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Physical Interpretations of the Numerical Instabilities in
Diffusion Equations Via Statistical Thermodynamics

M. Bigerelle and A. Iost

Laboratoire de Metallurgie Physique et Genie des Materiaux (UST Lille),
Equipe Surfaces et Interfaces (ENSAM Lille) - CNRS UMR 8517.
ENSAM Lille, 8 boulevard Louis XIV, 59046 LILLE Cedex, FRANCE

Abstract

The aim of this paper is to analyze the physical meaning of the numerical instabilities of the parabolic
partial differential equations when solved by finite differences. Even though the explicit scheme used to
solve the equations is physically well posed, mathematical instabilities can occur as a consequence of the
iteration errors if the discretisation space and the discretisation time satisfy the stability criterion. To
analyze the physical meaning of these instabilities, the system is divided in sub-systems on which a
Brownian motion takes place. The Brownian motion has on average some mathematical properties that can
be analytically solved using a simple diffusion equation. Thanks to this mesoscopic discretisation, we could
prove that for each half sub-cell the equality stability criterion corresponds to an inversion of the particle
flux and a decrease in the cell entropy in keeping with time as criterion increases. As a consequence, all
stability criteria defined in literature can be used to define a physical continuous 'time—length' frontier on
which mesoscopic and microscopic models join.

Keywords: Diffusion, Partial Differential Equations, Finite Difference Method, Stability, Fractal, Monte Carlo,
Entropy, Anti Entropy Process, Brownian Motion.

1 Introduction in expanding all variables of the PDE in Taylor
series on a grid at different points in the relevant
domain, while limiting this expansion to the first

derivatives, introducing these finite expansions

The rapid development of high-speed computer
technology over the recent years has been

accompanied by a very substantial growth of
computational science. A high number of
physical phenomena can be modeled by Partial
Differential Equations (PDE) [1] that can be
solved by numerous numerical methods [2-3].
Among these methods, only the Finite
Difference Method (FDM) [4], which stands out
as being universally appropriate to both linear
and non-linear problems, is considered here.
FDM can equally be applied to hyperbolic,
elliptic and parabolic equations. In short, these
equations are used to model wave physical
properties, time-stationary phenomena and all
time dependent diffusion (transport) processes.
To solve these PDE numerically, FDM consists

on the PDE problem and finally solving it by
adequate numerical models. The main problem
encountered is that PDE becomes a discretised
equation in which all differential elements do
not tend towards zero but towards fixed values
that depend on the number of discretised points.
However, the discretisation process involves
local truncation errors and the problem of the
consistency of the numerical scheme is raised,
i.e. the solution converges towards the solution
of PDE as the mesh length tends towards zero.
Supposing that the numerical scheme is
consistent, a second problem consists in testing
the stability of this scheme since all rounding
errors introduced during computation (as a



122 M. Bigerelle and A. lost /Int.J. Nonl. Sci. Num. Simulation 5(2), 121-134, 2004

consequence of the finite representation
numbers) increase during the iterative scheme
itself that may become unstable. Many
mathematical tools and theorems can be used to
study the stability of the system. However no
physical interpretation has been proposed yet.
These methods show that by increasing the
discretisation time, the system may pass from
stability to instability. In fact, these
mathematical results involve questions about the
physical modeling process. There exists a space-
time relation that allows us to solve the problem
of consistence related to Chaos Theory: a small
initial error may be raised and become very
important leading to a total instability of the
system [5]. However PDE model macro physical
systems and the fundamental questions are: ‘Is
the length of the space-time unit used in
discretisation compatible with the microscopic
phenomena? If not does it lead to an unstable
system?” With regard to the high number of
mathematical publications related to PDE
stability, we propose to study physically the
stability of a parabolic PDE that can be applied
onto physical problems which are easily
modeled at the microscopic scale.

In a first part of the present paper, we shall
describe the physical use of these equations.
Secondly, we shall analyze the numerical
solution of the well-known Fick equation [6]
compared with the Einstein model [7] to find
out if the problem is well posed. In a third part,
we shall introduce briefly a new method for
studying stability. In a fourth part, we shall
propose a physical interpretation of stability
based on Brownian motion theories [5,7] and
the second principle of thermodynamics [8].
Finally we shall proceed a Monte Carlo
simulation to illustrate our physical stability
interpretation.

2 Parabolic Differential Equations

The Parabolic PDE is given by the
following mathematical definition:
0 SINe, 5} \
_——?_—a,_',_——u-f(x.i} (1)
iy OX, 0%

ot TS ox
where (x,/)e @xIR., and Q is an open set of

R"

These equations that characterize transport
phenomena such as heat transfer, viscous fluid
mechanics, atom-vacancy transport, Ohm law,
contagious epidemic ... can be obtained by three
main ways:

(1) Counting the number of “particles” by
volume unit and applying a Fick law
flux J oc grad(u);

(2) Using transport equations for each entity of
the system (particle) and making the free path
tend towards zero;

(3) Using stochastic processes as Brownian
motion.

