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a b s t r a c t

With the design of new devices with complex geometry and to take advantage of their large recoverable
strains, shape memory alloys (SMA) components are increasingly subjected to multiaxial loadings. The
development process of SMA devices requires the prediction of their thermomechanical response for
which the calibration of the material parameters for the numerical model is an important step. In this
work, the parameters of a phenomenological model are extracted from tests performed on specimens
with non-uniform geometry, which induce heterogeneous strain fields carried out on specimens with
the same thermomechanical loading history. The digital image correlation technique is employed to
measure the strain fields on the surface of the specimen and to analyze the strain paths of chosen points.
Finite element analysis enables the computation of numerical strain fields using a thermodynamical
constitutive model for shape memory alloys previously implemented in a finite element code. The strain
fields computed numerically are compared with experimental ones obtained by DIC to find the model
parameters which best match experimental measurements using a newly developed parallelized mixed
genetic/gradient-based optimization algorithm. These numerical simulations are carried out in parallel
using a supercomputer to reduce the time necessary to identify the set of model parameters. The major
features of this new algorithm are its ability to identify the material parameters which describe the
thermomechanical behavior of shape memory alloys from full-field measurements for various loading
conditions (different temperatures, multiaxial behavior, heterogeneous test configurations). It is
demonstrated that model parameters for the simulation of SMA structures are thus obtained based on
a reduced number of heterogeneous tests at different temperatures.

1. Introduction

Shape memory alloys (SMA) are utilized in a wide range of appli-
cations and have been incorporated in system with increased com-
plexity. Their unique ability to recover substantial deformation when
subjected to particular thermomechanical load made them very
attractive and suitable for actuator devices and to replace complex
assemblies. The development of new design solution, combining
three-dimensional models along with an integration in finite element
analysis (FEA) packages, has contributed to the appearance of shape
memory alloys parts with complex geometrical shape.

It has been recently noticed that the development of modern
computer design and analysis tools based on three-dimensional
constitutive models is essential for the development process of
SMA applications [36]. These models should be however calibrated
from carefully obtained experimental data and advanced material
characterization.

Indeed, new SMA structures are subjected to heterogeneous
loading conditions, where the material locally undergoes non-
proportional loadings. Once provided with the calibrated material
parameters, three-dimensional constitutive models based on ther-
modynamics of irreversible processes can predict accurately and
efficiently the behavior of such multiaxial, non-proportional load-
ings. A review of such models for SMAs can be found in Patoor
et al. [38] for the constitutive modeling of a single crystal and
Lagoudas et al. [28] for the constitutive modeling of polycrystals.
Pioneer models have been improved over the years and have been
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implemented in FEA packages [40,37,27,11,43,1]. Recent constitu-
tive models have also focused on specific features associated with
the unique behavior of shape memory alloys.

The evolution of transformation induced plasticity has been further
considered for conventional SMAs by Bo and Lagoudas [7] and
Lagoudas and Entchev [26]. The coupling between phase transforma-
tion and plasticity has also been considered in the literature [19,50,24]
and at high temperature to account for viscoplastic effects [21,10].
Recent models have also focused on specific loading-path dependent
behavior such as tension–compression asymmetry and anisotropy
[11,43]. The design of SMA structures and the optimization of their
characteristics rely now on finite element analysis. This constitutes
powerful three-dimensional design solutions for SMA components
subjected to complex loading. The accuracy of numerical simulations
relies on the model ability to accurately account for uniaxial and
multiaxial non-proportional loadings. However, these solutions require
more advanced characterization techniques than the uniaxial tension
or thermal analyses recommended by the ASTM standards [14,15].
Indeed, SMAs structural computations require necessarily the correct
estimation of the model parameters including those related to the
loading-path dependent multiaxial behavior and the characteristics of
a specific alloy. The methodology specified in the ASTM standards was
specifically designed for Nickel–Titanium in the biomedical industry,
and may not be suitable for the identification of a model that aims at
performing the numerical simulation of SMA structures. Moreover,
since the methodology described in the ASTM standards does not give
information about the characterization of the complete set of para-
meters for these models, the development of a reliable method to
identify the parameters for SMA constitutive models is an important
step to perform reliable numerical simulations for the design of SMA
structures, regardless of the choice of a constitutive model. A tradi-
tional method is to systematically perform uniaxial tests in several
direction, shear, combined tension/shear on a series of experiments to
extract the features that are loading-path dependent. Also, a uniaxial
stress–temperature diagram is constructed along with the uniaxial
stress/strain/temperature response, and the parameters related to
phase transformation are extracted from these graphical represen-
tation [25,22,20,11]. The most common procedure is to manually
obtain the phase transformation data using a tangent intersection
method [46]. However, several issues are associated with this
method, as no objective criteria are utilized to assess the efficiency
and the robustness of the method. This can lead to significant error
when estimating the model parameters of a SMA material. For
homogeneous tests, a recent method has been developed to identify
the material parameters of a SMA from a set of experiments,
utilizing a gradient-based inverse approach [34]. A similar approach
has been used to determine the parameters of an SMA model from
experimental data [49]. However, experimental characterization
requires testing of several different types of specimens (tensile
dogbone specimen, double shear specimens, thin tubes) to obtain
the whole set of material parameters required for finite element
(FE) simulations if tension–compression asymmetry and/or aniso-
tropy induced by processing conditions is considered. In the case of
Ni–Ti shape Memory Alloys, the processing of these specimens
strongly influences the behavior [41] and thus the extraction of a
unique set of parameters that represents the material behavior is
not possible. Moreover, localization effects may be observed in
specimens of simple geometry subjected to homogeneous loading,
but the SMA device will not necessarily exhibit such effects, depe-
nding on its geometry and loading conditions. Thus identification of
material parameters on specimens as similar as possible to the final
product shall be preferred. Moreover, the design process is acceler-
ated if the characterization requires only a few specimens. The
identification procedure which utilizes full-field kinematical fields
is an appropriate method for the identification of the set of material
parameters for the purpose of SMA devices design. Such set of

material parameters may include parameters characteristic of
loading-path dependent behavior.

