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Diffusion Equations Via Statistical Thermodynamics 
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Equipe Surfaces et Interfaces (ENSAM Lille) - CNRS UMR 8517. 
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Abstract 

The aim of this paper is to analyze the physical meaning of the numerical instabilities of the parabolic 
partial differential equations when solved by finite differences. Even though the explicit scheme used to 
solve the equations is physically well posed, mathematical instabilities can occur as a consequence of the 
iteration errors if the discretisation space and the discretisation time satisfy the stability criterion. To 
analyze the physical meaning of these instabilities, the system is divided in sub-systems on which a 
Brownian motion takes place. The Brownian motion has on average some mathematical properties that can 
be analytically solved using a simple diffusion equation. Thanks to this mesoscopic discretisation, we could 
prove that for each half sub-cell the equality stability criterion corresponds to an inversion of the particle 
flux and a decrease in the cell entropy in keeping with time as criterion increases. As a consequence, all 
stability criteria defined in literature can be used to define a physical continuous 'time-length' frontier on 
which mesoscopic and microscopic models join. 

Keywords: Diffusion, Partial Differential Equations, Finite Dif ference Method , Stability, Fractal, Monte Carlo, 
Entropy, Anti Entropy Process, Brownian Mot ion. 

1 Introduction 

The rapid development of high-speed computer 
technology over the recent years has been 
accompanied by a very substantial growth of 
computational science. A high number of 
physical phenomena can be modeled by Partial 
Differential Equations (PDE) [1] that can be 
solved by numerous numerical methods [2-3], 
Among these methods, only the Finite 
Difference Method (FDM) [4], which stands out 
as being universally appropriate to both linear 
and non-linear problems, is considered here. 
FDM can equally be applied to hyperbolic, 
elliptic and parabolic equations. In short, these 
equations are used to model wave physical 
properties, t ime-stationary phenomena and all 
time dependent d i f fus ion (transport) processes. 
To solve these PDE numerically, F D M consists 

in expanding all variables of the PDE in Taylor 
series on a grid at d i f ferent points in the relevant 
domain, while l imiting this expansion to the first 
derivatives, introducing these finite expansions 
on the PDE problem and finally solving it by 
adequate numerical models . The main problem 
encountered is that P D E becomes a discretised 
equation in which all differential elements do 
not tend towards zero but towards fixed values 
that depend on the number of discretised points. 
However, the discretisation process involves 
local truncation errors and the problem of the 
consistency of the numerical scheme is raised, 
i.e. the solution converges towards the solution 
of PDE as the mesh length tends towards zero. 
Supposing that the numerical scheme is 
consistent, a second problem consists in testing 
the stability of this scheme since all rounding 
errors introduced dur ing computation (as a 
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consequence of the finite representation 
numbers) increase during the iterative scheme 
itself that may become unstable. Many 
mathematical tools and theorems can be used to 
study the stability of the system. However no 
physical interpretation has been proposed yet. 
These methods show that by increasing the 
discretisation time, the system may pass from 
stability to instability. In fact, these 
mathematical results involve questions about the 
physical model ing process. There exists a space-
time relation that a l lows us to solve the problem 
of consistence related to Chaos Theory: a small 
initial error may be raised and become very 
important leading to a total instability of the 
system [5], However PDE model macro physical 
systems and the fundamental questions are: ' Is 
the length of the space-t ime unit used in 
discretisation compat ible with the microscopic 
phenomena? If not does it lead to an unstable 
system?' With regard to the high number of 
mathematical publications related to PDE 
stability, we propose to study physically the 
stability of a parabolic PDE that can be applied 
onto physical problems which are easily 
modeled at the microscopic scale. 
In a first part of the present paper, we shall 
describe the physical use of these equations. 
Secondly, we shall analyze the numerical 
solution of the well-known Fick equation [6] 
compared with the Einstein model [7] to find 
out if the problem is well posed. In a third part, 
we shall introduce briefly a new method for 
studying stability. In a fourth part, we shall 
propose a physical interpretation of stability 
based on Brownian motion theories [5,7] and 
the second principle of thermodynamics [8]. 
Finally we shall proceed a Monte Carlo 
simulation to illustrate our physical stability 
interpretation. 

2 Parabolic Differential Equations 

The Parabolic PDE is given by the 
following mathematical definit ion: 

du ^ d d r i \ . . . 

ot ~7 ox, ox i 

w h e r e ( χ , / ) ε Ω χ IR+, a n d Ω is an o p e n set o f 

I R n . 
These equations that characterize transport 
phenomena such as heat transfer, viscous fluid 
mechanics, a tom-vacancy transport, Ohm law, 
contagious epidemic . . . can be obtained by three 
main ways: 
(1) Count ing the number of "part icles" by 
volume unit and applying a Fick law 
flux J cc grad(u); 

(2) Using transport equat ions for each entity of 
the system (particle) and making the free path 
tend towards zero; 
(3) Using stochastic processes as Brownian 
motion. 
These mathematical methods, used for physical 
modeling, show that the diffusion process can 
be derived f rom probabilistic topics, meaning 
that dif fusion laws are stochastic in nature. 
Asymptotic considerat ions will lead to 
suppressing the stochastic aspect of these 
models to obtain deterministic ones. In other 
terms, microscopic f luctuat ions are " removed" 
to result in macroscopic formulations, i.e. 
continuous ones. One important consequence of 
this fundamental duality is that the differential 
elements can not have a zero limit that would 
lead to a nonsensical interpretation. For example, 
in the Fourier heat t ransfer law, heat can be 
considered as the Brownian motions of 
phonons/electrons and then the differential 
elements cannot be smaller than the mean free 
path of the motion. On the contrary, the 
differential e lements must not be too large to 
include the mesoscopic modeling of the 
phenomenon. These considerat ions show that 
there exists a scale range where the differential 
elements get a physical meaning, whose 
determination is no trivial work. 

