, K(l)
s =

k(l)diag(1, 1, 1) represents the conductivity matrix of the lth
phase, the matrix B is defined through �ϕ = Bϕe with ϕe

being the nodal unknowns of an element. The interface con-
ductivity matrix Ks in (41) is provided by

Ks =
m∑

j=1

ns∑
j ′=1

∫

Γ e
j_ j ′

h

2
b( j)B̃T

j ′T
( j ′)B̃ j ′ − 2

ha( j)
ÑT

j ′ Ñ j ′
]

d Se

(43)

where ns is the total number of the segments discretizing
the j th imperfect surface, Γ e

j_ j ′ stands for the j ′th surface

segment of the j th imperfect surface, the matrices B̃ j ′ and
Ñ j ′ are defined through �〈ϕ〉 = B̃ j ′ϕe and [[ϕ]] = Ñ j ′ϕe ,
respectively. The heat flux vector F in (41) is calculated by

F = −
∫
∂Ωq

NT q̄n d S (44)

with N being the matrix of shape functions.

5 Examples and discussions

In this section, we first analytically solve the problem of
thermal conduction in an infinite matrix in which a spherical
inclusion is embedded via an imperfect interface described
by the jump relations (3) and (4). The numerical procedure
presented in the last section is then used to deal with the
same problem. Its validity and accuracy are tested against
the corresponding analytical exact solution taken as a bench-
mark. Finally, the numerical procedure validated is applied to
solve the problem of thermal conduction inside a composite



consisting of multiple spherical and non-spherical inclusions
inside a matrix with imperfect interfaces.

5.1 Analytical solution to a benchmark problem

Consider a spherical inclusion of radius R inside an infi-
nite matrix. The thermal conductivity tensors of the materials
forming the inclusion and matrix are isotropic and specified
by (2). The interface between the inclusion and the matrix is
imperfect and characterized by the relations (3) and (4). The
origin of the coordinate system is chosen to coincide with the
center of the spherical inclusion. Let the matrix be subjected
to a remote uniform temperature gradient, i.e.

ϕ = ϕ = −g0 · x with ‖x‖ → +∞ (45)

where x is the position vector and g0 is a constant vector.
We are interested in the resulting steady thermal conduction
problem.

The temperature fields over the matrix and inclusion are
postulated as

ϕ(r) = g0 · x

(
A(r) + B(r)

‖x‖3 (46)

where A(r) and B(r) are two constants and the superscript r
refers to the inclusion when r = i and to the matrix when r =
M . It is easy to check that the temperature field (46) satisfies
the Laplace equation �ϕ(r) = 0 governing the temperature
field inside the inclusion and inside the matrix.

Accounting for the remote boundary condition (45) in
(46), we obtain

A(M) = −1.

In addition, due to the fact that the temperature at the center
of the inclusion must be finite, we deduce

B(i) = 0.

Thus, the expressions of ϕ(i) and ϕ(M) reduce to

ϕ(i) = A(i)g0 · x, (47)

ϕ(M) = g0 · x

(
B(M)

‖x‖3 − 1 . (48)

Now, introducing (47) and (48) into the jump relations (3)
and (4) yields two linear equations with A(i) and B(M) as the
unknowns:

1 − δ

4
a(i)k(i)

]
A(i) +

(
δ

2
a(i)k(M) − 1

)
B(M)

R3

= − δ
4

a(i)k(M) − 1, (49)

(
δ

2
b(i) + k(i)

)
A(i) +

(
δ

2
b(i) + 2k(M)

)
B(M)

R3

= δ

2
b(i) − k(M) (50)

with δ = h/R. Solving (49) and (50) delivers

A(i) = 3
(
δ2a(i)b(i) + 8

)
k(M)(

δ2a(i)b(i) − 8
) (

2k(M) + k(i)
) + c1

, (51)

B(M) = R3

(
δ2a(i)b(i) − 8

) (
k(i) − k(M)

) − c2(
δ2a(i)b(i) − 8

) (
2k(M) + k(i)

) + c1
, (52)

c1 = 8δ
(

a(i)k(M)k(i) − b(i)
)
, (53)

c2 = 4δ
(

a(i)k(M)k(i) + 2b(i)
)
. (54)

The expressions (47) and (48) together with (51)–(54)
constitute the analytical exact solution to the benchmark
problem under consideration. Remark that the temperature
gradient inside the inclusion is uniform.