These considerations have motivated the development of an
identification method to obtain the model parameter of a SMA
constitutive law based on complex, heterogeneous loading condi-
tions. Note that such a methodology is also necessary to properly
analyze complex tests (i.e. multiaxial tests on samples with complex
geometry), to be able to detect additional features, e.g. anisotropy
and tension–compression asymmetry.

The requirements for such an identification procedure are
summarized below:

(i) The identification procedure should be adapted to complex
(multiaxial, non-proportional) thermomechanical tests uti-
lized to characterize the constitutive behavior of materials.

(ii) The procedure should be fast enough to be of a practical
interest for the identification of multiple parameters based on
a reduced number of tests.

(iii) This procedure should be compatible with experimental
observations, such as reaction forces and full kinematic field,
measured at the surface of the sample using digital image
correlation (DIC).

According to the last requirement, it is clear that the identifica-
tion procedure relies on two-dimensional measurements. The
identification of three-dimensional models requires additional
assumptions about the anisotropic nature of their behavior, to be
able to compute properly the out-of-plane response of SMA
components (according to the plane where the kinematical field
is measured). Identification methods coupled with kinematical
fields measurement have been extensively developed in the last
decades. The most used methods are described in the useful
review work of Avril et al. [2]. These identification methods are
classified into five categories, that are (i) the constitutive equation
gap method (CEGM); (ii) the virtual field method (VFM); (iii) the
equilibrium gap method (EGM); (iv) the reciprocity gap method
(RGM) and (v) the finite element model updating (FEMU) method.
The advantages and drawbacks of each method are described
extensively in the review of Avril et al. [2].

The FEMU approach, proposed by Kavanagh and Clough [23], is
most intuitive and has a lot of flexibility with regard to the definition
of the cost function. This method can therefore be applied in a general
framework, even if full-field displacement data with sufficiently sharp
spatial resolution is not directly provided, which is necessary for the
EGM and VFM methods [2]. Furthermore, the FEMU approach has the
advantage to perform at the same time a parametric study of the
material parameters, utilizing the numerical simulations performed
for the identification, assuming that the design space has been suffi-
ciently explored. Following these considerations, in this work a FEMU
method is developed and coupled with an innovative combined
genetic/gradient-based optimization algorithm. Since finite element
analyses are necessary to compare the experimental data with the
numerical simulations, a specific attention is devoted to the paralle-
lization of such approach in a supercomputer.

Various optimization algorithms have been used in identification
methods, i.e. deterministic algorithms such as gradient-based Leven-
berg–Marquardt algorithm [31,33], real space evolutionary-inspired,
genetic algorithms or Bayesian statistical approaches [5]. The Leven-
berg–Marquardt optimization algorithm has been often adopted for the
determination of material parameters for metals [45,32,16,13]. A hybrid
algorithm that used an evolutionary algorithm combined with a gradi-
ent-based algorithm has been utilized by Chaparro et al. [9] to deter-
mine the parameters of an elastic–plastic constitutive model including
an anisotropic criterion [3] coupled with a non-linear kinematical hard-
ening [30]. The evolutionary algorithm was used to determine a good
initial guess values for the gradient-based approach and therefore



ensure that a local minimum has been found. In the present work, NiTi
SMA parameters are identified on a heterogeneous configuration
test using an evolutionary algorithm combined with a Levenberg–
Marquardt algorithm. The latter is utilized to further optimize the best
elements of each generation provided by the genetic algorithm.

The constitutive model utilized for the description of the SMA
thermomechanical behavior is the model developed by Lagoudas
et al. [27]. This model has been chosen for the following reasons:
(i) the model includes several features, such as a dependence of the
maximum transformation strain with the stress magnitude different
forward and reverse slopes in the uniaxial stress–temperature dia-
gram and transformation hardening. This will allow us to extend the
present work, that is focused on the superelastic behavior of SMAs, to
other behavior such as thermal actuation; (ii) the model is formulated
and derived from a thermodynamic potential and (iii) under the
approximation of multiaxial proportional cases, it is shown that the
material parameters identified can be directly utilized to determine
some of material parameters of other models such as [37,11], as
shown by Stebner et al. [46].

Based on all the previously discussed points, the proposed
work focuses on the development of a parallelized hybrid identi-
fication procedure for the parameters of the model of Lagoudas
et al. [27] that has the following features:

1. It is adapted to the identification of material parameters
directly on an SMA structure under very different solicitation
(i.e. local thermomechanical paths).

2. It is based on the definition of a cost function by means of a
square difference of the experimentally and numerically com-
puted variables (strains and forces).

3. A parallelized optimization algorithm is utilized, which combine an
evolutionary algorithm with the Levenberg–Marquardt algorithm.