3. The resolution of the diffusion equation 

3.1. Analytical solution 
Equation 1 can be analytically solved for 

only specific systems, and therefore a numerical 
estimation has to be generally processed. In this 
part Eq.l is discretised by the Finite Difference 
Method. Without lack of generality, we shall 
retain to treat in this paper the simple mono-
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dimensional Fick equation that is reduced to: 

(2) 
dc{x,t) Dd2C{x,t) 

dt dx2 

where C(x,t) is the concentration at time t of 
particles at position χ , and D the diffusion 
coefficient. With C(o,o)= C0S0, where δ0 is the 
Dirac pulse, and as initial conditions, the 
well-known solution is: 

Cn f 
ADt 

C(x,/) = - r e x p (3) 
2 yfnDt 

We shall precise some of its properties. Firstly, 
Eq.3 reduced by C0 is a Gaussian Probability 
Density Function (PDF) with zero mean and 
a(t)=y[2Dt standard deviation. This clearly 
means that diffusion is a stochastic process and 
that equations can be obtained by asymptotic 
considerations (like the Central Limit Theorem). 
To visualize this fact, a Monte Carlo method 
will be used in chapter 5 to simulate the 
diffusion process on purpose to compare with 
the theoretical solution given by Eq.3. 

3.2. Numerical solution 
We shall now use the finite difference 

method to discretise Eq.2. Using Taylor 
expansions: 
dC(x,t) _ C(iAx, ( j + l)A?)-C(/'Ax, /At) 

dt x=iAxJ = /Al At 

+ Θ(Δί) = — — + Θ(Δί), 
At 

and 

d2C(x,t) 
dx2 

r> - 2 C + CJ 

(Ax)2 
+l +Θ((ΔΧ)2) 

χ=ιΔχ.ι=/&ι 
which gives the following explicit numerical 
scheme: 

DAt 
crx = a • • (c /_ , -2C/+C/ + 1 ) . (4) 

On the other hand, if the gradient is considered 
at time t = ( j + \)At, then the following implicit 
numerical scheme is obtained: 

dC(x,t) 
dt 

. Dd2c(x,t) 

1 — Γ j 

χ=/Δχ,/=J&I 

DAt 

dx2 
x=iAx,l=(j+\)Al 

(Δχ) 
(5) 

Or more generally: 

(Axf (i 
(6) 

which corresponds to the well-known Crank-
Nicholson scheme for β - 0.5. 
Equation 4 is an explicit scheme meaning that 
concentration at time t + At only depends on the 
gradient at t ime t . Equation 5 is an implicit 
scheme meaning that concentration at time 
t + At only depends on the gradient at t ime 
t + At . Neglect ing problems of discretisation 
errors (which will be minimized when β = 0.5 
in Eq.6.) and numerical stability, the question 
which arises f rom our analysis is to know 
whether the scheme gets a physical sense or not. 

3.3. The implicit/explicit scheme and the Einstein 
theory of Brownian motion 
To answer the above question, we shall 

analyze the hypothesis used by Einstein in 1905 
to give a physical explanation to the 
phenomenological coefficient D in Eq.2 
introduced by Fick. Einstein postulated that 
concentration at t ime t + At is given by: 
C(x, ί + Αί)=Σ W(X,, At)p{x - X,, t), (7) 

isp 
where w(x,At) is the probability that an i 
particle makes a Xi long jump during a time At. 
This equation is reduced to Eq.2 by posing 

D = Htri jlAt). As a consequence, Einstein 

shows that the particle concentration at time 
t + At only depends on average on the 
concentration at t ime t , i.e. before the j u m p 
occurs. The implicit scheme ( β = 0 ) lets us 
suppose an instantaneous jump, which is a 
physical non-sense. 
The main criticism against the implicit scheme 
is that we cannot aff i rm that all par t ic les w o u l d 
j u m p s i m u l t a n e o u s l y at t i m e t, w h i c h . i s in 
fact well founded. However this problem is still 
under discussion: in a discretised space, the 
mesoscopic time At ( Δ / » Γ _ Ι where Γ is the 
atom j u m p frequency) could be used without 
any physical problem to model the diffusion 
states without taking into account the correlation 
effects, and then the particles can j u m p 
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simultaneously. However, even if time is 
mesoscopic, Eq.7 can be transformed into: 
C(x, t + \t)=YjW(Xi,At- At, )c(x-X„t- At,) ,(8) 

iep 

and At, ( At, «At ) will be seen as time 
fluctuation. By introducing this perturbation in 
the probability jump, the variance properties of 
the concentration become less smooth than the 
average solution. This result was reported by El 
Naschie in his study of the abnormal diffusion 
and correlation in the Cantorian space [9], The 
fractal space-time cannot exactly be d=2, but 
must be slightly larger because diffusion on a 
lattice and in a random environment is harder 
than in a smooth space. Therefore the fractal 
dimension must be taken as the mean <dc>=2 
rather than dc=2. As a consequence, introducing 
a perturbation in the Einstein diffusion equation 
will not affect the solution on average, like the 
mesoscopic diffusion problems in the EDP 
theory. However the Fractal concepts of the 
Brownian motion show that the positions of the 
particles x[t) possess the property 

(t + At)-X(t)f^K At and the graph X(t) 

versus time possesses a statistical self-affine 
structure meaning that 
(x{t + At)-X(t)) = r-05((x(t + rAt)-X(t))) As a 
consequence, time and distance do not possess a 
Euclidean metric and then to use a Euclidean 
formulation (integer integration of PDE), as 
used by Einstein, the Brownian Motion must be 
located at a constant time At involving a 
constant displacement X . Therefore, in the 
average dimension analysis, the formulation of 
Eq.8 is rejected for Einstein's Eq.7. All these 
remarks show that only the explicit formulation 
gets a physical meaning even though Eqs.(5-6) 
introduce some physical non-sense. 

