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1 INTRODUCTION 

At present, aerospace and ship building industries progressively replace conventional materials by new 
ones that provide essential advantages from the point of view of mechanical properties of the final products, 
but at the same time introduce some complexity in the manufacturing process. In particular, machining of 
modern high‐performance materials requires revision of some approaches in design and programming of 
manufacturing cells that must provide high accuracy and high productivity simultaneously.  

In machining of such materials, currently there are two main trends. The first of these is based on 
conventional CNC‐machines that are provided by dedicated cutting tools, which are able to achieve desired 
quality and productivity. However, this classical approach has essential limitations and can be hardly applied 
when a workpiece geometry is complicated and its dimensions are rather large. In this case, the second trend, 
which is based on industrial robotic manipulators, looks very attractive. This type of machining cells can be 
implemented using either serial or parallel manipulators. Both approaches have their advantages and 
disadvantages. In particular, serial robots provide large workspace but usually are quite heavy and the 
influence of gravity forces is significant. In contrast, in parallel manipulators the gravity influence is essentially 
smaller (but not negligible), while the work envelop is limited by particularities of this architecture. Aside 
these, in both cases the cutting forces produce essential compliance errors that influence the quality of the 
final product. For this reason, stiffness analysis of robotic manipulators under essential external forces 
becomes a critical issue in design of robotic‐based manufacturing cells for machining of modern high‐
performance materials. 

In literature, the main results in manipulator stiffness analysis are obtained assuming that the 
compliance errors are small enough and may be evaluated by linear models. However, for the considered 
application area this assumption should be revised, which requires development of relevant non‐linear 
stiffness modeling techniques that are able to evaluate the compliance errors caused by different types of 
external and internal loadings (cutting and gravity forces, internal preloading in joints introduced in order to 
eliminate backlash, forces generated by gravity compensators, internal stresses caused by assembling of non‐
perfect over‐constrained closed‐loops in parallel manipulators, etc.). Another difficulty is related to taking into 
account the influence of passive joints that are numerous in parallel manipulators. Hence, the manipulator 
stiffness modeling for these industry‐motivated conditions is a challenge in robotic science. 

In this work, to develop the desired stiffness model and corresponding compliance error compensation 
technique, the Virtual Joint Modeling (VJM) concept is used. This choice is motivated by its essential 
advantages for the considered application areas, such as high computational efficiency and acceptable 
accuracy. Compared to other alternative approaches (Finite Element Analysis, Matrix Structural Analysis), the 
VJM technique is more suitable for both on‐line and off‐line modes, but it should be essentially enhanced to 
ensure stiffness modeling in the cases of significant external/internal forces for manipulators with passive 
joints. In addition, the models to be developed should be able to detect some certain non‐linear effects in the 
stiffness behavior of the manipulator under high loading (buckling for instance). In addition, existing 
approaches implicitly assume that all robot components are perfect and there are no internal stresses caused 
by assembling of over‐constrained structure. So, in spite of the fact that the problem of stiffness modeling of 
serial and parallel manipulators was in the focus of numerous researches, the main results are in the area of 
linear stiffness analysis and there are still a number of open theoretical questions, some of which will be 
considered in this report. 
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This report focuses on enhancement of stiffness modeling techniques for serial and parallel 
manipulators in order to increase the accuracy and efficiency of robotic‐based machining of high performance 
materials by means of compensation of the compliance errors (in on‐line or/and off‐line mode). To achieve 
this goal, several problems have to be solved: 

Problem 1:  

 Enhancement of VJM‐based stiffness modeling technique for serial and parallel manipulators with 
arbitrary location of passive joints in the case of small deflections (unloaded mode). 

Problem 2:  

 Extension of the proposed VJM‐based technique for the case of large deflections caused by 
internal and external loadings, taking into account related changes in Jacobians and equilibrium 
coordinates. 

To address the above defined problems, the thesis is organized as follows: 

Chapter 2 is devoted to the state of art and literature review on the robotic based processing of high 
performance materials. It includes a review of robot applications for machining of high performance materials, 
determination of potential demands, limitations and advantages.  

Chapter 3 focuses on stiffness matrix computation for manipulators with passive joints, compliant 
actuators and flexible links. It proposes both explicit analytical expressions and an efficient recursive 
procedure that are applicable in general case and allow obtaining the desired matrix either in analytical or 
numerical form. Advantages of the developed technique and its ability to produce both singular and non‐
singular stiffness matrices are illustrated by application examples that deal with stiffness modeling of two 
Stewart‐Gough platforms.  

Chapter 4 focuses on the extension of the virtual‐joint‐based stiffness modeling technique for the case 
of different types of loadings applied both to the robot end‐effector and to manipulator intermediate points 
(auxiliary loading). It is assumed that the manipulator can be presented as a set of compliant links separated 
by passive or active joints. It proposes a computationally efficient procedure that is able to obtain a non‐linear 
force‐deflection relation taking into account the internal and external loadings. It also produces the Cartesian 
stiffness matrix. This allows to extend the classical stiffness mapping equation for the case of manipulators 
with auxiliary loading. The results are illustrated by numerical examples. 

Chapter 5 is devoted to the analysis of robotic manipulator behavior under internal and external 
loadings. The main contributions are in the area of stability analysis of manipulator configurations 
corresponding to the loaded static equilibrium. In contrast to other works, in addition to usually studied the 
end‐platform behavior with respect to the disturbance forces, the problem of configuration stability for each 
kinematic chain is considered. The proposed approach extends the classical notion of the stability for the static 
equilibrium configuration that is completely defined the properties of the Cartesian stiffness matrix only. The 
advantages and practical significance of the proposed approach are illustrated by several examples that deal 
with serial kinematic chains and parallel manipulators. It is shown that under the loading the manipulator 
workspace may include some specific points that are referred to as elastostatic singularities where the chain 
configurations become unstable. 
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Chapter 6 focuses on the stiffness modeling of parallel manipulators composed of non‐perfect serial 
chains, whose geometrical parameters differ from the nominal ones. In these manipulators, there usually exist 
essential internal forces/torques that considerably affect the stiffness properties and also change end‐effector 
location. These internal loadings are caused by elastic deformations of the manipulator elements during 
assembling, while the geometrical errors in the chains are compensated by applying appropriate forces. For 
this type of manipulators, a non‐linear stiffness modeling technique is proposed that allows us to take into 
account inaccuracy in the chains and to aggregate their stiffness models for the case of both small and large 
deflections. Advantages of the developed technique and its ability to compute the compliance errors caused 
by different factors are illustrated by an example that deals with parallel manipulator of the Orthoglide family. 

Chapter 7 presents the compliance errors compensation technique for over‐constrained parallel 
manipulators under external and internal loadings. This technique is based on the non‐linear stiffness 
modeling which is able to take into account influence of non‐perfect geometry of serial chains caused by 
manufacturing errors. Within the developed technique, the deviation compensation reduces to a proper 
adjusting of a target trajectory that is modified in the off‐line mode. The advantages and practical significance 
of the proposed technique are illustrated by an example that deals with groove milling with Orthoglide 
manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the 
compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the 
superposition principle.  

Finally, Chapter 8 summarise the main contribution of this report 
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2 ROBOT-BASED PROCESSING OF HIGH-PERFORMANCE 
MATERIALS 

2.1 Modern trends in machining 
General trends in machining. Generally, modern trends in machining are aimed at improving machining 

efficiency while reducing the product price. These trends are contradictive, so all related research focus on a 
compromise that ensures high manufacturing accuracy and acceptable cost. In the frame of formal models 
used in this area, most of the design objectives are usually converted into the constrains that define 
acceptable (but obviously not strictly optimal) values of corresponding performance measures. This approach 
allows us to reduce complexity of the related optimization problem, but does not eliminate the need for 
development of specific mathematical models for assessing of each particular performance. 

The most useful ways of reducing the price and improving the product quality are related to the 
enhancement of cutting technology and optimization of tool path. In particular, reducing the total amount of 
material removal and using optimal cutting parameters for the maximization of metal removal rate yield an 
essential reduction of the manufacturing time. While the first improvement can be achieved rather easily (by 
proper dimensioning of raw primary part), the second one requires optimization of the machining process by 
increasing of the depth of cut and feed rate as well as the spindle speed to the maximum allowed levels. The 
later is obviously accompanied by an increase of cutting forces that still are not very essential for the 
conventional CNC‐machines with rather rigid mechanical structure. However, in robotic‐based processing, 
these forces may cause essential deformations of the manipulator and consequent impact on the processing 
accuracy. Therefore, this issue needs detailed analysis which will be in the focus of this work. 

The tool path optimization is aimed at the reduction of non‐cutting time as well as the minimisation of 
efforts in actuator drives by proper selection of the tool moving direction. The first of them is also called 
'airtime' [5]in order to distinguish from the machining time when the tool is actually cutting material. As it 
follows from related research [32][48], the airtime can be quite significant when multiple tools are used or a 
number of small regions are being machined. Mathematically, this problem is formulated as a specific version 
of the traveling salesman problem with rather hard precedence constraints [33]. The second issue, 
minimisation of actuator efforts, is equivalent to optimization of tool path in the manipulator workspace. It 
was previously studied mainly using kinematic criterion [27], but machining application (especially for hard 
materials) requires direct computing of forces/torques in actuated joints that are also considered in this work.   

Other issues that are important for manufacturing but are beyond of the scope of this work are related 
to minimization of setup time, using multi‐operation machine tools and quick‐change systems for tooling, 
automation of loading/unloading operations, improving accuracy of traditional roughing process, reduction of 
manufacturing lead time, applying of just‐in‐time production strategy, minimization of inventory cost, etc. 
[22]. Besides, on the product development stage, the concurrent engineering methodology is also attractive. 
Integration of all these approaches yields maximal utilization of expensive equipment and significantly reduces 
the product price. 
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Figure 2.1 General limits for High Speed Machining [12] 

It is worth mentioning that, in spite of obviously positive impact, some advances in modern machining 
technology adversely affect the processing accuracy. For instance, increasing depth of cut generates high 
forces/torques which may cause significant (and inadmissible) compliance deformations of the machining tool 
or robot. To reduce related machining errors there exist two main approaches. The first these is aimed at 
increasing of the machine tool or robot stiffness as well as optimal part placement in the workspace. However, 
increasing of the mechanism stiffness obviously leads to decreasing of the dynamic properties (due to higher 
mass and inertia of the links). The second approach is based on compliance errors compensation via proper 
off‐line modification of control program describing desired tool trajectory or by using the force feedback in the 
online mode. To implement this approach, a suitable stiffness model of the CNC‐machine or manipulator is 
required, which is proposed in the following chapters.  

High Speed Machining (HSM). The most essential current trends in machining of high performance 
materials are integrated in HSM‐concept, which has been already successfully implemented in several projects 
for the aerospace and ship building industries [43] that are known by their strong requirements for accuracy 
and high demands for efficiency. But simultaneously with obvious advantages, these applications 
demonstrated rather strong constrains on the specifications of the manufacturing equipment. This is caused 
by high spindle speed, high feed rate and by other factors. Typically, HSM‐based manufacturing conditions are 
associated with the following parameters [12]: 

• spindle speed N from 8000-10000 revolutions per minute (rpm) for widely used wares and up to 
40000 rpm and higher for aerospace and medical industry, high accuracy wares and machining with 
small tools; 

• cutting speed cv  from 700 m/min for milling with small tools; 
• feed rate tf  has to be at least 2-2.5 m/min and amount up to 40 m/min and more for high velocity 

machining; 
• spindle power spP  from 10-15 kW for tools with low feed rate and traverse 50 kW for high velocity 

machining of stiff materials. 
It should be stressed that all these specifications of the machining process are not strict and can vary, 

but they essentially differ from the conventional ones. Approximate manufacturing conditions limits for HSM 
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are summarized in Figure 2.1. Main advantages of HSM are summarized in Figure 2.2, which shows the 
influence of cutting speed on cutting forces, surface quality, time‐cutting volume, thermal workpiece load and 
tool life travel [12].  

 

 

Figure 2.2  Influence of cutting speed on the process evaluation [12] 

 

2.2 Machining of high performance materials 
Machining of high performance materials generates significant loading on the processing mechanism 

caused by interaction of machining tool and workpiece (Figure 2.3). It is evident that, this loading is essentially 
higher compared to conventional materials and it leads to the compliance errors which can be significant and 
deteriorate surface property. Generally, the compliant errors depend on two independent factors: the loading 
value and the resistance of the machining mechanism to the loading. Let us concentrate first on the 
computation of the force/torque associated with the machining process, while the issue of the machining 
mechanism resistance to the loading will be considered further. 

 

 

Figure 2.3 Cutting forces in machining process 
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In general, cutting forces depend on a number of factors. Among the most important ones are the 
materials of the machining tool and workpiece, the feed rate and the spindle rotation speed, the degree of 
tool wear, the tool temperature, the cutting geometry, the cutting width and thickness and other factors 
[47][20][55][49]. Moreover, the cutting forces are not constant and vary with the feed rate. Since in practice it 
is difficult to find the exact value of the cutting force, it is reasonable to estimate it for the worst case. For this 
reason, in engineering practice, usually simplified expressions are used where the impact of each factor is 
taken into account via a relevant correction coefficient [12][15][2]: 

 с PRO V γ CM TW CL WSF b h k K K K K K K K= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (2.1) 

Here b , h  are the chip width and thickness respectively, сk  is 'the specific cutting force', PROK  is a correction 
factor for the manufacturing process, VK  is the cutting speed correction factor, γK  is the rake angle 
correction factor, CMK  is the cutting material correction factor, TWK  is the tool wear correction factor, CLK  is 
the cutting fluid correction factors, WSK  is the workpiece shape correction factor. Typical values of the 
correction factors are presented in Table 2.1.  

 

Table 2.1 Correction factors for the cutting force computing [15] 

Correction factor Notation Value 

Manufacturing process PROK  
1.2 1.4PROK = −  

(the factor takes into account that the machining 
indices obtained from turning tests) 

Cutting speed  VK  
0.153

2.023
V

c

K
v

=  for 100 / mincv m<  

0.07

1.380
V

c

K
v

=  for 100 / mincv m>  

Rake angle  Kγ  
1.09 0.012Kγ = − ∠  (steel) 

1.03 0.012Kγ = − ∠  (cast iron) 

Cutting material  CMK  
1.05CMK =  (HSS) 
1.0CMK =  (cemented carbide) 
0.9 0.95CMK = −  (ceramic) 

Tool wear  TWK  
1.3 1.5TWK = −  
1.0TWK =  for sharp cutting edge 

Cutting fluid  CLK  
1CLK =  (dry) 
0.85CLK =  (non‐water soluble coolant) 
0.9CLK =  (emulsion‐type coolant) 

Workpiece shape  WSK  
1.0WSK =  (outer diameter turning) 
1.2WSK =  (inner diameter turning) 
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Table 2.2 Mechanical properties of typical high performance materials [12] 

Material 
Main value of specific 

cutting  power 
2

1.1 , [N / mm ]ik   

Rise of the 
tangent  

cm  

Typical use 

Monel 400 
(NiCu30Fe) 2600 0.19 

Aerospace material with favourable 
mechanical and chemical‐corrosion properties, 
pressure tank construction, centrifuges, ship's 

valves 

Inconell 718 
(NiCr19NbMo) 2088 0.29 

Aerospace material, excellent properties in the 
extremely low temperature range, very good 
corrosion resistance, rocket propulsion units, 

gas turbines, pumps 

Ti Al 6 V 4 1370 0.21 Aircraft and spacecraft construction, fittings, 
mechanical engineering 

Al Mg 4.5 Mn 780 0.23 Vehicle construction, shipbuilding,  
pressure tanks 

 

The remaining coefficient ck  (so called 'the specific cutting force') that is not included in the above 
table, depends on the chip thickness h  nonlinearly and is usually computed as [12]:   

 1.1
c

c
c m

kk
h

=  (2.2) 

where 1.1ik  is the main value of the specific cutting force (which depends on the material properties), cm is its  
exponent. Table 2.2 contains typical values of 1.1ck  and cm  for several high performance materials.  

There also exist nonlinear expressions for the cutting force which take into account some other specific 
factors. For instance, [34]has proposed the fractal model for cutting force 

 
2

1 2

3

· ·
1 ·
hF ha a

ha
+

=
+

 (2.3) 

where h  is the cut depth and 1 2 3, ,a a a  are the model coefficients that depend on material properties, specific 
chip thickness and cutting stiffness. 

For the worst-case analysis, expressions (2.1) and (2.3) can be reduced to the linear relation 

 c2maxF k b h= ⋅ ⋅ ⋅  (2.4) 

which includes only factor ck  depending on the cutting tool and material properties as well as the cutting 
cross‐section b h× . Numerical values of the maximum cutting forces computed using this expression are 
presented in (2.4) which includes results for two high performance materials with different cutting settings. 
They allow us to compare maxF  for two materials with essentially different cutting stiffness. In particular, for 
the same cutting depth 0.2h mm= , cutting width 8b mm=  and cutting speed from 1000 to 2000 m/min, the 
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cutting force is about 2 kN for the aluminum alloy (Al Mg 4.5 Mn) and close to 7 kN for Monel 400. It is evident 
that both of these values are high enough to cause significant deformations of the CNC‐machine or robotic 
manipulator. For instance, for robot manipulator KUKA‐240 [10]such loading may generate linear deflections 
0.1..5.0 mm and angular deflections 0.1..0.2° depending on the cutting force direction. 

It is worth mentioning that, for the constant feed rate, the cutting force reduces with increasing of the 
spindle speed. This effect is in good agreement with equation (2.4): increasing of the spindle speed for the 
same feed rate does not change the cutting speed, while the chip thickness h  reduces. This effect is widely 
used in practice. But to save the processing time, usually the feed rate increases with the spindle speed. This 
does not allow us to reduce relevant compliance errors.  

Another issue that should be taken into account while evaluating reactions associated with machining of 
high performance materials is related to the spindle axial torque. Usually this value is obtained from 
experiments [17], but it is also possible to estimate its range from nominal values of spindle power and 
rotation rate. For instance, the values 20 kW and 10000 rpm correspond to the torque of about 10 N·m (for 
the efficiency factor 50%). For typical industrial application based on robot KUKA‐240, this torque may cause 
linear/angular deflections of 0.001..0.008 mm and 0.1..1.6° respectively (depending on the feed direction). 
Besides, the cutting forces may exert essential lateral torque with respect to the robot‐mounting flange. For 
example, for the tool reference point offset of 100 mm, the cutting force 2‐7 kN (see Table 2.3) produces the 
torque 20‐140 N·m that makes non‐negligible linear and angular deflections.  

Table 2.3 Cutting forces for high performance materials 

Material Depth of 
cutting h , mm 

Width of 
cutting b , mm 

Cutting speed cv  m/min 

1000 1500 2000 

Monel 400 
(NiCu30Fe) 

0.2 
8 6.97 kN 6.77 kN 6.64 kN 

16 13.94 kN 13.54 kN 13.28 kN 

1 
8 25.65 kN 24.93 kN 24.44 kN 

16 51.30 kN 49.86 kN 48.88 kN 

Al Mg 4.5 Mn 

0.2 
8 2.23 kN 2.17 kN 2.12 kN 

16 4.46 kN 4.34 kN 4.24 kN 

1 
8 7.70 kN 7.48 kN 7.33 kN 

16 15.40 kN 14.96 kN 14.66 kN 
 

Hence, the cutting forces and torques associated with milling of high performance materials are 
essentially higher compared to conventional ones. They may cause significant linear and angular deflections of 
the machining tool that lead to essential reduction of the accuracy and quality of the final product. This issue 
justifies the goal of this research work. 
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2.3 Machining with robots versus traditional machining tools 
At present, there are two main approaches in designing of machining workcells: (i) utilization of classical 

CNC‐machines with Cartesian architecture and (ii) using industrial robots of either serial or parallel 
architecture. Both of them have their own advantages and disadvantages that are briefly discussed below 
from the point of view of applicability to machining of high performance materials.  

CNC-machines. Computer Numerical Control (CNC) machines refer to the automatic machine tools, 
which use abstractly programmed commands to specify the tool path and relative location of the workpiece 
while machining [23]. The earliest CNC equipment was based on existing traditional machine tools that were 
supplemented by motors that control the cutter feed rate. Further, all control execution functions were given 
to computers and the control program preparation was carried out in CAD/CAM environment [30][54][52]. The 
latter advances have essentially changed the machining process and provided fundamental benefits, which can 
be summarized as follows: 

(i)  full automation of the machining and programming processes, which requires the final 
dimensions of the product only; this reduces human errors to minimum; 

(ii) ability to produce both simple trajectories and the surfaces of high complexity, which extend their 
application from conventional milling to drilling, lathing, laser cutting, etc.;  

(iii)  high accuracy and good surface quality that is insured by high rigidity of the tool manipulation 
mechanism and accurate control of the tool motions; 

(iv)  flexibility of machining which allows us to process different types of products and combine several 
operations (milling, drilling, grinding) by changing control program only; this essentially reduces 
the manufacturing time and the product cost; 

There are also some other benefits that are offered by the CNC machines and promote their wide application 
in industry (advanced machine control, more precise production planning due to high reputability of the 
machining, etc.) [30]. However, relatively high cost and limited workspace are usually treated as their main 
disadvantages [19]. Typical examples of CNC‐machines are presented in Figure 2.4. 

 

Figure 2.4 Examples of CNC‐machines 
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Variety of existing CNC‐machines is usually classified with respect to the type of motion control system, 
implemented control algorithm and the number of actuated axes. With respect to the motion control system, 
the CNC‐machines may be classified as point‐to‐point and contouring ones. The first of them, also called a 
positioning system, moves the tool to the given location without control of the path and speed (they are not 
important for some applications, such as drilling). Continuous path systems ensure the path and speed control 
of the tool while machining, they implement simultaneous control of all driven axes. Typical application areas 
of continuous motion control are milling and turning.  

Based on the control algorithm, the CNC‐machines are divided into open‐loop and closed‐loop ones. In 
the open‐loop systems, the actuator input is entirely defined by the programmed instructions and there is no 
feedback to check whether the desired goal (position, velocity) has been achieved. They are obviously rather 
sensitive to external disturbances, so their application area is limited by the cases where the accuracy 
requirements are not critical. In contrast, closed‐loop systems have a feedback, which allows us to compensate 
any differences between the desired position/velocity and its actual value. This feedback may be implemented 
using both analogous and digital technique, the close‐loop systems are usually considered to be very precise 
and attractive for accurate machining. 

With respect to the third classification factor, the number of axes, the CNC‐machines with 2, 3, 4 and 5 
axes are distinguished. The first of these usually have only two translational driven axes that ensure control of 
the tool in the plane. The 3‐axis machines are able to process more complex 3‐dimentional surfaces, they 
usually employ three translational drives with mutually orthogonal axes. The more sophisticated are 4‐ and 5‐
axis CNC machines that are able to change the tool orientation, in addition to translational motions. This 
allows to produce more complex tool path movements and to process very complicated products. In general, 
increasing of the number of axes provides numerous advantages such as better surface quality, reduction of 
the machining time, improved access to under cuts and deep pockets, etc. It is worth also mentioning that the 
axes may be actuated either sequentially or simultaneously, but present systems usually implement the 
simultaneous control.  

In modern CNC systems, the machining trajectory design is highly automated and is performed in a 
CAD/CAM environment. It is used for creating spatial representation of a part; planning and optimization of 
the tool paths and cutting parameters in creating CNC code; loading, initialization, and operating the CNC‐
machine; etc. So, CAD/CAM technologies introduce essential benefits to machining such as higher productivity, 
reduced design time, more accurate designs, less time required for modifications, repeatability.  

Hence, the CNC‐machines ensure a number of benefits for machining of high performance materials. 
However, for some aeronautic applications that are closely related to this research, they have rather limited 
workspace and are not applicable for machining of large dimensional parts. In this case, industrial robots are 
more attractive, so their suitability for the milling of high performance materials is considered below. 

Industrial robots. For the considered application area, robots could gain all functionalities of the CNC‐
machines and are reasonable alternative for them. Also, they provide larger workspace and more flexibility 
[11][4][21]. Besides, emerging technologies allow robots to perform diverse manufacturing processes such as 
complex cutting and material removal, tapping and drilling, surface finishing and others. All these functions 
can be realized by the same robot, that makes it universal, while CNC‐machines can execute only one or a 
group of similar operations. In addition, robot‐based machining cells are applicable for secondary operations 
and have a relatively large working envelope, which is extremely important for large components. Such 
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machining cells are more flexible and allow us to produce different products at the same time, they can be also 
easily adopted to manufacturing of other products. They usually provide two alternative solutions to modify 
the tool path: (i) to change it in the CAD/CAM system, or (ii) to teach a robot in some key points. Robots are 
more intelligent and ensure more sophisticated motion control, and users can map their inaccuracies and 
compensate for them off‐line using a dedicated model (the stiffness model for instance, as in this work) [40]. 

In machining applications, robots often use force and torque sensors that allow online estimation of the 
deflections in the tool locations with respect to the desired ones. The force and torque sensors are usually 
integrated into a robot's wrist, and the robot controller are able to compensate these deflections via relevant 
calculations. However, to achieve good quality of machining process and to eliminate robots errors caused by 
different factors, some additional research is required [42]. This is the main issue that resists to robot 
applications in some areas.  

With respect to their architecture, all industrial robots can be classified into two groups. First group 
includes robots with strictly serial architecture, which are currently the most common industrial ones. The 
second group put together manipulators with strictly parallel architecture and cross‐linkages [25][26]. Typical 
examples of robots from both groups are presented in Figure 2.5. In order to indicate advantages of both 
architectures let us focus on their principal features. 

 

Figure 2.5 A serial Kuka robot (a) and an Adept parallel robots (b) 

Serial robots. This type of robots is based on serial kinematic chains composed of rather rigid links 
connected by actuated joints. The joints may be either rotational or translational. The main advantage of serial 
robots is large workspace with respect to their own volume and occupied floor space. But, since serial 
manipulators have open kinematic structure, all errors are accumulated and amplified from link to link. 
Besides, it is impossible (or rather difficult) to get high stiffness and high dynamic properties simultaneously. 
For instance, robots with high stiffness usually are heavy and cannot provide high speed. Moreover, their own 
weight induces undesirable significant stresses in actuated joints that reduces allowed payload. On the other 
hand, serial robots with small link mass have low stiffness and cannot provide high payload because of 
significant compliance errors. These issues essentially decrease efficiency and application areas of such 
manipulators. However, some limitations related to manufacturing errors can be withdrawn by advanced 
control. 

