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The effect of moisture-induced swelling on the

absorption capacity of transversely isotropic

elastic polymer-matrix composites

K. Derrien ∗, P. Gilormini

Laboratoire d’Ingénierie des Matériaux,

Arts et Métiers ParisTech, CNRS, 151 boulevard de l’Hôpital, 75013 Paris, France

Abstract

The interaction between humid air and transversely isotropic fiber-reinforced com-
posites with swelling polymeric matrix is considered. A model is proposed for the
water saturation level in a polymer when stresses are applied, that uses directly
obtainable material parameters only. In a composite, the reinforcements modify the
water uptake of the polymer matrix because of the internal stresses that are induced
by its restricted swelling, and this effect is evaluated. As a consequence of the cou-
pling between stresses and absorption capacity, the sorption isotherm of a composite
is ruled by the (nonlinear) Langmuir equation when the unreinforced matrix obeys
the (linear) Henry’s law.

Key words: Fibre reinforced composite material; Polymers; Swelling; Diffusion

1 Introduction

When a polymer is exposed to a humid environment, it absorbs some water
by diffusion, and this induces swelling in frequent cases. If this polymer is the
matrix of a composite, swelling cannot develop freely when the reinforcements
do not absorb water, as is usually the case. As a result, internal stresses ap-
pear, which prevent the polymer matrix to absorb as much water as it would
if it were free to swell. Water absorption by composites has been the sub-
ject of numerous studies with special attention focused on damage initiation
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(see, for instance, the review by Weitsman, 2000). Although many experimen-
tal observations have been carried out (like the work by Adamson, 1980, or
Zimmerman et al., 1984, for instance), on numerous composite systems, with
several types of particles and fibers, and various polymer matrices, there does
not seem to be a theory available that takes full advantage of the results pro-
vided by the micromechanics of heterogeneous media. It is the purpose of this
paper to make this connection, and to address the question of how the water
uptake of a composite relates to its microstructure.

Coupling between stresses and diffusion has been the subject of a very elabo-
rate theory by Weitsman (1987), where a viscoelastic behavior at finite strain
was considered. Few years later, Wu (2001) limited his work to finite strain
elasticity but highlighted the role of the Eshelby stress tensor. Small strain
elasticity was considered by Neogi et al. (1986), who used a chemical potential
of the Flory-Huggins-Regner type, and by Derrien and Gilormini (2006) who
insisted upon coupling-induced non-Fickian effects. Of course, viscous flow is
likely to play a part during the diffusion process, as stressed by Weitsman
(1990) for instance, but the present work focuses on steady state, when pos-
sible transient viscous effects have vanished and the stress-strain relation is
governed by small-strain linear elasticity only. This assumes the polymer is
kept far enough from its glass transition temperature, even if the latter de-
creases when the solvent content increases. More precisely, this study concerns
steady states where concentration flux is zero everywhere, in order to avoid
the additional complexity mentioned above of a non-Fickian diffusion law. All
the above papers include transient diffusion and are limited to non-reinforced
polymers (or, more generally, classes of homogeneous materials). The the-
ory of stress-diffusion coupling in composites has been considered scarcely,
but Aboudi and Williams (2000) did propose a complex analysis for transient
regimes, whereas Derrien and Gilormini (2007) focused more simply on steady
state. The present study is limited to composites with transverse isotropy,
which includes many frequent cases where long fibers are used as reinforce-
ments. In addition, the simpler case of isotropic composites, already studied
by Derrien and Gilormini (2007), is also considered briefly for comparisons.
Temperature is assumed uniform and constant in the material, in order to
put emphasis on stress-diffusion coupling and to keep the analysis as simple
as possible. Within these limits, the results can nevertheless be applied to
various situations. For instance, it is shown how nonlinear sorption, departing
from Henry’s law, can be treated. Even if water is considered here, the analy-
sis extends to other solvents that may induce swelling of a polymer, provided
that small-strain linear elasticity still applies.

The structure of the paper is as follows. First, the effect of stresses on the
water uptake of a non-reinforced polymer is studied. Then, application to
internal stresses induced by swelling in composites is performed when their
effective bulk modulus can be described by the Mori and Tanaka model, or
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the generalized self-consistent model, or the Hashin cylinder assemblage, or
the lower Hashin bound. Finally, an approximate procedure is suggested when
other models apply or when external loads are present.