4. Stability study 

4.1. T h e s tab i l i ty - ins tab i l i ty t r a n s i t i o n 

We have shown that the explicit scheme 
gets a physical sense that the implicit one does 
not possess. As concentration at time t + At is 
calculated from concentration at time t , the 
explicit scheme becomes a dynamic system 
given by Eq.5 that may become unstable for a 

25000 50000 75000 1ES 0 25000 50000 75000 1E5 25000 50000 75000 1ES 

(/) 0 25000 50000 75000 I £5 25000 50000 75000 1E5 25000 50000 75000 tE5 

A 
eeu 

J 
λ=0,50018 ^ •2E11 λ=0,50019 

-βεπ 
25000 50000 75000 1ES 0 25000 50000 75000 tES 

Number of iterations 

25000 50000 75000 1E5 

Fig. 1. Numerical estimation of a PDE problem 
in the middle of the grid CA(50,t) versus the 
number of iterations used in the numerical 
scheme for different values of the stability 
criterion λ . 20 simulations are computed with 
different initial noises. The analytical solutions 
are limC(50,?)= 100. 

given set of values DAt/(Axf . The essential 
idea behind stability is that a numerical process, 
when applied wisely, should limit the 
amplification of all components of the initial 
conditions including rounding errors. The basic 
analysis considers the growth of perturbations in 
initial data or the growth of errors introduced at 
mesh points at a given time level. To us, this 
mathematical philosophy seems close to the 
Chaos Theory philosophy and as a consequence 
we postulate that a duality exists between the 
mathematical interpretation and the physical 
representation. Three common methods exist to 
investigate stability: the Von Neumann method, 
the matrix method, and the energy method [4], 
Using one of these three methods, it can be 
shown [4] that the explicit scheme will be stable 
if: 
, DAt 1 

< — 
M - 2 · <10> 

A stochastic simulation will be used to illustrate 
the PDE stability. Let us take the following 
parameters to process the numerical simulation: 
D=\ , Δχ = 1 , C(0,i)=100 , C(l00,i)=100 and 
C(x,0)= U,xe {l...99}where U is a random value 
that follows a uniform law in the range 
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£/e[-0.5· 0.5] used to introduce a perturbation 
in the numerical scheme. The analytical solution 
gives limC(x,r) = 100 , Vx . Then the explicit 

/-» oo 

scheme is used to calculate the values of Cx(x,t) 
at different times and space discretised points. 
For sufficiently large values of t 
(t = tx =100000) we can admit that the solution 
is reached since convergence errors are lower 
than computer errors due to finite representation 
numbers. To analyze stability, we shall compute 
the estimation values Cx(50,t) , the 
concentration in the middle of the medium at 
different times for different values of A 
( A e [0.40000, 0.50020] ). Fig. 1 is the plot of 
(Γλ(50,/) versus time for different values of A 
(for a given Α , 20 simulations are computed 
with different initial noises U ). For A < 0.5005 , 
the initial noise decreases during iterations and 
the numerical solution C / t(50,i) converges 
towards the true value i.e. 100. This threshold is 
slightly higher than the 0.5 theoretical value, 
which is not in contradiction with the stability 
theory. In fact, this theory affirms only that a 
numerical scheme will be unconditionally stable 
for A < 0.5, i.e. whatever the initial conditions, 
the frontier conditions, At , Ax or D , the 
scheme will always be stable if A <0.5 . The 
theory does not affirm that some particular 
conditions can lead to stability for Ac > A > 0.5 . 
For example, with Δχ = 10 , Ac =0.512 and 
Δχ = 5 leads to Ac = 0.503 (in fact, we have 
shown that if all parameters stay unchanged, 
lim Ac = 0.5). Fig. 1 shows that for A > 0.5005, a 

noise appears on the values Cx (50,/)= 100 that 
will be exponentially amplified with an increase 
of A : the scheme becomes unstable. Then, we 
estimate the error by: 
Er{xl2,0= log | C , ( x / 2 , O - 1 0 0 | \ 

Fig.2 represents this error function versus A and 
confirms that after A > 0.50005 , error increases 
exponentially according to the power-law: 

4.2. Space-time dimension and stability process 
Before giving a physical interpretation, five 

bU 

40 Τ 
30 

20 t 

t 
Τ 30 

20 

10 
t 

10 
0 t : Ϊ 

-10 
-20 

* 

* 

-10 
-20 * 

-30 
- - : -

-30 
-40 ο in ο in ο in ο α) σ> ο ο t- CM 

σι σ> ο ο ο ο ο 
σ> σ> ο ο ο ο ο 

-*r m m in in m ö ö d ö ö ö 0 
Stability Criterion 

Fig. 2. Numerical estimation of the error for a 
PDE problem in the middle of the grid CA(50,i) 
versus the number of the iterations used in the 
numerical scheme for different values of the 
stability criterion A. 20 simulations are 
computed with different initial noises and means 
on CA(50,f). The associated 95% confidence 
levels are plotted. 

remarks about inequality (10) have to be made: 
1) For given values of D and At, if the space 
increment Δχ decreases, then after a critical 
value, the scheme becomes unstable. In other 
words, the time At is too large to isolate the 
diffusion phenomenon on a length Δχ . In the 
same way, if At decreases Δχ must decrease, i.e. 
the length must be small enough to isolate the 
diffusion flux during At time which looks like a 
kind of macroscopic uncertainty principle. 
2) Since diffusion can be seen as a random 
process X(t) with Gaussian increment we obtain: 

var[x{ t 2)-X(t^\ t 2- t \^D ' , (11) 
where D f = 1.5 is the average fractal dimension 

of the Brownian motion graph and var(X) the 
variance of X. A characteristic length Δχ of the 
displacement can be given by the standard 
deviation of Eq. l l and then 

yl\ar[x(t2)-x(tt)] = Δχ . Therefore At=\t1-t\ 
can be seen as the characteristic length 
associated with At time and we obtain 