5.2 Validation of the numerical procedure

We now apply the numerical procedure presented in the last
section to the benchmark problem described above. Pre-
cisely, a cube Ω of side length l is cut out of the forego-
ing infinite matrix containing a spherical inclusion of radius
R with l > 2R. The center of the cube coincides with that of
the spherical inclusion and, more specifically, the side length
l of the cube is set to be such that R/ l = 1/4 (see Fig. 5). On
the surface ∂Ω of the cube, we prescribe the temperature field
determined by the analytical exact expression (48) together
with (52). In what follows, the remote temperature gradient
g0 is chosen to be g0 = (0, 0, 100)T with the component

x
y

z

O

R

l l

l

Fig. 5 Problem of a spherical inclusion inside a cubic matrix



unit being m−1K, and the geometrical parameters l and δ
are set to be l = 0.04 m and δ = h/R = 4 × 10−4 except
specified.

5.2.1 Convergence analysis

Simulations are performed on the cube described above and
shown in Fig. 5. The whole domain of the cube is meshed
with tetrahedra. The following two sets of bulk conductivities
are used:

Set 1 : k(i) = 1 W m−1 K−1, k(M) = 10 W m−1 K−1;
Set 2 : k(i) = 100 W m−1 K−1, k(M) = 10 W m−1 K−1.

In Set 1, the conductivity k(i) of the inclusion is lower than
the one k(M) of the matrix. In Set 2, the former is higher than
the latter. The conductivity k(0) of the interphase involved in
the expressions (7) of the interfacial parameters a(i) and b(i)

varies numerically from 10−6 to 106 W m−1 K−1, so that a
wide class of imperfect interfaces ranging from the LC to HC
interface are taken into account in our simulations.

The convergence analysis of the numerical procedure pre-
sented in the last section is carried out by considering differ-
ent element sizes he. The global computational convergence
is evaluated by using the following L2 -norm relative error
indicator:

e =
√

1
V

∫
Ω

|ϕhe − ϕ|2dV + 1
S

∫
Γ

|[[ϕ]]he − [[ϕ]]|2d S√
1
V

∫
Ω
ϕ2dV + 1

S

∫
Γ

[[ϕ]]2d S

(55)

where Γ is the interface between the matrix and the spher-
ical inclusion, V stands for the volume of Ω, S represents
the area of Γ, and ϕhe and ϕ denote, respectively, the tem-
perature fields calculated numerically and analytically.

The results of the convergence analysis are plotted in
Fig. 6. It is seen that: (i) the relative error e decreases when
the mesh size he diminishes; (ii) each numerical solution con-
verges to the corresponding analytical exact solution when
the mesh size decreases; (iii) the convergence rates are equal
or close to the optimal value 2 when the interphase conductiv-

(a) (b)

(c) (d)

Fig. 6 Convergence analysis of the numerical results with respect to
the exact analytical solution for two sets of bulk conductivities, two rela-
tive interphase thickness values and different interfacial conductivities.

a Material set 1 with δ = 4×10−4. b Material set 2 with δ = 4×10−4.
c Material set 1 with δ = 4 × 10−5. d Material set 2 with δ = 4 × 10−5



ity k(0) is not by several orders of magnitude different from
the matrix and inclusion conductivities k(M) and k(i); (iv)
Even when the interphase conductivity k(0) is several orders
of magnitude higher or lower than the matrix and inclusion
conductivities, the convergence rates are not smaller than
1.4. Thus, the convergence analysis shows that the proposed
numerical procedure is efficient and robust.

In Fig. 6, two numerical values of the normalized inter-
phase thickness δ = h/R are employed in the convergence
analysis: δ = 4 × 10−4 and δ = 4 × 10−5. We observe that
the convergence rates with a smaller value of δ are better than
those with a larger value of δ. The interphase thickness h as a
parameter involved in the weak form (28) and the expression
(43) of the interface conductivity matrix Ks plays an impor-
tant role from the numerical standpoint when the contrast
between the interphase conductivity k(0) and the matrix and
inclusion conductivities k(M) and k(i) is very high. Indeed,
when k(0) >> k(M) and k(0) >> k(i), it follows from (7)
that

hb(i)/2 ≈ hk(0), 2/(ha(i)) ≈ 2k(i)

h(k(i) + k(M))
.

Thus, it is seen from (41) and (43) that, when the value of h
is sufficiently small, h acts as a penalty parameter such that
the solution of (41) gives [[ϕ]]i ≈ 0 as indicated by (10),
which means that the temperature jump across the interface
Γi is zero to within a given error.