2 Effect of applied stresses on the water uptake in a polymer

A piece of polymer material is considered, that is homogeneous and without
reinforcements. When no stress is applied, and when the polymer absorbs a
concentration c of water (defined as the mass of absorbed water per unit mass
of polymer), it is assumed to swell isotropically according to the linear law

ε
s = η c i , (1)

where ε
s denotes the swelling strain, η the coefficient of moisture expansion,

and i the second-order identity tensor. As mentioned by Weitsman (2000),
such a swelling law is observed in many polymers, with values of η ∼ .2 − .5.
In order to remain within the limits of the small-strain assumption, systems
where the water uptake c is of a few percents (which is frequently the case)
are considered, so that the η c product keeps small. When stresses are applied,
they are related to the total strain by Hooke’s law combined with (1):

σ = kp(c)(tr ε − 3 η c) i + 2 Gp(c) e , (2)

where tr (.) denotes the trace of a second-order tensor, and e is the deviatoric
part of the total strain ε. The polymer has been assumed to be isotropically
elastic in (2), with a shear modulus Gp(c) and a bulk modulus kp(c), that
may vary with the water concentration. The case where stresses are coupled
to sorption is considered here, where c depends on σ. More precisely, c is
coupled to the hydrostatic pressure applied

p = −1

3
tr σ = −kp(c)

(
∆V

V
− 3 η c

)
, (3)

since isotropic swelling is considered. The humid air surrounding the polymer
is characterized by its partial pressure of vapor pw that determines the water
uptake for a stress-free polymer, and therefore, in the conditions considered
in this paper, defining the stress-sorption coupling completely amounts to
determining the c(pw, p) function.

In order to analyze stress-sorption coupling, the Helmholtz free energy is con-
sidered. For the above system made of np moles of polymer with a dry volume
Vp, it reads as follows, when water molecules have been added and a total
strain has been prescribed:

F (c, ε) = F0 + np f(c) + Vp W (c, ε) , (4)
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where F0 is the free energy of the dry and stress-free polymer, f(c) is the
variation of the free energy per mole of dry polymer due to the addition of
water when the polymer is free to swell (zero stresses), and W is the elastic
energy per unit volume

W (c, ε) =
kp(c)

2
(tr ε − 3 η c)2 + Gp(c) e : e . (5)

Note that Vp is used in (4) to compute the total elastic energy, although some
volume change is induced by swelling, because of the small-strain assumption.
By definition, the generalized chemical potential of water in the system is
given by the partial derivative of the Helmholtz free energy with respect to
the number of moles of water nw, for a fixed total strain:

µ̃w =
∂F

∂nw

∣∣∣∣∣
ε

=
∂F

∂c

∣∣∣∣∣
ε

∂c

∂nw
=

Mw

np Mp

∂F

∂c

∣∣∣∣∣
ε

, (6)

where the molar masses of the polymer and of water are denoted by Mp and
Mw. Therefore, (3), (4) and (5) lead to:

µ̃w = µw(c) +
3 Mw η

ρp
p +

Mw

ρp

[
k′

p(c)

2
(tr ε − 3ηc)2 + G′

p(c) e : e

]
, (7)

where µw(c) = f ′(c)Mw/Mp is the chemical potential of water in the stress-
free polymer, and ρp = npMp/Vp is the mass density of the dry polymer.
In (7), where k′

p(c) and G′

p(c) denote the derivatives of kp(c) and Gp(c), the

bracketed term can be neglected if both 1
2

k′

p

kp

p
kp

and 1
6

G′

p

Gp

σeq

pGp

, where σeq denotes

the von Mises equivalent stress, are small compared to 3η. This is the case
actually, since 3η is of the order of 1, and the two expressions are of the
order of one percent or less when p and σeq amount to a few megapascals,
since Gp and kp are about a few gigapascals, even if k′

p and G′

p are of the
order of tens of gigapascals because a c variation of 0.01 induces variations of
fractions of a gigapascal (see Zimmerman et al., 1984, for experimental results
on epoxy resins, for instance). Therefore, kp and Gp can be considered as being
independent from c in the sequel, and the following reduced expression of the
chemical potential is used:

µ̃w = µw(c) +
3 Mw η

ρp
p . (8)

Similar expressions, with a chemical potential that depends linearly on the
hydrostatic pressure, have been obtained previously, for instance by Weits-
man (1987) and Wu (2001), but without the molar mass of water appearing
explicitly. Comparable expressions have also been given for diffusion in metals
(Larché and Cahn, 1973, for instance), but using a density of lattice sites that
is not trivial to adapt for polymers. A closer correspondence can be found
with an expression obtained by Li et al. (1966) for the diffusion of hydrogen
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in metals, but a definite advantage of (8) is that it refers to easily obtainable
material parameters only: the molar mass of the solvent Mw, the mass density
of the solute ρp, and the moisture expansion coefficient η.