The organization of this work is as follows: Section 2 presents the
experimental procedure for the mechanical tests utilized to validate
the identification procedure proposed. Several mechanical tests on
samples with notches (inspired from the geometry utilized by [35])
have been performed to test the identification methodology. This geo-
metry has been selected since it has been shown that uniform dis-
placement conditions at its boundary lead to strongly heterogeneous
strain fields. Such geometry is considered suitable to analyze the
capabilities of an identification algorithm based on a FEMU approach
using strain fields obtained by DIC technique. Section 3 presents the
experimental results and the analysis of local strain paths. Based on
the measured spatio-temporal strain distributions, several points of
the tested heterogeneous specimen have been analyzed and discussed
in terms of local strain-paths. Section 4 briefly reviews the model of
Lagoudas et al. [27] and presents the material parameters to be
identified in the case of superelasticity. Section 5 presents the para-
llelized identification procedure with the definition of the hybrid
optimization algorithm. The validation of such identification based on
heterogeneous tests is provided in Section 6, comparing the strain
fields and the local strain evolution obtained numerically with the
ones obtained using the DIC technique. A comparison between the
simulated uniaxial stress–strain response with the experimental char-
acterization of uniaxial dogbone specimens is also presented and
analyzed. Concluding remarks are provided in Section 6.

2. Material selection and experimental procedure

2.1. NiTi SMA description and sample preparation

The material utilized for the experiments was a NiTi (Ti 50.4 Ni)
shape memory alloy. It has been received in the form of plates, cold-
worked (2.5 mm thickness), provided by Nimesis Technology.

Samples were cut using waterjet hyperbaric machining and annealed
(400 1C, 30 min) followed by a water-quenching. To proceed with
Digital Image Correlation (DIC) technique each specimen was pre-
pared accordingly for the purpose of full-field strain measurements
by generating gray levels using a speckle pattern. DIC technique is
full-field optical technique based on the recognition of geometrical
changes in the grayscale distribution of surface patterns before and
after straining [47,42]. It is particularly suitable for measuring kine-
matic fields for non-standard and heterogeneous thermomechanical
tests. To this end, a white background was painted on the specimen
using a flat white spray paint, and on the top a black speckle pattern
was applied. This final layer was a diluted acrylic paint, applied using
an airbrush. This step is very important since the spatial resolution of
the DIC technique depends on the quality of the applied speckle. For
the experiments, the illumination of the sample surface has been
adjusted to obtain a large and rather uniform distribution of gray
levels. Indeed, accurate adjustment of the speckle to the correlation
pattern size is a crucial factor since each pattern must reach an
adequate grayscale distribution, mandatory for the strain fields
extraction [29].

2.2. Heterogeneous tests and DIC full field measurements

The mechanical test is a non-standard tensile test inspired from
the work by Meuwissen et al. [35]. This non-standard test config-
uration gives rise to heterogeneous and non-uniform in-plane
strain fields, namely longitudinal (in the direction of loading),
transverse and shear strain components. By using such a hetero-
geneous specimen, the behavior of shear strain and stress may be
demonstrated in conjunction with the principal strain and stress
on the same specimen. In the present study, the original Meuwis-
sen sample geometry has been modified and optimized to max-
imize the area of interest, i.e. with heterogeneous local loading
paths. The dimensions of the tested samples are given in Fig. 1. In
this figure, the Zone of Interest (ZI) has been defined, which is the
zone where the DIC measurements are compared with numerical
simulations. While the sample geometry is complex, it is loaded
using a uniaxial tensile test machine. The specimen is loaded
under applied displacement into a thermal chamber with a cross-
head velocity of 0.5 mm/min. This value has been set from
previous experiments to obtain a maximal quasi-static strain rate
of the range of 10�3 s�1 even in the area where the strains are
localized, i.e. between the notches. By incrementing the applied
traction, one obtains hence a spatio-temporal distribution of the
in-plane strain components, which are measured using optical
measurements and computed using digital image correlation
(DIC). Three experiments were performed at different tempera-
tures: 50 1C, 60 1C and 70 1C.

Fig. 1. Geometry of the specimen for the heterogeneous tests. The dimensions are
expressed in mm.



The DIC datawas analyzed using the VIC-2D software by Correlated
Solutions, Inc. In this study, the pattern size was chosen as 16�16
pixels. The subset size is defined hence as the spatial resolution and
equals 16 pixels. It must be noticed that the larger the pattern size, the
smaller the uncertainty. Whereas, by increasing the pattern size, the
spatial resolution would be degraded. During the experiments, pic-
tures were taken by a 2 megapixel cooled camera (4096 gray level)
placed in front of the specimen surface outside the thermal chamber.
In order to avoid the well-known problems of non-convergence of the
correlation algorithm due to the large motions of the specimen,
images of the sample surface were recorded at the beginning and
after each traction step corresponding to a crosshead displacement of
0.01 mm. The displacement resolution is 2 � 10�2 pixels (smallest
displacement that can be detected). The strain resolution is estimated
to be of the range of 2 � 10�4. The resulting experimental data was
extracted and stored to a pixel based grid; with one data point every
5�5 pixels. The scale from pixels to millimeters was similar for each
test: one pixel every 0.065 mm (70.02 mm). Thus, the DIC strain
measurements were extracted and reported on a grid with one data
point every 0.33�0.33 mm (70.05�0.05 mm). The zone of interest
has been defined in Fig. 1. The elongation of this zone is defined as the
difference of the average of the longitudinal displacement (along x!)
between limit line 1 and limit line 2. The displacement along limit line
1 and limit line 2 obtained on the surface of the specimen from DIC.
This ensures that the elongation of this zone is due to the deformation
of the zone, and not to other effects (e.g. sliding in the grips).