Ax <x VÄ7 or At/(Ax)2=cte that represents a limit 
condition between stability and instability. As a 
consequence, the criterion of stability follows 
the same relation as the relation between time 
and distance in the fractal concept of diffusion. 
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STABLE 

Macroscopic 
System 

Particle 

I 
I 
I 

1 
Γ 
I 
I 

1 
1 

2D 
MEASURABLE 

Velocity 
and interaction \ 
particles Dc=rtmlh 

UNSTABLE 

no interaction particle 
1 
I 

A 
2 7tm 

UNMEASURABLE 
-> At 

(A,)2 

Table 1 
Another stability criterion (with different power 
exponents) will be incompatible with the space-
time relation for the fractal motion of a particle. 
3) Let us analyze the solution of a sandwich of 
particles that diffuse in an infinite medium. The 
solution is given by Eq.3. This solution is a 
Gaussian PDF (at a constant factor) with a zero 
mean and a σ(/) = ~j2Dt standard deviation. 
According to the properties of the Gaussian PDF, 
66% of the diffused mass are in the interval 
[ - σ ( 4 σ(ί)], 95% in [- 2σ(ί), 2σ(ί)}, 99.7% in 
[- 3σ(ή, 3σ{ί)]... This clearly means that the 
value ψ(ρ)σ( / ) with: 

ψ</<) , ( χι\ 

-JTJC 
e x p dx = P (12) 

-T </>) 

can be seen as a mean diffusion front (without 
any fractal aspect) and as a consequence 
L{P) = Ψ(Ρ) λ/2 Dt becomes a characteristic 
length of the diffusion progression. Considering 
now each discretised space length Δλ , an 
elementary sandwich diffusion process centered 
on Ax interval must statistically keep a certain 
mass on the Δχ interval, then Ψ(Ρ) -J2Dt < Ax 
and finally: 
DAt V{P) 

W 2 • <l3> 

This condition looks like the stability condition 
given by Eq.10. It physically means that stability 
can be obtained in a macroscopic system only if 
the adimensional parameter DAt/(Ax)2 is lower 
than a characteristic length related to the 

diffusion process. It must be emphasized that the 
main relation of the thermodynamic 
interpretation of this instability proposed in the 
following paragraph exactly leads to the 
stability conditions of the EDP when posing 
T(/>)=1, as a result of the Gaussian properties 
related to the inflexion point. 
4) From the Heisenberg principle, AxAp>h and 
then At/ Ax2 < h/2Trm. This relation looks like a 
stability criterion. As 1/2D < \ / 2D c = hl2mn 
(meaning that D>Dc=mnlh ), Dc is the 
smallest Diffusion Coefficient (without any 
environmental interactions) that can be 
measured according to the uncertainty principle 
and which leads to a stable scheme. 

If At/(Ax)2 e [l/2D, A/2jun] (see table 1) then the 
scheme is unstable but the particle flux can be 
measured. D is a macroscopic coefficient that 
represents the easiness with which a number of 
atoms passes through a fictive interface by time 
unit. This means that D involves a correlation 
effect, interactions between atoms, a potential 
barrier not involved in Dc (Heisenberg Principle 
concerns isolated particles). In the range [D, Z)c], 
all is seen if measurable instability is due to the 
interaction between particles, velocity ... which 
seems to converge to the fact that chaos will 
appear when different systems interact and these 
interactions are related to the coefficient D. 

5) If D increases for a constant value of Δ//(&χ:)2 

(constant space-time observation), the system 
might become unstable. Increasing D 
corresponds to increasing the diffusion front 
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length in the e lementa ry cell and then f r o m (13) 
the system m a y b e c o m e uns table . With a same 
value of space- t ime observa t ion , the m a p might 
become unstable w h e n the veloci ty of the 
particle increases (e.g. increas ing t empera tu re 
increases D ) which is a we l l -known express ion 
of the emergence of chaos in the f luid as 
observed in the classical Tay lor -Coue t te 
exper imentat ion [10]. 

5. Physical interpretation of 
stability 

W e shall n o w introduce a physical 
interpretation of stabil i ty in wh ich we suppose 
that Eq.2 governs the d i f fu s ive sys tem. Th i s 
equation can be seen as mode l ing the d i f fus ion 
in all the med ia and the re fo re is an intr insic 
physical proper ty of the system. In this system, 
we shall in t roduce the initial concentra t ion 
c(x,0), a space descr ip t ion Ω (open set of IR), 
and limit condi t ions C(x, i ) (or another 
condit ion like the f lux condi t ion dC(\,t)/dx . . . 

where χ e 9 Ω ) . T h e important fact is that these 
condi t ions do not change the physics of the 
d i f fus ion but only give a par t icular 
conf igurat ion to the sys tem. As there can be an 
infinite number of initial or limit condi t ions , the 
number of solut ions for the di f ferent ia l sys tem 
becomes infini te and genera l ly cannot be solved 
analytically. All so lu t ions can be seen as densi ty 
funct ions because concent ra t ion in space dx can 
be seen as a probabi l i ty to f ind part icles in dx. In 
this part, w e shall prove that all t ime-d i f fus ion 
systems can be seen as the sum of e lementa ry 
sandwich processes centered on each part of a 
grid equally spaced. 