These mathematical methods, used for physical
modeling, show that the diffusion process can
be derived from probabilistic topics, meaning
that diffusion laws are stochastic in nature.
Asymptotic  considerations will lead to
suppressing the stochastic aspect of these
models to obtain deterministic ones. In other
terms, microscopic fluctuations are “removed”
to result in macroscopic formulations, i.e.
continuous ones. One important consequence of
this fundamental duality is that the differential
elements can not have a zero limit that would
lead to a nonsensical interpretation. For example,
in the Fourier heat transfer law, heat can be
considered as the Brownian motions of
phonons/electrons and then the differential
elements cannot be smaller than the mean free
path of the motion. On the contrary, the
differential elements must not be too large to
include the mesoscopic modeling of the
phenomenon. These considerations show that
there exists a scale range where the differential
elements get a physical meaning, whose
determination is no trivial work.

3. The resolution of the diffusion equation

3.1. Analytical solution

Equation | can be analytically solved for
only specific systems, and therefore a numerical
estimation has to be generally processed. In this
part Eq.1 is discretised by the Finite Difference
Method. Without lack of generality, we shall
retain to treat in this paper the simple mono-
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dimensional Fick equation that is reduced to:

aC(x,1) -D 0*C(x,1) ’ @)
ot ox’

where C(x,z) is the concentration at time ¢ of

particles at position x , and D the diffusion
coefficient. With C(0,0)=C,6,, where & is the

Dirac pulse, and as initial conditions, the

well-known solution is:

Ca X
C(x,t)zmexp(—m]. 3)

We shall precise some of its properties. Firstly,
Eq.3 reduced by C, is a Gaussian Probability

Density Function (PDF) with zero mean and
o(t)=+2Dt standard deviation. This clearly

means that diffusion is a stochastic process and
that equations can be obtained by asymptotic
considerations (like the Central Limit Theorem).
To visualize this fact, a Monte Carlo method
will be used in chapter 5 to simulate the
diffusion process on purpose to compare with
the theoretical solution given by Eq.3.

3.2. Numerical solution
We shall now use the finite difference

method to discretise Eq.2. Using Taylor
expansions:
oC(x, 1) _ Cliax, (j+1)Ar)-CliAx, jAt)
at x=1Ax /= JAI At
1+l _ i
+®(At)=—C’A—tC’+®(At),
and
0*C(x,1) cl =20/ +C7,
— ~ =" 1 B|A .
axz x=1Ax.1= Al (Ax)2 ’ (( X)Z) -

which gives the following explicit numerical
scheme:

C =Cr v 25k (ci, -2ci +.C1). 4)

(Axy
On the other hand, if the gradient is considered
at time ¢ = (j +1)Ar, then the following implicit

numerical scheme is obtained:

aC(x,1) - D aZC(x,t)
ot x=ilr.i= )t ox’ x=idx,r=(j+1)M
DAt y )
C/*l :Cj n . C,‘l_d _2C‘,'“l +C'_[+bl . 5
ol elel . ©

Or more generally:

v, Da[ACL 20+ )

Ci[? =ij+ : (6)
(1-play -2 +)

5

which corresponds to the well-known Crank-
Nicholson scheme for 8- 0.5.

Equation 4 is an explicit scheme meaning that
concentration at time ¢+ At only depends on the
gradient at time ¢ . Equation 5 is an implicit
scheme meaning that concentration at time
t+Ar only depends on the gradient at time
t+At . Neglecting problems of discretisation
errors (which will be minimized when £ =0.5
in Eq.6.) and numerical stability, the question
which arises from our analysis is to know
whether the scheme gets a physical sense or not.

3.3. The implicit/explicit scheme and the Einstein
theory of Brownian motion
To answer the above question, we shall
analyze the hypothesis used by Einstein in 1905
to give a physical explanation to the
phenomenological coefficient D in Eq.2
introduced by Fick. Einstein postulated that
concentration at time ¢+ At is given by:
Clx,t+At)=Y W(X,, At)C(x-X,,1), 7
iep
where W(X,At) is the probability that an i
particle makes a X, long jump during a time Ar.
This equation is reduced to Eq.2 by posing

D= lim(<X2>/2 At). As a consequence, Einstein

Ar—»)

shows that the particle concentration at time
t+At only depends on average on the
concentration at time ¢, i.e. before the jump
occurs. The implicit scheme ( #=0) lets us
suppose an instantaneous jump, which is a
physical non-sense.