2.3. Test matrix

The objective is to analyze the super-elastic behavior of SMA
structures at three different temperatures, loading up to the maximum

strain before unloading. Since the strain field is heterogeneous due to
the structure geometry, preliminary tests were conducted where
samples were loaded up to failure (tests #1, #3, #5 in Table 1). By
performing DIC analysis of these tests to up-failure, the load level at
which the point of maximum longitudinal strain reaches 6.0% has
been determined for the three tested temperatures. This load is further
utilized to perform the subsequent tests that are further utilized for
the parameter identification (tests #2, #4, #6 in Table 1). The speci-
men were indeed loaded until the point on the heterogeneous
specimen with the maximum longitudinal strain (in the direction of
loading) reaches about 6.0% strain. By incrementing the applied load, a
spatio-temporal distribution of the strain is obtained and is utilized to
fully identify the constitutive model parameters.

3. Experimental results and analysis of local strain paths

The DIC strain fields at the maximum load are shown in Fig. 2
for the three temperatures, i.e. 50 1C, 60 1C and 70 1C. In the same
figure, the overall response of the specimen is shown as a function
of time, i.e. the elongation of the zone of interest and the force. The
evolution of strains (εxx, εyy, εxy) in six points named A–F and
located in Fig. 2a were extracted from DIC results. Point B is at the
center of the specimen and point D is situated almost at the lateral
surface in the center of one notch. The analysis of these kinema-
tical fields (see Fig. 2) and local loading paths of the six points
shown in Fig. 3 indicates that a rather large zone between notches
is undergoing transformation. The two points B and D are in the
middle of the strain and transformation localization band. The
solicitation at point F, far from the notches, is close to uniaxial
tension. The zone located around A near the corner and below A
near the border is almost free of loading. Points C and D are
situated in the zones where shear strains are important.

The analysis of local strain fields obtained from DIC (at a
temperature of 50 1C) shows that maximal longitudinal, transverse
and shear strains are observed in the notched region. But strain
gradients are spread over a large zone surrounding the notches.
Although the imposed loading is uniaxial, due to the asymmetrical
position of notches, local shear strains are locally rather important.
The non-linear evolution of von Mises equivalent strain as a function
of time shown in Fig. 3(a) is clear characteristic of a non-linear
behavior of the material. Indeed, strain localization appears when the

Table 1
Test matrix of the experimental characterization of the NiTi samples.

Number Temperature (1C) Load (kN)

1 50 Up to failure
2 50 22.6
3 60 Up to failure
4 60 24.7
5 70 Up to failure
6 70 26.7

Fig. 2. Longitudinal strain fields measured by DIC for the three temperatures and the location of the six particular material points (a) εyy for T ¼ 50 1C, (b) εyy for T ¼ 60 1C,
(c) εyy for T¼70 1C.



SMA undergoes a martensitic transformation close the notched area.
The changes in the slope of the curves of equivalent strain as a
function of time at points C and E (as at points B and D) are thus a
signature of the martensitic transformation, since it corresponds to a
strain localization (increase/decrease of strain rate). The maximum
equivalent strain is located near the center of the notch on the
surface of the specimen (point D). The equivalent total strain reaches
6% at the maximum displacement imposed. The equivalent strain
near point A is almost zero; no transformation exists near this point.
Similarly, no change in rate of the strain is observed for point F, it is
concluded that the material at this point does not undergo marten-
sitic transformation. It is thus shown that the transformation starts
near point D, then propagates up to the center of the sample to point
B. Afterwards, the localization and transformation band enlarges
towards the points C and D. Transformation at points D and B is
completed before the load is reversed as suggested by the second
change in the slope. It is thus observed that at the same load, a wide
range of local strain paths are present in the specimen (see Fig. 3).
Whereas the strain paths seem to be on the same line in terms of
longitudinal strain versus transversal strain, they are scattered in

terms of shear strain as a function of longitudinal or transversal
strains. Strains at points A and F are really small compared to the
other points. As expected, the highest values of the longitudinal and
transversal strains (6% and �2.6%, respectively) are located at point
D, near the far end of the notch. Longitudinal and transversal strains
at the point B (4.6% and �2.4%, respectively) in the center of the
specimen are smaller than those at the point D, but this point is also
in the transformation band. Shear strain at point B (0.1%) is less than
that at point D (0.3%) and both are small compared to their respective
longitudinal and transverse strains εyy and εxx. On the other hand,
shear strains at points E and C reach 1% and �0.5%, respectively,
while the longitudinal and transversal strains at this point are, res-
pectively, 2.3% and �0.7% (respectively 3% and �1.4% for the point
C). As mentioned, the variety in strain paths is mainly due to the local
shear strains induced by the specimen geometry. It is noted that this
variety of local strain paths is very important to be able to identify
the parameters of three-dimensional constitutive models. This is
especially true not only for models that include tension–compression
asymmetry or anisotropy, but also for models that account for non-
proportional loadings.
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4. Thermomechanical model of martensitic transformation
for SMAs and model parameters

The model proposed by Lagoudas et al. [27] describes the
behavior of a Shape Memory Alloy representative volume element
(RVE), considering thermoelastic and martensitic strain mechan-
isms that contribute to the macroscopic strain when a thermo-
mechanical load is applied:

ε¼ εeþεthþεtr ; ð1Þ
where ε is the total strain, εe is the elastic strain, εth is the thermal
strain and εtr is the transformation strain. The evolution of
inelastic transformation strains is set to be only possible due to a
change in the martensitic volume fraction, following Qidwai and
Lagoudas [40], the link between the rates of εtr and ξ is thus
expressed:

_εt ¼Λt _ξ; Λt ¼
Λt

fwd;
_ξ40;

Λt
rev;

_ξo0:

8<
: ð2Þ

In the above, Λt
fwd is the transformation direction tensor during

forward transformation and Λt
rev is the form during reverse. The

two are defined as (cf. [6,7])

Λt
fwd ¼

3
2
Hcurσ 0

σ
; Λt

rev ¼
εt� r

ξr
; ð3Þ

where Hcur is the uniaxial transformation strain magnitude for full
transformation and is considered equal to the maximum transfor-
mation strain magnitude throughout this paper. Also, the effective
stress σ is defined in the Mises sense. This model has been
implemented in the FEA package Abaqus, which is used in this
work to perform the finite element simulations. The model para-
meters can be deducted from a unified set of material parameters
proposed by Stebner et al. [46] (see Table 2).