According to its kinematic architecture, serial manipulators can be classified into three main groups: (a) 
SCARA robots, (b) Articulated robots and (c) Cartesian/Gantry robots [57]. It is worth mentioning that 
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sometimes the robot classification includes some other types of manipulators (cylindrical, spherical, etc.) but 
here they are included in articulated ones. 

The SCARA acronym stands for "Selective Compliant Assembly Robot", it is also often referred to as: 
"Selective Compliant Articulated Robot Arm". This type of robots is based on a 4‐axis manipulator (Figure 2.6a) 
[9] that ensures motion to any point within its workspace (X‐Y‐Z translation) and the end‐effector rotation 
around the vertical axis (theta‐Z). For  this architecture, the vertical Z‐motion is independent and is provided 
by a dedicated linear actuator, while three remaining rotational joints (with parallel axes) ensure full range of 
translations and rotations in XY‐plane. Because of this specific architecture (with three parallel rotational 
joints), SCARA is slightly compliant in the XY‐plane but is rather rigid in the Z‐direction (so called selective 
compliance). The selective compliant feature makes this robot highly suitable for many types of assembly 
operations. Due to low mass in moving parts, it provides very good dynamic properties. This promote SCARA 
to be ideal for pick‐and‐place, palletizing and de‐palletizing, machine loading/unloading and packaging 
applications, which require fast, repeatable and articulate point‐to‐point movements.  

 

Figure 2.6 Typical architectures of serial robots 

The second group includes articulated robots (Figure 2.6b) [24][3], which are also called 
"anthropomorphic arms". Their mechanical structure is based on rotational joints and the links are arranged in 
a chain. Usually the articulated robots have five or six controlled axes, while robots with seven and more 
actuated  joints also exist. This structure provides very good kinematic dexterity, so the robots have an ability 
to reach the target location over obstacles and ensure almost any position and orientation of the tool within 
the workspace. Essential advantage of the articulated robots is that they are very compact and provide the 
largest workspace relative to their size. However, because of complexity of direct/inverse kinematics, their 
control is not trivial: when driving an articulated robot in its natural coordinate system (joint space), it is 
difficult to obtain a straight‐line‐motion of the end‐effector in Cartesian space. So, intensive computations are 
required to transform the Cartesian location into the actuated joint angles (and vice versa), but this problem is 
not already significant because of essential computing capacity of modern microprocessors. The capabilities of 
the articulated robots make them well suit for a wide variety of industrial application, including machining 
[31][1].  

The third group includes Cartesian robots (Figure 2.6c) [8], which have almost the same kinematic 
architecture as conventional CNC‐machines. The main differences are in the areas of control principle, 
programming language and mechanical design of the end‐effector connector, which for the robots is rather 
universal. The mechanical structure of such robots is based on three translational actuated joints whose axes 
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are mutually orthogonal. Such arrangement ensures very simple control when any motion in X‐Y‐Z space is 
achieved by straightforward actuation of relevant joints. Cartesian robots have a rectangular workspace whose 
volume can be increased easily. Extremely large work envelope is ensured by Gantry robots (also belonging to 
the Cartesian family), where one of the horizontal translational axes is supported at both ends. Due to their 
mechanical structure, Cartesian robots provide high rigidity and good accuracy but their kinematic dexterity is 
rather limited; sometimes they cannot reach around objects. Besides, to satisfy the large workspace 
requirement, they need large volumes to operate and occupy essential floor space. Because of its rigidity, such 
robots are very attractive for machining applications, but only if the tool orientation may remain the same 
during processing.  

 

Figure 2.7 Examples of parallel robots integrated in the machining cells 

Parallel robots. This type of robots, which are also often referred to as parallel kinematic machines 
(PKM), is a closed‐loop mechanism whose end‐effector is linked to the base by several independent kinematic 
chains [25]. The kinematic chains are composed of several links that are connected to each other by both 
passive joints and actuated joints (rotational or translational). Such kinematics claim to offer several essential 
advantages, like high structural rigidity, high dynamic capacities and high accuracy [44][50][51]. Another 
important advantage of parallel robots is better accuracy, because here the position and orientation errors of 
separate kinematic chains are averaged by the end‐platform (instead of straightforward accumulation, as in 
serial robots). Besides, using special arrangement of kinematic chains, it is possible to ensure high stiffness and 
high dynamic properties simultaneously. These capabilities make the parallel robots well suitable for high‐
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speed machining and they are often used in the manufacturing cells (Figure 2.7), for instance in HexaM 5‐axis 
milling machine, Hexapod OKUMA machine, the VERNE machine, Hexapod‐Machine Mikromat 6X, Urane SX, 
and others [36][14][16][28][39][41].  

However, parallel robots have very complex workspace and highly non‐linear relation between natural 
coordinates (actuated joints) and Cartesian ones. Consequently, their performances (maximum speeds, 
accuracy and rigidity) essentially differ from point to point and also depend on the moving directions. Other 
disadvantages of parallel manipulators are their large footprint‐to‐workspace ratio (except the Tricept robot 
which requires less space) and small range of motion because of parallel configuration. These are the main 
obstacles for the machine application of parallel robots [18][38][50].  

At present, there exists a large variety of parallel manipulators, several examples are presented in Figure 
2.8. Depending on the architecture, they may be divided into two groups that differ by the type of connection 
between the base‐platform and the serial chains [6].  

The first group contains manipulators with fixed foot points and variable length struts. Most robots of 
this group implement the Stewart‐Gough architecture, have 6 degrees of freedom and are called Hexapods 
(Figure 2.9) [25]. They provide high precision and accuracy, good stiffness and high load/weight ratio. Due to 
these essential advantages, Hexapods are often used in flight simulators, precision machining, surgical robots, 
and other areas. By variation of the link lengths, Hexapods may satisfy both small and large workspace, but 
increasing of the link length has a direct effects on the accuracy. The main technical problem of Hexapod is 
high friction in the ball joints. Typical examples of parallel manipulators belonging to the first group are 
presented in (Figure 2.8 a‐g), they include VARIAX, HEXA, TRICEPT, TRIPOD, Delta and others 
[13][35][37][29][7][46][56]. 

The second group includes manipulators with foot points gliding on fixed linear joints. Robots of this 
group differ by the number of actuated translational axes and their location with respect to each other, as well 
as by the type of links connecting the base and moving platforms. Typically, they have 5 or 6 degrees of 
freedom (HEXAGLIDE, HexaM) but there are also 3 degrees of freedom translational manipulators of this 
family (Orthoglide) that employ parallelogram‐based links similar to Delta robots [53][6][45]. The robots of the 
second group (see Figure 2.8 h‐l) are attractive for machining application because of lower moving mass 
compared to the hexapods and tripods. However, to ensure large workspace, such robots require large 
volumes to operate and occupy essential floor space. 

Hence, parallel robots provide essential benefits compared to the serial ones, which promote them to 
high speed and high precision machining applications considered in this work. For this reason, they have 
already been employed in commercial machining centers (see Figure 2.7) that progressively replace 
conventional CNC machines based on serial Cartesian architecture. A short summary of a dedicated 
comparison study is given below. 
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Figure 2.8 Typical architectures of parallel robots 
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Figure 2.9 Examples of Hexapod parallel kinematic machines 

Résumé. Integrated results of the above analysis are summarized in Table 2.4. They show that the CNC‐
machines are quite suitable for majority of machining operations provided that a large workspace and high 
dynamics are not required. However, for high speed machining of relatively large parts that are widely used in 
the aerospace and shipbuilding industries, conventional CNC‐machines can be hardly used. In contrast, robotic 
manipulators are able to execute such tasks and simultaneously ensure higher flexibility of automated 
machining cells. The only problem with robots application is their rather low stiffness that leads to non‐
negligible position errors under the forces/torques of the technological process. Thus, the next section focuses 
on the robot accuracy issue. 

 

Table 2.4 Comparison of CNC and robotic‐based machining 

Performance 
factor 

Conventional XYZ 
CNC‐machines 

Robotic‐based machining 

Serial robots Parallel robots 

Workspace Limited 
(by foot print) 

Large  
(limited by link lengths) 

Limited  
(by parallel architecture) 

Flexibility Limited number of 
operations Any operation in the workspace 

Dynamics Low Limited High  

Accuracy High  Depends on the stiffness, link weights and payload 

Stiffness High Moderate, compliance is 
accumulated along the chain  

High, separate chain  
stiffness is aggregated  
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3 STIFFNESS MATRIX OF ROBOTIC MANIPULATORS WITH 
PASSIVE JOINTS 

3.1 Introduction 
IN many applications, manipulator stiffness becomes one of the most important performance measures 

of a robotic system. In particular, for milling, drilling and other types of machining, the stiffness defines the 
positioning errors due to interaction between the workpiece and the technological tool. Similarly, in industrial 
pick‐and‐place automation, the manipulator stiffness defines admissible velocity/acceleration while 
approaching the target point, in order to avoid undesirable displacements due to inertia forces. Other 
examples include medical robots, where elastic deformations of mechanical components under the task load 
are the primary source of positioning errors.  

Numerically, this property is usually described by the stiffness matrix CK , which defines a linear 
relation between the translational/rotational displacement in Cartesian space and the static forces/torques 
causing this transition (assuming that all of them are small enough). The inverse of CK  is usually called the 
compliance matrix and is denoted as Ck . As it follows from related works, for conservative systems, CK  is 
6 6×  semi‐definite non‐negative symmetrical matrix but in general case its structure may be non‐diagonal to 
represent the coupling between the translation and rotation. 

The problem of stiffness matrix computing for different types of manipulators has been in the focus of 
robotic experts for several decades [1‐18]. The existing approaches may be roughly divided into three main 
groups: (i) the Finite Element Analysis (FEA) [19‐23], (ii) the Matrix Structural Analysis (SMA) [24‐28], and (iii) 
the Virtual Joint Method (VJM) [1‐2,8,14,29‐30]. The most accurate of them is obviously the FEA‐based 
technique but it requires rather high computational expenses. The SMA is less computationally hard due to 
fairly large structural elements employed (3D flexible beams instead of numerous tiny tetrahedrals and 
hexahedrals of FEA) but nevertheless it is not convenient for the parametric analysis. And finally, the VJM 
method is the most attractive in robotic domain since it operates with an extension of the traditional rigid 
model that is completed by a set of compliant virtual joints (localized springs), which describe elastic 
properties of the links, joints and actuators. This Chapter contributes to the VJM technique and focuses on 
some particularities of the manipulators with passive joints. 

For conventional serial manipulators (without passive joints), the VJM approach yields rather simple 
analytical presentation of the desired stiffness matrix CK . Relevant expression 1T

C q q q
− −=K J K J  can be found 

in the work of Salisbury [1] who assumed that the mechanical elasticity is concentrated in actuators and the 
deflections are small enough to apply linear approximation of the force‐deflection relation. Here the matrix 

qK  aggregates the stiffness coefficients of all elastic joints, and qJ  is the corresponding kinematic Jacobian. 
Further, this result was extended by Gosselin for case of parallel manipulators taking into account elasticity of 
other mechanical elements [2]. More recent publications present VJM‐based stiffness analysis for particular 
case studies, such as various variants of the Stewart–Gough platform, manipulators with US/UPS legs, 
CaPAMan, Orthoglide, H4 etc. [27‐34].  
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It should be noted that in the majority of related works, the presence of passive joints1 does not cause 
any specific computational problems, since these joints are eliminated via geometrical constraints describing 
the assembling of the relevant parallel architecture [2]. Besides, in most of publications, it is implicitly assumed 
that the Jacobian qJ  describing influence of the elastic joints on the end‐location is non‐singular2, i.e. 

( ) 6rank q =J , to ensure inversion of the related matrix in the modified expression ( ) 1T T
C q q q q

− −
=K J K J   that 

always produce non‐singular CK . It is obvious that the assumption concerning qJ  is completely realistic if the 
VJM model includes at least a single 6‐dimensional virtual spring of a general type (see [38] for details), while it 
is not realistic that the manipulator stiffness matrix is always non‐singular. Hence, common stiffness modelling 
techniques must be revised with respect to influence of passive joints, which in certain cases can not be 
straightforwardly eliminated from the kinetostatic equations and, consequently, may cause singularity of CK 3. 

In this Chapter, another approach is applied that originates from our publication [30] where the desired 
stiffness matrix CK  of size 6 6×  is extracted from the inverse of a larger matrix, of size ( ) ( )6 6q qn n×+ + , 
which additionally includes the passive joint Jacobian qJ  ( qn  is the passive joint number). Advantages of this 
approach and its ability to produce singular stiffness matrices were confirmed by a number of examples, but 
explicit analytical solution was not presented. Hence, this work concentrates on analytical computations of the 
stiffness matrix and also on influence of the passive joints on particular elements of CK . 

It is also worth mentioning that some previous works [30] propose (or at least discuss) a trivial solution 
of the considered problem, which deals with a straightforward modification of the matrix qK ,  in accordance 
with the passive joint type and geometry (corresponding rows and columns are set to zero). However, as it will 
be shown below, this straightforward approach gives true results if (and only if) the matrix qK is diagonal, but 
it is not valid in general case where there is a coupling between different types of the elementary virtual 
springs presented by non‐diagonal coefficients.  

The remainder of this Chapter is organised as follows. Section 4.2 presents a simple motivation example 
that confirms the problem non‐triviality. Then, Sections 4.3 and 4.4 propose relevant analytical solutions for a 
serial kinematic chain and a parallel manipulator respectively. Section 4.5 focuses on computational issues and 
proposes recursive procedure and a set of corresponding analytical rules. Section 4.6 contains application 

1 It should be mentioned that here passive joints have stiffness equal to zero and they should be distinguished from 
passive compliant joints studied by other authors, whose stiffness is nonzero.  

2 It is important to distinguish the conventional kinematic Jacobian J , which is computed with respect to actuated 
coordinates and may be both singular and non‐singular,  and the Jacobian qJ  that is computed with respect to the virtual 
springs coordinates and is always non‐singular. Besides, they differ in sizes, which for a standard serial 6‐d.o.f. 
manipulator are respectively 6x6 and 6 36× . 

3 The main problem with straightforward application of the classical expression 1 1( )T
C q q q

− −=K J K J  to the manipulators 
with passive joints is related to the invertibility of the matrix qK , which becomes singular if stiffness of some virtual 
springs is assign to zero (to describe the passive joint properties). In fact, there are two sequential inversions here applied 
to singular matrices that may be treated similarly to an indeterminate form "1/(1/0)" in calculus that finally produces 0, 
but cannot be obtained numerically. So, finally, double inversion of singular matrix should produce another singular 
matrix, but numerical computations obviously fails. To overcome this difficulty and to solve the problem in a rigorous 
way, our previous publication [30] proposes a dedicated technique that deals with inversion of non‐singular matrices of 
higher dimension and extraction from them relevant 6x6 sub‐matrix. 
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examples that demonstrate the developed technique advantages. And finally, Section 4.7 summarizes the 
main results and gives prospective for future work. 

3.2  Motivation example 
Let us present first a simple example that demonstrates non‐trivial transformation of the stiffness 

matrix due to the presence of passive joints. For the purpose of simplicity, let us limit our study to 2D 
Cartesian space and consider a single manipulator link, which is assumed to be fixed at the one end. It is also 
assumed that the external loading (the forces , yxF F  and the torque zM ) is applied to another end; either 
directly or through a passive joint.  

Under these assumptions, the elastostatic properties of the link can be described by a symmetrical 
stiffness matrix ijK =  K  of size 3 3×  and its potential energy due to elastic deformations (linear deflections 

,x yδ δ  and angular deflection δϕ ) may be expressed as 

 ( ) [ ]
11 12 13

21 22 23

31 32 33

, ·1
2

, · ·
K K K x

x y x y K K K y
K K K

E
δ

δ δ δϕ δ δ δϕ δ
δϕ

   
   
  


=




 (3.1) 

If the link is equipped with a passive joint, the energy of this mechanical system (link with passive joint) 
must be minimized with respect to the joint variable4. For instance, in the case of the rotational passive joint 

zR  allowing free rotation around the z‐axis at the reference point, the potential energy should be rewritten as 

 ( ) ( )mi, , ,np x y E yE x
δϕ

δ δ δ δ δϕ=  (3.2) 

and the passive joint variable δϕ  may be expressed via the remaining coordinates as 
13 23 33( ) /K x K y Kδ δ δϕ = − + . Then, after relevant transformations and computations of the second‐order 

derivatives (i.e. the Hessian of pE  with respect to x, y and ϕ ) 

 2 2
11 12 3

2 2
3

2/ , / ,... /p p
p p

p
pK E x K E x y K E ϕ= ∂ ∂ = ∂ ∂ ∂ = ∂ ∂  (3.3) 

the desired stiffness matrix of links with passive joint may be expressed as 

 

13 31 32 13
11 12

33 33

23 31 23 32
21 22

33 33

· · 0

· · 0

0 0 0

p

K K
K K

K K

K KK K

K KK K
K K

 
 
 
 
 
 
 
 
 

− −

= − −K  (3.4) 

This expression clearly shows that, if the matrix K  is non‐diagonal, a trivial transformation that was 
proposed in some previous works (i.e., simple setting to zero of the third row and column) does not produce a 
truthful result. Moreover, the elements of the upper‐left 2 2×  block must be modified taking into account the 

4 It is worth mentioning that in novel compliant robotics systems it may be required to maximise the potential energy 
storage in order to exploit/recycle it to improve energy efficiency [40] [41] 
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elements of K  that are located outside of this block. Similar results corresponding to other types of passive 
joints are summarized in Table 3.1, where they are also applied to classical 2D beam (in this case, some 
elements of the pK  are four times lower compared to K ). This conclusion motivates development of a 
general methodology of the stiffness matrix transformation, which is presented below. 

Table 3.1 Transformation of the link stiffness matrix due to passive joints (2D case) 
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3.3 Passive joints in a serial chain 
In contrast to conventional serial manipulators, whose kinematics does not include passive joints and 

assures full controllability of the end‐effector, parallel manipulators include a number of under‐actuated serial 
chains that are mutually constrained by special connection to the base and to the end‐platform. Let us derive 
an analytical expression for the stiffness matrix of such kinematic chain taking into account influence of the 
passive joints. 

 

Figure 3.1   The VJM model of a general serial chain (Ps – passive joint, Ac – actuated joint) 

The kinematic chain under study (Figure 3.1) consists of a fixed base, a series of flexible links, a moving 
platform, and a number of actuated or passive joints separating these elements. Following the methodology 
proposed in our previous publications [30], a relevant VJM model may be presented as a sequence of rigid 
links separated by passive joints and six‐dimensional virtual springs describing elasticity of the links and 
actuators. For this VJM representation, the direct kinematics is defined by a product of homogeneous 
transformations that after extraction of end‐platform position and orientation is transformed into the vector 
function  

 ( , )=t g q θ  (3.5) 

where the vector ( , )T=t p φ  includes the position ( , , )Tx y z=p  and orientation ( , , )T
x y zϕ ϕ ϕ=φ  of the 

platform in Cartesian space (Euler angles), the vector ( )1 2, , ...,
q

T

nq q q=q  contains passive joint coordinates, 
the vector ( )1 2, , ...,

T

nq
q q q=θ  collects coordinates of all virtual springs; qn  and nq  are the sizes of q  and θ  

respectively.  

It can be proven [30] that the static equilibrium equations of this mechanical system may be written as  

 ;T T= =θ θ qJ F K θ J F 0  (3.6) 

 where ,  ( , ) ( , )q q= ∂ ∂ = ∂ ∂J Jg q θ q g q θ θ  are kinematic Jacobians with respect to the passive and virtual 
joint coordinates respectively, F is the external loading (force and torque), and qK the aggregated stiffness 
matrix of the virtual springs. Using these equations simultaneously with (3.5) and applying the first‐order 
linear approximation under assumption that corresponding values of the external force F  and the coordinate 
variations , ,δ δq θ t  are small enough, one can derive the matrix expression5   

5 Relevant technique is explained in details in [30] and is based on linearization of equation (5) and solving it together 
with expressions (6) with respect to external loading F and passive joint coordinates q. 
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11 T

T
δ

δ

−−    = ⋅        

θ θ θ q

q

J K J JF t
q 0J 0

 (3.7) 

that allows obtaining the desired Cartesian stiffness matrix CK  numerically [30]. Corresponding procedure 
includes inversion of ( ) ( )6 6q qn n×+ +  matrix in the right‐hand side of (3.7) and extracting from it the upper‐
left sub‐matrix of the size 6 6×  that defines a liner force‐deflection relation in Cartesian space: 

 Cδ=F K t  (3.8) 

In spite of computational simplicity, the above procedure is not convenient for the parametric stiffness 
analysis that usually relies on analytical expressions. To derive such expression for the matrix CK , let us apply 
the blockwise  inversion based on the Frobenius formula [42]  

 ( ) ( )
1

10 0
1

0 0 0 *
* *

C q C C q
T T

C qq

q

Cq
T

−− −   −  =  
     

J JK K K K KJ J J
J 0

 (3.9) 

where ( ) 10 1 T
C q q q

−−=K J K J , that allows to present the desired stiffness matrix as (see Appendix B for details, Eq. 
B.6) 

 ( ) 10 0 0 0T T
C C C q q C q q C

−
= −K K J JK K J J K  (3.10) 

where the first term 0
CK  is the stiffness matrix of the corresponding serial chain without passive joints and the 

second term defines the stiffness decrease due to the passive joints. It worth mentioning that this result is in 
good agreement with other relevant works [14, 43, 44] where CK  was presented as the difference of two 
similar components but the second one was computed in a different way. 

Analyzing the latter expression (see Appendix A : Properties of stiffness matrix CK ), one can get to the 
following conclusion concerning computational singularities: 

Remark 1. The first term of the expression (3.10) is non‐singular if and only if ( ) 6rank q =J , i.e. if the 
VJM model of the chain includes at least 6 independent virtual springs. 

Remark 2. The second term of the expression (3.10) is non‐singular if and only if ( )q qrank n=J , i.e. if 
the VJM model of the chain does not include redundant passive joints (i.e. all passive joints are kinematically 
independent). 

Remark 3. If both terms of (3.10) are non‐singular, their difference produces a symmetrical stiffness 
matrix, which always singular and ( ) 6C qrank n= −K .  

Remark 4. If the matrix 0
CK  of the chain without passive joints is symmetrical and positive‐definite, the 

stiffness matrix of the chain with passive joints CK  is also symmetrical but positive‐semidefinite. 

Hence, in practice, expression (10) does not cause any computational difficulties and always produce a 
singular stiffness matrix of rank 6 qn− .  In analytical computations, it can be also useful the following 
proposition (see Appendix B: Recursive computation of the stiffness matrix CK ) that allows sequential 
modification of the original stiffness matrix 0

CK  in accordance with the following proposition:  
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Proposition. If the chain does not include redundant passive joints, expression (10) allows recursive 
presentation  

 ( ) 11 ; 0,1,2...i i i i i T i i i T i
C C C q q C q q C i

−+ = − =K K K J J K J J K  (3.11) 

where ( ) 10 1 T
C q q q

−−=K J K J  and the sub‐Jacobians i
q q⊂J J  are extracted from 1 2, ,...q q q =  J J J  in arbitrary 

order (column‐by‐column, or by groups of columns), the superscripts 'i' and 'i+1' define the iteration number. 

Corollary. The desired stiffness matrix CK  can be computed in qn  steps, by sequential application of 
expression (11) for each column of the Jacobian qJ  (i.e. for each passive joint separately). If for the i‐th 
iteration, the second term in expression (11) is singular, this step should be skipped (this case corresponds to 
the so‐called redundant passive joint whose influence on the stiffness matrix has been already taken into 
account at the previous steps).  

These results give convenient analytical and numerical computational techniques that are presented in 
details in Section 4.6. 

3.4 Passive joints in a parallel manipulator 
Let us consider now a parallel manipulator, which may be presented as a strictly parallel system of the 

actuated serial legs connecting the base and the end‐platform (Figure 3.2) [45]. Using the methodology 
described in previous section and applying it to each leg, there can be computed a set of m Cartesian stiffness 
matrices ( )i

CK  expressed with respect to the same coordinate system but corresponding to different platform 
points (here, the superscript '(i)' denotes the kinematic chain number and it differs from the superscript 'i' in 
Section III which denotes the iteration number, m is the number of serial kinematic chains in the manipulator 
architecture). If initially the chain stiffness matrices were computed in local coordinate systems, their 
transformation is performed in standard way [46], as  

 
T

glob loc
C C T

  = ⋅ ⋅      

R 0 R 0K K0 R 0 R
 (3.12) 

where R  is a 3 3×  rotation matrix describing orientation of the local coordinate system with respect to the 
global one.  

 

Figure 3.2 Typical parallel manipulator (a) and transformation of its VJM models (b, c) 

To aggregate these matrices ( )i
CK , they must be also re‐computed with respect to same reference point 

of the platform. Assuming that the platform is rigid enough (compared to the legs), this conversion can be 
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performed by extending the legs by a virtual rigid link connecting the end‐point of the leg and the reference 
point of the platform (see Fig. 2 where these extensions are defined by the vectors iv ).  