5.1 Relation between stochastic microscopic 
diffusion state and microscopic deterministic 
diffusion state 

Let us cons ider the d i f fus ive system as a 
microscopic one and note η the number of 
particles at t ime t at posi t ion x,(t), / e{ l . . .«} . As 
the posit ion cannot be known exact ly 
(He i senberg ' s pr inciple) , w e can cons ider that 
the probabil i ty to f ind a part icle is given by: 

(14) <p(x,,t;h) = — e x p 
hyl 2π 

where h r epresen ts the lack of precision in the 
x,(t) de te rmina t ion (if h-> 0 , then 
φ(χ,, f; h) δχ ( 0 , and the posi t ion is perfec t ly 

known) . W e shall n o w link the microscopic 
interpretat ion to the m a c r o s c o p i c system. Let us 
note C(x,t) the so lu t ion of the P D E problem and 

,n) the solut ion given by the microscopic 
one. A s a c o n s e q u e n c e , us ing the Gauss ian 
Kernel Dens i ty Es t ima te w e get: 

C(x,t,n-,h) = - - Y ( p ( x . , f , h ) . 

n h t l 

(15) 

T h e constant h is chosen to f i t well with the 
macroscop ic concen t ra t ion that can be expla ined 
by a L2 norm min imiza t ion : 

m i n | φ , ί , « ; / ; ) - φ , / ) | \ 
helR 

It can be shown that : 

l i m m i n l l c ( * ' ' > ' 7 ; / ? ) - c M 

(16) 

= 0 for h - > 0 . 

(17) 
meaning that a s tochas t ic microscopic sys tem 
tends towards a m a c r o s c o p i c determinis t ic one 
when the n u m b e r of par t ic les tends towards 
infinity. 

5.2. Decomposition of complex macroscopic 
diffusion systems into elementary mesoscopic 
diffusion microstates. 

Let us n o w suppose that the concentra t ion 

C(x,t) is known ( fo r e x a m p l e Fig. 3(bi ) or Fig. 

3(b5). W e discre t i se space in intervals of length 

Δχ . On each interval labeled by η suff ix , the 

concentra t ion is a cons tan t modeled by a 

rectangular func t ion H(XN,AX) (see Fig. 3 ( a l ) ) 

so that the concen t ra t ion €„(χ,ΐ,Δχ) on the 

central interval xn is given by ( for example 

Fig. 3 ( a l ) or Fig. 3(a5)) : 

{x% U Δχ) = C(xn, t )H(,yh , Δ.ν). ( 1 8 ) 

Then the discret ised concen t ra t ion c(x,/ ,Av) is 

given by: 

σ ( χ , ί , Δ χ ) = Σ σ . ( χ > ' > Α χ ) · ( 1 9 ) 

I ' l l 

On each interval, the d i f f u s i o n governed by Eq.2 
still occurs , but wi th the initial condit ion on 
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(20) 

these intervals given by: 
Γ Cn{x,t,Ax) = C(x„,t,^) 
{C„{x,t>Ax)=0 
Vx e [x„ -Ax/2 ,x„ + Δχ / 2 J 
Vx 0 - Ax/2,x„ + Ax! 2~\ 
When interval / is discretised in the time interval 
[/,/ + Δ/] , labeled by m suffix 

,]) , we obtain: 

iCnm{x,tm,Ax) = C{xn>tm,Ax) 

{C„Jx,tm,Ax)= 0 

Vx e [x - Ax / 2, χ + Ax 12\ r η 

w Λ ο A · ( 2 1 ) 
Vx g [χ„ - Ax/2,χ„ + Ax/ 2J 
This means that the initial PDE problem can be 
modeled by a great number of cells on which the 
initial concentration is constant where Eq.2 
holds. 
The solution to Eq.2 on this "PDE-cell" is then 
given by: 

Cmm(x,t,A= e x p f - i ^ V 

(22) 
After integration of Eq.22, the final solution is: 

Ax / 2 - (x - xn) 
erj • 

C„Jx,t,Ax) = ~C{x„J„,,Ax) 

dx 

with erf{x) , the error function given by 

2 
« / ( * ) = —,= |exp(- u2) du . 

•ν TT 0 
Theorem 

lim I —>x Μ λ ) 4 Dt 

(24) 
This means that for a long enough diffusion time, 
the PDE-cell is physically equivalent to the 
well-known problem of sandwich diffusion 
centered on the x„ value. The convergence rate 
of theorem 1 will be analyzed in the next 
chapter. 
Theorem 2: The solutions C(x,t) to all the 

A 

* 8 

-10 -5 

o.,! t=1.5 

OK 

; t=i .9' 

0 s 10 

•10 -S 0 S 10 

•10 -5 0 S 10 

•10 -5 0 S 10 

-10 -5 0 5 10 

8 « 

650.3 

-10 - 5 0 5 10 

Fig. 3. Evaluation of a diffusion problem for 
a thin material diffusing in a random 
medium. Values of C(xl,,tm,Ax) for different 
diffusion times are plotted on Fig. (a/) to 
Fig. (an). Fig. (a,) (t = t0= 0) and Fig.(as) 

(t = t] = l J are calculated by integration oj 
theoretical values Clh(x,0)=S0 (Fig. (aJ and 
Clh(x,l) (Fig.(as)). Fig. (bz), (b3), (b4), (b6), 
(by), (ba) represent the sum of C(xn,tm, Ax), 
i.e. Cm(x,t), given on the left figure (circle). 
The theoretical values given by the PDE 
problems are plotted on filled line. 
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dif fus ion p rob lems in infini te media (or where 
concentrat ion in all the media does not change) 
which obey Eq.2, are solved by Eq.23 on each 
PDE-cell and then the macroscop ic solut ion is 
given by: 

c M = l i m Y 
φ „ , ? 0 , Δ χ ) 

V4πϋϊ . 
J exp 

(* - Xn )2 

4 Dt 
dx 

(25) 

where C(x„, t0 , Δχ) is the initial concent ra t ion in 

each cell. 
To illustrate this theorem that is the central 
point of our physical approach to stabili ty, we 
shall treat the macroscop ic p rob lem of initial 
thin film that d i f f u s e s in an inf ini te matr ix . Eq.3 
gives the solut ion to the mac roscop ic d i f fus ion 
problem. T h e method descr ibed be low is then 
applied with the fo l lowing parameters : 
D = 0.01 , Δχ = 1 , I e [0...2] , tm e {θ,ΐ} . 
» = { - 1 0 , - 9 , . . . ,9,10}. 