If k(0) << k(M) and k(0) << k(i), we have

hb(i)/2 ≈ 0, 2/(ha(i)) ≈ −k(0)

h

when h is sufficiently small, and the relations (8) and (9) hold.
In this case, the second term in the left-hand member of the
weak form (28) and the term involving b(i) in the expression
(43) of Ks are numerically negligible.

In the LC and HC cases, as indicated by (8)–(9) and (10)–
(11), error of the interfacial jump relations is of the same order
as h. Thus, when the interphase thickness h increases, error
of the interfacial jumps becomes larger and the convergence
rates in Fig. 6 are smaller.

For the following discussions, it is convenient to introduce
the interfacial parameters:

α(i) = ha(i)/2 = h

(
1

2k(M)
+ 1

2k(i)
− 1

k(0)

)
,

β(i) = hb(i)/2 = h
(

k(0) − k(M)/2 − k(i)/2
)
. (56)

5.2.2 Lowly conducting interfaces

Now, we examine if the numerical procedure proposed can
correctly and efficiently capture the main physical aspects of

thermal conduction when k(0) << k(M) and k(0) << k(i).
In this case, our general imperfect interface model reduces
to Kapitza’s thermal resistance model to within an error of
order 0(h). The whole domain illustrated in Fig. 5 is meshed
with 300,000 tetrahedra and 64,000 nodes. For simulations,
only one set of bulk material parameters, namely Set 1 given
above, is used, the normalized thickness δ of the interphase
is taken to be δ = 4 × 10−4, and the interphase conduc-
tivity k(0) ranging from 10−6 to 10−2W m−1 K−1 is con-
sidered. The corresponding values of the interfacial para-
meters α(i) and β(i) defined by (56) are listed in Table 1.
Note that the numerical value of β(i) is comparatively very
small.

The analytic and numerical results of the temperature and
normal heat flux along the z-axis for different values of k(0)

are plotted and compared in Fig. 7. A good agreement is
observed between them. Concerning the numerical results, as
expected, the temperature is discontinuous across the inter-
face, and this discontinuity increases when k(0) decreases.
At the same time, the normal heat flux presents so small
numerical jump that it can be considered as being continu-
ous across the interface. Figure 8 shows the influence of k(0)

on the temperature fields in the plane x = 0 by nephograms.
The effect of Kapitza’s thermal resistance on the continuity
of the temperature field is clearly captured and quite simi-
lar to that reported by Yvonnet et al. [5]. The oscillations of
the contours in the case with k(0) = 10−6W m−1 K−1 are
mainly caused by the post-processing process which does
not account for the discontinuity in the cut elements. In
conclusion, by appropriately choosing the numerical values
of the parameters in the general imperfect interface model,
the proposed numerical procedure can efficiently deal with
the LC interface and reflect Kapitza’s thermal resistance
effect.

5.2.3 Highly conducting interfaces

To examine the capacity of the proposed numerical proce-
dure to deal with the effects of a HC interface, the same
finite element model and the same geometrical and material
parameters as in the case of LC interfaces are adopted here,

Table 1 Numerical values of the parameters used in simulating lowly
conducting interfaces

k(0)(W m−1K−1) δ α(i) β(i)

10−6 4 × 10−4 −1.00 −5.50 × 10−6

10−5 4 × 10−4 −0.10 −5.50 × 10−6

10−4 4 × 10−4 −0.01 −5.50 × 10−6

10−3 4 × 10−4 −9.99 × 10−4 −5.50 × 10−6

10−2 4 × 10−4 −9.95 × 10−5 −5.49 × 10−6



(a)

(b)

Fig. 7 Comparison of the theoretical and numerical results for the tem-
perature and normal heat flux along the z-axis with x = 0 and y = 0
in the benchmark problem of a spherical inclusion inside a cube with
different small values of k(0). a Temperature. b Heat flux

Table 2 Numerical values of the parameters used in simulating highly
conducting interfaces

k(0)(W m−1 K−1) δ α(i) β(i)

102 4 × 10−4 5.40 × 10−7 9.45 × 10−5

103 4 × 10−4 5.49 × 10−7 9.95 × 10−4

104 4 × 10−4 5.50 × 10−7 0.01

105 4 × 10−4 5.50 × 10−7 0.10

106 4 × 10−4 5.50 × 10−7 1.00

except the interphase conductivity k(0) ranging this time from
102 to 106W m−1 K−1. The corresponding numerical values
of the interfacial parameters α(i) and β(i) are listed in Table
2. It is seen that the numerical value of α(i) is comparatively
very small.