After such extension, an equivalent stiffness matrix of the leg may be expressed using relevant 
expression for a usual serial chain, i.e. as 

1( ) ( ) ( )Ti i i
v C v

− −

J K J , where the Jacobian ( )i
vJ  defines differential relation 

between the coordinates of the i‐th virtual spring and the reference frame of the end‐platform. Hence, using 
the superposition principle, the final expression for the stiffness matrix of the considered parallel manipulator 
can be written as 

 
1( ) ( ) ( ) ( )

1

T
m

m i i i
С v С v

i

− −

=

=∑K J K J  (3.13) 

Besides, it is implicitly assumed here that all stiffness matrices (both for the legs and for the whole 
manipulator) are expressed in the same global coordinate system. Hence, the axes of all virtual springs are 
parallel to the axes x, y, z of this system and corresponding Jacobians and their inverses can be easily 
computed analytically as 

 ( ) ( ) 13 3

3 36 6 6 6

( ) ( ),i ii i
v v

−

× ×

× − ×   = =      
I v I vJ J0 I 0 I  (3.14) 

where 3I  is a identity  matrix of size 3 3× , and ( )×v  is a skew-symmetric matrix corresponding to the vector v : 

 
0

( ) 0
0

z y

z x

y x

v v
v v
v v

− 
 × = −
 −  

v  (3.15) 

Therefore, expression (3.13) allows explicit aggregation of the leg stiffness matrices with respect to any 
given reference point of the platform. It is worth mentioning that in practice, the matrices ( )i

CK  are always 
singular while there aggregation usually produce non‐singular singular matrix. Relevant examples are 
presented in following sections. 

3.5 Computational techniques  
Explicit expressions (3.10), (13) derived in previous sections allow obtaining the Cartesian stiffness 

matrix instantly, for any Jacobian qJ  describing special location of the passive joints. However, recursive 
equation (3.11) allows essentially simplify the computational procedure by sequential modification of the 
original stiffness matrix 0

CK  for each passive joint independently, using separate columns of 1, 2[ ,...]q q q=J J J . 
Moreover, for some typical cases, relevant computations may be easily performed analytically. This section 
presents some useful techniques related to this approach. 

3.5.1  Recursive computations: single-joint decomposition 
Let us assume that a current recursion deals with a single passive joint corresponding to the i‐th column 

of the Jacobian qJ , which is denoted as i
qJ  and has size 6 1× . In this case, the matrix expression 1( )i T i i

q C q
−J K J  is 

reduced to the size of 1 1×  and the matrix inversion is replaced by a simple scalar division. Besides, the term  
i i
C qK J  has size 6 1× , so the recursion (3.11) is simplified to  
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 1 ( 1) ( ) ( ) ( )1 1i i T i i i i
C C i i jk jk j kor K K u u

µ µ
+ +     = − ⋅ = −     K K u u  (3.16) 

where i i
i C q=u K J  is a 6 1× vector and i T i i

q C qµ = J K J  is a scalar. Using methodology presented in Appendix A, it 
can be also proved that each recursions reduces the rank of the stiffness matrix by 1 

 ( ) ( )1 1i i
C Crank rank+ = −K K  (3.17) 

provided that the current Jacobian i
qJ  is independent of the previous ones 1 2, ...q qJ J  (i.e. the i‐th passive joints 

is not redundant relatively to the joints 1,..., 1i −  ).  

Since in practice any combination of passive joints can be decomposed into elementary translational 
and rotational ones, it is enough to consider only two types of the Jacobian columns qiJ : 

 [ ] [ ]1 2 3 1 2 3 1 2 3, , ,0,0,0 ; , , , , ,T T
tran rote e e d d d e e e= =J J  (3.18) 

where the unit vector [ ]1 2 3e e e=e , 1T =e e  defines orientation of the passive joint axis (both for 
translational and rotational ones) and the vector [ ]1 2 3d d d=d  defines influence of the rotational passive 
joints on the linear velocity at the reference point,  i.e. = ×d e r  where r  is a vector from the joint centre 
point to the reference point. After relevant substitutions, one can obtain the following expression for the 
translational joint 

 
3 3 3

( ) ( )

1 1 1
;i i

jk j k j jk k
j k k

K e e u K eµ
= = =

= =∑∑ ∑  (3.19) 

and for the rotational one 

 

3 3 3 6 6 6
( ) ( ) ( )

3 3 3
1 1 1 4 4 4

3 6
( ) ( )

3
1 4

2 ;i i i
jk j k jk j k jk j k

j k j k j k

i i
j jk k jk k

k k

K d d K d e K e e

u K d K e

µ − − −
= = = = = =

−
= =

= + +

= +

∑∑ ∑∑ ∑∑

∑ ∑
 (3.20) 

Hence, in general case, the recursion (3.11) involves rather intricate matrix transformation, different 
from simple setting to zero a row and/or a column. Let us consider now several specific (but rather typical) 
cases where the transformation rules are more simple and elegant. 

 

3.5.2 Analytical computations: chains with trivial passive joints 
In practice, many parallel robots include kinematic chains for which the passive joint axes are collinear 

to the axes x, y or z of the Cartesian coordinate system. For such architectures, the vector‐columns of the 
Jacobian qJ  include a number of zero elements, so the expressions (13) can be essentially simplified. Let us 
consider a set of trivial cases where i

qJ  are created from the columns of the identity matrix 6 6×I : 
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 (1) (2) (6)

1 0 0
0 1 0
0 0 0, , ...,0 0 0
0 0 0
0 0 1

q q q

     
     
     
     = = =
     
     
          

J J J  (3.21) 

Corresponding passive joints will be further referred to as the ‘trivial’ ones. It can be easily proved that 
they cover the following range of the joint geometry: 

• translational passive joint with arbitrary spatial position (but with the joint axis directed 
along x, y or z); 

• rotational passive joints positioned at the reference point (and with the joint axis directed 
along x, y or z). 

Besides, it is worth to consider additional case‐study corresponding to  

• rotational passive joints shifted by a distance L with respect to the reference point in the 
direction either x, y or z (and with the joint axis directed along x, y or z), 

which will be further referred to as the ‘quasi‐trivial’ and gives the Jacobian columns of the following 
structure: 

 (4 ) (5 ) (6 )

0
0

0, ,01 0
10 0
00 1

xx

y y

zz
q q q

dd
d d

dd+ + +

    
    
    
    = = =
    
    
        

J J J  (3.22) 

where , ,x y zd d d  denote the elements of the vector d , which are equal here either L±  or 0. 

For the trivial passive joints, assuming that ( )p
qJ denotes the vector‐column with a single non‐zero 

element in the p‐th position, a straightforward substitution yields ( )i
j jpu K= ;   ( )i

ppKµ = . So, the recursive 
expression (16) for the Cartesian stiffness matrix is simplified to   

 
( ) ( )

( 1) ( )
( )

i i
jp pki i

jk jk i
pp

K K
K K

K
+

 
   = −        

 (3.23) 

that is very similar to those presented in the motivation example (see Section II). Also, here the p–th row and 
column of the matrix 1i

C
+K  become equal to zero 

 ( 1) ( 1)0; 0; 1,...6i i
pk kpK K p+ += = ∀ =  (3.24) 

and the recursive computations are easily performed analytically. 

For practical convenience, the above considered case‐studies are summarized in Table 3.2 where the 
original stiffness matrix  
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Table 3.2 Stiffness matrix transformations caused by trivial passive joints 
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11

22 26

0 33 35

44

53 55

62 66

0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0

C

K
K K

K K
K

K K
K K

 
 
 
 =
 
 
  

K  (3.25) 

is assumed to be sparse in accordance with the structure corresponding to a beam‐type link whose cross‐
section are symmetrical with respect to y‐ and z‐axis, and its elements are expressed via  the physical 
parameters as 

 

3 3
11 22 33

44 55 66
2 2

35 53 26 62

; 12 / ; 12 / ;
; 4 / ; 4 / ;
6 / ; 6 /

z y

z Z

y z

K EA L K EI L K EI L
K GJ L K EI L K EI L
K K EI L K K EI L

= = =
= = =
= = = = −

 (3.26) 

where L is the link length, A is its cross‐section area, Iy, Iz, and J are the quadratic and polar moments of inertia 
of the cross‐section, and E and G are the Young’s and Coulomb’s modules respectively.  

As follows from these results, trivial passive joints can be easily taken into account by using simple analytical 
expressions (3.23) but relevant modifications of the stiffness matrix are more serious than simple zeroing of 
relevant rows and columns (in addition, some elements must be reduced in half or fourfold, see Table 3.2). 
Moreover, for the quasi‐trivial passive joints, the stiffness matrix may be singular but does not include purely 
zero rows and columns (see Table 3.3). Hence, the developed technique is essential for VJM‐based stiffness 
modeling of mechanisms with passive joints. 

Table 3.3 Examples of stiffness matrix transformations for quasi‐trivial passive joints 
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3.6 Application examples  
Let apply now the developed technique to computing of the stiffness matrix for two versions of a 

general Stewart‐Gough platform presented in Figure 3.3 [43, 47‐49]. It is assumed that in both cases the 
manipulator base and the moving plate (platform) are connected by six similar extensible legs (Figure 3.4) but 
their spatial arrangements are different: 

Case A: the legs are regularly connected to the base and platform, with the same angular distance 60° 
(it is obviously degenerate design, where the stiffness matrix should be singular) 

Case B: the legs are connected to the base and platform in three pairs, with the angular distance of 
120° between the mounting points (it is classical design of Stewart‐Gough where the stiffness matrix should be 
non‐singular). 

 

Figure 3.3 Geometry of the Stewart‐Gough platforms under study 

Rigid Link RzRx RyRy Rz

U-joint P-joint

6-d.o.f.
spring

x

z
y

U-joint
(passive)

S-joint
(passive)

{Rx} {Ry} {Rz}{Ry} 
{Rz}

P-joint
(actuated)

{Tx}

 

Figure 3.4  Geometry of the manipulator leg and its VJM model 

For both designs, the original leg stiffness (i.e. without the passive joints) can be described by the sparse 
matrix (3.25) corresponding to the symmetric beam. Further, to take into account influence the passive joints, 
it should be recursively applied the procedure (3.11) with the elementary Jacobians 

 (1) (2) (3) (4) (5)

0 0 0 0 0
0 0 0 0
0 0 0 0; ; ; ;1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

Rx Ry Rz Ry Rz

L
L

+ +

         
         
         −         = = = = =
         
         
                  

J J J J J  (3.27) 
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where L is the leg length. It is obvious that, due to trivial structure of i
qJ , the recursive computations can be 

easily performed analytically (see subsection V.B.). They sequentially produce the following results: 

 

Hence, in final form, the derived matrix includes only the traction/compression term (and not bending, 
torsion, etc.) what perfectly agrees with other results on Stewart‐Gough platforms.  

Further, to be applied to each leg, the obtained matrix must be transformed from the local to the global 
coordinate system. In this specific case, due to the special structure of 5

CK , relevant transformation [24, 46]  

 3 3
11

3 3 3 3

1
0

0i

T
i i

С T
i i

K ×

× ×

 
    

= ⋅ ⋅ ⋅    
    

  

0R 0 R 0K
0 R 0 R

0 0

 (3.28) 

expressed via the orthogonal rotation matrix iR describing orientation of the i‐th local coordinate system with 
respect to the global one, is easily reduced to  

 
0 0

3 3
11

3 3 3 3
i

T
i i

С K ×

× ×

 ⋅= ⋅  
 

u u 0K 0 0 . (3.29) 

where 0
iu  is the unit vector directed along the leg axis iu  (see Figure 3.2). Besides, before aggregation, the 

stiffness matrices of separate legs 
iCK must be re‐computed with respect to same reference point in 

accordance with expressions (3.13), (3.14) which yields 
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0 06

3 3 3 3
11

3 3 3 3 3 31

( )
( )

T T
i i i

С
ii

K ×

× ×=

   ⋅ × = ⋅ ⋅ ⋅    ×     
∑ I 0 u u 0 I vK v I 0 0 0 I  (3.30) 

where iv  is the vector from the leg end‐point to the platform reference point (see Figure 3.2). So, after 
relevant transformations, one can get the final expression of the manipulator stiffness matrix    

 
0 0 0 06

0 0 0 011
1

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

T T T
i i i i i

T T TС
i i i i i i ii

K
=

 ⋅ ×
= ⋅  × ⋅ × ⋅ ⋅ × 

∑ u u u u v
K

v u u v u u v
 (3.31) 

or 

 
06

0 0
011

1
( )

( )
T Ti

С i i i
i ii

K
=

 
 = ⋅ ⋅ ×   × 

∑ u
K u v u

v u
 (3.32) 

where the vector iu , iv  describing spatial locations of the legs and computed via the direct kinematics, and 
0

i i×v u  denotes the vector product (in contrast to the above notation ( )i×v  which is referred to the 
corresponding skew‐symmetric matrix). 

The derived equation was applied to both case studies, assuming that the manipulators are in their 
“home” configurations when the platform is parallel to the base and it is symmetrical with respect to the 
vertical axis. Corresponding expressions for the leg vectors are 

 
cos( ) cos( ) cos( )
sin( ) sin( ) , sin( )

0

i i i

i i i i i

r R r
r R r

h

ψ φ ψ
ψ φ ψ

− −   
   = − = −
   
   

u v  (3.33) 

where R and r  denote the circle radius which comprise the leg connection point at the base and moving 
platform respectively, { }0, 60 ,120 ,180 , 240 , 300i iφ ψ= ∈ ° ° ° ° °  for the case A, and 

{ }0,120 ,120 , 240 , 240 , 360iφ ∈ ° ° ° ° ° ; { }60, 60,180 ,180 , 300 , 300iψ ∈ ° ° ° °  for the case B. Substitution of these 
vectors to the expression (3.32) leads to the following stiffness matrices 

 

2

2

2
( ) 11

2 2 2

2 2

0 0 0 0
0 0 0 0

3 0 0 2 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0

a a

a a

A
C

a

a

d rhd
d rhd

K h
L rhd r h

rhd r h

 
 − 
 =  −
 
 
  

K  (3.34) 

and 

 

2

2

2
( ) 11

2 22

2 2

2 2

0 0 0 0
0 0 0 0

3 0 0 2 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 1.5

a b

a b

B
C

b

b

d Rr rhd
d Rr rhd

K h
rhd r hL

rhd r h
r R

 +
 + − 
 =  −
 
 
  

K  (3.35) 
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where  ad R r= − ; / 2bd R r= − ; L  is the leg length, h  is the vertical distance between the base and the 
platform, and the superscripts ‘A’ and ‘B’ define the relevant case study. As follows from these expressions, in 
‘zero’ location the matrix ( )A

CK  is singular and allows “free” rotation of the end‐platform around the vertical 
axis. In contrast, for the same location the matrix ( )B

CK  is non‐singular and the manipulator resists to all 
external forces/torques applied to the platform. These results are in good agreement with previous research 
on the Stewart‐Gough platforms and confirm efficiency of the developed computational technique for 
manipulator stiffness modeling [9, 47]. 

3.7 Conclusion  
For robotic manipulators with passive joints, the stiffness matrices of separate kinematic chains are 

singular. So, the most of existing stiffness analysis methods can not be applied directly and this problem is 
usually overcome by elimination the passive joint coordinates via geometrical constraints describing the 
manipulator assembly. However, such techniques degenerate if the number of passive joints is redundant 
and/or the resulting matrix is inherently singular. 

To deal with such architectures in more efficient way, this Chapter proposes an analytical approach that 
allows obtaining both singular and non-singular stiffness matrices and which is appropriate for a general case, 
independent of the type and spatial location of the passive joints. The developed approach is based on the 
extension of the virtual‐joint modelling technique and includes two basic steps which sequentially produce 
stiffness matrices of separate chains and then aggregate them in a common matrix. 

In contrast to previous works, the desired stiffness matrix is presented in an explicit analytical form, as a 
sum of two terms. The first of them has traditional structure and describes manipulator elasticity due to the 
link/joint flexibility, while the second one directly takes into account influence of the passive joints. It is proved 
that, for each chain, the rank‐deficiency of the resulting matrix is equal to the number of independent passive 
joints. To simplify analytical computations, it is proposed a recursive procedure that sequentially modifies the 
original matrix in accordance with the geometry of each passive joint. For the trivial cases, for which the 
passive joint axes are collinear to the axes of the base coordinate system, this modification is presented in the 
form of simple analytical rules. 

Advantages of the developed technique are illustrated by application examples that deal with stiffness 
modeling of two Stewart‐Gough platforms. They demonstrate its ability to produce both singular and non‐
singular stiffness matrices, and also show its feasibility for analytical computations. These examples give also 
some prospective for future work that include development of the dedicated techniques for the stiffness 
matrix aggregation in the case of non‐rigid platform and an extension of these results for the case of 
manipulators with external loading. 

3.8 Appendix A : Properties of stiffness matrix KC 
Let us analyze in details expression (3.10) that allows computing the stiffness matrix of a serial chain 

with passive joints CK  from corresponding matrix of the chain without passive joints 0
CK . Assuming that 

0( ) 6Crank =K , this matrix can be factorised into the product of two non‐singular square matrices  0 T
C =K S S . 

This yields a compact presentation of the desired matrix in the form  

 T
C = ⋅ ⋅K S M S  A1 
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where 

 ( ) 1
( ) ( )T T T T

q q q q

−
= − ⋅ ⋅M I S J J S S J J S  A2 

and the inverse 1( )T T
q q

−J S S J  exists due to the assumption ( )q qrank n=J . Further, the product qSJ  can be 
also factorised using the SVD‐technique [50] as 

 
6 6

6
q q

q

T q
q ij ij n n

n

u v
× ×

×

    = = ⋅ ⋅     

Σ
SJ UΣV 0  A3 

where U , V  are the orthogonal matrices and the matrix 1 2( , ,...)q diag σ σ=Σ  is composed of qn  non‐zero 
singular values iσ (provided that ( )q qrank n=J ). The latter gives the following presentation of M   

 ( )( )1T T T−
= ⋅ − ⋅M U I Σ Σ Σ Σ U . A4 

where the product ( ) 1T T−
Σ Σ Σ Σ  may be computed in a straightforward way: 

 ( )
1

1

6 6

qnT T q q
q q

−
−

×

         = ⋅ ⋅ ⋅ =               

I 0Σ ΣΣ Σ Σ Σ Σ 0 Σ 0
0 0 0 0

. A5 

So, the inner part of M  may be presented as 

 ( ) 1

6
6 6

q

q

nT T

n

−

−
×

 
′ = − =  

  

0 0
M I Σ Σ Σ Σ 0 I  A6 

This leads to the final expression  

 T T
C ′= ⋅ ⋅K S U M U S  A7 

that allows to evaluate the rank of the stiffness matrix CK  

 ( ) ( ) 6C qrank rank n′= = −K M  A8 

and to justify Remarks presented in Section III. 

For computational convenience, the orthogonal matrix U may be split into six vector columns 
[ ]1 6, ...,u u  and the matrix product T′U M U  is expressed as a subsume of T

i iu u  corresponding to the non‐
zero elements of ′M . This gives another presentation of the desired Cartesian stiffness matrix  

 
6

1q

T T
C i i

i n= +

 
= ⋅ ⋅  

 
∑K S u u S  A9 

where the middle term includes only those unit vectors iu  that are not “compensated” by the passive joints 
(for this notation, the directions 1,...

qnu u  correspond to the end‐effector motion due to the passive joints, 
which do not produce elastostatic reactions). It should be noted that in the case of 0qn = , i.e. without passive 
joints, the total sum of T

i iu u  produces a unit matrix 6I  and the latter expression is reduced to 0 T
C =K S S . 
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3.9 Appendix B: Recursive computation of the stiffness matrix KC 
Let us assume that the Jacobian qJ  of size 6 qn×  is decomposed into two sub‐matrices 1 2[ , ]q qJ J  of sizes 

16 qn× and 26 qn×  corresponding to non‐intersected subsets of passive joints and the derived expression for the 
stiffness matrix is applied recursively, using sequentially the Jacobians 1 2,q qJ J  : 

 
( )
( )

11 0 0 0 0
1 1 1 1

12 1 1 1 1
2 2 2 2

T T
C C C q q C q q C

T T
C C C q q C q q C

−

−

= −

= −

K K K J J K J J K

K K K J J K J J K
 B1 

To evaluate the obtained matrix, let us substitute the first expression to the second one and perform 
some equivalent transformations using notations  

 
( )

0 0 0 0
1 1 1 2 2 1 2 2

10 0 0 0
2 2 2 1 1 1 1 2

; ; ;T T T T
q C q q C q q C q q C q

T T T T
q C q q C q q C q q C q

−−

= = = =

= − = − ⋅ ⋅1

A J K J B J K J C J K J D J K J

H D CA B J K J J K J J K J J K J
 B2 

This allows converting the original bulky expression  

( ){ } ( ){ }
( ){ }( ) ( ){ }

1 12 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

11 10 0 0 0 0 0 0 0
2 2 1 1 1 1 2 2 1 1 1 1

T T T T
С С С q q С q q С С С q q С q q С

T T T T T T
q q С С q q С q q С q q С С q q С q q С

− −

−− −

= − − −

−

×

× −

K K K J J K J J K K K J J K J J K

J J K K J J K J J K J J K K J J K J J K
  B3 

into a more compact form 

2 0 0 1 1 1 1 1 1 1 1 1 0
1 1 2 2 2 1 1 2 1 1( )T T T T T

C C C q q q q q q q q q q C
− − − − − − − − −= − ⋅ + + − + ⋅K K K J A J J H J J H CA J J A B H J J A B H CA J K  B4 

that allows a matrix presentation 

 
1 1 1 1 1 1

12 0 0 0
1 1 11 2

2

T
q

C C C q q CT
q

− − − − − −

− − −

  + − = − ⋅ ⋅ ⋅    −   

JA A B H CA A B HK K K J J K
H CA H J

 B5 

Further, using Frobenius formula for the blockwise matrix inverse  

 

1 1

;
− − − − − − −

− − −

−

 + −  =    −   
= −

1 1 1 1 1

1 1 1

1

A A BH CA A BHA B
C D H CA H

H D CA B

 B6 

the derived expression can be presented in the form  

 
10 0

1 1 1 2 12 0 0 0
0 01 2

2 1 2 2 2

T T T
q C q q C q q
T TC C C q q CT
q C q q C q q

−
   

 = −     
    

J K J J K J J
K K K J J K

J K J J K J J
, B7 

or 
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1

1 12 0 0 0 0
1 2 1 2

2 2

T T
q q

C C C q q C q q CT T
q q

−
    

   = −             

J J
K K K J J K J J K

J J
 B8 

that exactly coincide with the expression for the stiffness matrix CK corresponding to the aggregated Jacobian 
1 2[ , ]q q q=J J J . Hence, the desired stiffness matrix of the kinematic chain with passive joints can be computed 

recursively, using arbitrary partitioning of the Jacobian qJ . Obviously, it is more convenient to apply column‐
wise petitioning that allow sequential modification of the matrix 0

CK  taking into account geometry of each 
passive joint separately (and sequentially reducing the rang of the Cartesian stiffness matrix). 
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4 STIFFNESS MODELING OF ROBOTIC-MANIPULATORS 
UNDER AUXILIARY LOADINGS 

4.1 Introduction 
Manipulator stiffness modeling under internal and external loading is a relatively new research area that 

is important both for serial and parallel robots. In general case, these loadings may be of different nature and 
applied to different points/surfaces. For the stiffness modeling of robotic manipulator, it is reasonable to 
distinguish three main types of loading such as external loading applied to end‐point, preloading in the joints 
and auxiliary loading applied to the intermediate points.  

The external loading is caused mainly by an interaction between the robot end‐effector and the 
workpiece, which is processed or transported in the considered technological process [1]. In most of robotic 
research works this loading is considered as a unique one [2] [3], however existence and effect of other types 
have not been discussed yet.  

The internal loading in some joints may be introduced by the designer. For instance, to eliminate 
backlash, the joints may include preloaded springs, which generate the force or torque even in standard 
"mechanical zero" configuration [4]. Though the internal forces/torques do not influence on the global 
equilibrium equations, they may change the equilibrium configuration and also influence on the manipulator 
stiffness properties. For this reason, internal preloading is used sometimes for the purpose of improving the 
manipulator elasto‐static properties, especially in the vicinity of kinematic singularities. Another case where 
the internal loading exists by default, is related over‐constrained manipulators that are subject of the so‐called 
antagonistic actuating [5]. Here, redundant actuators generate internal forces and torques that are 
equilibrated in the frame of closed loops.  

The term auxiliary loading, in this Chapter, is used to denote external loading applied to any 
intermediate point (surface, etc.) of the manipulator different from the end‐effector. Typical example of such 
type of loading is the gravity that is non‐negligible for heavy manipulators employed in machining applications 
[6]. Besides, to compensate in certain degree the gravity influence, some manipulators include special 
mechanisms generating external forces/torques in the opposite direction (gravity compensators). In addition, 
some additional forces/torques may be generated by other sources (geometrical constrains, for instance). It 
should be noted that the external loading caused by gravity have obvious distributed nature, but usually it can 
be approximated by lumped forces that applied to one or several intermediate points.  

From point of view of stiffness analysis, the external and internal forces/torques directly influence on 
the manipulator equilibrium configuration and, accordingly, may modify the stiffness properties. So, they must 
be undoubtedly be taken into account while developing the stiffness model. However, in most of the related 
works the Cartesian stiffness matrix has been computed for the nominal configuration, which does not take 
into account influence of external/internal loading. Such approach is suitable for the case of small deflections 
only. For the opposite case, the most important results have been obtained in [7‐10], which deal with the 
stiffness analysis of serial and parallel manipulators under the end‐point loading. Besides, some types of the 
internal preloading have been in the focus of [11], [12]. However, influence of the auxiliary loading has not 
been studied in details yet. 
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To our knowledge, the most advanced stiffness model for robotic manipulator has been proposed in [6], 
where numerous factors have been taken into account (conventional external loading, gravity forces, 
antagonistic redundant actuation, etc.). However, proposed approach is rather hard from computational point 
of view. Besides, in this work the Jacobians and all their derivatives were computed not in a "true" equilibrium 
configuration. For this reason, since the equilibrium obviously depends on the loading magnitude, some 
essential issues have been omitted.  

The goal of this work is to generalize the non‐linear stiffness modeling technique for the case of three 
types of loadings: (i) the external loading applied to the end‐effector, (ii) preloading in the joints and (iii) 
auxiliary loading applied to the intermediate node‐points. The developed model is based on the VJM‐
technique proposed in [13], which is able to obtain the force‐deflection relation and the manipulator Cartesian 
stiffness matrix assuming that the external loading is applied to the end‐effector only. 