The main criticism against the implicit scheme
is that we cannot affirm that all particles would
jump simultaneously at time ¢, which is in
fact well founded. However this problem is still
under discussion: in a discretised space, the
mesoscopic time At (At >>T"" where I is the
atom jump frequency) could be used without
any physical problem to model the diffusion
states without taking into account the correlation
effects, and then the particles can jump
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simultaneously. However, even ifi time is
mesoscopic, Eq.7 can be transformed into:

Cle,t+at)= > WX, At —AL)C(x— X, - A1) (8)

iep

and Ar, ( Ar, <<Ar ) will be seen as time
fluctuation. By introducing this perturbation in
the probability jump, the variance properties of
the concentration become less smooth than the
average solution. This result was reported by El
Naschie in his study of the abnormal diffusion
and correlation in the Cantorian space [9]. The
fractal space-time cannot exactly be d=2, but
must be slightly larger because diffusion on a
lattice and in a random environment is harder
than in a smooth space. Therefore the fractal
dimension must be taken as the mean <d.>=2
rather than d;=2. As a consequence, introducing
a perturbation in the Einstein diffusion equation
will not affect the solution on average, like the
mesoscopic diffusion problems in the EDP
theory. However the Fractal concepts of the
Brownian motion show that the positions of the
particles ~ X(r) possess the  property

<(X(t+At)—X(t))2>ocAt and the graph X(r)

versus time possesses a statistical self-affine
structure meaning that
(X(e+a)-x () =r((x(e+rar)-X()) As a
consequence, time and distance do not possess a
Euclidean metric and then to use a Euclidean
formulation (integer integration of PDE), as
used by Einstein, the Brownian Motion must be
located at a constant time Ar involving a
constant displacement X . Therefore, in the
average dimension analysis, the formulation of
Eq.8 is rejected for Einstein’s Eq.7. All these
remarks show that only the explicit formulation
gets a physical meaning even though Eqs.(5-6)
introduce some physical non-sense.

4. Stability study

4.1. The stability-instability transition

We have shown that the explicit scheme
gets a physical sense that the implicit one does
not possess. As concentration at time f+ At is
calculated from concentration at time ¢, the
explicit scheme becomes a dynamic system
given by Eq.5 that may become unstable for a

1.<0,5006 i #=0,50013
ok
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Fig. 1. Numerical estimation of a PDE problem
in the middle of the grid C,(50,t) versus the

number of iterations used in the numerical
scheme for different values of the stability
criterion . 20 simulations are computed with
different initial noises. The analytical solutions
are !iTC(SO,t)=100.

given set ofi values DAr/(Ax) . The essential

idea behind stability is that a numerical process,
when applied wisely, should limit the
amplification of all components of the initial
conditions including rounding errors. The basic
analysis considers the growth of perturbations in
initial data or the growth of errors introduced at
mesh points at a given time level. To us, this
mathematical philosophy seems close to the
Chaos Theory philosophy and as a consequence
we postulate that a duality exists between the
mathematical interpretation and the physical
representation. Three common methods exist to
investigate stability: the Von Neumann method,
the matrix method, and the energy method [4].
Using one of these three methods, it can be
shown [4] that the explicit scheme will be stable

if:

. DAt 1

A= W < E 5 (10)
A stochastic simulation will be used to illustrate
the PDE stability. Let us take the following
parameters to process the numerical simulation:
D=1, Ax=1, C(0,£)=100, C(100,/)=100 and
C(x,0)=U,x e {1..99}where U is a random value

that follows a uniform law in the range
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Ue[—0.5~--0.5] used to introduce a perturbation

in the numerical scheme. The analytical solution
gives limC(x,)=100, Vx . Then the explicit

scheme is used to calculate the values of C,(x,¢)
at different times and space discretised points.
For  sufficiently large values of ¢
(t=t, =100000) we can admit that the solution
is reached since convergence errors are lower
than computer errors due to finite representation
numbers. To analyze stability, we shall compute
the estimation values C,(50,1) , the
concentration in the middle of the medium at
different times for different values of A
( 4€[0.40000,0.50020] ). Fig.1 is the plot of
C,(50,1) versus time for different values of A
(for a given A, 20 simulations are computed
with different initial noises U ). For 1 <0.5005,
the initial noise decreases during iterations and
the numerical solution C,(50,¢) converges
towards the true value i.e. 100. This threshold is
slightly higher than the 0.5 theoretical value,
which is not in contradiction with the stability
theory. In fact, this theory affirms only that a
numerical scheme will be unconditionally stable
for A<0.5, i.e. whatever the initial conditions,
the frontier conditions, At , Ax or D , the
scheme will always be stable if 1<0.5. The
theory does not affirm that some particular
conditions can lead to stability for 4, >4 >0.5.
For example, with Ax=10, A, =0.512 and
Ax=5 leads to A, =0.503 (in fact, we have

shown that if all parameters stay unchanged,
lim 2, =0.5 ). Fig.1 shows that for 1>0.5005, a

noise appears on the values C,(50,¢)=100 that
will be exponentially amplified with an increase
of A: the scheme becomes unstable. Then, we
estimate the error by:

Er(x/2,1,)=log |C,(x/2,2,)-100".

Fig.2 represents this error function versus A and
confirms that after A >0.50005, error increases
exponentially according to the power-law:
IC,(x72,1,)-100" oc 221",

4.2. Space-time dimension and stability process
Before giving a physical interpretation, five

50
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Fig. 2. Numerical estimation of the error for a
PDE problem in the middle of the grid C,(50,t)
versus the number of the iterations used in the
numerical scheme for different values of the
stability criterion A. 20 simulations are
computed with different initial noises and means
on C,(50,t). The associated 95% confidence

levels are plotted.

remarks about inequality (10) have to be made:
1) For given values of D and A, if the space
increment Ax decreases, then after a critical
value, the scheme becomes unstable. In other
words, the time Ar is too large to isolate the
diffusion phenomenon on a length Ax . In the
same way, if At decreases Ax must decrease, i.e.
the length must be small enough to isolate the
diffusion flux during A time which looks like a
kind of macroscopic uncertainty principle.