Considering that the SMA is subjected only to superelastic
loadings, it is unnecessary to identify the two parameters asso-
ciated with martensitic reorientation σs and σf. Moreover, since it
is assumed that the transformation hardening is proportional to
the volume fraction of martensite, a relationship is assumed
between Mf �Ms, CM and Af �As, CA. An additional parameter is
introduced to represent such relation, already utilized by Peultier
et al. [39] and Chemisky et al. [11] has been defined:

Hf ¼ εactmax
nCM

nðMf �MsÞ ¼ εactmax
nCA

nðAf �AsÞ; ð4Þ
such that the knowledge of εactmax, CM, CA, Ms, Af and Hf is sufficient
for the knowledge of the martensitic transformation characteristics.
Furthermore, the effect of thermal expansion is neglected for super-
elastic loadings and the elastic parameters are assumed to be the
same for the austenitic and martensitic phases. These assumptions
are physically motivated and reduce the number of material para-
meters to be identified, keeping a good balance between the model

accuracy and the complexity of the identification procedure. With
such conditions, the remaining eight independent parameters are
E ðMPaÞ, ν, Hf ðMPaÞ, εactmax, CMðMPa 1C�1Þ, CA ðMPa 1C�1Þ, Msð1CÞ
and Af ð1CÞ. Note that these assumptions reduce the identification
problem, but the identification of the full model is also possible.
However, depending on the experimental database, it might be hard
to identify some of the parameters if their sensitivity is weak or null
for the corresponding numerical simulation (i.e. parameters related
to reorientation from superelastic loading paths).

5. Parameter identification using finite element updating
method coupled with an hybrid optimization algorithm

5.1. Definition of the objective function

Having a constitutive model with a specific set of material
parameters, the identification problem consists in the determina-
tion of material parameters that minimize the difference between
computed data and a set of experimental data. The numerical
model is typically a finite element model, with the same geometry
and boundary conditions than the experimental setup, and con-
sidering the aforementioned constitutive model. A part of the
measured displacement at the boundary of the specimens is then
utilized to define (or to complete the definition) of the boundary
value problem to solve using the finite element method and
another part is utilized to define a cost function to be minimized.

The cost function is considered to be

CðpÞ ¼ 1
2

X
i

1
Ni
ðvnumi ðpÞ�vexpi Þ ð5Þ

where CðpÞ is the cost function, vnumi ðpÞ is the i-th information
obtained with the numerical simulation, viexp is the i-th information
obtained from the set of experiments conducted and Ni is a weight
factor. Note that all these information are potentially obtained from
a number of experiments at different times and at different spatial
positions.

In the methodology proposed here, the boundary conditions
are determined using the displacement experimentally measured
using DIC at the lower and the upper boundary (as y is considered
as the vertical axis) of the zone of interest. Considering a thin
specimen, on the left and right sides and on the front and back
faces it is assumed that no tractions are applied to complete the
definition of the boundary-value problem.

The experimental data utilized for the definition of the cost
function are (i) the strain field (derived from the displacement
field obtained by DIC) and (ii) the information of forces measured
by means of the load cell in the experimental setup. Note that with
this definition the area of interest is required to be compatible
with a measure of force considering an appropriate section. The
grid for the experimental DIC data has thus to be compared with
numerical results obtained from finite element analyses. It is
necessary to interpolate the results from DIC grid over the FEA
grid. A bilinear interpolation algorithm has been developed for
such interpolation, where interpolated values of the new grid are
obtained based on the values of the four nearest neighbors
forming a quad surrounding the interpolated point. For the specific
case on non-convex geometries such as Meuwissen samples, a
control of the quad geometry is necessary to remove badly shaped
(flat) quad and therefore interpolate uniquely from values at
geometric points inside the geometric shape of the specimen.

The final version of the cost function is written as

CðpÞ ¼ 1
2
αε
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t
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i
P

t
P

T ðεexpxx Þ2
þ
P

i
P

t
P

T ðεnumyy ðpÞ�εexpyy Þ2P
i
P

t
P

T ðεexpyy Þ2

 

Table 2
Material parameters for typical NiTi materials.

EAðEMÞðMPaÞ Elastic Modulus, Austenite (Martensite)

νAðνMÞ Poisson ratio of Austenite (Martensite)

αAðαMÞ Coeff. Thermal Exp., Austenite (Martensite)
Ms Mart. Start Temperature, σ¼0
Mf Aust. Finish Temperature, σ¼0
As Mart. Start Temperature, σ¼0
Af Aust. Finish Temperature, σ¼0
CM Uniaxial stress–temperature slope, forward transformation
CA Uniaxial stress–temperature slope, reverse transformation
σs Martensitic reorientation start
σf Martensitic reorientation finish
εactmax Maximum recoverable transformation strain
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where εexpxx , εexpyy and εexpxy represent the three components of the
strain tensor that are extracted at a material point i of coordinates
xi at the time t from an isothermal test performed at the temp-
erature T. The values εnumxx , εnumyy and εnumxy represent the corre-
sponding values computed using a chosen constitutive model. p
denotes the set of guessed parameters. The weight parameters αε
and αF are set to equilibrate the influence of the error in strains
and the error in reaction force. The total contribution to the cost
function of the strain and the force has been set to be about half
for each component, which is obtained using αε ¼ 1 and αF ¼ 40.