For the values of k(0) listed in Table 2, the numerical
results obtained for the temperature and normal heat flux
along the z-axis are plotted and compared with the corre-
sponding analytical exact results in Fig. 9. This comparison
shows an excellent agreement between the numerical and
analytical results. In particular, the continuity of the tem-
perature and the jump of the normal heat flux across the
interface are correctly captured by the numerical results. As
expected, the jump of the normal heat flux becomes accentu-
ated when the value of k(0) (or β(i)) augments. The tempera-
ture fields with k(0) = 102 and 106 W m−1K−1 in the plane
x = 0 are given as nephograms in Figure 10. Comparison
of those two fields shows that k(0) can significantly affect
the temperature field. In conclusion, by properly choosing
the values of the interfacial parameters, the proposed numer-
ical procedure is able to correctly and efficiently treat HC
interfaces.

(a) (b)

Fig. 8 Temperature fields in the plane x = 0 with k(0) = 10−6 and 10−2 W m−1K−1. a k(0)=10−6 W m−1K−1. b k(0)=10−2 W m−1K−1



(a)

(b)

Fig. 9 Comparison of the theoretical and numerical results for the tem-
perature and normal heat flux along the z-axis with x = 0 and y = 0
in the benchmark problem of a spherical inclusion inside a cube with
different large values of k(0). a Temperature. b Heat flux

Table 3 Numerical values of the parameters used in simulating inter-
mediate interfaces

k(0)(W m−1 K−1) δ α(i) β(i)

0.15 4 × 10−4 −6.12 × 10−6 −5.35 × 10−6

1.5 4 × 10−4 −1.17 × 10−7 −4.00 × 10−6

15 4 × 10−4 4.83 × 10−7 9.50 × 10−6

0.15 0.2 −1.22 × 10−2 −1.07 × 10−2

1.5 0.2 −2.33 × 10−4 −8.00 × 10−3

15 0.2 9.67 × 10−4 1.90 × 10−2

5.2.4 Intermediate cases

When the value of the interphase conductivity k(0) is neither
very high nor very low or when its thickness h is not suf-
ficiently small, the interface characterized by the relations
(3) and (4) are qualified as intermediate. In such cases, both
the temperature and the normal heat flux across the interface
are in general discontinuities. To test the ability of the pro-
posed numerical procedure to treat this situation, the same
finite element model as above is adopted and the values of
the matrix and inclusion conductivities are taken to be given
by Set 1. In addition, the value of k(0) varies from 10−1 to 10
W m−1 K−1 and two values of the normalized phase thick-
ness δ, namely δ = 4×10−4 and δ = 0.2, are considered. In
Table 3, the corresponding numerical values of α(i) and β(i)

are provided.
In Fig. 11, the numerical and analytical results for the tem-

perature and normal heat flux along the z-axis are plotted for
δ = 4 × 10−4 and for three values of k(0). Since the corre-
sponding values of α(i) and β(i) are very small, the presence
of the imperfect interface has negligible influence on the tem-
perature field so that all the numerical and analytical results
are almost identical to each other.

(a) (b)

Fig. 10 Temperature fields in the plane x = 0 with k(0) = 102 and 106W m−1 K−1. a k(0)=102 W m−1K−1. b k(0)=106W m−1 K−1



(a)

(b)

Fig. 11 Comparison of the theoretical and numerical results for the
temperature and normal heat flux along the z-axis with x = 0 and y = 0
in the benchmark problem of a spherical inclusion inside a cube with
the value of k(0) being not far from those of k(i) and k(M) and with h
being relatively very small. a Temperature. b Heat flux

In Fig. 12, we plot the numerical and analytical results
for the temperature and normal heat flux along the z-axis
for δ = 0.2. A good concordance is observed between them.
The numerical results are successful in capturing the temper-
ature and normal heat flux jumps across the interface. These
discontinuities become more pronounced when the values of
α(i) and β(i) increase.

The foregoing discussions clearly indicate that the pro-
posed numerical method is capable of treating various inter-
mediate cases where both the weak and strong discontinuities
occur.