At each t ime whe re t = tm , the va lues of 

C(xn,tm,Ax) have to be numer ica l ly assessed. 

We calculate the mean of the concent ra t ion 

C(xll,tm,Ax) on the interval 
[x„ - A x / 2 , x n + Δ χ / 2 ] given by: 

C(xn,tm,Ax) = 
Ax/2 

tsx^nDt„, 
I exp (x ~ x„ f dx. 

(26) 
and then f rom Eq. l 8 

C(x„,tm, Δχ) = C(x„,t„,,Ax)H{x„,Ax) (for tm = 0 , 
C{x0j) = Su , Fig 3 (b|) and 
C{x„,t0,Ax)=H(xN,Ax)/Ax, Fig. 3 (a ,)) . Then 

Eq.23 is appl ied to ca lcula te the concent ra t ion 

on each cell at d i f fe ren t t imes Cnm(x,t,Ax). Fig. 

3.(a), represents the d i f fe ren t va lues of 
C,,„,(*,/,Δχ) for m = 0 (Fig.3 (a,), to Fig.3 (a4)) 

and m = 1 (Fig.3 (a5) to Fig.3 (a8)). T o ver i fy 
the cor respondence with the theoret ical va lue 
(3), we calculate the concent ra t ion obta ined by 
our " M e s o s c o p i c " mode l f r o m theorem 2: 

^>)=ςΨφ4 Τ-ρ 4 D(t Oy 
(27) 

dx 

and then c o m p a r e with the theoret ical values 
C,h(x,t) given by Eq.3 . Fig.3 (b , ) to Fig.3 (b8) 
represent Cm(x,t) and C,h(x,t) for different 
di f fus ion t imes. A s can be observed, the 
mesoscop ic p rob lem converges towards the 
analytical fo rmula for a suf f ic ien t d i f fus ion t ime 
(note that the " t h r e s h o l d " t ime depends on Δ χ 
and the d i f fu s ion m e d i u m propert ies : the lower 
Δχ or the higher D , the lower th is threshold, cf. 
theorem 2). W e have then proved that a 
macroscopic c o m p l e x d i f fu s ion problem can be 
decomposed into a set o f e lementary d i f fus ion 
processes control led on an equal ly spaced grid 
which leads to a Gauss i an probabil i ty Densi ty 
Funct ion. Th i s decompos i t i on illustrates M.S. El 
N a s c h i e ' s idea that e l ementa ry processes of 
more complex sys tems are Gauss ian [11 ] .5.3. 5.3. 

Fig. 4. Three adjacent cells xl,x2,x1 of the space 
discretised grid Δχ = 1 on which mesoscopic 
simulations are processed until the instability 
criterion is reached. Gaussian curves Gl, G2 and 
G} with standard deviation Ax = 42Dt =1 
(D = 1, / = 1 /2 , i.e. λ = \ 12) are centred on each 
cell. 

Analysis of an elementary mesoscopic diffusion 
micro-state 

Let us n o w cons ide r three ad jacen t cells 

x , , x 2 , x 3 (Fig.4) . Wi thou t lack of generali ty, w e 

shall cons ide r that 

Φι. L > Δχ) = C(x2, tm, Ax) = c(x3, tm, Ax) and 

tm = 0 . Suppos ing a long enough d i f fus ion t ime, 

we get three Gauss ian cu rves with the same area, 

centered on xl,x2,xJ va lues and with a 

Λ/2 Dt s tandard devia t ion . T o obtain exact ly the 
stabil i ty-instabil i ty th reshold , f rom Eq.13 we 
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must have Ψ(Ρ) = 1 which involves Δχ = <JlDt 

(if 4lDt > Δχ then the scheme is unstable). 
Fig.5 represents the three Gaussian curves at the 
instability threshold. Let us now analyze very 
precisely this critical density function. Each 
elementary cell diffuses on the adjacent 
intervals (a probability calculus shows that 24 % 
of the mass transfer is on adjacent cells). Let us 
now consider the x, interval. Concentration is 
the summation of all the Gaussian curves on 
these intervals. It is important to notice that the 
concentration in cell x2 only results from the 
flux from cell x, and cell x3 . An important 
property is that, at the instability threshold, the 
inflexion points of the Gaussian curves G, and 
G3 lie in the center of the interval x 2 . 

The following mathematical properties can 

be stated: 

d2C ] 0(x, Δχ2 /2D,Ax)/dx2 < 0 

d2C3 0(x, Δχ2 /2D,Ax)/ dx2 > 0 , (28) 

Vx e [x2 - Δχ / 2, x2 ] 

d2Ct0 (x2, Δχ2 / 2D, Δχ)/ dx2 = 0 

d2C10(x2,Ax2 12 D,Ax)/dx2 =θ' 

a2C ] 0(x,Ax2 l2D,Ax]ldx2 > 0 

d2C30(x, Ax2 /2D,Δχ)/ 3x2 < 0 . (30) 

Vx e [x2, x2 + Ax / 2] 

From Eq.2, d2C: j (x, t, Δχ)/ dx2 oc dCij(x,t,Ax)ldt 

then 50 % of the dx micro intervals ( d x « Δχ ) 

of x2 interval get a positive temporal gradient 

( dCi0(x,t,Ax)/dt > 0 and dC}0(x,t,Ax)/dt > 0 ), 

and 50% a negative gradient 
( dC]0(x,t,Ax)/dt < 0 and C30(x,t,Ax)/dt < 0 ). 

After the stability threshold, more than 50% of 
micro cells get a negative gradient. This clearly 
means that the number of particles issued from 
adjacent cells x, and x3 decreases with time 
(and so does the configuration entropy of the 
system x 2 ) , which does not comply with the 
second principle of thermodynamics for a 
diffusive system.. . The mathematical criterion 
of stability for the explicit scheme is then 
physically related to the production of entropy: 
if the scheme is unstable then the production of 

(29) 

entropy on each discretised cell is negative 
( dSlim(x,t,Ax)/dt < 0 ). In chapter 7, we shall 

process a Monte Carlo simulation of diffusion to 
illustrate the mathematical tools of stability. 