5.2. Optimization algorithm

The definition of an optimization algorithm has to take into
account the computational time necessary to perform a numerical
simulation for a given set of parameters. Indeed, it often depends
on the model utilized to obtain values entering in the definition of
the cost function according to a given set of design variables. Espe-
cially, the efficiency of the algorithms depends on the time nece-
ssary to compute a numerical solution and then evaluate the
corresponding cost to be able to evaluate the prescribed set of
parameters within the set of admissible solutions. Also, the form of
the cost function might impact the decision of an optimization
algorithm, e.g. if local minima are expected. Indeed, the main issue
associated with gradient-based techniques is that the method
ensures the convergence to local minima. Heuristic such as genetic
algorithm should be therefore utilized in such cases to determine
preferential sets of parameters from a large population that are
close to the global minima [9]. In the approach proposed, the
genetic algorithm and the gradient-based method are used simul-
taneously, with the following procedure:

1. An initial population of C0 individuals (each individual is a set
of parameters) is generated. The selection of individuals can be
aleatory, given limitations of the material parameters, or can
be generated using design of experiments (DOE).

2. The numerical simulation for all the individual is computed in
parallel.

3. All the individuals are scored by computing their cost value.
4. The individuals of the initial generation are classified, and a

number n of them are selected (the best ones). These con-
stitute the ‘current’ generation n.

5. A set of children of the current generation (with n members) is
determined using the crossover technique. A mutation prob-
ability has been added to increase the diversity of the children
generation. For the same purpose a small deviation operator
from the parent's parameters is also applied.

6. The best members of the current generation are selected. The
set of numerical simulation to apply the finite differences
derivation technique is determined.

7. The numerical simulation for all the children and the simula-
tions required for the finite differences derivation are com-
puted in parallel.

8. The cost function of all the individual is determined.
9. The parameters of a number NGB of the best members are

updated using a Levenberg–Marquardt algorithm.
10. The current generation nþ1 is determined from the best

individuals among the current generation n and the children.
11. Stationary condition test for the best individual of the current

generation compared to the previous best. If needed, reloop
from item 5.

An overview of the identification procedure in general is
presented in Fig. 4.

5.3. Finite element model and experimental boundary conditions

A finite element model has been developed using Abaqus. Only
an area close to the notches is considered for the model that
corresponds to the window recorded by the camera. As previously
mentioned, the prescribed displacement at the boundary are set
from the DIC evaluation of the displacements. A total of 377 linear
elements with full integration (C3D8 denomination in Abaqus) is
utilized to discretize the simulated domain of the tested specimen.
Note that the model utilized in this work [27] assumes an isotropic
behavior for the elastic strain mechanisms and the phase trans-
formation strain mechanism, and the numerical simulation of the
three-dimensional response of SMA structures are performed
under this assumption. The information of in-plane strain on the
surface corresponding to the one analyzed using DIC is extracted
from the elements centroids close to the notches, to maximize the
heterogeneity of the strain field entering in the identification
procedure. It results in a total of 247 material points where the
three in-plane components of strain εxx, εyy and εxy are compared.
Over a full loading–unloading cycle, the values of the strain of the
material points are compared on 20 increments, uniformly spaced
according to the applied displacement.

6. Parameter identification results and validation of the
identification procedure

6.1. Identification of the material parameters based on the
heterogeneous Meuwissen experiments

The identification method presented in Section 5 is applied to the
case of a set of experimental data corresponding to three isothermal
tests performed at 50 1C, 60 1C and 70 1C. Several tests have been
conducted with different parameters of the hybrid genetic–gradient
based algorithm, which are resumed in Table 3.

The different control parameters of the algorithm are the
following:

� The initial number of individuals of the first generation Ninit.� The number of sons generated and the number of retained
individual for the current generation Ncur.� The number of best individuals selected to be optimized via the
Levenberg–Marquardt gradient based algorithm NGB.

Fig. 4. Overview of the identification procedure.



� The probability of mutation of the parameters set to 5%. This
means that for each parameter of all the new individual, there
is a 5% chance that the concerned parameter is set randomly
inside the design space rather than being selected from the
crossover technique. This low value is generally utilized when a
low population is defined to keep a certain stability of the
generations, still slowly introducing new parameters to author-
ize the exploration of new points in the design space.

� The first (best) half of each generation is considered for the
crossover technique.

For each case the identification was stopped after a maximum
of 30 generations, or after a stabilization of the cost function. The
algorithm has been ran on a cluster to be able to parallelize the
numerical simulations. This is achieved using a developed soft-
ware coupled with TORQUE Resource Manager for the manage-
ment of the simulation on the cluster.