4.2 Problem statement 
For stiffness modeling of serial kinematic chain with the loading applied to end‐point, preloading in the 

joints and auxiliary loading applied to intermediate points let us use the VJM model that is presented in Figure 
4.1. The serial chain under study consists of flexible links separated by passive and/or actuated joints. Its 
geometry (end‐point location) is described by the vector function 

 ( , )=t g q θ  (4.1) 

where the vector t  defines the end‐point location (position and orientation (Euler angles)); the vectors 

q

T
1 2 n( , , ..., )q q q=q  and 

θ

T
1 2 n( , , ..., )q q q=θ  collect all passive and virtual joints coordinates respectively; qn , θn  

are the sizes of q  and θ , respectively. 

 

Figure 4.1 General structure of kinematic chain with auxiliary loading and its VJM model 

Stiffness modeling for the manipulators with end‐point loading and preloading in the joints have been 
already published in [13], However other types of loadings (here they are aggregated in the auxiliary loading) 
applied to intermediate points did not receive adequate attention in robotics. In practice, these loadings can 
be caused by gravity forces (generally they are distributed, but in practice they can be approximated by 
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localized ones) and/or gravity compensators. These forces will be denoted as jG , where 1,...,j n=  is the node 
number in the serial chain starting from the fix base (here, j n=  corresponds to the end‐point). It should be 
noted that for computational convenience, it is assumed that  the end point loading consists of two 
components nG  and F  of different nature.  

It is evident that in general the auxiliary forces iG  depend on the manipulator configuration. So, let us 
assume that they are described by the functions  

 ( , )j j=G G q θ ,  (4.2) 

In contrast, for the external force F , it is assumed that there is no direct relation with manipulator 
configuration.  

For the serial chains with auxiliary loadings it is also required to extend the geometrical model. In 
particular, in addition to equation (4.1) defining the end‐point location, it is necessary to introduce additional 
functions  

 ( , ), 1,...,j j j n= =t g q θ  (4.3) 

defining locations of the nodes. It worth mentioning that for the serial chain, the position jt  depends on a 
sub‐set of the joint coordinates (corresponding to the passive and virtual joints located between the base and 
the j‐th node), but for the purpose of analytical simplicity let us use the whole set of the joint coordinates 
( , )q θ  as the arguments of the functions (...)ig .  

Using these assumptions and using results from our previous works [13][14], the problem of the 
manipulator stiffness modeling with auxiliary loadings can be split into several steps that are sequentially 
considered in the following sections.  

4.3 Static equilibrium equations  
To obtain a desired stiffness model, it is required to derive the static equilibrium equations that differ 

from the one used for the end‐point loaded manipulator only due to influence of auxiliary loadings jG . Let us 
apply the principle of the virtual work and assume that the kinematic chain under external loadings F  and 

[ ]1... n=G G G  has the configuration ( ),q θ  and the locations of the end‐point and the nodes are ( , )=t g q θ  and 
( , ), 1,j j j n= =t g q θ  respectively.  

Following the principle of virtual work, the work of external forces ,G F  is equal to the work of internal 
forces qτ  caused by displacement of the virtual springs δθ  

 ( )T T T
θ

1
δ δ δ

n

j j
j=

⋅ + ⋅ = ⋅∑ G t F t τ θ  (4.4) 

where the virtual displacements δ jt  can be computed from the linearized geometrical model derived from 
(4.3) 

 ( ) ( )
θ qδ δ δ , 1..j j

j j n= ⋅ + ⋅ =t J θ J q , (4.5) 

which includes the Jacobian matrices  
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 ( ) ( )( ) ( )
θ q, ; ,j j

j j
∂ ∂

= =
∂ ∂

J g q θ J g q θ
θ q

 (4.6) 

with respect to the virtual and passive joint coordinates respectively. 

Substituting (4.5) to (4.4) we can get the equation 

 ( ) ( )T ( ) T ( ) T ( ) T ( ) T
θ q θ q θ

1
δ δ δ δ δ

n
j j n n

j j
j=

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅∑ G J θ G J q F J θ F J q τ θ  (4.7) 

which has to be satisfied for any variation of δ , δθ q . It means that the terms regrouping the variables δ , δθ q  
have the coefficients equal to zero, hence the force‐balance equations can be written as  

 ( )T ( )T ( )T ( )T
θ θ θ q q

1 1
;

n n
j n j n

j j
j j= =

= ⋅ + ⋅ = ⋅ + ⋅∑ ∑τ J G J F 0 J G J F  (4.8) 

These equations can be re‐written in block‐matrix form as 

 (G)T (F)T (G)T (F)T
θ θ θ q q;= ⋅ + ⋅ = ⋅ + ⋅τ J G J F 0 J G J F  (4.9) 

where 

 
(F) ( ) ( ) ( ) (G) (1) ( )
θ θ q q θ θ θ

(G) (1)

TT T

T TT T T) T(
q q q 1

; ; ... ;

... ; ...

n F n n

n
n

 = = =  

   = =   

J J J J J J J

J J J G G G
 (4.10) 

Finally, taking into account the virtual spring reaction ( )0
θ θ= ⋅ −τ K θ θ , where ( )1 nθ θ θ,...,diag=K K K , the 

desired static equilibrium equations can be presented as 

 
( )(G)T (F)T 0

θ θ θ

(G)T (F)T
q q

⋅ + ⋅ = ⋅ −

⋅ + ⋅ =

J G J F K θ θ

J G J F 0
 (4.11) 

Further, these equations will be used for computing the static equilibrium configuration and 
corresponding Cartesian stiffness matrix. 

4.4 Static equilibrium configuration  
To obtain a relation between the external loading F  and internal coordinates of the kinematic chain 

( , )q θ  corresponding to the static equilibrium, equations (4.11) should be solved either for different given 
values of F  or for different given values of t . In [13] these problems were referred to as the original and the 
dual ones respectively, but the dual problem was discovered to be the most convenient from computational 
point of view. Hence, let us solve static equilibrium equations with respect to manipulator configuration ( ),q θ  
and external loading F  for given end‐effector position ( ),=t g q θ  and function of auxiliary‐loadings ( ),G q θ  
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( )

( )
( )

0 (G)T (F)T
θ θ θ

(G)T (F)T
q q

;

, ;

,

⋅ − = ⋅ + ⋅

⋅ + ⋅ =

=

=

K θ θ J G J F

J G J F 0

t g q θ

G G q θ

 (4.12) 

where the unknown variables are ( ), ,q θ F .  

Since usually this system has no analytical solution, iterative numerical technique can be applied. So, the 
kinematic equations may be linearized in the neighborhood of the current configuration ( , )i iq θ  

 ( ) ( ) ( ) ( ) ( )(F) (F)
θ1 1 1q, , , ;i i i i i i i i i i i+ + += + ⋅ − + ⋅ −t g q θ J q θ θ θ J q θ q q  (4.13) 

where the subscript 'i' indicates the iteration number and the changes in Jacobians (G) (F) (G) (F)
θ θ q q, , ,J J J J  and the 

auxiliary loadings ( ),G q θ  are assumed to be negligible from one iteration to another. Correspondingly, the 
static equilibrium equations in the neighborhood of ( , )i iq θ  may be rewritten as 

 
( )(G)T (F)T 0

θ θ θ

(G)T (F)T
q

1

q

1

1

i i

i

+ +

+

⋅ + ⋅ = ⋅ −

⋅ + ⋅ =

J G J F K θ θ

J G J F 0
. (4.14) 

Thus, combining (4.13) and (4.14), the iterative algorithm for computing of static equilibrium 
configuration for given end‐effector location can be presented as 

 
( )1(F) (F) (F) (F)

q 11 θ θ q
(F)T (G)T
q q
(F)T (G)T 0
θ θ θ θ

1

1

·
,i i i i ii

i i

i i

++

+

+

−
   − + ⋅ + ⋅       = − ⋅        − − ⋅ − ⋅     

0 J J t g q θ J θ J qF
q J 0 0 J G
θ J 0 K J G K θ

 (4.15) 

where 1 1 1( , )i i i+ + +=G G q θ . 

To reduce the size of a matrix to be inverted, the above system can be slightly simplified. In particular, 
based on analytical expression for 1 (G)T (F)T 0

θ θ θ( )−= ⋅ + ⋅ +θ K J G J F θ , the unknown variables can be separated in 
two groups ( , )F q  and θ . This yields the iterative scheme  

 
( )

( )

1(F) 1 (F)T (F) (F) (F) (F) 1 (G)T
θ θ q θ q θ θ

(F)T (G)T
q q

1 (G)T (F)T 0
θ θ θ

11

1

1 1

·
,i i i i i ii

i i

i i i

q q++

+

+

−

−
+

− −   ⋅ ⋅ − + + −  =      − ⋅        

= ⋅ + ⋅ +

J K J J t g q θ J θ J q J K J GF
q J 0 J G

θ K J G J F θ

 (4.16) 

that requires matrix inversion of essentially lower order (for example, for 3‐link manipulator with two passive 
joints and two actuated joints, the size of matrix inversion reduces from 34 to 14). It should be mentioned that 

1
θ
−K  is computed only once, outside of the iterative loop. The proposed algorithm allows us to compute static 

equilibrium configuration for the serial chains with passive joints and all types of loadings (internal preloading, 
external loadings applied to any point of the manipulator and loading from the technological process).  

4.5 Stiffness matrix  
Previous Section allows us to obtain the non‐linear relation between elastic deflections Δt  and external 

loading F . In order to obtain the Cartesian stiffness matrix, let us linearize the force‐deflection relation in the 
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neighborhood of the equilibrium. Following this approach, two equilibriums that correspond to the 
manipulator state variables ( , , , )F q θ t  and ( δ , δ , δ , δ )+ + + +F F q q θ θ t t  should be considered simultaneously. 
Here δF , δt  define small increments in the external loading and relevant displacement of the‐end‐point. 
Using this notation, the static equilibrium equations may be written as  

 
( )
( )0 (G)T (F)T

θ θ θ

(G)T (F)T
q q

,=

⋅ − = ⋅ + ⋅

⋅ + ⋅ =

t g q θ

K θ θ J G J F

J G J F 0

 (4.17) 

and 

 

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T0 (G) (G) (F) (F)
θ θ θ θ θ

T T(G) (G) (F) (F)
q q q q

δ δ , δ

δ δ δ δ δ

δ δ δ δ

+ = + +

⋅ + − = + ⋅ + + + ⋅ +

+ ⋅ + + + ⋅ + =

t t g q q θ θ

K θ θ θ J J G G J J F F

J J G G J J F F 0

 (4.18) 

where 0
θ, , , , , ,t F K q θG θ  are assumed to be known.  

After linearization of the function ( , )g q θ  in the neighborhood of loaded equilibrium, the system (4.17), 
(4.18) is reduced to three equations 

 

(F) (F)
θ q

(G) (G) (F) (F)
θ θ θ θ θ
(G) (G) (F) (F)
q q q q

δ δ δ

δ δ δ δ δ

δ δ δ δ

= ⋅ + ⋅

⋅ = ⋅ + ⋅ + ⋅ + ⋅

⋅ + ⋅ + ⋅ + ⋅ =

t J θ J q

K θ J G J G J F J F

J G J G J F J F 0

 (4.19) 

which define the desired linear relations between δt  and δF , δq , δθ  that are expressed via the stiffness 
matrices CK , CqK , CθK . In this system, small variations of Jacobians may be expressed via the second order 
derivatives 

 
(F) (F) (F) (F) (F) (F)
q qθ qq θ θθ θq
(G) (G) (G) (G) (G) (G)
q qθ qq θ θθ θq

δ δ δ ; δ δ δ ;
δ δ δ ; δ δ δ ;

= ⋅ + ⋅ = ⋅ + ⋅
= ⋅ + ⋅ = ⋅ + ⋅

J H θ H q J H θ H q
J H θ H q J H θ H q

 (4.20) 

where  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
(G) (F) (G)
θθ θθ qq

1 1

2 2 2
(F) (G) (F)
qq θq θq

1

2 2
(G) (F)
qθ qθ

1

2 2 2

2

( , ) ; ( , ) ; ( , ) ;

( , ) ; ( , ) ; ( , ) ;

( , ) ; ( , )

T T T
n n

j j
j j

n

j
j

n

j
j

j j

T T T
j

T T
j

= =

=

=

∂ ∂ ∂
= = =

∂ ∂ ∂

∂ ∂ ∂
= = =
∂ ∂ ∂ ∂ ∂

∂ ∂
= =

∂ ∂ ∂ ∂

∑ ∑

∑

∑

θ θ θ

θ θ

H g q G H g q F H g q G
θ θ q

H g q F H g q G H g q F
q θ q θ q

H g q G H g q F
q θ θ

θ

θ
q

θ

 (4.21) 

Also, the auxiliary loading G  may be computed via the first order derivatives as 

 δ δ δ= ∂ ∂ ⋅ + ∂ ∂ ⋅G G θ θ G q q  (4.22) 

Further, let us introduce additional notations  
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(F) (G) (G)T (G) (F) (G)T
θθ θθ θθ θ θq θq θq θ

(G) (F) (G)T (G) (F) (G)T
qθ qθ qθ q qq qq qq q

; ;

;

∂ ∂
= + + ⋅ = + + ⋅

∂ ∂
∂ ∂

= + + ⋅ = + + ⋅
∂ ∂

H H H J G H H H J G
θ q

H H H J G H H H J G
θ q

, (4.23) 

which allows us to present system (4.19) in  the form 

 

(F) (F)
q θ

(F)T
q qq qθ
(F)T
θ θq θ θθ

δ δ
δ
δ

        = ⋅        − + 

0 J Jt F
0 J H H q
0 θJ H K H

 (4.24) 

that has the same structure as for end‐point loaded manipulator [13]. Hence, similarly the desired Cartesian 
stiffness matrices CK  and stiffness matrices CθK  and CqK  defining linear mappings of end‐point displacement 
δt  to internal coordinates deflections δθ  and δq : 

 Cθ Cq;δ δ δ δ= ⋅ = ⋅θ K t q K t  (4.25) 

can be computed via either high order matrix inversion  

 

1(F) (F)
q θC

(F)T
Cq q qq qθ

(F)T
Cθ θ θq θ θθ

* *
−

  
  ∗ ∗ =   
 ∗ ∗  − +   

0 J JK
K J H H
K J H K H

 (4.26) 

or lower order inversion  

 
1(F) F (F)T (F) (F) F

C θ θ θ q θ θ θq
(F)T F (F)T F

Cq q qθ θ θ qq qθ θ θq

−
∗  + 

=   ∗ + +    

K J k J J J k H
K J H k J H H k H

 (4.27) 

where F 1
θ θ θθ( )−= −k K H  denotes the modified joint compliance matrix. It is obvious that, using these notations, 

the matrices CK , CqK , CθK  can be also computed analytically using the block matrix inversion [14]  

 ( )0( ) 0( ) F F
C q θ θ θq Cq·F F

C C= − ⋅ + ⋅ ⋅K K K J J k H K  (4.28) 

where 0(F) F T 1
C θ θ θ( )−= ⋅ ⋅K J k J  defines stiffness of the kinematic chain without passive joints [2], [3] and  

 ( )( ( )) ( )F T F T 0(F) F T F T 0(F)
Cq qq qθ θ θq q qθ θ θ C q θ θ θq q qθ C

1

θ θ·
−

= − + ⋅ ⋅ − + ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅K H H k H J H k J K J J k H J H k J K  (4.29) 

Similarly, the matrix  CθK  can be expressed analytically as  

 F T F
Cθ θ θ C θ θq Cq= ⋅ ⋅ + ⋅ ⋅K k J K k H K  (4.30) 

Hence, the technique presented in this Section allows us to compute Cartesian stiffness matrix CK  and 
stiffness matrices CθK  and CqK  defining linear mappings of end‐point displacement δt  to internal coordinates 
deflections δθ  and δq  for manipulators with external and internal loading applied to the intermediate nod‐
points (auxiliary loading). Presented approach deals with serial chains, however obtained results can be easily 
transferred to a parallel manipulators using aggregation technique from [13]. 
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4.6 Illustrative examples  
Let us now focus on the non‐linear stiffness analysis of a serial chains under auxiliary loadings applied to 

an intermediate node. It is assumed that the considered chain consists of two links (either rigid or flexible) 
separated by a flexible joint. Relevant analysis includes evaluating stiffness variation due to the loading, 
detecting of buckling and computing corresponding critical forces, as well as analysis of the auxiliary spring 
influence on the chain stiffness. 

4.6.1 Serial chain with torsional springs 
Let us consider first a 2‐link manipulator with a compliant actuator between the links and two passive 

joints at both ends. It is assumed that the left passive joint is fixed, while the right one can be moved along x 
direction (Figure 4.2a). Besides, here both rigid links have the same length L  and the actuator stiffness is θK . 

 

Figure 4.2 Kinematic chains with compliant actuator between two rigid links (a) and  compliant actuator 
between two compliant links (b) 

Let us assume that the initial configuration (i.e. for 0Mq = ) of the manipulator corresponds to 
0 / 6q π= − , where 2·q α= −  is the coordinate of the actuated joint. It is also assumed that the external loading 

G  is applied to the intermediate node (Figure 4.2a) and it is required to apply the external loading ( , )x yF F  at 
the end‐point to compensate the auxiliary loading G . Since this example is quite simple, it is possible to obtain 
the force‐deflection relation and the stiffness coefficient both analytically and numerically.  

For this manipulator the force‐displacement relation can be expressed in a parametric form as 

 θ 0cos· 2· · ; ;
2 sin sin 2x y

KG GF F
L

α αα
α α

−
= − − = −  (4.31) 

and stiffness of the manipulator can be presented as   

 ( )θ
3 3

0
2

·cos sin1· ·
4 sin sinx

KGK
L L

α α α α
α α

= −
− −

−  (4.32) 

where ( / 2; / 2)α π π∈ −  is treated as a parameter and 0yK = . 

As follows from expression (4.32), the stiffness coefficient xK  essentially depends on the auxiliary 
loading G . In particular, for the initial configuration, the coefficient xK  can be both positive and negative or 
even equal to zero when the auxiliary loading is equal to its critical value θ

*
04 / sin·G K L α= . It is evident that 

the case *G G>  is very dangerous from practical point of view, since the chain configuration is unstable. 

Summarized results for this case study are presented in Figure 4.3 that contain the force‐deflection 
relations and values of translational stiffness xK  respectively. They show that the auxiliary loading G  
significantly reduces the stiffness of the serial chain. For example, in initial configuration ( 0x∆ = ), for 0G =  
the stiffness is 2

θ14.9· /K L , while for *0.5·G G=  it reduces down to 2
θ8.67· /K L . Further increasing of the 
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auxiliary loading up to *1.5·G G=  leads to the unstable configuration with negative stiffness 2
θ7.46· /K L− . 

Moreover, in the neighborhood of the critical value of *G G≈ , the force‐deflection curves have extremum 
points which may provoke buckling. 

 

Figure 4.3 Force‐deflections relations for different values of  auxiliary loading  G :  chain with torsional spring 
( *

θ 04 / sin·G K L α= , 2
θ· /xK K K L= ) 

 

Table 4.1 Functions and matrices used in numerical stiffness analysis of two‐link manipulator with 
auxiliary loading (case of rigid links and compliant intermediate joint)  

Intermediate point ap  End-effector ep  

1 1

1 1

1

cos
sina

L q
L q

q

 
 =
 
 

g  
( )
( )

1 1 2 1

1 1 2 1

1 2

cos cos
sin sin

e

e

e

L q L q
y L q L

q

x
q

q

q
q

qϕ

  + + 
   = + +   

+ +     

 

( )
0
0
1

G
q

 
 =
 
 

J  
( )
( )

2 1
( )

2 1

sin
cos

1

F
L q
L qq

q
q

− + 
 = − + 
 
 

J  

1 1
( )

1 1

sin 0
cos 0
1 1

G
q

L q
L q
− 
 =
 
 

J  
( )
( )

1 1 2 1
( )

1 1 2 1

sin sin 0
cos cos 0

1 1

F
q

L q L q
L q L q

q
q

− − + 
 = + + 
 
 

J  

[ ]( ) 0G
qq =H  [ ]( )

2
F hqq =H  

[ ]( ) 0 0G
qq =H  [ ]( )

2 0F
q hq =H  

[ ]( ) 0 0G
q

T
q =H  [ ]( )

2 0F
q

Thq =H  

( ) 1 0
0 0

G
qq

h =   
H  ( ) 3 0

0 0
F

qq
h =   

H  

1 1 1sin yh L q G=− ,  ( ) ( )2 2 1 2 1cos sinx yh FL q L q Fq q= − + − + , 
( )( )

( )( )
3 1 1 2 1

1 1 2 1

cos cos

sin sin
x

y

L q L q

L q L q

h F

F

q

q

= − + + −

− + +
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For this case study, similar analysis has been also performed using the developed numerical technique 
presented in section IV and V. It worth mentioning that the numerical technique yielded the same results as 
the analytical one, which confirms validity of the developed approach. Some details concerning functions and 
matrices used in relevant expressions are presented in Table 4.1, where 1L  and 2L  denote the manipulator link 
lengths, 1q  and 2q  are  the passive joint coordinates, q  is the virtual spring coordinate and 0q  is the actuator 
coordinate. It is worth mentioning that the numerical technique yielded the same results as the analytical one, 
which confirms validity of the developed approach. 

Hence, the presented case study demonstrates rather interesting features of stiffness behavior for 
kinematic chains under auxiliary loading that where not studied before (negative stiffness, non‐monotonic 
force‐deflection curves, etc.). This motivates considering more sophisticated examples, with more complicated 
compliant elements.  

4.6.2 Serial chains with torsional and translational springs 
In the second example, it is assumed that there are three compliant elements: an actuated joint with 

torsional stiffness parameter θK  and two non‐rigid links with translational stiffness LK  (Fig.2b). Intuitively, it is 
expected that such system should demonstrate more complicated stiffness behavior under the loadings 
compared to the previous one.  

The force‐deflection relations corresponding to serial chain with compliant links are presented in Fig.4. 
These curves have been obtained using functions and matrices presented in Table 4.2. Compared to the 
previous case, here for *0...G G=  there is only quantitative difference (i.e. the shape of the examined curves 
remains almost the same). However, for *G G>  the chain may be not only unstable with respect to end‐
effector loading xF , but also the chain configuration may become unstable. Geometrically, the latter 
qualitative difference is observed  similar to buckling in vertically loaded arch. Summary of different chain 
configurations and their stiffness behavior is presented in Figure 4.5. 

Summarizing Section 5.6, it should be concluded that auxiliary loading essentially influences on the 
stiffness behavior of robotic manipulators, may reduce the stiffness coefficient and also provoke undesirable 
phenomena (such as buckling) that must be taken into account by designers. This justifies results of this 
Chapter and gives perspectives for practical applications. 

 

Figure 4.4 Force‐deflections relations for different values of auxiliary loading G : chain with torsional and 
translational springs ( *

θ 04 / sin·G K L α= , 2
θ· /LK K K L= ) 
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Table 4.2 Functions and matrices used in numerical stiffness analysis of two‐link manipulator with 
auxiliary loading (case of rigid links and compliant intermediate joint)  

Intermediate point ap  End-effector ep  

( )
( )

1 1

1 1 1

1

cos
sina

L q
L q

q

q
q

+ 
 = + 
  

g  
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 3 1 2

1 1 1 2 3 1 2

1 2 2

cos cos
sin sin

L q L q
L q L q

q q

q q q
q q q

q

+ + + + 
 + + + + 

+ +  
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0 0
0 0

0 0 0

G
j
jq

 
 =
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1 5 7
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2 6 8

0 1 0
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j j j
j j jq

 
 =
 
 

J  

3
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4

0
0

1 1
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q

j
j

 
 =
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3 5
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4 6

0
0

1 1

F
q

j j
j j
+
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 =
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( ) 0
0 0 0
0 0
0 0 0

G
qq

 
 =
 
 

H  ( )
3 4
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0 0 0
0
0 0

F h
h
hqq

 
 =
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0
0
0

0
0

G
q

h
q

 
 =
 
 

H  
5

( )
3

4

0
0
0

F
q h

h

h
q

 
 =
 
 

H  

( ) 1 0 0
0 0 0

G
q

h
q

 =   
H  ( ) 5 3 4

0 0 0
F

q
h hh

q
 =   

H  

( ) 2 0
0 0

G
qq

h =   
H  ( ) 6 0

0 0
F

qq
h =   

H  

1 1cosj q= , 2 1sinj q= , ( )3 1 1 1sinj L qq= − + , ( )4 1 1 1cosj L qq= + , ( ) ( )5 2 3 1 2sinj L qq q= − + + , 

( ) ( )6 2 3 1 2cosj L qq q= + + , ( )7 1 2cosj q q= + , ( )8 1 2sinj q q= +  1 1 1sin cosx yG q G qh = − + , 

( ) ( )2 1 1 1 1 1 1cos sinx yh G L q G L qq q−+−= + , ( ) ( ) ( ) ( )3 2 3 1 2 2 3 1cos sinx yh F L q F L qq q q q= + +− − + + , 

( ) ( )4 1 2 1sin cosx yh F q F qq q++= − + , 5 1 1sin cosx yF q F qh = − + , ( ) ( )6 3 1 1 1 1 1 1cos sinx yh h F L q F L qq q+− −= +  

 

4.7 Conclusion 
The Chapter presents generalization of the non‐linear stiffness modeling technique for manipulators 

under internal and external loadings. The developed technique includes computing of the static equilibrium 
configuration corresponding to the loadings. It is able to obtain the non‐linear force‐deflection relation, the 
Cartesian stiffness matrix for the loaded mode as well as the matrices defining linear mappings from the end‐
point displacement into the deflections in passive and virtual joints. The obtained results allow us to extend 
the classical notion of "conservative congruence transformation" for the case of manipulators with auxiliary 
loading.  

The advantages and use of the developed technique are illustrated by numerical examples that deal 
with a stiffness analysis of serial chains with different assumptions on the link flexibility. For the considered 
cases, functions and matrices that are used in numerical stiffness analyses are given. The presented results 
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also illustrate the ability of this technique to detect some nonlinear effects in the manipulator stiffness 
behavior (such as buckling).  

In future, it is reasonable to develop an extension of the proposed technique that can be applied to the 
parallel manipulators with internal loops. Besides, it is useful to consider the manipulators with several end‐
points (or end‐effectors). The main difficulty for both cases is related to the introducing of additional 
geometrical constraints that are defined by another compliant mechanism. 