2) Since diffusion can be seen as a random
process X(¢) with Gaussian increment we obtain:

var[X(5,)- X (e ]ec |t =1, (11)

where D, = 1.5 is the average fractal dimension
of the Brownian motion graph and var(X) the
variance of X. A characteristic length Ax of the
displacement can be given by the standard
deviation of Eq.11 and then
Jvar[x(s,)- X(t,)] = Ax . Therefore Ar= |, 1|
can ‘be seen as the characteristic length
associated with As time and we obtain
Ax « At or At/{Ax) =cte that represents a limit

condition between stability and instability. As a
consequence, the criterion of stability follows
the same relation as the relation between time
and distance in the fractal concept of diffusion.
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STABLE | UNSTABLE
|
Macroscopic [ no interaction particle
System AL JL
| Velocity |
| and interaction |
| particles D, =mmlh
Particle 1 1
s _h
2D 2am
MEASURABLE | UNMEASURABLE
_________________________________________________________ > AL
(Ax)

Another stability criterion (with different power
exponents) will be incompatible with the space-
time relation for the fractal motion of a particle.

3) Let us analyze the solution of a sandwich of
particles that diffuse in an infinite medium. The
solution is given by Eq.3. This solution is a
Gaussian PDF (at a constant factor) with a zero

mean and a of(t)=+2Dt standard deviation.

According to the properties of the Gaussian PDF,
66% of the diffused mass are in the interval
[-o(t) ot)], 95% in [-20(r), 20(:)], 99.7% in
[-30(:),30(t)] ... This clearly means that the
value ¥(P)o(t) with:

¥y

: xz}
—exp| —— (dx=P , (12)
¥ V27 [ 2

can be seen as a mean diffusion front (without
any fractal aspect) and as a consequence
L(P)=Y¥(P)vJ2Dt becomes a characteristic
length of the diffusion progression. Considering
now each discretised space length Ax , an
elementary sandwich diffusion process centered
on Ax interval must statistically keep a certain

mass on the Ax interval, then W(P) V2Dt < Ax

and finally:
DAt W(P)

L—" . 13
& "2 2

This condition looks like the stability condition
given by Eq.10. It physically means that stability
can be obtained in a macroscopic system only if

the adimensional parameter DAt/(Ax)* is lower
than a characteristic length related to the

Table 1

diffusion process. It must be emphasized that the
main  relation of the thermodynamic
interpretation of this instability proposed in the
following paragraph exactly leads to the
stability conditions of the EDP when posing
W (P)=1, as a result of the Gaussian properties

related to the inflexion point.
4) From the Heisenberg principle, AxAp>h and

then Ar/Ax?<h/2zm. This relation looks like a
stability criterion. As 1/2D<1/2D, =h/2zm
(meaning that D>D,=mm/h ), D, is the
smallest Diffusion Coefficient (without any
environmental interactions) that can be
measured according to the uncertainty principle
and which leads to a stable scheme.

If At/(Ax) €[1/2D, h/27m,] (see table 1) then the

scheme is unstable but the particle flux can be
measured. D is a macroscopic coefficient that
represents the easiness with which a number of
atoms passes through a fictive interface by time
unit. This means that D involves a correlation
effect, interactions between atoms, a potential
barrier not involved in D, (Heisenberg Principle
concerns isolated particles). In the range [D, D.],
all is seen if measurable instability is due to the
interaction between particles, velocity ... which
seems to converge to the fact that chaos will
appear when different systems interact and these
interactions are related to the coefficient D.

5) If D increases for a constant value of At/(Ax)z

(constant space-time observation), the system
might become unstable. Increasing D
corresponds to increasing the diffusion front
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length in the elementary cell and then from (13)
the system may become unstable. With a same
value of space-time observation, the map might
become unstable when the velocity of the
particle increases (e.g. increasing temperature
increases D) which is a well-known expression
of the emergence of chaos in the fluid as
observed in the classical Taylor-Couette
experimentation [10].

5. Physical interpretation of
stability

We shall now introduce a physical
interpretation of stability in which we suppose
that Eq.2 governs the diffusive system. This
equation can be seen as modeling the diffusion
in all the media and therefore is an intrinsic
physical property of the system. In this system,
we shall introduce the initial concentration
C(x,0), a space description Q (open set of IR),

C(x,r) (or another
condition like the flux condition 6C(x,¢)/dx ...

where x € 9Q ). The important fact is that these
conditions do not change the physics of the
diffusion but only give a particular
configuration to the system. As there can be an
infinite number of initial or limit conditions, the
number of solutions for the differential system
becomes infinite and generally cannot be solved
analytically. All solutions can be seen as density
functions because concentration in space dx can
be seen as a probability to find particles in dx. In
this part, we shall prove that all time-diffusion
systems can be seen as the sum of elementary
sandwich processes centered on each part of a
grid equally spaced.