5.2.5 Effects of the interphase thickness

As has been noted above, the interphase thickness h affects
theoretical and numerical results in an important way. To
elucidate its effects, the foregoing finite element model

(a)

(b)

Fig. 12 Comparison of the theoretical and numerical results for the
temperature and normal heat flux along the z-axis with x = 0 and y = 0
in the benchmark problem of a spherical inclusion inside a cube with
the value of k(0) being not far from those of k(i) and k(M) but with h
being no longer very small. aTemperature. b Heat flux

is employed. The bulk conductivities are fixed as k(i) =
1 W m−1 K−1 and k(M) = 10 W m−1K−1 while the inter-
phase conductivity k(0) ranges from 10−6 to 106 W m−1 K−1

and the normalized interphase thickness δ = h/R varies from
10−5 to 10−3. The corresponding values of α(i) and β(i) are
listed in Table 4. The numerical results and their comparison
with the associated theoretical results are provided in Fig.
13. As expected, in all the intermediate cases, the jumps in
temperature and normal heat flux increase when δ increases.
When the Kapitza or HC interface model applies, the temper-
ature or normal heat flux discontinuity become more remark-
able when δ is larger.

5.3 Thermal conduction in a particulate composite

The numerical procedure elaborated in the last section has
been validated above with the help of a benchmark problem.



Table 4 Numerical values of the parameters used in simulating effects
of the interphase thickness δ

k(0)(W m−1K−1) α(i) β(i)

δ = 10−5 10−6 −2.50 × 10−2 −1.38 × 10−7

10−3 −2.50 × 10−5 −1.37 × 10−7

100 −1.13 × 10−8 −1.13 × 10−7

103 1.37 × 10−8 2.49 × 10−5

106 1.38 × 10−8 0.0250

δ = 10−4 10−6 −0.25 −1.38 × 10−6

10−3 −2.50 × 10−4 −1.37 × 10−6

100 −1.13 × 10−7 −1.13 × 10−6

103 1.37 × 10−7 2.49 × 10−4

106 1.38 × 10−7 0.25

δ = 10−3 10−6 −2.50 −1.38 × 10−5

10−3 −2.50 × 10−3 −1.37 × 10−5

100 −1.13 × 10−6 −1.13 × 10−5

103 1.37 × 10−6 2.50 × 10−3

106 1.38 × 10−6 2.50

Now, we apply it to solve the problem of steady thermal con-
duction in a composite consisting of a matrix in which multi-
ple spherical and non-spherical inclusions are embedded. As
an example and for simplicity, consider a representative vol-
ume element (RVE)Ω of the composite, which corresponds
to a cubic matrix with eight inclusions (Fig. 14). Relative to
the system of Cartesian coordinates (x, y, z), each inclusion
is characterized by

∣∣∣x − x ( j)
c

∣∣∣p +
∣∣∣y − y( j)

c

∣∣∣p +
∣∣∣z − z( j)

c

∣∣∣p = a p
j

where (x ( j)
c , y( j)

c , z( j)
c ) are the coordinates of the center of

the j th inclusion, p � 1 and a j is a positive constant which
is required to be such that any two inclusions do not contact
each other and each inclusion is completely included inside
the matrix.

Two configurations are numerically investigated. The
locations and geometric parameters of the inclusions for
every configuration are specified in Table 5. Figure 14 illus-
trates configuration 1. The interface between the matrix
and each inclusion is imperfect and described by the jump
relations (3) and (4). The interfacial and bulk parame-
ters used are: k(0) = 10−6, 5 or 106 W m−1 K−1, k(i) =
1 W m−1K−1, k(M) = 10 W m−1 K−1 and h = 10−5 l with
l = 0.04 m being the side length of the cubic matrix. On the
surface ∂Ω of the RVEΩ , we prescribe the uniform temper-
ature gradient boundary condition ϕ = ϕ = −g0 · x for x ∈
∂Ω and with g0 = (0, 0, 100)T whose component unit is
K m−1.

Figures 15, 16 and 17 show the temperature distribution
in three planes normal to the axis y for configuration 1 with
k(0) = 10−6, 5 and 106 W m−1 K−1. The effects of lowly
and HC imperfect interfaces on the temperature distribution
are clearly observed. From 15, 16 and 17, we see that the
temperature distribution inside all inclusion is much less uni-
form in the case of k(0) = 5 W m−1 K−1 than the cases
of k(0) = 10−6 and 106 W m−1 K−1. Further, the temper-
ature distribution over each inclusion is more uniform in
the case of k(0) = 10−6 W m−1 K−1 than in the case of
k(0) = 106 W m−1 K−1. Even though the matrix is finite
and multiple inclusions are present, the temperature distri-
bution over each inclusion is almost uniform in the case of
k(0) = 10−6 W m−1K−1. However, the numerical values of
the temperature field indicate that the gradient of the temper-
ature field in each inclusion is not exactly uniform.