 

unstable
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Figure 4.5 Configuration of kinematic chain with auxiliary loading: case of torsional and translational springs 
( *

θ 04 / sin·G K L α= , 2 2
θ2·10 /·LK K L= ) 
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5 STABILITY OF MANIPULATOR CONFIGURATION UNDER 
EXTERNAL LOADING 

5.1 Introduction 
Manipulator stiffness modeling under loading is a relatively new research area that is important both for 

serial and parallel robots. In general case, loadings may be of different nature and applied to different 
points/surfaces. To evaluate stiffness properties, several methods can be applied such as Finite Element 
Analysis, Matrix Structural Analysis and Virtual Joint Modeling (VJM) [1‐16], where the last one is the most 
attractive in robotic domain since it operates with an extension of the traditional rigid model that is completed 
by a set of virtual joints (localized springs), which describe elastic properties of the links, joints and actuators.  

For serial manipulators the VJM approach has been used in the number of works [1‐8]. The obtained 
results allows us to compute stiffness matrices both for serial manipulators without passive joints [1‐5] and for 
serial chains of parallel manipulators with passive joints [8]. However, most of them addressed to the case of 
small deflections (unloaded mode) [5‐6], only limited number of authors consider the case of large deflections 
(loaded mode) [2‐3,7‐8].  

For parallel manipulators, the stiffness modeling is usually performed for all kinematic chains 
simultaneously [6][11], using the aggregated elastostatic equilibrium equations [12][13]. In contrast to these 
works, our approach is based on two‐step procedure, which includes stiffness modeling of all kinematic chains 
separately and then aggregates them in a unique model. This approach has been already used by several 
authors [8][14], but related aggregation technique was reduced to simple summations of the Cartesian 
stiffness matrices for the kinematic chains and the external loadings applied to their end‐points. This 
corresponds to “pure” parallel architectures where the end‐point location of all kinematic chains are aligned 
and matched at the end‐platform reference point. However, in practice, the parallel manipulator architecture 
is usually quite complex. In particular, the kinematic chains may be attached to different points of the end‐
platform.  

It is obvious that the both external and internal loadings influence on the manipulator equilibrium 
configuration and, consequently, may modify the stiffness properties. So, they must be undoubtedly taken 
into account while developing the stiffness model. However, in most of related works the stiffness is evaluated 
in a quasi‐static configuration without external or internal loading. There are very limited number of 
publications that directly address the case of “large deflections”, where in addition to the conventional “elastic 
stiffness” in the joints it is necessary to take into account the “geometrical stiffness” arising due to the change 
in the manipulator configuration under the load. The most essential results in this area were obtained in [7‐
10,14] where there are presented both some theoretical issues and several case studies for serial and parallel 
manipulators under end‐point loading. Several authors [9,13] addressed the problem of stiffness analysis for 
the manipulators with internal preloading or antagonistic actuating, but in relevant equations some of the 
second order kinematic derivates were neglected. However, no one of them considered auxiliary loading. 

This Chapter contributes to the VJM‐based technique and focuses on the stability analysis of serial and 
parallel manipulators under external loading. It addressed both stability of end‐platform location and stability 
of serial chain configuration. To address these issues, it is proposed a revision of the existing VJM‐based 
stiffness modeling technique that includes development a non‐linear stiffness model of the robotic 
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manipulator under essential loading that takes into account the external loading applied to end‐effector, 
preloading in the joints and auxiliary loading applied to intermediate node‐points. 

5.2 Problem statement 

5.2.1 Motivation  
Traditionally, the stability of compliant mechanical systems (including manipulators) is defined as 

resistance of the end-point location t  with respect to the “disturbing” effects of an external force F  applied at 
this point. In such formulation, the stability is completely defined by the stiffness matrix CK  that describes the 
linear relations between the force and deflection deviations δ , δF t  with respect to the values F , t .  

 C= ⋅δF K δt  (5.1) 

It is obvious that for the stable location t  the matrix CK  should be  positive definite.  

However, in the compliant manipulators with the passive joints, the equilibrium configuration ( , )q θ  
corresponding to the same end‐point location t  cannot be unique (here the vector q  contains passive joint 
coordinates; the vector θ  collects coordinates of all virtual joints). Moreover, these configurations may be 
both “stable” and “unstable” and may correspond to different values of potential energy stored in the virtual 
springs. From this point of view, it is worth to distinguish stability of the end‐point location t  and stability of 
the corresponding equilibrium configuration of the kinematic chain ( , )q θ , which may be defined as a 
resistance of the chain shape with respect to disturbances in redundant kinematic variables. This issue 
becomes extremely important for the loaded mode, when due to the kinematic redundancy caused by the 
passive joints and excessive number of virtual springs, small disturbances in ( , )q θ  may provoke essential 
change of current equilibrium configuration leading to the reduction of the potential energy and transition to 
another equilibrium state, while keeping the same end‐point location. Hence, it is necessary to evaluate 
internal properties of the kinematic chain in the state of the loaded equilibrium that may correspond either to 
minimum or maximum of the potential energy for a fixed value of t .  

Let us illustrate this notion by the example of three‐link chain (Figure 5.1a), which includes passive joints 
at both ends and two virtual torsional springs between the links, which insure the "straight" configuration for 
the unloaded mode. It is assumed that both ends of the chain are fixed by the external geometrical constrains 
while the internal configuration may change without shifting of the end‐points, in accordance with redundant 
parameter value. It is evident that this chain is loaded, but corresponding value of the force F depends on 
particular configuration. Besides, among variety of possible configurations (corresponding to given end‐point 
locations), only equilibrium ones are in the focus of interest.  

For this case study, it is convenient to give an energy‐based interpretation. The considered kinematic 
chain has one redundant parameter (rotation angle of any passive joint) and under geometrical constrains may 
occupy configurations with the different shapes. Relevant relation between the energy stored in the virtual 
springs and the redundant parameter value is presented in Figure 5.1b. Due to the physical nature of this 
chain, for each given end‐point displacement ∆ , the examined plot presents a continuous closed criss‐cross 
curve that has exactly two minimum and maximum points, that correspond to the stable and unstable 
equilibriums respectively. Hence, numerical solution of static equilibrium equations may yield both stable and 
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unstable configurations, while in practice only stable ones should be considered. Thus, the criterion that allows 
to distinguish stable and unstable configurations of the kinematic chain is required. 

 

Redundant parameter

EnergyFCFB FDFA

A D
B C

(a) equilibrium configurations (b) energy diagram

F=0
∆

A D

BC

Stable Stable

UnstableUnstable

1 0∆ =

2∆

3∆

Stable StableUnstable Unstable
Unloaded Loaded


Stable

 

Figure 5.1 Stable and non‐stable configurations of 3‐link serial chain and their energy‐based interpretation  

Physical meaning of this stability notion (related to the kinematic chain shape) is illustrated in Figure 5.2, 
which contains several postures of the same parallel manipulator with exactly the same end‐platform location. 
These postures differ in the shapes of serial kinematic chains that may be treated as internal configuration of 
the parallel manipulator, which is not "visible" from the end‐platform side whose static stability is completely 
defined by the Cartesian stiffness matrix. In particular, Figure 5.2a,b present parallel manipulators that include 
at least one kinematic chain in unstable configuration that cannot be observed in practice but satisfy the 
general static equilibrium equation. In contrast, Figure 5.2c shows physically realizable posture of the same 
manipulator (with exactly the same location of the chain end‐points) where for all kinematic chains the shapes 
are stable.  

(b) PM with unstable 
configurations 

(c) PM with stable 
configurations 

F

(a) PM with stable and 
unstable configurations 

F F

S S SN/S N/S N/S
N/S

N/S
S

 

Figure 5.2 2D parallel manipulators with serial chains in stable and unstable configurations  

 

Hence, full‐scale investigation of the stiffness properties of the loaded parallel manipulator must include 
the stability analysis of the internal kinematic chain configurations that is presented in this Chapter. 
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5.2.2 Basic assumptions and research problems 
In order to address the stability of both end‐point location and kinematic chain configuration, it is 

assumed that parallel manipulator has a strictly parallel structure. In this case, first, it is required to address to 
the stiffness modeling of serial kinematic chain and then, applying stiffness model aggregation technique, to 
obtain the stiffness matrix of the parallel manipulator.  

...Ps Ps

Link

Ac Rigid Link PsLink

Link

6-d.o.f.
spring

6-d.o.f.
spring

6-d.o.f.
spring

F
GnG2G1  

Figure 5.3 VJM model of kinematic chain with end‐point and auxiliary loading  

For stiffness modeling of serial kinematic chain let us use VJM model that is presented in Figure 5.3. It is 
assumed that, in addition to the end‐point loading F  the serial chain has an additional external loadings 
applied to the internal node points (auxiliary loading). These forces will be denoted as jG , where 1,...,j n=  is 
the node number in the serial chain starting from the fix base. For such kinematic chains it is necessary to 
introduce the functions defining locations of the nodes 

 ( , ), 1,...,j j j n= =t g q θ  (5.2) 

where the vector jt  includes the position  and orientation of the ith node; the vector q  contains passive joint 
coordinates; the vector θ  collects coordinates of all virtual joints.  

Using these assumptions and the methodology of VJM method proposed in [8][13], the problem of 
stability analysis of serial and parallel manipulators under external/internal loading can be split in the following 
sub‐problems: (i) stability analysis of serial chain configuration that includes computing of the loaded 
equilibrium configuration, and (ii) stability of the end‐okatform location of serial and parallel manipulators.  

5.3 Stability of kinematic chain configuration under loading 
Usually external and internal loadings have affects both end‐point location and configuration of serial 

chain. Therefore, in order to address to the stability of the kinematic chain configuration; firstly; it is required 
to compute the loaded equilibrium configuration.  

5.3.1 Static equilibrium 
The static equilibrium equations for the manipulators with internal and external loadings (that are 

applied to both end‐effector and intermediate nodes) differ from those used for the end‐point loaded 
manipulator. Using the principle of virtual work it has been proved that the desired static equilibrium 
equations can be presented as 

 
( )(G)T (F)T 0

θ θ θ

(G)T (F)T
q q

⋅ + ⋅ = ⋅ −

⋅ + ⋅ =

J G J F K θ θ

J G J F 0
 (5.3) 
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where 

 
(F) ( ) ( ) ( ) (G) (1) ( )
θ θ q q θ θ θ

(G) (1)

TT T

T TT T T) T(
q q q 1

; ; ... ;

... ; ...

n F n n

n
n

 = = =  

   = =   

J J J J J J J

J J J G G G
 (5.4) 

and Jacobians with respect to the virtual and passive joint coordinates respectively can be computed as 

 ( ) ( )( ) ( )
θ q, ; ,j j

j j
∂ ∂

= =
∂ ∂

J g q θ J g q θ
θ q

 (5.5) 

To obtain a relation between the external loading F  and internal coordinates of the kinematic chain 
( , )q θ  corresponding to the static equilibrium, Eq. (5.3) should be solved either for given values of F  or for 
different given values of t . In [13] these problems were referred to as the original and the dual ones 
respectively, but the dual problem was discovered to be the most convenient from computational point of 
view. Hence, let us solve static equilibrium equations with respect to manipulator configuration ( ),q θ  and 
external loading F  for given end‐effector position ( ),=t g q θ  and function of auxiliary‐loadings ( ),G q θ  

Since usually this system has no analytical solution, iterative numerical technique can be applied. For 
this purpose, the kinematic equations may be linearized in the neighborhood of the current configuration 
( , )i iq θ  

 ( ) ( ) ( ) ( ) ( )(F) (F)
θ1 1 1q, , , ;i i i i i i i i i i i+ + += + ⋅ − + ⋅ −t g q θ J q θ θ θ J q θ q q  (5.6) 

where the subscript "i" denotes the iteration number and the changes in Jacobians (G) (F) (G) (F)
θ θ q q, , ,J J J J  and 

variation of the auxiliary loadings ( ),G q θ  from iteration to iteration are assumed to be negligible. 
Correspondingly, the static equilibrium equations in the neighborhood of ( , )i iq θ  may be rewritten as 

 
( )(G)T (F)T 0

θ θ θ

(G)T (F)T
q

1

q

1

1

i i

i

+ +

+

⋅ + ⋅ = ⋅ −

⋅ + ⋅ =

J G J F K θ θ

J G J F 0
. (5.7) 

Thus, combining Eq. (4.13) and (4.14), the iterative algorithm for computing the static equilibrium 
configuration for given end‐effector location can be presented as 

 
( )1(F) (F) (F) (F)

q 11 θ θ q
(F)T (G)T
q q
(F)T (G)T 0
θ θ θ θ

1

1

·
,i i i i ii

i i

i i

++

+

+

−
   − + ⋅ + ⋅       = − ⋅        − − ⋅ − ⋅     

0 J J t g q θ J θ J qF
q J 0 0 J G
θ J 0 K J G K θ

 (5.8) 

where 1 1 1( , )i i i+ + +=G G q θ . 

The proposed algorithm allows us to compute the static equilibrium configuration for the serial chains 
with passive joints and all types of loadings (internal preloading, external loadings applied to any point of the 
manipulator and loading from the technological process). The convergence properties of this algorithm are 
similar to one presented in [13]. Also, it can be modified to solve the problem of computing the equilibrium 
configuration corresponding to given external loading. 
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5.3.2 Stability criterion 
To evaluate stability of the static equilibrium configuration ( , )q θ  of a separate kinematic chain, let us 

assume that the end‐point is fixed at the point T( , )=t p φ  corresponding to the external load F , but the joint 
coordinates are given small virtual displacements δq , δθ  satisfying the geometrical constraint (4.3), i.e.  

 ( , ); ( δ , δ )= = + +t g q θ t g q q θ θ  (5.9) 

For these assumptions, let us compute the total virtual work in the joints that must be positive for a stable 
equilibrium and negative for an unstable one. To achieve the virtual configuration ( δ , δ )+ +q q θ θ  and restore 
the equilibrium conditions, each joint must include a virtual spring that generates the generalized 
forces/torques qδτ , θδτ  which satisfies the equations: 

 ( )T T
θ θ 0 q; 0⋅ = ⋅ − ⋅ =J F K θ θ J F  (5.10) 

 
T

θ θ θ 0 θ
T

q q

( δ ) ( ) δ

( δ ) δ q

δ+ ⋅ = ⋅ − + +

+ ⋅ =

J J F K θ θ θ τ

J J F τ
 (5.11) 

After relevant transformations, the virtual torques may be expressed as 

 T T
θ θ θ q qδ δ( ) δ ; δ δ( )= ⋅ − ⋅ = ⋅τ J F K θ τ J F  (5.12) 

where δ(...)  denotes the differential with respect to δq , δθ  that may be expanded via Hessians of the scalar 
function T( , )Ψ = ⋅g q θ F :  

 
T F F
θ θq θθ

T F F
q qq qθ

δ( ) δ δ

δ( ) δ δ

⋅ = ⋅ + ⋅

⋅ = ⋅ + ⋅

J F H q H θ

J F H q H θ
 (5.13) 

provided that  

 
F 2 2 F 2 2
qq θθ

F F 2
qθ θq

T

/ ; / ;

/

= ∂ Ψ ∂ = ∂ Ψ ∂

= = ∂ Ψ ∂ ∂

H q H θ

H H q θ
 (5.14) 

Further, taking into account that the virtual displacement from ( , )q θ  to ( δ , δ )+ +q q θ θ  leads to a gradual 
change of the torques in the virtual joints from (0, 0) to q θ(δ , δ )τ τ , the virtual work may be computed as a half 
of the corresponding scalar products 

 ( )T T
θ q

1δ δ δ δ δ
2

W = − ⋅ + ⋅τ θ τ q  (5.15) 

where the minus sign takes into account the adopted conventions for the positive directions of the forces and 
displacements. Hence, after appropriate substitutions and transformations to the matrix form, the desired 
stability condition may be written as 

 
F F
θθ θ qθT T

F F
θq qq

1 δδ δ δ 0δ2
W

 −   = − ⋅ ⋅ >       

H K H θθ q qH H
 (5.16) 

where δq  and δθ  must satisfy (5.9).  
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In order to take into account the relation between δq  and δθ  that is imposed by (5.9), let us apply the 
first‐order expansion of the function ( , )g θ q  that yields the following linear relation  

 θ q
δ
δ
   ⋅ =    
θJ J 0q  (5.17) 

Then, applying the SVD‐factorization of θ q[ , ]J J  

 
T
θ
Tθ q θ q
q

r
     = ⋅ ⋅          

VSJ J U U 0 V
 (5.18) 

and extracting from θV , qV  the sub‐matrices o
θV , o

qV  corresponding to zero singular values, a relevant null‐
space of the system (5.17) may be presented as  

 o o
θ qδ δ ; δ δ= ⋅ = ⋅θ V μ q V μ  (5.19) 

where δμ  is the arbitrary vector of the appropriate dimension (equal to the rank‐deficiency of the integrated 
Jacobian θ q[ , ]J J ). Hence, changing of the potential energy δW  because of variation of the redundant 
variables δμ  (5.16) may be rewritten as  

 
T F Fo o

θθ θ qθT θ θ
o oF F
q qθq qq

1δ δ δ 0
2

W
 −   

= − ⋅ ⋅ ⋅ ⋅ >    
     

H K HV V
μ μ

V VH H
 (5.20) 

that must be satisfied for all arbitrary non‐zero δμ . Hence, the considered static equilibrium configuration 
( , )q θ  is stable if (and only if) the matrix 

 
T F Fo o

θθ θ qθθ θ
o oF F
q qθq qq

0cS
 −   

= ⋅ ⋅ <    
     

H K HV V
V VH H

 (5.21) 

is negative‐definite. It is worth mentioning that the obtained result is in a good agreement with the previous 
studies [4], where (for the manipulators without passive joints) the stiffness properties were defined by the 
matrix F

θ θθ−K H  that evidently must be positive‐definite for the stable configurations.  

Thus, the proposed stability analysis technique for serial chain with the passive joints and related matrix 
stability criterion for the kinematic chain configuration allow us to estimate the stability of the serial chain 
configuration under the external loading in the case of single and multiple equilibriums. 

 

5.4 Stability of The end-platform location under external loading 
Similar in the structural mechanics stability of the robot end‐platform location is defined by the 

Cartesian stiffness matrix. However, stiffness matrices of serial and parallel manipulators are computed in a 
different manner (here, to compute stiffness matrix of parallel manipulator it is required to have stiffness 
matrices of all its serial chains). Let us address them sequentially.  
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5.4.1 Cartesian stiffness matrix of a serial kinematic chain 
Following the virtual work technique and using static equilibrium equations (5.3), force deflection 

relations for the considered serial chain can be expressed as  

 

(F) (F)
q θ

(F)T
q qq qθ
(F)T
θ θq θ θθ

δ δ
δ
δ

        = ⋅        − + 

0 J Jt F
0 J H H q
0 θJ H K H

 (5.22) 

where Hessians can be computed as 

 
1 2 1 2 1 2 1

(F) (G) (G)T
v v v v v v v

2

∂
= + + ⋅

∂
H H H J G

v
, (5.23) 

where 1 2( , ) {( , ), ( , ), ( , ), ( , )}∈v v q q q θqθ θ θ  and  

 ( ) ( )
1 2 1 2

T T

1 2 1

2 2
(G) (

2

F)
v v v v

1 1
;· · ;

n n

j
j j

j
= =

∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑H g G H g F
v v v v

. (5.24) 

Hence, the desired stiffness matrices can be computed via the matrix inversion  

 

1(F) (F)
q θC

(F)T
q qq qθ
(F)T
θ θq θ θθ

* *
−

  
  ∗ ∗ ∗ =   ∗ ∗ ∗  − +   

0 J JK
J H H
J H K H

 (5.25) 

Further, using several analytical transformations and  applying the block matrix inversion technique of 
Frobenius [42], the Cartesian stiffness matrix can be compute as  

 0( ) 0( ) F 0( )
C q

F F F
C C C= + ⋅ ⋅K K K k K  (5.26) 

where the first term 0( ) F T 1
θ θ θ( )F

C
−= ⋅ ⋅K J k J  exactly corresponds to the classical formula defining stiffness of the 

kinematic chain without passive joints in the loaded mode, [5], and the second term take into account 
influence of passive joints via matrix F

qk  

 ( ) 1F F F F 0( ) F F
q q qq qθ θ θq q q q· · TF

C
T −

= + ⋅ ⋅ − ⋅ ⋅k J H H k H J K J J  (5.27) 

here F
θk  denotes the modified joint compliance matrix F 1

θ θ θθ( )−= −k K H  and matrix F
qJ  denotes the modified 

Jacobian with respect to passive joints ( )F F
q q θ θ θq= + ⋅ ⋅J J J k H . 

Thus, the Cartesian stiffness matrix obtained using Eq. (4.28) allows us to analyze the stability of the 
serial manipulator (or kinematic chain) end‐point location under external/internal loadings. If this stiffness 
matrix is positive definite the end‐point location is stable, and if it is rank‐deficient (negative definite) it is 
possible to move end‐point location without additional efforts. 

 

5.4.2 Cartesian stiffness matrix of parallel manipulator 
Let us assume that a parallel manipulator may be presented as a strictly parallel system of the actuated 

serial legs connecting the base and the end‐platform [45]. Using the methodology described in previous 

      

Auteurs : AK, 
AP 
 

 



 
Projet COROUSSO 

Livrable n°1.1 
Modèles élastiques et élasto‐dynamiques  

de robots porteurs 

ANR‐10‐SEGI‐003‐LI1.1 

24/02/2012 
indice A 

Page 67/108 
 

COROUSSO 

sections and applying it to each leg, there can be computed a set of m Cartesian stiffness matrices 
( )
C
iK expressed with respect to the same coordinate system but corresponding to different platform points 

(Figure 5.4). If initially the chain stiffness matrices were computed in local coordinate systems, their 
transformation is performed in a standard way [46].  

 

1v
2v3v

(c)(b)

1v
2v

3v

1u
2u

1v
2v3v

(a) F
M

F
M

F
M

 

Figure 5.4 Typical parallel manipulator (a) and transformation of its VJM models (b, c) 

After such extension, an equivalent stiffness matrix of the leg may be expressed using relevant 
expression for a usual serial chain, i.e. as ( ) T ( ) ( ) 1

v C v· ·i i i− −J K J , where the Jacobian ( )
v
iJ  defines differential relation 

between the coordinates of the i‐th virtual spring and the reference frame of the end‐platform. Hence, the 
final expression for the stiffness matrix of the considered parallel manipulator can be written as 

 ( )T 1( ) ( ) ( ) ( )
С v С v

1
· ·

m
m i i i

i

− −

=

= ∑K J K J  (5.28) 

where m is the number of serial kinematic chains in the manipulator architecture.  

As a result, Eq. (5.28) allows us to compute the Cartesian stiffness matrix for the parallel manipulator 
based on the stiffness matrices for serial chains and transformation Jacobians ( )

v
iJ , which define geometrical 

mapping between the end‐points of serial chains and the reference point frame (the end‐effector). Hence, the 
axes of all virtual springs are parallel to the axes x, y, z of this system. This allows us to evaluate Jacobians ( )

v
iJ  

and their inverses from the geometry of end‐platform analytically 

 ( ) ( ) 13 3
v v

3 36 6 6 6

( ) ( ),i ii i−

× ×

× − ×   = =      
I v I vJ J0 I 0 I  (5.29) 

where 3I  is 3 3×  identity matrix, and ( )×v  is a skew‐symmetric matrix corresponding to the vector v , that 
defines the end‐platform location with respect to the end‐point of kinematic chain. 

It should be mentioned that the proposed approach is also able to take into account geometry of end‐
platform and it connection with kinematic chains in an explicit form. Finally, using results of Eq. (5.28) it is 
possible to analyze the stability of the end‐effector location of the parallel manipulator under external loading. 
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5.5 Application examples 

5.5.1 Stiffness analysis for serial chain with 1D-springs 
Let us illustrate the efficiency of the developed techniques on the example of 3‐link kinematic chain with 

rigid links and two virtual springs between them. It is assumed that both ends of the chain are fixed with 
rotational passive joints, all link length are equal to l  and the stiffness coefficient of both springs are equal to 

θK . The end‐point location of considered serial chain can be expressed using geometrical model as 

 1 1 2

1 1 2

·cos( ) ·sin( ) ·cos( )
·sin( ) ·sin( ) ·sin( )

x l l l
y l l l

q q q
q q q

q q q
q q q

+ += + + +
= + + ++ +

 (5.30) 

where coordinates ,x y  define end‐point location and angle ϕ  defines its orientation, q  and 1 2,q q  are passive 
and virtual joint coordinates respectively that define serial chain configuration. It is assumed that external 
loading is applied along x‐direction only and manipulator end‐point can move along x‐axis only. So external 
loading F  can be presented as [ ]0 TF=F where F  is applied external loading along x‐axis. 

Assuming that the initial values of the actuating coordinates (i.e. before the loading) are denoted as 0
1q , 

0
2q , the potential energy stored in the virtual springs may be expressed as the following function of the 

redundant variable  

  ( ) ( )2 20 0
θ 1 1 θ 2 2

1 1( ) ( ) ( )
2

· ·
2

E q K q K qq q q q= − + −  (5.31) 

where θK  is the stiffness coefficient, and 1q , 2q  are computed via the inverse kinematics. Using these 
equations, the desired equilibriums may be computed from the extremum of ( )E q . In particular, stable 
equilibriums correspond to minima of this function, and unstable ones correspond to maxima.  