and limit conditions

5.1 Relation between stochastic microscopic
diffusion state and microscopic deterministic
diffusion state

Let us consider the diffusive system as a
microscopic one and note n the number of
particles at time ¢ at position x,(t), i {l..n}. As
the position cannot be known exactly
(Heisenberg’s principle), we can consider that
the probability to find a particle is given by:

hy2rm h
where h represents the lack of precision in the
x,(t) determination (if k-0 , then
o(x,,t;h)—> 5. » and the position is perfectly

e

T S xp[-%[i(’—)l(’)]:} (14)

known). We shall now link the microscopic
interpretation to the macroscopic system. Let us
note C(x,t) the solution of the PDE problem and

C(x,z,n) the solution given by the microscopic

one. As a consequence, using the Gaussian
Kernel Density Estimate we get:
] ”n
C(x,t,n;h)=—?(p(x,,t;h). (15)
nh ‘=
The constant /4 is chosen to fit well with the
macroscopic concentration that can be explained
by a L* norm minimization:
. 2
mln”C(x,t,n;h)—C(x,tm 5 (]6)
helR
It can be shown that:

lim min|C. 2 n;k)-Clx,0)|* =0 for h—0.

n-x  helRk

(7)
meaning that a stochastic microscopic system
tends towards a macroscopic deterministic one
when the number of particles tends towards
infinity.

5.2. Decomposition of complex macroscopic
diffusion systems into elementary mesoscopic
diffusion microstates.

Let us now suppose that the concentration
C(x,¢) is known (for example Fig. 3(b;) or Fig.
3(bs). We discretise space in intervals of length
Ax . On each interval labeled by n suffix, the
concentration is a constant modeled by a
rectangular function H(x,,Ax) (see Fig. 3(al))

so that the concentration C,(x,7,Ax) on the

central interval x, is given by (for example
Fig. 3(al) or Fig. 3(a$)):

C,(x,6,Ax)= C(x, .0 )H(x,, Ax). (18)
Then the discretised concentration C(x,t,Ax) is
given by:

Clx,t,Ax)=Y C,(x,1,Ax). (19)

en

On each interval, the diffusion governed by Eq.2
still occurs, but with the initial condition on
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these intervals given by:
]fC,,(x,t, Ax)= C(x,,,t Ax)
\C,(x,2,Ax)= 0

Vxelx, -Ax/2,x, + Ax/2]
VerIx -Ax/2,x +Ax/2]

’

(20)

When interval 7 is discretised in the time interval
[e+A] ,  labeled by m  suffix

(|t,,1,, +At]=1t,.1,.., ]), we obtain:
[Cn m (x’t > Ax) = C(xn > tm ’ Ax)
{C”m(x,tm,Ax)=0 j
Vxelr, -Ax/2,x, +Ax/2] .
2 ‘Lm’ m i “’J (21)
Vxgjx, - Ax/2,x, +Ax/2J
This means that the initial PDE problem can be
modeled by a great number of cells on which the
initial concentration is constant where Eq.2
holds.
The solution to Eq.2 on this “PDE-cell” is then
given by:

2] Ax/2 2
ale e et Lol exp(_ﬁc—_x,,)_\} .

4!

U\l _;MI

\/4/7D(’ - l,,,) _avi2
(22)
After integration of Eq.22, the final solution is:

4D(t-1,,

C,(x.t,Ax)= = c( Ax

nm

J4D(r-1,)
(23)
with erf(x) , the error function given by

erf(x) = i,_ ]exp(— u’ ) du .

v7T o
Theorem 1:
hm (‘u.m ('\.v iy Ax) = C( n ! m?> A") exp| - (X =2 )' .
o JanD(t-1,) 4Dt

(24)

This means that for a long enough diffusion time,

the PDE-cell is physically equivalent to the
well-known problem of sandwich diffusion
centered on the x, value. The convergence rate

of theorem 1 will be analyzed in the next

chapter.
Theorem 2: The solutions C(x,z) to all the

I ,.[Ax/Z—(x—x")] ]
erf | ————= |+

n’ m’ ” "
erj[h _+(_r .\,‘)]
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Fig. 3. Evaluation of a diffusion problem for
a thin material dﬁusing in a random
medium. Values of C(x,.t,,Ax) for different

diffusion times are plotted on Fig.(a,) to
Fig.(agy). Fig.(a) (t=1t,=0) and Fig(as)
(t =t =1) are calculated by integration of
theoretical values C,(x,0)= 68, (Fig.(a,) and

Cy(x.1) (Fig.(as). Fig. (b)), (by), (b)), (by),
(by), (by) represent the sum of C(x,,t,,Ax),
i.e. C,(x,t) given on the left figure (circle).