Figures 18, 19 and 20 illustrate the temperature distri-
bution in three planes normal to the axis y for configu-
ration 2 where non-spherical inclusions are involved and
k(0) = 10−6, 5 and 106 W m−1K−1. Once more, we see that
the lowly and HC imperfect interfaces considerably affect the
temperature distribution. In particular, the lowly or HC inter-
face tends to render the temperature inside an inclusion more
uniform. In addition, the temperature field is influenced by
the geometrical form of an inclusion. As expected, the tem-
perature field inside each inclusion is non uniform. However,
this non uniformity is quite weak in the cases of lowly and
HC interfaces.

6 Closing remarks

In this work, a versatile interface model for thermal con-
duction has been considered and numerically implemented
with the help of the XFEM and the LSM. The interface
model in question is rigorously derived from a physically
meaningful configuration and includes as special cases the
classical Kapitza’s resistance and HC imperfect interface
models. In addition, this model is quite simple in the sense
that it involves only two scalar parameters bearing clear
physical interpretations. The weak form and numerical pro-
cedure elaborated for the interface model in question can
be viewed as extending those presented by Yvonnet et al.
[5,12] for the Kapitza and HC interface models. Validated
with the aid of a benchmark problem, the numerical pro-
cedure provided in the this work is an efficient tool for
the modelling and simulating the effects of a wide class of
thermal imperfect interfaces in heterogeneous materials and
structures.

Transport phenomena are numerous and play an impor-
tant role in mechanics and physics. From a mathematical
point of view, they are similar to each other, so that ther-
mal conduction can be considered as a prototype of transport



Fig. 13 Effects of the
normalized interphase thickness
δ on the temperature and normal
heat flux along the z-axis with
x = 0 and y = 0 in the
benchmark problem of a
spherical inclusion inside a cube
with different values of k(0). a
Temperature with δ = 10−5. b
Heat flux with δ = 10−5. c
Temperature with δ = 10−4. d
Heat flux with δ = 10−4. e
Temperature with δ = 10−3. f
Heat flux with δ = 10−3
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Fig. 14 Representative volume element (RVE) Ω of the particulate
composite with 8 spherical inclusions

phenomena. Thus, when care is taken at the level of physics,
the interface model considered and the numerical procedure

Table 5 Positions and sizes of the inclusions inside the RVE of the
composite (unit: mm)

Inclusions Config 1 and 2 a Config 1 Config 2
(xc, yc, zc) p p

V1 (0,−11,−11) 8 2 2

V2 (12,−12, 12) 6 2 5

V3 (−12,−12, 12) 6 2 5

V4 (0, 0, 0) 4 2 2

V5 (12, 12,−12) 6 2 4

V6 (12, 12, 12) 6 2 4

V7 (−12, 12, 12) 6 2 3

V8 (−12, 12,−12) 6 2 3

elaborated in the present work are expected to be transposable
to other transport phenomena such as electrical conduction,
diffusion, dielectricity and magnetism. In addition, due to the
fact that anti-plane elasticity is mathematically identical to



(a) (b) (c)

Fig. 15 Distribution of the temperature field in the RVE for configuration 1 and with k(0) = 10−6 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m

(a) (b) (c)

Fig. 16 Distribution of the temperature field in the RVE for configuration 1 and with k(0) = 5 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m

(a) (b) (c)

Fig. 17 Distribution of the temperature field in the RVE for configuration 1 and with k(0) = 106 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m



(a) (b) (c)

Fig. 18 Distribution of the temperature field in the RVE for configuration 2 and with k(0) = 10−6 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m

(a) (b) (c)

Fig. 19 Distribution of the temperature field in the RVE for configuration 2 and with k(0) = 5 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m

(a) (b) (c)

Fig. 20 Distribution of the temperature field in the RVE for configuration 2 and with k(0) = 106 W m−1K−1. a y = −0.012 m. b y = 0 m. c
y = 0.012 m



two-dimensional thermal conduction, the results obtained in
the present work can also be useful for dealing with effects
of imperfect interfaces in anti-plane elasticity.
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