 

Figure 5.5  Energy diagram for 3‐link serial chain  

To illustrate this approach, Figure 5.5 presents a case study for the initial S‐configuration ( 0 0q =  , 
0
1 0=θ   and 0

1 0=θ  ). It allows comparing 12 different shapes of the deformated chain and selecting the best 
/worst cases with respect to the energy. As it follows from these results, here there are two symmetrical 
maximum and two minimum, i.e. two stable and two unstable equilibriums. Besides, the stable equilibriums 
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correspond to Π‐shaped deformated postures, and the unstable ones correspond to Z‐shaped postures, as it is 
shown in Figure 5.6  

 

Figure 5.6  Evolution of the S‐configuration under loading 

If the assumption concerning small values of δ is released, analytical solutions for the non‐trivial 
equilibriums may be still derived. In particular, for the stable equilibrium, one can get  

 θ
S ( )

sin
K

F
L

ϕ
ϕ

∆ = ⋅  (5.32) 

where arccos(1 / 2)ϕ = ± − ∆ . For the unstable equilibrium similar equation may be written as  

 θ
N

cos( ) 2 cos( )
sin

K q qF
L

q q
q

+ + ⋅
∆ = ⋅ ⋅  (5.33) 

where  

 
2 212 6 3arccos ; arccos 1

12 4 2 4
q q

   − ∆ + ∆ ∆ ∆
= ± = − +   − ∆   

  (5.34) 

Corresponding plots with the bifurcation are presented in Figure 5.7. The interpretation of this plot is 
similar to the axial compression of a straight column, which is a classical example in the strength of materials. 
It should be noted, that the developed numerical algorithm exactly produces the curve corresponding to the 
stable equilibrium.  

 

Figure 5.7 Force‐deflection relations for S‐configuration 
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Figure 5.8  Evolution of the Z‐configuration under loading 

However, for Z‐configuration that corresponds to the unloaded zig‐zag shape, the stiffness behavior 
demonstrates the buckling that leads to sudden transformation from a symmetrical to a non‐symmetrical 
posture as shown in Figure 5.8. Here, there exist two stable equilibriums that differ in the values of the 
potential energy, 

In order to analyze stability of different configurations let us define Jacobians and Hessian matrices. For 
the considered serial chain Jacobinas can be expressed as 

 1 1 2 1 2
θ

1 1 2 1 2

sin( ) sin( ) sin( )· cos( ) cos( ) cos( )
q q q

q q ql q q q q q
q q q q q

− + + + − + + =  + + + + +
−
+ 

J  (5.35) 

and 

 1 1 2
q

1 1 2

sin( ) sin( ) sin( )· cos( ) cos( ) cos( )
q q q

q q ql q q q
q q q

− + + + =  + + +
− −
+ + 

J  (5.36) 

and Hessians as 

 1 1 2 1 2
θθ

1 2 1 2

( ) cos( ) cos( )· cos( ) cos(
cos

)
q q ql qF q

q q q q q
q q q q

+ + + + + = −  + + + +
+


H  (5.37) 

 1 1 2
θq

1 2

( ) cos( )· cos· cos( )
q qF l q

q q q
q q

+ + + = −  + +
+


H  (5.38) 

 1 1 2
qθ

1 2

( ) cos( )· · c s
cos

o ( )

Tq q
qF l q q q

q q
+ + + = −  + + 

+H  (5.39) 

 [ ]qq 1 1 2· · cos( ) (cos ) cos( )l q qF qq q q+ += − + + +H  (5.40) 

The eigenvectors for the matrix V  that is required in (5.21) can be obtained from the matrix ·TJ J , 
where θ q[ , ]=J J J , which for the considered serial chain can be computed from 

 
2 2

2
2

2
2

2 2

3 2 ( ) 2 ( )
· · · 2 ( ) 2 1 ( )

2

cos cos
cos cos
cos cos( ) 1 ( ) 1

x
T lF

q q
q q
q q

+ +
+ +
+

 
 = −
 
 + 

J J  (5.41) 

In order to obtain eigenvalues of (5.41), it is required to solve the third order equation 
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3 3 2

2 2
2

2

2

6 6 ) 2) 3 (·( cos( cos cos
co

) 4 ( )
2 )( 0s 1

λ λ λ q q q
q

− − − − − +
+ + =

 (5.42) 

with respect to λ . 

Using the above equations, let us investigate stability of 3‐link serial chain using the developed matrix 
criterion in the S‐ and Z‐ configurations (these shapes of the chain correspond to the unloaded configurations). 
For the Z‐configuration the unloaded configuration is defined by the angles 0 9.90q =  , 0

1 30= −θ   and 0
1 30=θ   

that correspond to the end point location ·2.91 ; 0x l y= = . Modeling results are presented in Table 5.1. This 
table includes the external loadings F  that are normalized with respect to θ /K L , the Cartesian stiffnesses KC 
that are also normalized with respect to θ /K L , and the stability of serial chain configuration cS  (as it was 
mentioned negative value corresponds to stable configuration and positive to unstable configuration) as well 
as the shapes of the chains. The results have been obtained for the cases of 0∆ =  and 0.2∆ = , here ∆  is the 
normalized the end‐point deflection / lδ∆ = , and δ  is the absolute displacement.  

Table 5.1 Stability of 3‐link serial chain under loading 

 S-configuration Z-configuration 
 stable unstable stable unstable 
 0∆ =  

Shape q=0
θ1=0

θ2=0
 

q=0
θ1=0

θ2=0
 q

θ1

θ2  
q

θ1

θ2

 
F  0.5 2 0 -3.05 
KC Inf Inf 16.93 0.53 
Sc -0.60 0.30 -0.67 1.33 
 0.2∆ =  

Shape q
θ1 θ2

 
q

θ1

θ2  
q

θ1

θ2  q
θ1

θ2  
F  -1.03 -3.11 -1.05 -3.03 
KC 0.18 0.57 0.21 0.81 
Sc -0.63 1.34 -0.35 1.26 

 

The results show that for the stable configurations the value of cS  is always negative and for the 
unstable configurations it is positive. Hence, numerical results that have been obtained using the stability 
criterion (5.21) are in a good agreement with analytical ones. Moreover, it is shown that for the unstable 
configuration the stiffness coefficient KC is positive and, consequently, it cannot be used for the stability 
analysis of kinematic chain configuration. 

5.5.2 Stability of serial chain under auxiliary loading  
Let us now focus on the stability analysis of a serial chain under auxiliary loadings applied to an 

intermediate node. It is assumes that the considered chain consists of two rigid links separated by a flexible 
joint and two passive joints at both ends. It is assumed that the left passive joint is fixed with a physical 
constraint, while the right one is balanced by external loading  xF  and can be moved along x direction (Figure 
4.2). Besides, here both rigid links have the same length L  and the actuator stiffness is θK .  
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Let us assume that the initial configuration (i.e. for 0Mq = ) of the manipulator corresponds to 
0 / 6q π= − , where 2·q α= −  is the coordinate of the actuated joint, α  is the angle between the first link and x ‐

direction. It is also assumed that the external loading G  is applied to the intermediate nod (Figure 4.2) and it is 
required to apply the external loading ( , )x yF F  at the end‐point to compensate the auxiliary loading G . Since 
this example is quite simple, it is possible to obtain the force‐deflection relation and the stiffness coefficient 
analytically. The force‐displacement relation and the stiffness can be expressed in a parametric form as 

 θ 0cos· 2· · ;
2 sin sin 2x y

KG GF F
L

α αα
α α

− − =
−

= −  (5.43) 

 ( )θ
3 3

0
2

·cos sin1· ·
4 sin sinx

KGK
L L

α α α α
α α

= −
− −

−  (5.44) 

where ( / 2; / 2)α π π∈ −  is treated as a parameter, 0yK = . 

As it follows from expression (4.32), the stiffness coefficient xK  essentially depends on the auxiliary 
loading G , coefficient xK can be both positive and negative or even equal to zero when the auxiliary loading is 
equal to its critical value θ

*
04 / sin·G K L α= . It is evident that the case *G G>  is very dangerous from practical 

point of view, since the chain configuration is unstable. 

The force‐deflection relations and values of translational stiffness xK  are presented in Figure 4.3. They 
show that the auxiliary loading G  significantly reduces the stiffness of the serial chain. Further increasing of 
the auxiliary loading up to *1.5·G G=  leads to the unstable configuration with negative stiffness 2

θ7.46· /K L− .  

G Fx

L L
α

θKy

x

q Fy

 

Figure 5.9 Kinematic chain with compliant actuator between two links and its static forces 

 

Figure 5.10 Force‐deflections relations for different values of  auxiliary loading  G   
( *

θ 04 / sin·G K L α= , 2
θ· /xK K K L= ) 

Table 5.2 Translational stiffness 2
θ/·xK K L K=  and stability coefficients cS  for different values of 

auxiliary loading  G  and different displacements x∆  ( *
04 / sin·G K Lq α= ) 
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G Performance measures 0.05x L∆ = −  0x∆ =  0.05x L∆ =  

0  
K  

cS  
6.69  
-0.50 

14.9  
-0.66 

107  
-1.29 

*0.5·G  
K  

cS  
3.36  
-0.28 

8.67  
-0.35 

53.9  
-0.66 

*1.0·G  
K  

cS  
0.03  
-0.06 

0  
-0.04 

0.58  
-0.03 

*1.5·G  
K  

cS  
3.31−  
0.16 

7.46−  
0.26 

52.7−  
0.60 

 

To investigate the stability of serial chain configuration and the stability of the end‐point location 
additional, analysis have been performed.  Simulation results are summarized in Table 5.2 that contains both 
translational stiffness 2

θ/·xK K L K=  and stability coefficients δW  for different values of auxiliary loading G  
and displacements x∆ . The results confirm that when auxiliary loading G  overcomes it critical value *G  both 
configuration and the end‐point location of serial chain become unstable. Hence, the presented case study 
demonstrates rather interesting features of stiffness behavior for kinematic chains under auxiliary loading that 
where not studied before (negative stiffness, non‐monotonic force‐deflection curves, etc.). 

 

5.5.3 Kinetostatic singularity in the neighborhood of the flat configuration 
Let us consider now an example that deals with the stability analysis of Orthoglide manipulator (Figure 

5.11a). Detailed specification of this manipulator can be found in [19], some results on the stiffness analysis 
have been presented in [8][13]. In this case study let us address the stiffness analysis (which includes stability 
analysis of end‐point location under external loading) of Orthoglide manipulator in the neighborhood of a flat 
configuration. Simulation results for this posture are presented in Figure 5.11b and Table 5.3 where d0 denotes 
the initial distance from the flat singularity, K0 is the translational stiffness for the unloaded mode, ( , )cr crF+ +∆  
and ( , )cr crF− −∆  are respectively the critical deflection and the critical force for the opposite directions of the 
displacement. As it follows from these results, in the neighborhood of the flat singularity the stiffness 
properties are essentially non‐symmetrical with respect to the force direction. In particular, for the inside‐
direction of the loading, the force increases non‐linearly but monotonically while the deflection augments. 
However, for the outside‐direction, initially the manipulator reacts to the external loading in the same way: 
increasing of the deflection leads to increasing of the resisting elastic force. But after achieving the critical 
value, the reacting force begins decrease, the configuration becomes unstable and the manipulator abruptly 
changes its posture to the symmetrical ones. After that, the manipulator demonstrates stable behavior with 
respect to the loading. 
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(b) force-deflection relation

-20 -10 0
-20

-10

0
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20
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40

, mm∆

,F N

buckling

0 11.4d mm≈

Fcr»11.1 N

Q1

Q2

Q0

Q3

Q4

(a) Orthoglide manipulator  

Figure 5.11 Force‐displacement relations for Orthoglide manipulators (distance to the singularity is 11.4 mm) 

 

Table 5.3 Summary of stiffness analysis in the neighborhood of the flat singularity 

Configuration 0d , 
[mm] 

crF − , 
[kN] 

cr
−∆ , 

[mm] 
crF + , 

[kN] 
cr
+∆ , 

[mm] 
Point Q2 91.7 -2.06 -5.7 2.20 4.9 
Point Q2

a 46.0 -0.70 -17.1 1.45 11 
Point Q2

b 11.4 -0.01 -4.6 0.92 24 
Q2 = (-76.35, -76.35, -76.35);   Q2

a = (-100, -100, -100); Q2
b = (-120, -120, -120) 

 

The simplest model that explains the above described phenomenon is presented in Figure 5.12. It is 
derived via generalization of the “toggle‐frame” construction, with relevant modifications motivated by the 
Orthoglide architecture and relative stiffness properties of its elements. Here, the elasticity is concentrated at 
the basis of the manipulator legs and it is presented by linear springs with the parameter Kq . It is assumed 
that initial distance between the end‐point and the singularity‐plane is 0 0sind L ϕ= , where 0ϕ  is corresponding 
angle between the leg and the plane. The derived expressions  

 
( )

( )
0 0

0 0

3 1 cos / cos sin ;

sin sin

F K L

d L
q ϕ ϕ ϕ

ϕ ϕ

= −

∆ = −
  (5.45) 

perfectly describe the shape of the force-deflection curves obtained from the complete stiffness models.  
Besides, more detailed analysis shows extremely fast reduction of the stiffness while approaching this 

singularity. Corresponding expressions derived for small value of 0ϕ  yield a linear relation for the critical 
deflection 00.42cr d∆ ≈  and cubic relation for the critical force 2 3

0/ 3crF K L dq≈ ⋅ . Hence, this simplified model 
is in good agreement with the simulation results and justifies conventional kinematic design objectives 
(velocity transmission factors, condition number, etc.) that preserve the manipulator from approaching the flat 
posture.  
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F

d
L
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L
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(a)    Geometric presentation (b)    Force–deflection relation
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Unstable
configuration

Flat 
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00.42d≈

0d
02d

 

Figure 5.12 Simplified stiffness model of Orthoglide‐type manipulators for near‐flat configuration  

Hence, the considered example illustrates the ability of proposed technique to obtain the full‐scale 
force‐deflection relation for the parallel manipulators that is suitable for the stability analysis of end‐point 
location under the external loading. It proves that the common notion of the “distance‐to‐singularity” that is 
used in kinematics must be revised in elastostatics taking into account that loading essentially reduces the 
margin of the manipulator structural stability.  

5.6  Conclusions 
The Chapter presents new approach for the stability analysis of parallel manipulators under internal and 

external loadings applied to different points. In contrast to other works, it is proposed to address both stability 
of the end‐effector location and stability of kinematic chain configuration. This approach is based on the non‐
linear stiffness analysis that includes computing the static equilibrium configuration corresponding to the 
given loadings as well as computing the Cartesian stiffness matrices for serial chains and parallel manipulators. 
The advantages of the proposed approach are illustrated by several examples 
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6 STIFFNESS MODELING OF NON-PERFECT PARALLEL 
MANIPULATORS 

6.1 Introduction 
IN modern industrial robotics, stiffness becomes one of the most important performance measures that 

defines potential accuracy of the manipulator. This problem has been in the focus of numerous works [1‐5], 
where different solutions for serial and parallel manipulators have been proposed assuming that the 
manipulator geometry perfectly corresponds to the nominal one. However in practice, parallel manipulators 
usually composed of non‐perfect serial chains, whose geometrical parameters differ from the nominal values. 
It is evident that these manufacturing errors may generate essential internal forces and have affect on the 
manipulator stiffness behavior. However, this problem has attracted very limited attention in robotics.  

In general, there exist several stiffness modeling methods, which were analyzed in details in our 
previous works [6‐8]. For the industrial applications, the most popular technique is based on the Virtual Joint 
Modeling (VJM) approach that was firstly introduced in robotics by Salisbury and Gosselin [10‐11] and has 
been further developed by a number of authors [7‐9]. It extends the conventional rigid‐body model of the 
robotic manipulator by adding virtual springs that take into account elastostatic properties of links and joints. 
In the first works, it was explicitly assumed that the main sources of elasticity are concentrated in actuated 
joints. Correspondingly, the links were assumed to be rigid and the VJM model included one‐dimensional 
springs only. Recent modifications of this approach describes elastostatic properties of links using 6 6×  non‐
diagonal stiffness matrices [11] that are computed taking into account real shape of complex links [12]. Using 
this approach it is possible to obtain a rather general non‐linear stiffness model for a serial chain [7] and to 
compute the Cartesian stiffness matrix even for singular configurations.  

For parallel robots, the VJM technique can be applied either in a straightforward way (by considering 
the static equilibrium equations for all chains simultaneously [13‐14]  or by decomposing the manipulator into 
a set of separate serial chains, obtaining the stiffness models for all of them and further aggregation of these 
models in a united one corresponding to the parallel manipulator. It is obvious that the first approach, which 
incorporates solution of high order non‐linear matrix equations [13, 15], is rather tedious to be applied to real 
life industrial problems. In contrast, the second approach relies on relatively simple techniques that are well 
developed for serial manipulators. The latter was partially implemented in [6, 16], where the manipulator 
structure was assumed to be strictly parallel (i.e. without internal loops) and the kinematic chains where 
assembled in the same end‐point. Under this assumption, the stiffness matrix of the parallel manipulator can 
be computed via simple summation of the chain stiffness matrices. However, in more general (and practically 
important) cases where the kinematic chains are connected to different points of the end‐platform, this 
technique cannot be applied directly.  

Another limitation of existing results in this area is related to the assumption that the assembling does 
not produce any internal forces/torques. But in practice, numerous errors are accumulated in serial chains [17] 
and they cause non‐negligible internal forces in manipulator joints (even if the external force applied to the 
end‐effector is equal to zero). Furthermore, the kinematic chains of the robotic manipulators may include 
some additional elastic elements in the actuated or/and passive joints that are intended to increase the robot 
positioning accuracy or to improve the stiffness properties in certain workspace areas. For example, to 
eliminate the backlash, the gear trains may include spring‐loaded scissor elements that generate the internal 
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forces, which must be also integrated in the stiffness model [18]. Similar forces may also arise in the parallel 
manipulators with antagonistic actuating [14]. Other examples include parallel manipulators with springs 
interposed in the passive joints in order to improve stiffness in the singularity neighborhood.  

As follows from relevant studies performed by the authors, the internal forces may essentially influence 
on the manipulator behavior (modify the stiffness matrix, change the end‐effector location, etc.) and should 
be obviously taken into account in the stiffness model. However, most of existing works ignore this issue.  

Thus, this Chapter focus on the stiffness modeling of parallel manipulators with non‐perfect serial 
chains. To address this problem the remainder of the Chapter is organized as follows: Section II proposes 
stiffness modeling background, Section III deals with aggregation of stiffness models without loading, Section 
IV extends aggregation technique for the case of loaded mode, Section V illustrates developed technique by 
the example of Orthoglide manipulator and, finally, Section VI summarizes the main contributions. 

6.2 Stiffness modeling background 
The stiffness modeling technique developing in this work is based on our previous results [6‐7], that deal 

with perfect manipulators. Let us present them briefly. 

For the considered manipulators, if the external loading is equal to zero, all kinematic chains can be 
aligned and matched in the same target point 0t . In the neighborhood of this point, for each ith kinematic 
chain the desired stiffness model is defined by the non‐linear force‐deflection relation  

 0( | )i if=F t t  (6.1) 

where t  denotes the end‐effector location and iF  is the corresponding external loading applied to the chain 
end‐point. To obtain the function (.)if , it can be used the following iterative procedure 

 

1

qi θi qi θi
T
qi
T

θi 0iθi θi

i i ii

i

i

−
   − + +′      ′ =     ′    −−     

0 J J t g J q J θF
q J 0 0 0
θ K θJ 0 K

 (6.2) 

where the subscript "i" denotes the serial chain number, the prime corresponds to the next iteration, ( , )i iq θ  
defines the chain configuration that depends on the passive and virtual joint coordinates iq  and iθ  
respectively, q ( , )J q θ  and θ ( , )J q θ  are corresponding Jacobian matrices computed for current configuration, 0θ  
is preloading in the virtual joints, matrix θK  describes the joints stiffness properties, function ( , )i i i=t g q θ  
defines the chain geometry,  

After linearization, for each given t , the Cartesian stiffness matrices ( )
C
iK  of all kinematic chains can be 

computed as 

 ( )0( ) 0( ) F F
C q θ θ θq Cq·F F

C C= − ⋅ + ⋅ ⋅K K K J J k H K  (6.3) 

where the first term 0( ) F T 1
θ θ θ( )F

C
−=K J k J  corresponds to the classical formula defining stiffness of the kinematic 

chain without passive joints in the loaded mode [19] and the second term takes into account influence of the 
passive joints. Besides, the stiffness matrix CqK  (defining a linear mapping of the end‐point displacement δt  
to the deflections in the passive joints δq ) can be computed as 
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 ( )( ( )) ( )F T F T 0(F) F T F T 0(F)
Cq qq qθ θ θq q qθ θ θ C q θ

1

θ θq q qθ θ θ C
F F F F F F−

= − + − + + +K H H k H J H k J K J J k H J H k J K  (6.4) 

Here F 1
θ θ θθ( )F −= −k K H  and ( )

1 2

F
v v

T
1 2

2= ∂ ∂ ∂H g F v v  are the Hessian matrices with respect to combination of the 
passive and virtual joint coordinates ( , )q q , ( , )q θ , ( , )θ q , ( , )θ θ . 

In addition, linearization provides the matrix CθK  that defines linear mappings of the end‐point 
displacement δt  to the virtual joint coordinates δθ   

 F T F
Cθ θ θ C θ θq Cq

F= +K k J K k H K  (6.5) 

that is computed using the same intermediate variables 

This approach allows us to obtain the non‐linear force‐deflection relation for each serial chain as well as 
to compute the Cartesian stiffness matrices for any given target point 0t  and given the end‐point location t . 
However, it cannot be applied directly for parallel manipulators with non‐perfect serial chains because it is 
implicitly assumed here that assembling in the point 0t  does not require any forces applied to the chain end‐
point, i.e. 0 0( | )if =t t 0 . Thus a dedicated technique, which is considered in this Chapter, is required.  

6.3 Stiffness models aggregation for small loading 
In this section it is assumed that the external loading applied to the mobile platform of the parallel 

manipulator is small enough and a linearization‐based approach is reasonable. It proposes the stiffness model 
aggregation technique for both perfect and non‐perfect serial chains. 

6.3.1 Stiffness model aggregation for perfect chains  
In this case, it is assumed that all the chains can be assembled in the target point 0t  without any 

external loading that may be expressed as 0 0( | )if =t t 0 . So, for the parallel manipulator, the desired force‐
deflection relation can be written as 

 C 0( )·= −F K t t  (6.6) 

where the total Cartesian stiffness matrix CK  is computed using the chain aggregation formula 

 
T 1( ) ( ) ( )

С С
1

m
i i i

v v
i

− −

=

= ∑K J K J  (6.7) 

which integrates the Cartesian stiffness matrices ( )
С
iK  of all m chains taking into account the difference 

between the reference point of the end‐platform and the end‐points of the chains (where the chains are 
connected to the mobile platform, Figure 6.1). The latter is expressed via the Jacobians ( )i

vJ  that are described 
in details in [8]. 
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Figure 6.1  Transformation of VJM models of typical parallel manipulator 

Further, linear relations between the end‐platform displacement 0−t t  and variations δ δ,i iq θ  in the 
joint coordinates of the chains may be presented as 

 
1 1( )

Cq 0 Cθ
( ( ) ( )

0
) ( );· ( )δ · δ · ·i i i i

v vi i

− −

= − = −K J t t K J t tq θ  (6.8) 

where, the joint sensitivity matrices Cq C
( ) ( )

θ,i iK K  are computed from (6.4) and  (4.30) assuming that =F 0  and by 
neglecting all Hessians (here, the matrices Cq C

( ) ( )
θ,i iK K  are expressed with respect to the chain end‐points). 

6.3.2 Stiffness model aggregation for non-perfect chains 
If the kinematic chains are non‐perfect, the corresponding force‐deflection relation (6.1) is shifted with 

respect to the point 0t , i.e. 0 0( | )if ≠t t 0 . So, the manipulator assembling in this point requires application of 
some non‐zero forces iF  that generally do not compensate each other. Correspondingly, the end‐platform 
location differs from 0t  if the external force applied to the end‐platform is equal to zero. Let us denote this 
difference as ∆t  and revise the above matrix equations (6.6)‐(6.8) assuming that, without the external loading, 
the chain end‐point is shifted by iε  with respect to 0t  (it can be also expressed as 0 0( | )i if + =t ε t 0 ).  

Using these notations, the desired stiffness model can be described by the following expressions 

 C 0( )·= − + ∆F t t tK  (6.9) 

and  

 
1

1

( )
Cq 0

Cθ

(

( ) ( )
0

) ( );δ

( )

· ·

δ · ·

i i
v

i i

i i

i iv

−

−

∆= − +

= − + ∆

Kq J t t

K J t

t

θ tt
 (6.10) 

where the vectors ∆t , i∆t  should be computed using the assumptions presented above. To find these 
additional parameters of the stiffness model, let us apply the energy based approach.  

To compute the end‐platform deflection ∆t , let us assume that the geometrical errors are small 
enough. So, the stiffness matrices of the serial chains ( )

С
iK  are the same at the points O , iB ′  and O′′  (Figure 

6.2) and computed for the nominal configurations ,i iq θ  using the above presented technique. This allows us 
to apply the energy based approach and to express the potential energy of the parallel manipulator with 
geometrical errors in kinematic chains as 

 ( ) ( )( )T ( )
C

1
·

2
·1 i

i i

m

i
E

=

− ∆ −= ∆∑ ε t K ε t  (6.11) 
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where ( , )∆ = ∆ ∆t p φ  is displacement (position and orientation) of the reference point.  

1Δp
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3Δp
1v
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1v
2v
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Δp
(1)
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(2)
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2Δp

 

Figure 6.2  Transformation of characteristic points of serial chains in assembling of non‐perfect parallel 
manipulator; ( iA , iA′  ‐ end‐point locations of serial chain before assembling for perfect and non‐perfect 

manipulators respectively, iA′′   ‐ end‐point location of serial chain after assembling for non‐perfect 
manipulator) 

To compute the end‐platform deflection ∆t , let us assume that the geometrical errors are small 
enough. So, the stiffness matrices of the serial chains ( )

С
iK  are the same at the points O , iB ′  and O′′  (Figure 

6.2) and computed for the nominal configurations ,i iq θ  using the above presented technique. This allows us 
to apply the energy based approach and to express the potential energy of the parallel manipulator with 
geometrical errors in kinematic chains as 

 ( ) ( )( )T ( )
C

1
·

2
·1 i

i i

m

i
E

=

− ∆ −= ∆∑ ε t K ε t  (6.12) 

where ( , )∆ = ∆ ∆t p φ  is displacement (position and orientation) of the reference point.  