The theoretical values given by the PDE
problems are plotted on filled line.
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diffusion problems in infinite media (or where
concentration in all the media does not change)
which obey Eq.2, are solved by Eq.23 on each
PDE-cell and then the macroscopic solution is
given by:

: Clx,,t,,Ax) ¢ (c=x, )
C =]l P\t 12k O At St
(x’ t) ,{\\ITU ,?"'\‘ NarDt . A:.-.fz exp[ S
(25)

where C(x,,t,,Ax) is the initial concentration in

each cell.
To illustrate this theorem that is the central
point of our physical approach to stability, we
shall treat the macroscopic problem of initial
thin film that diffuses in an infinite matrix. Eq.3
gives the solution to the macroscopic diffusion
problem. The method described below is then
applied with the following parameters:

D=001 , Ax=1, refo.2] , ¢, {01}
n=1{-10,-9,..,9,10}.

At each time where ¢=¢
C(x ¢

n tm?

the values of

Ax) have to be numerically assessed.
We calculate the mean of the concentration
Clx,,t,,Ax) on the interval

[x, —Ax/2,x, + Ax/2] given by:

E(x Wt ,Ax)= N O Avj} exp[—w] dx.
i Ax\J4rDt, ), 4Dt,,
(26)
and then from Eq.18
Clx,.t,,Ax) = C(x,.1,,Ax) H(x,,Ax) (for [, =0,
Clx,.1) =6, . Fig 3 (b)) and

Clx,,to,Ax)= H(x,,Ax)/ Ax , Fig. 3 (ay)). Then
Eq.23 is applied to calculate the concentration
on each cell at different times C, , (x,z,Ax). Fig.

3.(a). represents the different values of
C,,(x.1,8x) for m =0 (Fig.3 (a)). to Fig.3 (as))

and m=1 (Fig.3 (as) to Fig.3 (ag)). To verity
the correspondence with the theoretical value
(3), we calculate the concentration obtained by
our “Mesoscopic” model from theorem 2:

— C(xu’ m’Ax) S (x_x" ): 1
Calxt)= ZW i anG-1,))

@7

and then compare with the theoretical values
C,(x,t) given by Eq.3. Fig.3 (b)) to Fig.3 (bs)
represent C,(x,t) and C,(x,¢) for different

diffusion times. As can be observed, the
mesoscopic problem converges towards the
analytical formula for a sufficient diffusion time
(note that the “threshold” time depends on Ax
and the diffusion medium properties: the lower
Ax or the higher D, the lower this threshold, cf.
theorem 2). We have then proved that a
macroscopic complex diffusion problem can be
decomposed into a set of elementary diffusion
processes controlled on an equally spaced grid
which leads to a Gaussian probability Density
Function. This decomposition illustrates M.S. El
Naschie’s idea that elementary processes of
more complex systems are Gaussian [11].5.3. 5.3.

e =

3000 X4 X2 [4C/at<o] X3
2500 A
G4
& 2000 |
c
§ 1500 AR,
g o g A e
w 1OOOG/< M,- dC,/dt>0] |
500
Gg_,.“" —Ax
0t

-1 0 1 2

Fig. 4. Three adjacent cells x,,X%,,%; Of the space
discretised grid Ax=1 on which mesoscopic
simulations are ‘processed until the instability
criterion is reached. Gaussian curves Gl, G, and
G; with standard deviation Ax=+2Dt =1
(D=1,t=1/2,ie. A=1/2) are centred on each
cell.

Analysis of an elementary mesoscopic diffusion
micro-state
Let us now consider three adjacent cells

X,,X,,%; (Fig.4). Without lack of generality, we
shall consider ' that
Clx,,t,,Ax)= C(x,,t,,Ax) = C(x,,1,,, Ax) and
t, =0. Supposing a long enough diffusion time,

m> m?

we get three Gaussian curves with the same area,
centered on x,x,,x, values and with a

V2D standard deviation. To obtain exactly the
stability-instability threshold, from Eq.13 we
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must have W(P) =1 which involves Ax =+2Dt

(if v2Dt >Ax then the scheme is unstable).
Fig.5 represents the three Gaussian curves at the
instability threshold. Let us now analyze very
precisely this critical density function. Each
elementary cell diffuses on the adjacent
intervals (a probability calculus shows that 24 %
of the mass transfer is on adjacent cells). Let us
now consider the x, interval. Concentration is

the summation of all the Gaussian curves on
these intervals. It is important to notice that the

concentration in cell x, only results from the
flux from cell x, and cell x, . An important

property is that, at the instability threshold, the
inflexion points of the Gaussian curves G, and

G, lie in the center of the interval x,.

The following mathematical properties can
be stated:

82C, 4 (x, Ax? /2D, Ax)/ Bx* <0

8°Cyo(x, Ax? 12D, Ax)/ 0x* >0, (28)
Vxe[x2 —Ax/2,x2]
9°C,,(x,,Ax? /2D, Ax)/ dx* =0
8°Cyolx,, Ax? 12D, Ax)/ Bx* =0
92C, o (x, Ax? /2D, Ax)/ Bx* > 0
8°Cyolx, Ax? /2D, Ax)/ 6x* <0 . (30)
Vxe[xz,x2+Ax/2]

(29)

From Eq.2,0°C, (x,t,Ax)/ 8x* < 0C, ;(x,t,Ax)/ &t
then 50 % of the dx micro intervals (dx << Ax)
of x, interval get a positive temporal gradient
( 8C,4(x,1,Ax)/ 3t >0 and 8C,,(x,t,Ax)/ 8t >0 ),

and 50% a negative gradient
( 8C,o(x,t,0x)/0t <0 and C,,(x,t,Ax)/ 0t <0 ).