The set of initial parameters is bounded to define the design
space (see Table 4):

The final material parameters have been identified for each of the
four configurations. In Fig. 5, the cost function associated with the best
element of each generation is shown for these cases. The non-smooth
gaps from one generation to another (e.g. first generation of test case
3) is characteristic of the appearance of a new individual from the
evolutionary algorithmwhile the gradual decrease of the cost function
is associated with the Levenberg–Marquardt optimization. It is shown
here that cases #1, #3 and #4 are converging to similar minima in
terms of the value of the cost function. The case #2 is stuck to local
minima. This yields the importance of the number of individuals in the
first generation to ensure both genetic and gradient-based algorithms
to be efficient. The first algorithm requires a sufficient population to be
able to efficiently find a better configuration, while the second requires
a good starting point close enough to the global minima.When several
individuals are optimized through a Levenberg–Marquardt algorithm,
it is shown that again local minima are often reached, evenwith initial
points close to the final value of the cost function. Only one individual
has reached the minimal value comparable to those observed for the
cases #1 and #3. According to the complexity of the behavior, the
number of experimental points and the noise introduced by the
experimental measurement of DIC, local minima close to the global
minimum solution are expected. To obtain a response as close as
possible to experimental values, a large initial number of individual for

the first generation are recommended. The number of individuals in
each generation and the number of individuals to be optimized via
gradient-based algorithm depend on the accuracy versus computa-
tional time. It is found here that the configuration #3 gives the best
results and will be further utilized for the comparison of strain fields
and force versus displacement response. The final identified para-
meters from this configuration are shown in Table 5.

The comparison between the strain field obtained using DIC
and the numerical simulation with the identified parameters is
shown in Fig. 6. Globally, the correlation between the experimen-
tal and simulated fields is satisfying, especially in the area where
the in-plane strain components are rather important due to the
localization effect induced by the presence of notches. It is further
noticed that differences appear for the longitudinal strain εyy and
the in-plane shear strain εxy around the notches.

To investigate further the accuracy of the identification procedure,
the evolution of local strain fields computed in two points of interest,
namely points B and D where position are recalled in Fig. 6(a), is
compared with experimental data to see if the numerical model with
identified parameters is able to track the local evolution of strain. This
temporal evolution is shown in Fig. 7 for the longitudinal strain εyy. It
is seen that the evolution of local strain is correctly described for both
loading and unloading for the longitudinal and transverse strains of
the center point B. However, differences are observed over the surface
in the center of one notch (point D). The temporal evolution is indeed
different, since the transformation strains appear sooner in the simu-
lations. This indicates that the model might not be able to accurately
track local multiaxial non-proportional loadings. It is worth to notice
that in this work the evolution of transformation strains in different
directions is normal to an isotropic transformation surface.

Note that the prediction of local strain and stress fields is very
important to determine, for instance, the fatigue lifetime of a SMA
component. Indeed, it has been shown that the fatigue life of SMA
actuators is linked to the actuation work produced over an actuation

Table 3
Parameters of the hybrid genetic–gradient based algorithm for the four
identification tests.

Number Ninit Ncur NGB

1 50 10 1
2 50 10 1
3 150 50 1
4 150 5 3

Table 4
Min and max bounds for the material parameters.

Material parameter E ðMPaÞ ν Hf ðMPaÞ εTtrac

min 50 000 0.2 0.5 0.03
max 80 000 0.45 6 0.05

CM ðMPa 1C�1Þ CA ðMPa 1C�1Þ MS ð1CÞ Af ð1CÞ
min 4 4 �73 �33
max 12 12 27 47

Fig. 5. Evolution of the cost function as a function of the generations for the four
configurations.

Table 5
Identified material parameters NiTi materials.

E ðMPaÞ ν Hf ðMPaÞ εTtrac

67 500 0.394 1.79 0.0416

CM ðMPa 1C�1Þ CA ðMPa 1C�1Þ MS ð1CÞ Af ð1CÞ

8.74 9.66 �14.5 5.5



cycle [17]. The overall mechanical response of the sample, in terms
of the evolution of force with respect to the average displacement at
the boundary of the DIC window, is compared in Fig. 8 at
three different temperatures, i.e. 50 1C, 60 1C and 70 1C. It is shown
that globally the overall behavior during loading is accurately

represented by the numerical model using the identified para-
meters. The behavior during unloading is correctly simulated for
the test performed at 50 1C. More pronounced differences appear
during reverse transformation, especially at 60 1C and 70 1C. It is
noted here that the transformation hardening characteristics have

Fig. 6. Contour plots of the experimental strain fields (a, d, g), the numerical strain fields (b, e, h) and their absolute difference (c, f, i) for the components εxx, εyy and εxy,
respectively, at 50 1C with a tensile load of 22.7 kN.



been selected to be similar between forward and reverse transfor-
mation. The selection of different hardening parameters could have
improved the results, with the cost of increasing the number of
parameters to identify.

6.2. Comparison with identification procedure based on
homogeneous uniaxial tests

To further validate the identification procedure, numerical simu-
lations using the identified values are utilized to simulate the stress–
strain response of homogeneous tensile tests. Uniaxial experiments
have been performed on dogbone specimens of the same material,
with the same thermomechanical treatment than the Meuwissen
specimens. These samples were also cut using waterjet hyperbaric
machining and annealed (400 1C, 30 min) followed by a water-
quenching. Three uniaxial tests were performed up to a maximum
strain of 6%, at three temperatures, 30 1C, 43 1C and 50 1C, at a strain
rate of the order of 10�4 s�1. The comparison between the experi-
mental response of the uniaxial sample and the numerical simulation
of the uniaxial response, based on the model parameters identified
from the DIC fields on the Meuwissen samples, is shown in Fig. 9.