It is obvious that after assembling, the considered mechanical system will occupy the most 
advantageous configuration with respect to the potential energy, i.e. minE

∆
→

t
. It means that the desired 

vector ∆t  can be found from the expression  

 ( )( )C
1

( )· 0
m

i

i
i

E
=

∆
∂

=
∂

−
∆

=∑ K t ε
t

 (6.13) 

that yields the following linear equation  

 ( )
1

( ) ( )
C C

1
· ·

m m

i i

i i
i

= =

∆ =∑ ∑K t K ε  (6.14) 

which allows us to evaluate the end‐platform deflection 

 ( )
1

1
(

1

( ) )
C C· ·

m m

i

i i
i

i=

−

=

 ∆ =  
 
∑ ∑t K K ε  (6.15) 
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and the end‐platform location after assembling 

 0′ = + ∆t t t  (6.16) 

For each separate kinematic chain, the end‐frame deflections due to assembling can be expressed as 

 ( )
1

( )

1
C

1

( )
C · ·

m m

i i

i i
i i i i

= =

−
 

∆ =  −


−


= ∑ ∑Δt t ε K K ε ε  (6.17) 

This allows us to compute the loading for each kinematic chain applied to the end‐point (due to interaction 
with other non‐perfect chains) 

 ( )
C ·i

i i=F K Δt  (6.18) 

and corresponding loadings in the virtual joints )
θ
(iτ  

 ( ) ( )T T
θ θ θ C

) (( )· · ·Δi
i i

i i i= =J Jτ F K t  (6.19) 

It is worth mentioning that here 
1 i

m

i=
=∑ F 0 , since there is no external loading applied to the platform 

reference point after the assembling. Besides, it is possible to compute relevant deflections of the virtual and 
passive joint coordinates of the chains 

 ( ) ( )
Cθ Cq· ·;i i

i i i i∆= =θ K Δt q K Δt  (6.20) 

caused by the assembling. 

Thus, the above expressions allow us to evaluate the end‐platform deflection and internal 
forces/torques caused by assembling of kinematic chains with geometrical errors. However, the total 
manipulator Cartesian stiffness matrix CK  is assumed to be the same as in Section III.A, since the geometrical 
errors are assumed to be small enough. 

6.4 Stiffness models aggregation for high loading 
In this section it is assumed that the external loading can be high enough to cause non‐linear effect in 

the manipulator stiffness behavior. It proposes numerical algorithms for computing both direct and inverse 
force‐deflection relations that are referred below to as non‐linear stiffness and compliance models 
respectively. 

6.4.1 Stiffness model of parallel manipulator 
Let us focus on the aggregation of stiffness models of separate serial chains into the stiffness model of 

the whole parallel manipulator in the loaded mode. To solve this problem, it is necessary to obtain the non‐
linear force‐deflection relation, which takes into account elastostatic properties of all kinematic chains, and to 
compute corresponding Cartesian stiffness matrix.  

Let us assume that the end‐points of all kinematic chains are aligned and matched in the same target 
point 0t , which corresponds to the desired end‐platform location. This point is assumed to be known and 
allows us to compute, from the inverse kinematic model, the actuator and passive joint coordinates defining 
nominal configurations of the chains 0 0, )( i iq θ . It is also assumed that the stiffness models of all kinematic 
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chains have been already obtained using techniques proposed in Sections II and are presented in the form of 
partial non‐linear force‐deflection relations 0( | )i if=F t t  corresponding to the target point 0t .  

It is evident that the external loading F  changes the end‐platform location 0t , hence it is reasonable to 
consider the set of locations t  in the neighborhood of target one. Under the above assumptions, for any given 
point t  from neighborhood of 0t  it is possible to compute both the partial forces iF  and corresponding 
equilibrium configurations ( , )i iq θ . Then, in accordance with the superposition principle, the desired non‐linear 
force‐deflection relation for the whole parallel manipulator can be found by straightforward summation of all 
partial forces iF , i.e.  

 ( )0
1

|i

m

i
f

=

= ∑ t tF  (6.21) 

where F  denotes the total external loading applied to the end‐platform. Corresponding curves can be 
obtained by multiple repetition of the above described procedures for different values of the end‐platform 
location t . 

Furthermore, for each given t , the stiffness matrices ( )
C
iK  of all kinematic chains can be computed using 

expression (4.28) This allows us to compute the Cartesian stiffness matrix CK  of the whole parallel 
manipulator as a sum  

 ( )
C C

1

m
i

i=
= ∑K K  (6.22) 

However, the matrices ( )
Cq
iK  and )

Cθ
(iK  defining the "sensitivity" of the chain joint coordinates ( , )i iq θ  to the end‐

platform displacement cannot be aggregated in this way, they should be used separately to evaluate stresses 
in joints/links and resistance of the chain configurations with respect to external loading F  

 
( )

( ) ( )

T ( )
θ θ C 0
( ) ( )

( )
0 θ 0

( )
Cq C

· · ;

δ · ; δ ·

i i i

i
i

i
i

−

= − =

=

−

τ K t t

q t

J

K Kt θ t t
 (6.23) 

where )
θ
(iJ  is Jacobian matrix of i‐th kinematic chain with respect to virtual joint coordinates. 

It is worth mentioning that above it was implicitly assumed that the manipulator assembling is 
equivalent to the aligning and matching of the chain end‐frames. To deal with more general case, when the 
chains are connected to the different points of the platform, it is necessary to slightly modify the chain 
geometrical models and to re‐compute the forces/torques and the stiffness matrices by adding a virtual rigid 
link connecting the end‐point of the chain and the reference point of the platform. After the relevant 
transformations that are described before, the above presented technique can be applied straightforwardly.  

Besides, in contrast to Section III, here there are no evident differences in stiffness models aggregation 
of perfect and non‐perfect kinematic chains. However, here the chain geometrical errors are implicitly 
included in the functions ε ( , )ii ig q θ . In particular for non‐perfect chains, it is assumed that the nominal values 
of the joint coordinates 0 0, )( i iq θ  produce the end‐point location vector which differs from 0t : 

 0 0
ε

0( , )i i ii = +g q θ t ε  (6.24) 
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where iε  accumulates influences of all geometrical errors on the end‐point location of i‐th chain. As a result, 
the end‐platform cannot be located in the target point 0t  without external loading, i.e. 

 ( )
0

1
0|

m

i
i

f
= =

≠∑
t t

t t 0  (6.25) 

Moreover, without external loading, the end‐platform location εt  is different from the target one 0t . The 
vector εt  can be computed from the equation  

 ( )0ε
1

|
m

i
if

=

=∑ t t 0  (6.26) 

which will be considered in Section IV.B. Corresponding internal forces ε
iF  defining the chain loadings due to 

the geometrical errors in the chains can be computed by simple substitution εt  to the partial force deflection 
relations   

 ε
0( | )i if

ε=
=

t t
F t t  (6.27) 

It is obvious that the sum of the ε
iF  is equal to zero but they produce stresses in the links and joints if the 

parallel manipulator is over‐constrained. 

Hence, the developed aggregation technique allows us to obtain the non‐linear force‐deflection relation 
for a parallel manipulator in the loaded mode as well as to compute Cartesian stiffness matrices for any given 
target point 0t  and given set of the end‐point locations { }t . This technique is summarized in Figure 6.3. 
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Figure 6.3 Aggregation of serial chains stiffness models technique 
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6.4.2 Compliance model of parallel manipulator   
The non‐linear force‐deflection relation (6.21) allows us to evaluate the external force/torque F  

required to locate the manipulator in the target point t  (assuming that the actuated coordinates are 
computed for the end‐platform location 0t  corresponding to the unloaded configuration). However in 
practice, it is often necessary to determine the end platform resistance to the external loading, i.e. to compute 
the deflection caused by the force F  applied to the end‐platform. The desired value can be found from the 
non‐linear compliance model that in general case is expressed as  

 1
0( | )f −=t F t  (6.28) 

and is defined by the inverse 1(...)f −  which for parallel manipulators usually exists (due to over-constrained 
structure). In contrast, for serial chains with passive joints, the function 1(...)f −  cannot be computed since the 
corresponding Cartesian stiffness matrix ( )

C
iK  is singular. 

It is obvious that in a general case, the function 1(...)f −  cannot be expressed analytically. Hence, it is 
required that a dedicated iterative procedure, which is able to solve the non‐linear equation (6.28) for t  
(assuming that F  is given). It is proposed here to apply a modification of Newton‐Raphson technique which 
iteratively updates the desired value t  in accordance with the expression  

 ( ) ( )( )C 0 0
1 | |f−′ = + ⋅ −t t K t t F t t  (6.29) 

where ′t  corresponds to the next iteration, ( )0C |K t t  is the Cartesian stiffness matrix computed in the point 
t , and 0t  denotes the unloaded location of the end‐platform. For this iterative scheme, 0t  can be also used 

as the initial value of t . Similar to Section IV.A, within each iterative loop, corresponding configurations 
( , )i iq θ , the loadings iF  and stiffness matrices ( )

C
iK  for each kinematic chain are computed using equations 

(6.2), and (4.28) respectively,  

R
ep

ea
t f

or
 d

iff
er

en
t F

( )0 F| εf− <t tF

( )
( )

0

C 0

|

|

f t t

K t t

1
0( | )f −=t F t

Aggregation of 
serial chains stiffness models

Obtain deflection-force relation

{
} j

∈
F

F

Compute new location 
of end-platform  

No 

Yes

′t

N
ex

t i
te

ra
tio

n

0,= =F 0 t t

Stopping criterion 
is satisfied?

 

Figure 6.4 Procedure for obtaining deflection‐force relation for loaded parallel manipulator 

As it follows from the relevant study, convergence of this iterative procedure is good enough if the 
function (...)f  is smooth and non‐singular in the neighborhood of 0t . If it is required to improve convergence, 
it is possible to modify force F  from iteration to iteration in accordance with the expression ·α′ =F F , where a 
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scalar variable α  is monotonically increasing from 0 up to 1. The stopping criterion can be expressed in a 
straightforward way as 

 ( )0 F| εf− <F t t  (6.30) 

where Fε  is the desired accuracy. More details presentation of the developed iterative routines is given in Figure 
6.4 . 

6.5 Application examples  

6.5.1 Aggregation non-perfect serial chains without loading 
Let us illustrate the developed stiffness model aggregation technique by examples that deal with 

assembling of Orthoglide parallel translational manipulator with geometrical errors in kinematic chains (Fig. 
6.5) [20]. Let us assume that the manipulators have geometrical errors in the kinematic chains, which have 
effects on the end‐point location and provoke internal loadings in the joints. 

Taking into account the shape of the dexterous workspace, let us focus on the stiffness analysis of these 
manipulators in five characteristic points: isotropic point Q0, two limit points Q1 and Q2. with symmetrical 
configuration and two limit points Q3 and Q4. with non‐symmetrical configuration [5‐7]. Let us estimate the 
end‐effector location and internal deflections/loadings caused by the geometrical errors in the chains. The 
stiffness matrices of the chains in the points Q0...Q4 have been computed using the technique proposed in 
Section 6.3.1. 

(a) Photo

Q1

Q2

Q0

Q3

Q4

(b) CAD-model
 

Figure 6.5 CAD models of 3‐PUU and Orthoglide manipulators 

For illustration purposes, let us investigate two types of geometrical errors 

Case A:  Each actuator of the manipulator has a position error 1 mm in actuator location;  

Case B:  Each actuator of the manipulator has an angular error 1° in actuator location.  

In case A, as it follows from the chains geometry, the deflections of the chain end‐points before assembling 
0

i i=ε ε . In case B, the values iε  should be computed using the geometrical model ( , )i i ig q θ : 
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Table 6.1 Assembling of Orthoglide manipulator with non‐perfect chains: loadings and displacements for 
the Case A ( [ ]1 2 3, , , 0, 0, 0 Tδ δ δ∆ =t , 1 =F 0 , 2 =F 0 , 3 =F 0 ) 

Point Displacement  
of end‐point ∆t  

Deflections and loadings  
in joints and links 

Q0 1 2 3 1mm;δ δ δ= = =  max 0.18q∆ =   

Q1 1 2 3 0.50mmδ δ δ= = =  max 0.14q∆ =   

Q2 1 2 3 2.02mm;δ δ δ= = =  max 0.42q∆ =   

Q3 
1 2

3

0.73mm;
mm0.27

δ δ
δ =
= =  max 0.20q∆ =   

Q4 
1 2

3

0.56mm;
mm1.28

δ δ
δ =
= =  max 0.26q∆ =   

max max max max
p φ p φ0; 0; 0; 0q q τ τ= = = =  

Table 6.2 Assembling of Orthoglide manipulator with non‐perfect chains: loadings and displacements for 
the case B ( [ ]1 2 3 1 2 3, , , , , Tδ δ δ ϕ ϕ ϕ∆ =t , 1 ≠F 0  , 2 ≠F 0  , 3 ≠F 0  ) 

Point Displacement  
of end‐point ∆t  

Deflections and loadings  
in joints and links 

Q0 
1 2 3

1 2 3

0mm;

0. 3 ;0

δ δ δ

ϕ ϕ ϕ

= = =

= = = 
 

max

max max

max

p φ

max max
p φ

·m; 0.31
0.05m
2.09 N

m; 0.94

0; 2.09 N·m

M q
q q

τ τ

∆ =

= =

=

=

=



  

Q1 
1 2 3

1 2 3

0.41mm

. ;

;

0 62

δ δ δ

ϕ ϕ ϕ

= = =

= = = − 
 

max max

max max
p φ

max max
p φ

·m; 0.63
0.54mm
8.91

; 1.74

0

N

; 11.96 N·m

M q
q q

τ τ

∆ =

=

=

=

=

=



  

Q2 
1 2 3

1 2 3

0.96mm;

.21 ;0

δ δ δ

ϕ ϕ ϕ

= = = −

= = = 
 

max max

max max
p φ

max max
p φ

·m; 0.52
0.14m
1.48 N

m; 0.80

0; 1.75 N·m

M q
q q

τ τ

∆ =

= =

=

=

=



  

Q3 
1 1

2 2

3 3

0.91mm; 0.19
1.31mm; 0.49
0.58mm; 0.44

δ ϕ
δ ϕ
δ ϕ

= − = −
= = −
= =







 

max

max max

max

p φ

max max
p φ

·m; 0.67
0.99m
4.33N

m; 1.49

0; . ·mN4 84

M q
q q

τ τ

∆ =

= =

=

=

=



  

Q4 
1 1

2 2

3 3

0.93mm; 0.33
0.10mm; 0.22
0.25mm; 0.31

δ ϕ
δ ϕ
δ ϕ

= =
= − =
= − = −







 

max max

max max
p φ

max max
p φ

·m; 0.59
0.62m
2.98 N

m; 1.30

0; 4.0 N·m

M q
q q

τ τ

∆ =

= =

= =

= 

  

Further, substituting deflections iε  and corresponding chain stiffness matrices ( )
C
iK  into formulas (6.15) 

‐ (6.20), we can compute the desired assembling‐induced values of the end‐platform displacement, the 
internal forces/torques and the relevant displacements in virtual and passive joints. Main results of this study 
are summarized in Tables 6.1–6.2, where maxq∆  is the maximum rotational displacement of passive joints, 

max max
p φ,q q  are maximum displacement of translational and rotational virtual springs respectively, max max

p φ,τ τ  are 
maximum torques in translational and rotational virtual joints respectively, maxM  is the maximum moment in 
the chains, caused by assembling of a parallel manipulator with the non‐perfect kinematic chains.  
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These results show that in the Case A (Table 6.1), the geometrical errors in the kinematic chains do not 
cause any internal loading. However, they provoke the shift of the end‐platform location up to 2.02 mm (point 
Q2). Corresponding changes in passive joint coordinates are about 0.42̊ (point Q2). 

In contrast, in the Case B, the geometrical errors in the kinematic chains of Orthoglide (Table 6.2) cause 
essential internal loadings. For instance, in point Q1 the torque applied to the end‐point of the chain can reach 
up to 8.91N·m . This loading induces displacements up to 0.41mm  and 0.62  for translational and rotational 
virtual springs respectively. It should be noted that here the loadings for rotational virtual springs are up to 
11.96 N·m , but for translational virtual springs they are equal to zero (in spite of non‐zero deflections in them). 
Nevertheless, this result is reasonable due to the non‐diagonal structure of the matrices ( )

C
iK  representing 

couplings between rotational and translational deflections. Variations in the passive joint coordinates can 
reach up to 0.67  (Point Q3). For the end‐platform, this case study gives the positional deflection up to 
1.31 mm (Point Q3) and the rotational deflection up to 0.62  (Point Q1). It is obvious that the total sum of all 
internal loadings is equal to zero.  

6.5.2 Aggregation non-perfect serial chains under loading 
Now let us consider aggregation of Orthoglide manipulator under external loading caused by groove 

milling.. According to [21], such technological process causes forces 215rF N= ; 10tF N= − ; 25zF N= − . The 
tool length 100h mm=  leads to torques on the manipulator end‐effector 1 ·,xM mN= and , 21.5 ·y mM N= . It is 
assumed that the manipulator has two sources of inaccuracy 

(i) the assembling errors in the kinematic chains causing internal forces and relevant deflections in joints 
and links due to manipulator over‐constrained structure; 

(ii) the external loading 217 N=F  caused by the cutting forces, which generates essential compliance 
deflections causing non‐desirable end‐platform displacement. 

Similar to previous example, it is assumed that firs source of inaccuracy can be caused by translational (Case A) 
and rotational (Case B) errors in the actuator locations.  
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Figure 6.6  Displacements caused different sources of inaccuracy during milling as the crow flies from point Q2 
to Q4 using Orthoglide manipulator (Case A): (1) target trajectory, (2) displacements caused by cutting forces, 

(3) displacements caused by non‐perfect geometry, (4) total compliance error, (5) displacements obtained 
using superposition principle.  
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Figure 6.7  Displacements caused different sources of inaccuracy during milling as the crow flies from point Q2 
to Q4 using Orthoglide manipulator (Case B): (1) target trajectory, (2) displacements caused by cutting forces, 

(3) displacements caused by non‐perfect geometry, (4) total compliance error, (5) displacements obtained 
using superposition principle. 

Let us illustrate aggregation technique when Orthoglide perform milling from the point Q2 to Q5(‐73.65, 
126.35, ‐73.65) following the straight line. Simulation results for two error sources for the Case A and Case B 
are presented in Figure 6.6 and Figure 6.7 respectively. They include target trajectories (1), displacements 
caused by cutting forces (2) and non‐perfect geometry (3) as well as total compliance error (4) and 
displacement obtained using superposition principle (5). The results presented for displacements in x‐ and z‐
directions. 

The results show changing of different error sources and compliance error while the trajectory that 
define by non‐linear functions. It should be mentioned, that in Case B superposition of two error sources 
cannot is differ from total compliance error, however in Case B both curves are closed enough. The main 
factor that causes difference between the trajectories is the changes in the stiffness matrix because of 
changing of the end‐point location (the order of errors is not important, in both cases when we take into 
account the second error it should be computed in the neighborhood of current configuration, however for 
the results that have been obtained using superposition principle both errors have been computed for the 
original (target) end‐point location).  

The obtained results illustrate developed aggregation technique, show its advantages are suitable both 
for further error compensation and for the optimization workpiece location in the manipulator workspace. 

6.6 Conclusion  
This Chapter presents non‐liner stiffness modeling technique for parallel manipulators composed of 

non‐perfect serial chains, whose geometry differ from the nominal one and where essential internal 
forces/torques are generated. This technique is based on the developed aggregation procedure that combines 
the chain stiffness models and produces the relevant force‐deflection relation, the aggregated Cartesian 
stiffness matrix and also allows us to evaluate changes in the reference point location caused by inaccuracy in 
kinematic chains. In addition, expressions for computing of the internal deflections and forces/torques in joints 
are proposed. The developed technique can be applied to both over‐constrained and under‐constrained 
manipulators, it is suitable for the cases of both small and large deflections.  
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The advantages of the developed technique are illustrated by an example that deals with over‐
constrained parallel manipulator of the Orthoglide architecture. It demonstrates the technique ability to 
evaluate the end‐effector deflections caused by conventional sources (cutting forces/torques applied to the 
end‐effector that arise while workpiece processing) and also induced by inaccuracy in serial chains of the 
parallel manipulator. Relevant plots that illustrate influence of different error sources on the manipulator 
position accuracy are presented. 

In future, the proposed technique will be integrated in a software toolbox that can be used for parallel 
manipulators of complex architecture and applied to the industrial problem of the compliance error 
compensation in robotic machining cells.  
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7 COMPLIANCE ERROR COMPENSATION TECHNIQUE 
FOR PARALLEL ROBOTS COMPOSED OF NON-PERFECT 
SERIAL CHAINS 

7.1 Introduction 
In machining applications, robot accuracy depends on a numbers of factors [1]. The most essential of 

them are related to manufacturing tolerances leading to geometrical parameters deviation with respect to 
their nominal values (geometrical errors) as well as to the end‐effector deflections caused by the cutting forces 
and torques (compliance errors). Usually, in applications where the external forces/torques applied to the end‐
effector are relatively small, the prime source of manipulator inaccuracy are the geometrical errors [2, 3]. 
These errors are associated with differences between nominal and actual values of the link/joint parameters. 
Typical examples of them are the differences between the nominal and the actual lengths of links, differences 
between zero values of actuator coordinates in real robot and mathematical model embedded in controller 
(joint offsets); they can also be induced by non‐perfect assembling of different elements and arise in shifting 
and/or rotation of the frames associated with different components, which normally are assumed to be 
matched and aligned. It is clear that the geometrical errors do not depend on the manipulator configuration, 
while their effect on the position accuracy depends on it. At present, there exists a number of sophisticated 
calibration techniques that are able to identify differences between actual and nominal geometrical 
parameters [4‐9]. Consequently, this type of errors can be efficiently compensated for either by adjusting the 
controller input (i.e. the target point coordinates) or by straightforward modification of geometrical model 
parameters used in the robot controller.  

In some other cases, the geometrical errors may be dominated by non-geometrical ones that are caused 
by influence of a number of factors [10‐12]. For instance, the forces/torques associated with the tool‐
workpiece interaction in the technological process may cause essential deformations of the manipulator 
components (compliance errors) [13]. Also, the environmental conditions (temperature, atmospheric pressure 
and others) may affect physical properties of manipulator components and lead to undesirable changes in link 
dimensions. It is worth mentioning that, in the regular service conditions, the compliance errors are the most 
significant ones. Generally, they depend on two main factors: (i) the stiffness of the robotic manipulator and 
(ii) loading applied to it. Similar to the geometrical ones, the compliance errors highly depend on the 
manipulator configuration and essentially differ throughout the workspace. Their influence is particularly 
important for heavy robots and for manipulators with low stiffness. For example, the cutting forces/torques 
from the technological process may induce significant deformations, which are not negligible in the precise 
machining. In this case, influence of the compliance errors on the robot position accuracy can be even higher 
than the geometrical ones. This issue is very important for the designers of parallel manipulators, who often 
are looking for a compromise between the manipulator stiffness and its dynamic capabilities [14]. 

Thus, this Chapter focuses on the compliance error compensation that is able to take into account both 
conventional error sources (compliance errors caused by external and internal forces/torques) and errors 
caused by assembling of non‐perfect over‐constrained parallel mechanisms. To address these problems, the 
remainder of the chapter Chapter is organized as follows: Section 8.2 presents review on the compliance error 
compensation methods, Section 8.3 provides required background for the stiffness modeling, Section 8.4 
proposes the non‐linear compliance errors compensation technique, in Section 8.5 the efficiency of the 
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developed technique is illustrated by the groove milling using Orthoglide manipulator, and, finally, Section 8.6 
summarizes the main results of the chapter Chapter.  

7.2 Problem of compliance error compensation  
In many robotic applications such as machining, grinding, trimming etc., the interaction between the 

workpiece and the end‐effector causes essential deflections that significantly decrease the processing accuracy 
and quality of the final product. To overcome this difficulty, it is possible to modify either control algorithm or 
the prescribed trajectory, which is used as the reference input for a control system [15]. This Chapter focuses 
on the second approach that is considered to be more realistic in the practice. In contrast to the previous 
works, the proposed compliance error compensation technique is based on the non‐linear stiffness model of 
the manipulator that is able to take into account significant external loading [16].  

Usually, the problem of the robot error compensation can be solved in two ways that differ in degree of 
modification of the robot control software:  

(a) by modification of the manipulator model (Figure 7.1a) which better suits to the real manipulator 
and is used by the robot controller (in simple case, it can be limited by tuning of the nominal 
manipulator model, but may also involve essential model enhancement by introducing additional 
parameters, if it is allowed by a robot manufacturer);  

(b) by modification of the robot control program (Figure 7.1b) that defines the prescribed trajectory 
in Cartesian space (here, using relevant error model, the input trajectory is generated in such way 
that under the loading the output trajectory coincides with the desired one).  

It is clear that the first approach can be implemented in on‐line mode, while the second one requires 
preliminary off‐line computations. It is worth mentioning that the stiffness models being used in this work are 
suitable for both of these approaches. But in practice it is rather unrealistic to include the stiffness model in a 
commercial industrial controller where all transformations between the joint and Cartesian coordinates are 
based on the manipulator geometrical model. In contrast, the off‐line error compensation, based on the 
second approach, is attractive for industrial applications. 

For the geometrical errors, relevant compensation techniques are already well developed. 
Comprehensive review of related works is given in [2, 9, 17]. Here, if the main error sources are concentrated 
in the link length or in the joint offsets, the compensation is reduced to straightforward modification of the 
manipulator parameters in the robot controller. Otherwise, if there are any geometrical error sources that are 
not presented in the nominal inverse/direct kinematics, relevant modification of the controller input is 
required. In this case, it is possible to use (in off‐line mode) either extended geometrical model with additional 
parameters or simply a non‐linear function that describes the error distribution throughout the workspace. 
Examples of such a function are given in [18, 19] where the neural network technique is employed. In the 
frame of this work, it is assumed that the geometrical errors are less essential compared to the non‐
geometrical ones caused by the interaction between the machining tool and workpiece. So, the main attention 
will be paid to the compliance errors and their compensation techniques. 