6. Numerical instability: an infringement 
of the second principle of 
thermodynamics. 

In a monodimensional case, a PDE cell gets 
two adjacent PDE cells that will diffuse on this 
cell (see Fig.4). 

We shall consider particles issued from the 
adjacent cells. At time origin, it was shown in 
the previous paragraph that no particle from the 
adjacent cells is present in the PDE cell. During 
the diffusion process, these particles will diffuse 
on the cell with respect to time. Let us now 
formulate the configuration of cells xl or x3 in 
Fig.4. At the origin, entropy equals zero because 
no particle from the adjacent cells is present. 
Then entropy will increase thanks to diffusion. 
We shall now introduce the mathematical 
formalism of entropy evaluation. Based on the 
statistical thermodynamics, the PDE cell will be 
divided into k micro-systems of length δχ , 
{Ax = köx,h>> 1) we call the 'Sub-PDE cells ' . 
On each Sub-PDE cell, the probability of 
finding particles from the adjacent cells is 
evaluated and is of course time dependent. If the 
concentration in the PDE cell obeys the 
Gaussian hypothesis, the probability of having 
particles in an interval of length δχ, (<£χ«Δχ) 
located on χ in the PDE-cell 
( x e [ - Δ χ / 2 . . . Δ χ / 2 ] ) is given by: 

P(x,t , Αχ, δχ) = erf\ Δχ - χ + δχ 

•jÄDt 

\ 
-erf 

^ Δ χ - χ ^ 

Λ/4Έ 
.(31) 

Then the entropy configuration on each Sub 
PDE-cell is given by: 
AS{x,t,Ax^x)=-R P(x,t,Ax,5x)logP(x,t,Ax,&), 

(32) 
where R is the gas constant. 
By means of entropy additivity, the entropy 011 
any PDE-cell is then given by: 
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Σ 
kl 2 
Σ 
i / 2 + I 

erf 

χ log 

Δχ 1 - / - 1 

λ/407 
- erf 

f , 
- i - 1 Ax 1 - i - 1 

I k) 
λ/407 

er/ 
Δχ 1 - -

Λ/407 
- e r / 

Δχ 1 - -
k 

yfÄDl 

(33) 
and finally, the cell en t ropy is obta ined when 
δχ -> 0 meaning that A -> oo : 
Δ5>(/,Δχ) = lim AS(t,Ax,k) (34) 

1 

0.8 

>, 0.6 
Q. Ο 
Έ 0.4 
UJ 

0.2 

0 

0 9 0 9 

0 8 

0 7 

0 6 
0 

0 8 

0 7 

0 6 
0 

0 8 

0 7 

0 6 
0 
/ 

0 8 

0 7 

0 6 
0 1 0 3 0 5 0 7 0 9 

2 4 6 

Equilibrium criterion 

10 

Fig. 5. Entropy calculation for the cell x2 

shown in Fig. 4 by numerical estimation oj 
Eq.33 for a configuration 
k = 30, D = 1, Δχ = 1, 

/ e {0,0.001,0.002,•••,9.999,10} versus the 
values of stability criterion At/Ax2. Entropy 
increases for the value of At / Ax2 = 0.5 
(graph zoom), and then entropy decreases. 

Theorem 3: 

dAS(t, Ax)/dt >0 i f < Ax ,t > 0 , (35) 
dAS(t,Ax)/dt = 0 if flDt = Ax , (36) 

dAS(t, Ax)/dt <0 if flDt > Ax . (37) 
In instability cases, en t ropy will decrease in 

t ime which physical ly cont radic ts the second 

principle of t he rmodynamics (Tab le 2). W e shall 

now est imate the ent ropy of the cell x2 shown 

in Fig.5 by the numerical es t imat ion of Kq. 33 

for a particular conf igura t ion , k = 3 0 , D= I , 

Λχ - I, te {θ,0.001,0.002,· • ·,9.999,10}. 

{INSTABILITY yflDt STABILITY 

—-> Δ Χ Scale 

Anti Entropy Process 

Tab le 2 
Entropy Production 

Fig.6 represents the var ia t ion of the ent ropy of 
cell x2 versus the va lues of the stabili ty 

cri terion D At / Ax2. A s can be observed, en t ropy 
increases up to At/Ax2 = 0 . 5 . Unde r this value 
the numerical s c h e m e is s table, whi le over it the 
numerical s c h e m e is unstable and entropy 
decreases . Th i s is an il lustration of the Pr igogine 
and Brussels school which shows via stabili ty 

Fig. 6. Diffusion resulting from the three 
adjacent Cell-PDE modelled by a Brownian 
motion compared with the analytical solution 
under Gaussian hypothesis. ns is the number oj 
jumps of the particles, which corresponds to the 
time leading to the scheme instability (cf. Fig. 5). 

analysis that non- l inear b i furca t ion can abrupt ly 
decrease local en t ropy [12]. In fact , for a given 
observat ion t ime At, if Δχ decreases the 
probabil i ty o f f ind ing part icles on Ax tends to 
decrease and then w e tend to a t ime reversal that 
violates the t ime symmet ry breaking induced by 
the second law of t h e r m o d y n a m i c s [13]. 

7. Monte Carlo simulation 

T h e Brownian mot ion can also model the 
solution resul t ing f rom the PDE-cel l . Physical ly 
speaking, ρ par t ic les are uni formly randomly 
distr ibuted on the interval [x„ - Δ χ 7 2 , χ „ +Ax/2], 
divided into k subdiv is ions of length a at t ime 
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tn (Ax = ka,k» 1). Then for each ρ particle, 
ns jumps are processed on the left or on the 
right with a probability of one half. From the 
microscopic theory of diffusion, the diffusion 
coefficient is: 
D = a2 Γ/2, (38) 

where Γ is the jump frequency of a particle 
from a micro-cell of length a to an adjacent 
micro cell. 
The stability condition can then be expressed by 
including (10) into (38): 

Δ/ 1 

n,=l 
3CXXX n=l 2500< ^ JOOOi 

ι2Γ 
(39) 

1, £=100 , a = 10" 
(Ax)2 

Numerical application: D 
p = 100000. 