The comparison between the numerical simulations and the
experimental results leads to the following remarks:

� The elastic regime is well predicted, especially at 43 1C and 50 1C,
while it seems that the elastic response is softer at 30 1C. It is
noted that while the expected value of the Young modulus for
NiTi systems is about 80 GPa, the identification of such low
Young modulus from uniaxial tests is often reported, e.g. in Hartl
and Lagoudas [18]. Actually, from the definition of the phenom-
enological model, the target parameter is rather a linear appar-
ent modulus than the elastic Young's modulus. In this linear
stage martensitic transformation may be present, which explain
the high value of the Poisson ratio, since martensitic transforma-
tion appears almost without volume change for NiTi systems.
Superelastic uniaxial tests at different temperatures have shown
that the apparent moduli decrease when the test temperature
gets closer to transformation temperatures [8,12]. This phenom-
enon can be attributed to different factors, i.e. R-phase transfor-
mation [44], elastic softening and diffuse or multiple stage
transformation [41]. However such effects are not described in
the model utilized in this study [27] and are hence not simulated
here. Since the uniaxial tests were performed at a temperature
lower than the test on notched specimens, the differences

observed for the elastic properties identified are consistent with
previous observations of the characteristic behavior of NiTi.

� The simulation of the change of strain mechanism from marten-
sitic transformation to a fully elasticity of martensite arise at a
level of strain that corresponds to the change of regime observed
experimentally. Note that the identification procedure integrates
in the cost function the difference between the simulated strain
measured on the Meuwissen samples up to a maximum of 6% von
Mises equivalent strain. Only a few material points are loaded up
to this level, so the identification of this stage is not expected to
be very accurate. Also, the model considers a sharp change of the
two regimes, which is not observed experimentally. At this point,
a strong non-linear transformation has to be considered to
increase the simulation of SMA devices up to high local stress–
strain states.

� The critical stress for the onset of transformation is not very well
captured for the three temperatures. A constant shift of 20–
50 MPa is observed. According to the identified slopes in the
uniaxial stress–temperature diagram from the full-field measure-
ments, this corresponds to a shift of the transformation tempera-
tures of 2.3–5.8 1C. Nevertheless, the critical stress for the onset of
reverse transformation is very well predicted.
Such differences have to be accounted for in the design procedure
that utilizes the proposed methodology. The numerical simulation
of SMAs should integrate the variability of the material response.
This is a general statement about the design of SMAs components
since it is recalled here that a very small change of composition in
NiTi system leads to a drastic change of the transformation
temperatures [48]. The precipitation of No-rich Ni during heat
treatments also modify the local composition of alloys and lead to
drastic change of the overall behavior [4].

� The stress–temperature dependence (slopes in the uniaxial
stress–temperature diagram CM and CA) is very well predicted.
This yields the capability of the developed procedure to
simulate SMA components response at different temperatures.

7. Conclusions

In this work, an inverse identification procedure has been
developed to determine the material parameters of SMAs directly
on structures using full field measurements. The proposed identi-
fication method, using a parallelized hybrid genetic–gradient based
optimization algorithm, is able to properly identify the material

Fig. 7. Comparison of the evolution of the longitudinal strains εyy between the numerically computed values and the values at 50 1C obtained using DIC for (a) point B and
(b) point D.



parameters of a Shape Memory Alloy. It has been demonstrated that
a large initial population is important to be able to rapidly select a
good starting point for a gradient-based Levenberg–Marquardt
algorithm, avoiding hence local minima. The simulated in-plane

strain field and the global force–displacement of the Meuwissen
sample are in good agreement with the experimental observation.
This validates the capability of the proposed identification proce-
dure to find a suitable set of material parameters that describe
accurately the material behavior. The comparison between the
simulation of the uniaxial stress–strain response has led to several
important recommendations on the use of the proposed identifica-
tion procedure in the design strategy of SMA components:

� While the uniaxial simulations are in good agreement with the
experiments, it is necessary to integrate the variability of the
thermomechanical response.

� Since the identification procedure relies on two-dimensional
measurements, the three-dimensional simulation of SMA ther-
momechanical response requires additional assumptions about
the anisotropic nature of their behavior.

� In the case of heterogeneous kinematical fields, since only a
few material points are loaded up to the maximum strain level,
the identification of the thermomechanical response corre-
sponding to this stage is not expected to be very accurate and
the results should be taken with caution.

Such an identification method is nevertheless of great importance
for material that are extremely sensitive to thermomechanical
processing conditions, e.g. NiTi materials where it is very difficult
to test the material properties since processing conditions of the

Fig. 8. Comparison between the force vs displacement response obtained from experimental characterization and numerical simulation with the identified material
parameters at three different temperatures: (a) 50 1C, (b) 60 1C and (c) 70 1C.

Fig. 9. Comparison between the experimental uniaxial response of tensile test
samples and the numerical simulation, based on the model parameters identified
from the DIC fields on the Meuwissen samples (solid lines: experimental results,
dashed lines: simulation.



device could not be easily reproduced on the simple test samples.
Thus, it is very difficult to proceed in such cases with the legacy
calibration methods and identification procedures have to utilize the
thermomechanical characterization of the structures, often implying
heterogeneous conditions. Furthermore, exploiting the heterogeneity
of the local strain paths, this method can also be utilized to extract
material parameters that are difficult to obtain based on uniaxial
experiments, such as material parameters characteristic of anisotropy
and tension–compression asymmetry, since this method applies to
heterogeneous tests with local multiaxial non-proportional condi-
tions. Further work will emphasize on the development of aniso-
tropic criteria for phase transformation to be able to calibrate and
simulate the response of three-dimensional shape memory alloys
with an increasing accuracy.
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