For the compliance errors, the compensation technique must rely on two components. The first of them 
describes distribution of the stiffness properties throughout the workspace and is defined by the stiffness 
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matrix as a function of the joint coordinates or the Cartesian location [16]. The second component describes 
the forces/torques acting on the end‐effector while the manipulator is performing its manufacturing task 
(manipulator loading). In this work, it is assumed that the second component is given and can be obtained 
either from the dedicated technological process model or by direct measurements using the force/torque 
sensor integrated into the end‐effector. However it is necessary to take into account that the force sensors 
introduce additional undesirable compliance which has direct affect on the position accuracy [20, 21]. 

The stiffness matrix required for the compliance errors compensation highly depends on the robot 
configuration and essentially varies throughout the workspace. Hypothetically, it can be also approximated by 
a neural network, similar to the geometrical error compensation mentioned above. However, this approach is 
not practically attractive, so it is more convenient to compute the stiffness matrix using specially developed 
expressions and algorithms. 

From general point of view, full‐scale compensation of the compliance errors requires essential revision 
of the manipulator model embedded in the robot controller. In fact, instead of conventional geometrical 
model that provides inverse/direct coordinate transformations from the joint to Cartesian spaces and vice 
versa, here it is necessary to employ the so‐called kinetostatic model [22]. The later defines the mapping 
between the joint and Cartesian spaces taking into account deflections caused by external forces/torques 
applied to the manipulator end‐effector. It is essentially more complicated than the geometrical model and 
requires rather intensive computations that are presented in Section 8.3. 

If the compliance errors are relatively small, composition of conventional geometrical model and the 
stiffness matrix give rather accurate approximation of the modified mapping from the joint to Cartesian space. 
In this case, for the first compensation scheme (see Figure 7.1a), the kinetostatic model can be easily 
implemented online if there is access to the control software modification. Otherwise, the second scheme (see 
Figure 7.1b) can be easily applied. Moreover, with regard to the robot‐based machining, there is a solution 
that does not require force/torque measurements or computations [15, 23, 24]. Its basic idea is presented in 
Figure 7.2, where at the first stage it is performed, the machining experiment gives a trajectory corrupted by 
the compliance errors. Then, the difference between the desired and the obtained trajectories is evaluated via 
appropriate measurements, which give the compliance errors along the path. Using this data and assuming 
that the stiffness model is linear, the target trajectory for the robot controller is modified by applying the 
"mirror" technique (where corresponding points of the corrupted and target trajectories are symmetrical with 
respect to the relevant points of the desired trajectory). In order to improve accuracy in [25] it was proposed 
to perform the machining experiments several times. Starting from the second experiment the target 
trajectory for the robot controller has been modified by applying the "mirror" technique for the 
measurements obtained during previous experiments. An evident advantage of this technique is its 
applicability to the compensation of all types of the robot errors, including geometrical and compliance ones. 
However, this approach is only suitable for the large‐scale production where the manufacturing task and the 
workpiece location remains the same. Eastwood and Webb [26] proposed polar compensation methodology 
for gravitational deflection compensation for hybrid parallel kinematic machines. In some other works [26, 27] 
the problems of geometrical and compliance errors compensation have been considered simultaneously but 
these techniques cannot be applied to robot‐based machining directly. 
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Figure 7.1 Robot error compensation methods 

 

Hence, to be applied to the robotic‐based machining, the existing compliance errors compensation 
techniques should be essentially revised to take into account essential forces and torques as well as some 
other important error sources (inaccuracy in serial chains, for instance). This problem is in the scope of this 
work. 
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Figure 7.2 Method of symmetrical trajectory for compensation of the compliance errors  

7.3 Stiffness modeling background 
The compliance error compensation technique developing in this work is based on our previous results 

[16], which provide a nonlinear stiffness modeling technique for the manipulators with passive joints. This 
approach is based on the Virtual Joint Modeling (VJM) method, which extended the conventional rigid‐body 
model of the robotic manipulator by adding virtual springs that take into account elastostatic properties of 
links and joints. The method proposed by Salisbury in 1980 [29] has found numerous modifications [29‐33] and 
at present it is the most popular stiffness analysis method in robotics. Let us summarise here the main 
expressions that will be used in the nonlinear compliance error compensation technique. 

It is assumed that the end‐points of all kinematic chains are aligned and matched in the same target 
point 0t , which corresponds to the desired end‐platform location. This point is assumed to be known and 
allows us to compute, from the inverse kinematic model, the actuator and passive joint coordinates defining 
nominal configurations of the chains 0 0, )( i iq θ . Static equilibrium for serial chain that corresponds to applied 
loading can be computed using the following iterative procedure 

 
( )1

qi θi qi θi
T
qi
T

θi 0iθi θi

( , ) ( , ) , ( , ) ( , )
( , )
( , )

i i i i i i i i i i i i ii

i i i

i i i

−
   − + ⋅ + ⋅′      ′ = ⋅    ′    − ⋅−     

0 J q θ J q θ t g q θ J q θ q J q θ θF
q J q θ 0 0 0
θ K θJ q θ 0 K

 (7.1) 

where the subscript "(i)" denotes the serial chain number, the prime define new static equilibrium 
configuration that should be used in the next iteration as a current one, F  is external loading applied to the 
end‐point of kinematic chain, joint coordinates ( , )q θ  define serial chain configuration that corresponds the 
applied loading F , q ( , )J q θ  and θ ( , )J q θ  are Jacobian matrices with respect to passive q  and virtual θ  joint 
coordinates respectively computed for current serial chain configuration, matrix θK  is stiffness matrix of serial 
chain in the joint coordinates, vector t  defines end‐effector location under the loading. Function ( , )g q θ  
defines geometry of serial chain, 0θ  is preloading in virtual joints. So, partial non‐linear force‐deflection 
relations corresponding to the target point 0t  can be presented in the form  

 0( | )i if=F t t  (7.2) 

Then, in accordance with the superposition principle, the non‐linear force‐deflection relation for the whole 
parallel manipulator can be found by straightforward summation of all partial forces iF , i.e.  
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 ( )0
1

|i

m

i
f

=

= ∑ t tF  (7.3) 

where F  denotes the total external loading applied to the end-platform. As a result, corresponding curves can be 
obtained by multiple repetition of the above described procedures for different values of the end-platform 
location t . 

Furthermore, for each given t , the Cartesian stiffness matrices ( )
C
iK  of all kinematic chains, that 

correspond to the loading configuration can be computed using the following expression 

 ( ) 0( ) ( )
C
i F q F

C C= −K K K  (7.4) 

where the first term 0( ) F T 1
θ θ θ( )F

C
−= ⋅ ⋅K J k J  exactly corresponds to the classical formula defining stiffness of the 

kinematic chain without passive joints in the loaded mode [34, 35] and the second term ( )q F
CK  takes into account 

influence of passive joints and can be computed as 

 ( ) 1( ) 0( ) ( ) F F F F ( ) 0( ) ( ) ( ) 0( )
q qq qθ θ θq q q q· ·q F F F F T F F F T F

C C C C

−
= − ⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅K K J H H k H J K J J K  (7.5) 

where ( ) F F
q q θ θ θq
F = + ⋅ ⋅J J J k H . 

Finally, this allows us to compute the Cartesian stiffness matrix CK  of the whole parallel robot as a sum  

 ( )
C C

1

m
i

i=
= ∑K K  (7.6) 

This approach allows us to obtain the non‐linear force‐deflection relation for a parallel manipulator in 
the loaded mode as well as to compute Cartesian stiffness matrices for any given target point 0t  and given the 
end‐point location t . However, it cannot be applied for the compliance errors compensation 
straightforwardly. Thus a dedicated technique, that is considered in this Chapter, is required. 

7.4 Nonlinear technique for compliance error compensation  
In industrial robotic controllers, the manipulator motions are usually generated using the inverse 

kinematic model that allows us to compute the input signals for actuators 0ρ  corresponding to the desired 
end‐effector location 0t , which is assigned assuming that the compliance errors are negligible. However, if the 
external loading is essential, the kinematic control becomes non‐applicable because of changes in the end‐
platform location. It can be computed from the non‐linear compliance model as 

 ( )1
F 0|f −=t F t  (7.7) 

where the subscript 'F' refers to the loaded mode. 
To compensate this undeterred end‐platform displacement from 0t  to Ft , the target point should be 

modified in such a way that, under the loading F , the end‐platform is located in the desired point 0t . This 
requirement can be expressed using the stiffness model  in the following way 

 ( )(F)
0 0|f=F t t  (7.8) 

where (F)
0t  denotes the modified target location. Hence, the problem is reduced to the solution of the 

nonlinear equation (7.8) for (F)
0t , while F  and 0t  are assumed to be given. It is worth mentioning that this 
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equation completely differs from the equation 0( | )f=F t t , where the unknown variable is t . It means that 
here the compliance model does not allow us to compute the modified target point (F)

0t  straightforwardly, 
while the linear compensation technique directly operates with Cartesian compliance matrix [10, 23].  

To solve equation (7.8) for (F)
0t , the Newton‐Raphson technique can be applied. It yields the following 

iterative scheme 

 ( )(F) (F) (F) (F)
0 0 0t p. 0

1
0 0. ( | ) ( | )f−′ = + ⋅ −t t K t t F t t  (7.9) 

where the prime corresponds to the next iteration and (F)
0t.p. 0( | )K t t  is Cartesian stiffness matrix computed 

with respect to the second argument of the stiffness model 0( | )f=F t t  

 0
0t.p.

0

( | )
( | )

f∂
=

∂
t t

K t t
t

 (7.10) 

This argument 0t  can be interpreted as the target point. Here, the location 0t  can also be used as the initial 
value of (F)

0t . The stopping criterion can be expressed as  

 ( )(F)
00 F| εf− <F t t  (7.11) 

where Fε  is the desired accuracy. 
To overcome computational difficulties related to the evaluation of the matrix (F)

0t.p. 0( | )K t t , it is possible 
to use its simple approximation that does not change from iteration to iteration. In particular, assuming that t  
and 0t  are close enough and the stiffness properties do not vary substantially in their neighborhood, the 
stiffness model can be approximated by a linear expression C 0( )−= t tF K , which gives t.p. C= −K K . Hence, the 
iterative scheme (7.9) can be modified as  

 ( )(F) (F) (F) (F)
0 0 0 0 0 0

1
C· ( | ) ( | )fα −= − ⋅′ −t t K t t F t t  (7.12) 

where (0,1)α ∈  is the scalar parameter ensuring the convergence. Using the non‐linear compliance model 
(7.7), this idea can also be implemented in an iterative algorithm  

 ( )(F) (F) 1 (F)
0 0 0 0( | )· fα −= + −′t t t F t  (7.13) 

which does not include stiffness matrices CK  or t.p.K . Obviously, this is the most computationally convenient 
solution and it will be used in the next section.  

It should be mentioned that the considered case deals with a perfect parallel manipulator where end‐
points of all kinematic chains are aligned and matched. However, in practice, kinematic chains may include 
some errors that do not allow us to assemble them with the same end‐platform location. In this case it is 
required to compensate two types of errors (caused by the external loading F  and inaccuracy in the serial 
chains). The second source of errors can be taken into account by changing of target location 0iΔt  for each 
kinematic chain 

 0 0i iε= + ∆ −Δt Δt t ε  (7.14) 
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where ε∆t  is the end‐platform deflections due to assembling of non‐perfect kinematic chains and iε  is shifting 
of the end‐point location of ith kinematic chain because of geometrical errors. Using the principle of virtual 
work it can be proved that ε∆t  can be computed as  

 ( )
1

1
)

C
1

( ) (
C · ·i i

m

i

m

i i
ε

= =

−
 

∆ =  
 
∑ ∑t K K ε  (7.15) 

where ( )
C
iK  defines the Cartesian stiffness matrix of i‐th kinematic chain that can be computed using 

techniques proposed in the previous Section and m  is the number of kinematic chains in the parallel 
manipulator. More detailed presentation of the developed iterative routines is given in Figure 7.3. 
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Figure 7.3 Procedure for compensation of compliance errors in parallel manipulator 

Hence, using the proposed computational techniques, it is possible to compensate a main part 
compliance errors by proper adjusting the reference trajectory that is used as an input for robotic controller. In 
this case, the control is based on the inverse kinetostatic model (instead of kinematic one) that takes into 
account both the manipulator geometry and elastic properties of its links and joints. Efficiency of this 
technique is confirmed by an example presented in the next section. 

      

Auteurs : AK, 
AP 
 

 



 
Projet COROUSSO 

Livrable n°1.1 
Modèles élastiques et élasto‐dynamiques  

de robots porteurs 

ANR‐10‐SEGI‐003‐LI1.1 

24/02/2012 
indice A 

Page 100/108 
 

COROUSSO 

7.5 Illustrative example: compliance error compensation for milling 
Let us illustrate the developed compliance errors compensation technique by an example of the circle 

groove milling with the Orthoglide manipulator (Figure 7.4). Detailed specification of this manipulator can be 
found in [37]. According to [38], such technological process causes the loading 215rF N= ; 10tF N= − ; 

25zF N= −  that together with angular parameter [0,360 ]ϕ =   define the forces ,x yF F  and zF  (Figure 7.4b,c). 
Here, the tool length h  is equal to 100mm . It is assumed that the manipulator has two sources of inaccuracy  

(i) the assembling errors in the kinematic chains (assembling errors in actuator angular locations of 
about 1° around the corresponding actuated axis) causing internal forces and relevant deflections 
in joints and links due to manipulator over‐constrained structure; 

(ii) the external loading 217 N=F  caused by the cutting forces, which generates essential 
compliance deflections causing non‐desirable end‐platform displacement. 

It is worth mentioning that the non‐linear compliance error compensation technique, which has been 
developed in previous section, allows us to compensate influence of both the above mentioned factors 

xy
z

Fr

FzFt

h

r

(b) groove milling with Orthoglide

x

y

ϕ
Fx

Fy
Fr

Ft

r

(c) milling forces(a) Orthoglide manipulator  

Figure 7.4 Milling forces for groove milling using Orthoglide manipulator 

Assuming that the milling trajectory is oriented in xy‐plane, the loading that corresponds to grove 
milling can be expressed as 

 ( , , , · , · , 0)x xy z yF F F F Fh h= −F  (7.16) 

where xF  and yF  depend on the machining tool orientation angle ϕ  (Figure 7.4b,c) as 

 cos sin ; sin cosx r t y r tF F F FF Fϕ ϕ ϕ ϕ= + = +  (7.17) 

In order to illustrate influence of different error sources on the machining trajectory, let us focus on a 
small radius of the circle that should be machined. In this case, the stiffness matrix is almost the same along 
the trajectory. Modeling results in the vicinity of the boundary of the Cartesian workspace (neighborhood of 
point Q1, ‐ closest point to the parallel singularity. see [16] for details) are presented in Figure 7.5. They show 
the influence of different error sources on the machining trajectory without compensation and the revised 
machining trajectory that should be implemented in robot controller in order to follow the target trajectory 
while machining. Here, path 5 compensates the effects seen in path 4 such that circle 1 is achieved. It can be 
seen that the centre of path 5 is on the opposite side of circle 1 compared to path 4. It can also be seen that 
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the main elliptic direction in path 4 becomes the smallest elliptic direction in path 5. It should be mentioned 
that because of the torque induced by the cutting forces (tool length 100 mm), the target trajectory and 
shifted trajectory under the cutting forces are intersecting.  

Figure 7.6 illustrates the superposition principle for the errors caused by inaccuracy in serial chains and 
compliance errors caused by cutting forces. The vectors that are used here have been computed for the cases 
when there is only one source of error (inaccuracy in serial chains or compliance due to cutting forces). The 
results show that taking into account two error sources simultaneously, the total error is less than the error 
obtained using superposition principle, but this difference is not high and both trajectories have similar shape 
and location. The main factor that causes difference between the obtained trajectories is the changes in the 
stiffness matrix because of changing of the end‐point location (the order of errors is not important, in both 
cases when we take into account the second error it should be computed in the neighborhood of current 
configuration, however for the results that have been obtained using superposition principle both errors have 
been computed for the original (target) end‐point location). 

Figure 7.7 presents result for the milling of the 50 mm circle. In this case, without compensation, the 
compliance errors can exceed 0.8 mm, which is rather high for the considered application. After 
compensation, the above mentioned errors are reduced near to zero (it is obvious that in practice, the 
compensation level is limited by the accuracy of the stiffness model). This compensation is achieved due to the 
modification of the actuator coordinates ρ  along the machining trajectory. Compared to the relevant values 
computed via the inverse kinematics, the actuator coordinates differ up to 1.7 mm. Corresponding forces in 
actuators can reach 300 N. Some more results on the compliance errors compensation are presented in Figure 
7.7, which includes plots showing modification of the actuator coordinates ∆ρ , values of the compensated 
end‐effector displacement ∆t  and the torques in actuators τ . Figure 7.7d,e illustrate the impact of different 
error sources in the inaccuracy while milling with Orthoglide.  

124 125 126 127
124

125

126

127

1

2

3

4

5
x

y

Q1

 

(1)  Target trajectory 
(2) Shifting of target trajectory caused by errors in serial chains  

(assembling errors) 
(3) Shifting of target trajectory caused by cutting force 

(compliance errors) 
(4)  Shifting of target trajectory caused by cutting force and 

errors in serial chains  (assembling errors + compliance 
errors) 

(5) Adjusted trajectory, that insure following the target 
trajectory while machining  

Figure 7.5 Modifications of target trajectory caused by different error sources and adjusted trajectory  
that insure following the target trajectory while machining 
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(1)  Target trajectory 
(2)  Shifting of target trajectory caused by errors in serial 

chains  (assembling errors) 
(3)  Shifting of target trajectory caused by cutting force and 

errors in serial chains  (assembling errors + compliance 
errors: superposition principle for separate cases) 

(4)  Shifting of target trajectory caused by cutting force and 
errors in serial chains  (assembling errors + compliance 
errors: two error sources simultaneously) 

Figure 7.6 Superposition of different error sources 
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Figure 7.7 Compliance error compensation for Orthoglide milling application 
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Figure 7.8 Compliance error compensation for Orthoglide milling application with cutting force  
(215 N, ‐10 N, ‐25 N, 1 N·m, 21.5 N·m, 0) for different location of the workpiece 
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Comparison of results for typical  locations  of  the  desired circular  trajectory are presented in Figure 
7.8. These results include a number of plots showing modification of the actuator coordinates ∆ρ , values of 
compensated end‐effector displacement ∆t  and the torques in actuators τ . It is shown that for such process 
parameters, without compensation, the compliance errors can exceed 1.2 mm, which is too high for the 
considered application. In particular, for the best location Q0, the cutting forces provoke the end‐effector 
deflection of 0.35 mm. And for the worst location Q3, the end‐effector deflection is about 1.25 mm. Hence, the 
application of the developed compliance errors compensation technique is reasonable here. Compared to 
relevant values computed via the inverse kinematics (as in common‐used industrial controllers), the actuator 
coordinates differ up to 0.6 mm for location Q0, and up to 1.9 mm for location Q3. 

It is worth mentioning, that the shape of the compensation curve ( )ϕ∆ρ  highly depends on the location 
of the milling trajectory (i.e. the function ( )ϕ∆ρ  cannot be normalized by scaling and shifting) and the 
compensation procedure requires intensive computing. However, it can be implemented off‐line and the robot 
model motion program can be properly modified. 

Hence, the developed algorithm is able to compensate the compliance errors and can be efficient both 
for off‐line trajectory planning and for on‐line errors compensation. 

7.6 Conclusions 
In robotic‐based machining, an interaction between the workpiece and technological tool causes 

essential deflections that significantly decrease the manufacturing accuracy. Relevant compliance errors highly 
depend on the manipulator configuration and essentially differ throughout the workspace. Their influence is 
especially important for heavy serial robots and for parallel manipulators, where the compromise between the 
manipulator stiffness and its dynamic capabilities is quite important. To overcome this difficulty this Chapter 
presents a new technique for compensation of the compliance errors caused by external/internal loadings in 
parallel manipulators (including over‐constrained ones) composed of non‐perfect serial chains. In contrast to 
previous works, this technique is based on the non‐linear stiffness model.  

The advantages of the developed technique are illustrated by the example that deals with groove milling 
with Orthoglide manipulator. It has been shown that the impact of two error sources cannot be taken into 
account using their superposition principle due to non‐linearity of the stiffness model (even for relatively small 
deflections of the end‐effector). Comparison study confirmed that errors to be compensated highly depend on 
the workpiece location. Besides, in order to compensate the same error for different workpiece locations 
different modifications in actuated coordinates are required.  

In future, the developed compensation technique will be integrated in a software toolbox. This toolbox 
will also be useful for optimal path planning as well as optimization of the workpiece location. Another 
problem that should be addressed is an enhancement of the stiffness modeling technique for a more general 
class of manipulators and other types of loadings (gravity, friction). 
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8 CONCLUSIONS 

 

This report is devoted to the enhancement of stiffness modeling technique for serial and parallel 
manipulators in order to increase the accuracy and efficiency of robotic‐based machining of high performance 
materials by means of  compensation of the compliance errors (in on‐line and/or off‐line mode). To achieve 
this goal, four main problems were considered. 

Chapter 3 deals with the stiffness modeling of serial and parallel manipulators in the unloaded mode 
(i.e. under assumption of small deformations). The main contributions are in the area of the VJM modeling 
approach that was enhanced for serial and parallel manipulators with arbitrary location of passive joints. In 
contrast to other works, the developed technique starts from stiffness modeling of all kinematic chains 
separately and then aggregates them in a unique model. Besides, for each kinematic chain, this technique is 
able to obtain both non-singular and singular stiffness matrices that take into account passive joints or the 
kinematic singularities. Relevant assembling procedure allowed us to compute the aggregated Cartesian 
stiffness matrix of the parallel manipulator and also to evaluate the internal forces/torques and end-platform 
deflections caused by geometrical errors in the kinematic chains of over‐constrained mechanisms. The 
developed method combines advantages of the FEA and the VJM modeling approaches (accuracy and 
computational efficiency respectively) and allows us to obtain the stiffness matrices either in numerical or in 
analytical form. More precisely, the results and contributions of Chapter 4 include:  

 Enhanced VJM‐based stiffness modeling technique for serial kinematic chains with arbitrary 
location of passive joints, which allows us to take into account passive joints in an explicit form 
and to compute the stiffness matrix for any configuration (even for singular ones). Also, it 
evaluates internal deflections (and corresponding forces/torques) for kinematic chains with 
arbitrary number of passive and actuated joints. In contrast to previous results, the developed 
technique is more computationally efficient, includes low‐order matrix inversion, and it is able to 
obtain even rank‐deficient stiffness matrices caused by the presence of passive joints or singular 
configuration of the kinematic chain.  

 Analytical expression for stiffness matrix modification induced by passive joints, which extends 
the classical stiffness mapping notion for serial manipulators, and related recursive procedure for 
stiffness matrix elements computing, which allows us to include passive joints sequentially (one‐
by‐one). For typical industrial architectures, which include trivial passive joints (where axes are 
collinear with Cartesian ones), simple and practically convenient rules for stiffness matrix 
modification have been proposed. These results significantly simplify computation of the desired 
stiffness matrix and reduce them to elementary algebraic transformations. 

 Stiffness model assembling technique that allows us to aggregate elastostatic models of separate 
kinematic chains in the stiffness model of the parallel manipulator. It also allows us to evaluate 
internal deflections and forces/torques in joints, as well as deflections of the reference frame, 
caused by geometrical errors in kinematic chains. This issue has never been studied in robotic 
applications before and has essential practical significance for evaluating desired tolerances in 
links/joints geometry and corresponding internal stresses in over‐constrained mechanisms. 
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Chapters 4‐7 deal with the non‐linear stiffness modeling of serial and parallel manipulators in the loaded 
mode (i.e. under assumption of large deformations). The main contributions are in the area of the VJM 
modeling approach that was generalized for the case of large deflections caused by internal and external 
loadings applied to the end‐point and/or to the intermediate nodes of the kinematic chains. In contrast to 
other works, the developed technique includes computing of the static equilibrium configuration 
corresponding to the given loading. In addition, it allows us to check the "internal stability" of relevant chain 
configuration. Similar to Chapter 3, the stiffness modeling of parallel manipulators starts from kinematic 
chains, but it yields a non‐linear function describing force‐deflection relation. Besides, for each kinematic 
chain, this technique is also able to obtain both non-singular and singular stiffness matrices. Relevant 
aggregation procedure allows us to obtain a non‐linear force‐deflection (or deflection‐force) relation for the 
parallel manipulator and to compute the aggregated Cartesian stiffness matrix, as well as to evaluate the 
internal forces/torques and end-platform deflections caused by loadings and geometrical errors in the 
kinematic chains. Also, this model was used for the compensation of the compliance errors caused by the 
internal and external loadings. Similar to the previous chapter, the developed method combines advantages of 
the FEA and the VJM modeling approaches (accuracy and computational efficiency respectively). In more 
details, the results and contributions of Chapter 4 include 

 Non‐linear stiffness modeling technique for serial kinematic chains under external and internal 
loadings (applied to end‐point, to the intermediate nodes, preloading in the joints) which 
includes: computing the static equilibrium configuration in the loaded mode, obtaining full‐scale 
force‐deflections relation and computing of the stiffness matrix for the loaded mode  

 Stability analysis technique and related matrix stability criterion for kinematic chain configuration 
under loading in the case of single and multiple equilibriums, which takes into account the second 
derivatives of the kinematic chain potential energy. 

 Enhanced stiffness model aggregation technique for over‐constrained parallel manipulators under 
internal and external loadings, which takes into account shifting of the equilibrium due to loadings 
and allows to evaluate internal deflections and forces/torques in joints, as well as deflections of 
the reference point, caused by geometrical errors in kinematic chains. 

 Numerical technique for on‐line and off‐line compensation of the compliance errors caused by 
external loadings in parallel manipulators (including over‐constrained ones) with perfect and non‐
perfect serial kinematic chains. In contrast to previous works this technique is based on a non‐
linear stiffness model that gives essential advantages for robotic‐based machining, where elastic 
deflections can be essential. 

In general, the obtained results contribute to the area of non‐linear stiffness modeling of serial and 
parallel manipulators and give a robotic designer a useful tool allowing to estimate reasonable limits in 
minimization of link geometry (cross‐section, in particular) in order to avoid potentially dangerous phenomena 
in the manipulator stiffness behavior under external and internal loadings.  
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