Then we get: Δχ = 1, ns = ΓΔί (where ns is the 
total number of jumps during time At) and the 
stability criterion (sc) becomes 
ns <(Δχ/α)2 = nf =10000 . Firstly, we shall 
verify the convergence rate of theorem 1. We 
shall study the diffusion time effect between 
three adjacent cells for the values of 
ns € {l, 10,100,1000, lOOOO} . Fig.7 shows the 
concentration curves for these different 
evolution times and the theoretical Gaussian 
curves given by Eq.24 plotted for each 
concentration map. As can be observed, the 
convergence rate to the Gaussian curve is well 
adapted if ns >1000. As our theory induces the 
Gaussian approximation PDF for the case 

- n" = 10000, then the Gaussian PDF is an 
adequate assumption. 

We shall now study the case ns = nf for 
k = 1000, then nf =1000000 more particularly. 
This simulation corresponds to a fine resolution 
of the diffusion problem on three adjacent cells 
at the instability threshold. Fig. 7 represents the 
theoretical solution (filled lines) under the 
Gaussian assumption (Eq.24) and the results 
from the Monte Carlo simulations. As can be 
observed, the Monte Carlo results converge 
towards the solution of the Gaussian 
approximation given by Eq.24 replacing the 
more complex Eq.23. This means that the 
Gaussian convergence claimed in theorem 1 is 
well accepted by our stability criterion and then 

n,=l 

<y 300» C Δ η -in :50£X 
Μ ·%"~,υ 2000C 
E9 1S00C 
Bffl 1000C 
HftS. 500C 

A n,=io iE 
rxjj i5ooc 
lift 10001 

n,= lO i 

X> 30CKX C Α 1ΛΛ 250UC 
ι Μ Oj-ιυυ 2oooc 

m '50tx 
c Jrh ιοοα MA sooc 

Δ iu=100 2500C 
« "S , w u 2000 ΜΛ 15001 m 100CK 

η,= 100 Δ 

id . 
I St 
Κ 

2000C 
1 113=1000 1500C 
\ 1000C 
ft 5000 

A 2000C 
Ä 1̂=1000 1500C 
WH 1000C 
Jaffa 5000 

n,=1000 , 

1 \ iV=10000 
a 5000 A =̂loooo 

5000 
n,=1000̂  

- 6 - 3 - 1 0 2 
- 4 - 2 - 0 1 ! 

- 5 - 3 - 1 0 2 4 
- 4 - 2 - 0 1 3 

-S -3 -1 0 
- 4 - 2 - 0 1 

Fig. 7. Comparison of the solution of the diffusion 
on three adjacent Cell-PDE of length Δχ = 1000 a 
modelled by a Brownian motion with the 
analytical solution under Gaussian hypotheses. 
The number of jumps nf = 1000000 of length a 
corresponds to the time leading to the scheme 
instability. 

all our hypotheses are well posed. As a 
consequence, all our conclusions about stability 
and the relations with a physical interpretation 
speak for themselves in the practical case of 
finite simulation. 

8. Conclusion 

In this paper, we have shown that there exists a 
relation between the stability criterion that 
guarantees the convergence of the partial 
derivative equation to the solution and the 
physical interpretation at a mesoscopic scale 
under the size of discretisation. This 
interpretation is related to an infringement of the 
fundamental second principle of 
thermodynamics. Regarding the high number of 
stability studies found in the mathematical and 
physical bibliography, the stability threshold 
allows us to give a space and time definition 
onto which scales are well adapted to treat the 
physical problems at a mesoscopic scale. These 
criteria are pertinent to choose discretised time 
and space during a Monte Carlo simulation. The 
stability criterion gives a numerical evaluation 
of the threshold between mesoscopic and 
microscopic simulations. To build this theory, 
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an original mathematical tool was constructed: 
we have shown that complex macroscopic 
problems can be treated as sets of mesoscopic 
problems that can be solved analytically. This 
approach consists in choosing an adequate 
model for the physical phenomenon on the 
elementary cells to solve the physical problem 
in its integrity. We think that each element of 
discretisation must have some physical 
properties rather than mathematical asymptotic 
properties to solve physical differential 
problems. On the other hand it is in total 
agreement with Hadamard Conference (Zürich, 
1917 cited in [14]) which disagrees with the 
common idea that a non-analytical partial 
derivative equation can be replaced by an 
analytical function without any significant effect, 
proving that an approximation could 
significantly disturb the solution. 
In our case we have studied a linear equation 
that in fact could not lead to chaos. However we 
have shown that its discretisation scheme could 
lead to a chaotic (unstable) solution if 
discretization do not respect some physical 
considerations. This clearly means that diffusion 
equation, which leads to the differential 
equation, has lost a part of chaos due to 
asymptotic mathematical considerations. On the 
contrary, the diffusion map that we have proved 
to be physically realistic is highly non linear. 
From the information contained in these non 
linearity's, a space-time relation was stated 
proving that non linearity allows us to explore 
the deep properties of diffusion : "If everything 
were linear, nothing would influence nothing", 
Einstein to Schrödinger (Cited in [13] with 
Author's comments about non linearity's effects 
in the space-time description). 
We have only dealt with diffusion in a one-
dimension space. We have studied the bi and 
three-dimensional cases and all results are 
confirmed. By applying our space-
compactification principle [15, 16], we have 
found the same results using an isomorphism 
between concentration and lnformions. These 
results, in agreement with Penrose's views on 
the computability of complex system [17-18], 
will be tackled in another paper. 
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