After the stability threshold, more than 50% of
micro cells get a negative gradient. This clearly
means that the number of particles issued from
adjacent cells x, and x, decreases with time

(and so does the configuration entropy of the
system x, ), which does not comply with the

second principle of thermodynamics for a
diffusive system... The mathematical criterion
of stability for the explicit scheme is then
physically related to the production of entropy:
if the scheme is unstable then the production of

entropy on each discretised cell is negative
(3S,,(x,t,Ax)/ 8 <0 ). In chapter 7, we shall

process a Monte Carlo simulation of diffusion to
illustrate the mathematical tools of stability.

6. Numerical instability: an infringement
of the second principle of
thermodynamics.

In a monodimensional case, a PDE cell gets
two adjacent PDE cells that will diffuse on this
cell (see Fig.4).

We shall consider particles issued from the
adjacent cells. At time origin, it was shown in
the previous paragraph that no particle from the
adjacent cells is present in the PDE cell. During
the diffusion process, these particles will diffuse
on the cell with respect to time. Let us now
formulate the configuration of cells x/ or x3 in
Fig.4. At the origin, entropy equals zero because
no particle from the adjacent cells is present.
Then entropy will increase thanks to diffusion.
We shall now introduce the mathematical
formalism of entropy evaluation. Based on the
statistical thermodynamics, the PDE cell will be
divided into k& micro-systems of length dx ,
(Ax=kdx,k >>1) we call the ‘Sub-PDE cells’.
On each Sub-PDE cell, the probability of
finding particles from the adjacent cells is
evaluated and is of course time dependent. If the
concentration in the PDE cell obeys the
Gaussian hypothesis, the probability of having
particles in an interval of length &, (& << Ax)
located on % in the PDE-cell
(xe [—Ax/2...Ax/2]) is given by:

Ax —x+ & Ax —x
P(x,t,Ax, 5x) erf{ W ] erf[ \/451 (31)
Then the entropy configuration on each Sub
PDE-cell is given by:
AS(x,t,Ax,8) = =R P(x,t, Ax,&)log P(x.t, Ax, &),
(32)

where R is the gas constant.
By means of entropy additivity, the entropy on
any PDE-cell is then given by:
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AS(t,Ax,k) =
/ 2ot
Axl\l-l—;l} Ax(l——;(—)
er, —— | = 2P ———
/ JaDr f Jap:
k12
= / /
Je- k1241 Axlkl—l—;]) Axl\l—i)
XIO erf | ———m=——"—|—éerf | =———fr—a———
gl JaDr 4 JaDt

(33)
and finally, the cell entropy is obtained when
O6x — 0 meaning that & —» «:

AS(r, Ax) = lim AS(t, Ax, k) 34)

08 {’\
06 .

>

Q

] 09

Tt 04

= e //‘ e N
0.2 07/

06k
01 03 05 07 09

0 2 4 6 8 10
Equilibrium criterion

Fig. 5. Entropy calculation for the cell x,

shown in Fig.4 by numerical estimation of
Eq.33 for a configuration
k=30, D=1, Ax=1,

1 €{0,0.001,0.002,---,9.999,10}  versus  the

values of stability criterion At/Ax*. Entropy

increases for the value of At/Ax* =05
(graph zoom), and then entropy decreases.

Theorem 3:

OAS(t,Ax)/ ot > 0 if V2Dt <Ax ,t >0, (35)
OAS(1,Ax)/ 0t = 0 if V2Dt = Ax | (36)
oAS(1, Ax)/ o1t <0 if N2D1 > Ax. (37)

In instability cases, entropy will decrease in
time which physically contradicts the second
principle of thermodynamics (Table 2). We shall
now estimate the entropy of the cell x, shown
in I'ig.5 by the numerical estimation of kq. 33
for a particular configuration, k =30, D=1,
Ax =1, 1€10,0.001,0.002,---,9.999,10} .

\/ 2Dt STABILITY
’ > Ax scale

Entropy Production

UNSTABILITY

Anti Entropy Process |

Table 2

Fig.6 represents the variation of the entropy of
cell x, versus the values of the stability

criterion DAt/ Ax*. As can be observed, entropy

increases up to At/ Ax*> =0.5. Under this value
the numerical scheme is stable, while over it the
numerical scheme is unstable and entropy
decreases. This is an illustration of the Prigogine
and Brussels school which shows via stability

3000 Xq | X2 | X3
2500 ) 4
2 2000
1500

Frequen

1000
500

Fig. 6. Diffusion resulting from the three
adjacent Cell-PDE modelled by a Brownian
motion compared with the analytical solution
under Gaussian hypothesis. n_ is the number of

jumps of the particles, which corresponds to the
time leading to the scheme instability (cf. Fig.5).

analysis that non-linear bifurcation can abruptly
decrease local entropy [12]. In fact, for a given
observation time Af, if Ax decreases the
probability of finding particles on Ax tends to
decrease and then we tend to a time reversal that
violates the time symmetry breaking induced by
the second law of thermodynamics [13].

7. Monte Carlo simulation

The Brownian motion can also model the
solution resulting from the PDE-cell. Physically
speaking, p particles arc uniformly randomly

distributed on the interval [x, - Ax/2,x, + Ax/2],
divided into k& subdivisions of length ¢ at time
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!, (Ax=ka,k>>1). Then for each p particle,
n, jumps are processed on the left or on the
right with a probability of one half. From the
microscopic theory of diffusion, the diffusion
coefficient is:

D=aT/2, (38)
where T is the jump frequency of a particle
from a micro-cell of length a to an adjacent
micro cell.

The stability condition can then be expressed by
including (10) into (38):
L S __1_ "

() - aT

Numerical application: D=1, k=100, a=107*,
» =100000.

Then we get: Ax=1, n, =TAr (where n, is the

(39)

total number of jumps during time Az) and the
stability criterion (sc) becomes
n, <(Ax/a)* = n* =10000
verify the convergence rate of theorem 1. We
shall study the diffusion time effect between
three adjacent cells for the values of
n, e {1,10,100,1000,10000} . Fig.7 shows the

concentration curves for these different
evolution times and the theoretical Gaussian
curves given by Eq.24 plotted for each
concentration map. As can be observed, the
convergence rate to the Gaussian curve is well
adapted if n, >1000. As our theory induces the

Gaussian approximation PDF for the case
n,_=n’=10000, then the Gaussian PDF is an
adequate assumption.

We shall now study the case n, =n for

k =1000, then n =1000000 more particularly.

This simulation corresponds to a fine resolution
of the diffusion problem on three adjacent cells
at the instability threshold. Fig. 7 represents the
theoretical solution (filled lines) under the
Gaussian assumption (Eq.24) and the results
from the Monte Carlo simulations. As can be
observed, the Monte Carlo results converge
towards the solution of the Gaussian
approximation given by Eq.24 replacing the
more complex Eq.23. This means that the
Gaussian convergence claimed in theorem 1 is
well accepted by our stability criterion and then

Firstly, we shall

Frequency

Fig. 7. Comparison of the solution of the diffusion
on three adjacent Cell-PDE of length Ax =1000a
modelled by a Brownian motion with the
analytical solution under Gaussian hypotheses.

The number of jumps n* =1000000 of length a

corresponds to the time leading to the scheme
instability.

all our hypotheses are well posed. As a
consequence, all our conclusions about stability
and the relations with a physical interpretation
speak for themselves in the practical case of
finite simulation.

8. Conclusion

In this paper, we have shown that there exists a
relation between the stability criterion that
guarantees the convergence of the partial
derivative equation to the solution and the
physical interpretation at a mesoscopic scale
under the size of discretisation. This
interpretation is related to an infringement of the
fundamental second principle of
thermodynamics. Regarding the high number of
stability studies found in the mathematical and
physical bibliography, the stability threshold
allows us to give a space and time definition
onto which scales are well adapted to treat the
physical problems at a mesoscopic scale. These
criteria are pertinent to choose discretised time
and space during a Monte Carlo simulation. The
stability criterion gives a numerical evaluation
of the threshold between mesoscopic and
microscopic simulations. To build this theory,
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an original mathematical tool was constructed:
we have shown that complex macroscopic
problems can be treated as sets of mesoscopic
problems that can be solved analytically. This
approach consists in choosing an adequate
model for the physical phenomenon on the
elementary cells to solve the physical problem
in its integrity. We think that each element of
discretisation must have some physical
properties rather than mathematical asymptotic
properties to solve physical differential
problems. On the other hand it is in total
agreement with Hadamard Conference (Ziirich,
1917 cited in [14]) which disagrees with the
common idea that a non-analytical partial
derivative equation can be replaced by an
analytical function without any significant effect,
proving that an  approximation could
significantly disturb the solution.

In our case we have studied a linear equation
that in fact could not lead to chaos. However we
have shown that its discretisation scheme could
lead to a chaotic (unstable) solution if
discretization do not respect some physical
considerations. This clearly means that diffusion
equation, which leads to the differential
equation, has lost a part of chaos due to
asymptotic mathematical considerations. On the
contrary, the diffusion map that we have proved
to be physically realistic is highly non linear.
From the information contained in these non
linearity’s, a space-time relation was stated
proving that non linearity allows us to explore
the deep properties of diffusion : “If everything
were linear, nothing would influence nothing”,
Einstein to Schrodinger (Cited in [13] with
Author’s comments about non linearity’s effects
in the space-time description).

We have only dealt with diffusion in a one-
dimension space. We have studied the bi and
three-dimensional cases and all results are
confirmed. By  applying our  space-
compactification principle [15, 16}, we have
found the same results using an isomorphism
between concentration and Informions. These
results, in agreement with Penrose’s views on
the computability of complex system [17-18],
will be tackled in another paper.
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