A state of thermodynamic equilibrium is obtained when the chemical poten-
tials of water in the humid environment and in the polymer are equal. In
humid air, if considered as a mixture of perfect gases, the following standard
expression (Atkins and de Paula, 2006, for instance) can be used:

µ̂w(pw) = µ̂0 + RT ln

(
pw

p0

)
(9)

where p0 is a reference pressure (usually taken equal to 1 bar), and µ̂0 is the
corresponding potential value. The chemical potential of water in the stress-
free polymer can be written similarly, provided that chemical activity a(c) (as
defined in Atkins and de Paula, 2006, for instance) is used:

µw(c) = µ0 + RT ln

[
a(c)

a(c0)

]
(10)

where c0 is a reference moisture content and µ0 the corresponding potential
value. Combining (10) and (8), and equating to (9) leads to

a(c)

pw

=
a(c0)

p0

exp

(
µ̂0 − µ0

RT
− 3Mwη p

RTρp

)
≈ a(c0)

p0

exp

(
µ̂0 − µ0

RT

)
(1 − A η p)

(11)
where

A =
3Mw

RTρp
, (12)

if p is much smaller than RTρp/(3Mwη). This does apply, since RTρp/(3Mwη) ∼
150− 350 MPa at ambient temperature, for instance, using the η range men-
tioned above, Mw = 18 g/mol, and ρp ∼ 1.2 103 Kg/m3. The activity can
now be expressed if the standard sorption isotherm of the polymer is defined,
i.e., if the equilibrium concentration in the stress-free polymer is stated. The
following, Langmuir type (Carter and Kibler, 1978), expression can be used
to describe a variety of sorption isotherms for stress-free polymers:

c(pw) =
S pw

1 + β pw
when p = 0 (13)

where β = 0 leads to Henry’s law, i.e., to a linear isotherm c = S pw (Atkins
and de Paula, 2006) where S denotes solubility, β > 0 corresponds to the usual
Langmuir isotherm, and β < 0 may describe upwardly concave isotherms.
Using (13) to get pw as a function of c and combining with (11) for p = 0
leads to the following expression of the chemical activity:

a(c) =
a(c0)

p0

exp

(
µ̂0 − µ0

RT

)
c

S − β c
(14)
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and, finally, the sorption isotherm of a stressed polymer is obtained from (11)
and (14) as

c(pw, p) =
S (1 − A η p) pw

1 + β (1 − A η p) pw

. (15)

This is the c(pw, p) function required to define the stress-sorption coupling, for
the wide class of polymers obeying (13). It may be observed that it amounts
to multiplying the two parameters S and β by the same factor. In the special
case of Henry’s law, the coupling modifies the solubility into S ′ = S(1 − Aηp)
and, as could be intuitively inferred, a lower (resp. higher) equilibrium con-
centration is obtained if the polymer is submitted to a compression (resp. a
tension) in a given environment.

It may be noted that the elastic moduli are not present explicitly in (15),
although it has been underlined that an elastic behavior was assumed in the
derivation. Actually, the volume change ∆V/V induced by a given pressure p
and by the corresponding concentration c obtained from (15) does depend on
kp through (3). Conversely, ∆V/V could be given, and the resulting c value
would be computed by replacing p in (15) by its expression (3): this would
lead to another, equivalent but more complex, expression of coupling, with
the bulk modulus kp being explicitly present. For instance, in the special case
where no volume change is allowed, ∆V/V = 0 implies that a hydrostatic
pressure p = 3kpηc is induced by water absorption and, if the polymer obeys
Henry’s law for free swelling, (15) with β = 0 leads to

c(pw) =
Spw

1 + 3SA kp η2pw
when

∆V

V
= 0 . (16)

Thus, the coupling between sorption and stresses transforms a linear isotherm
for free swelling into a nonlinear isotherm of Langmuir type (13) when no
volume change is allowed. It is also clear from (16) that constrained swelling
lowers the absorption capacity.

In summary, equation (15) is the main result of this Section: it relates the ab-
sorption capacity c of a polymer (mass of water per unit mass of dry polymer)
in a humid environment defined by the partial pressure pw to the hydrostatic
component p of the applied stresses. The constants S and β of the stress-free
absorption law, that can be obtained directly from sorption tests where var-
ious ambiant humidities are prescribed, are combined with the coefficient of
moisture expansion η, which can also be obtained from the same tests if both
mass and volume are recorded, and by coefficient A. The latter, as defined by
(12), can be deduced from the molar mass Mw of water, the density ρp of the
polymer, and temperature T .
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3 Water uptake in a composite

From now on, the polymer considered above is the matrix of a composite
that contains a volume fraction f of reinforcements that do not absorb water.
Swelling cannot develop freely because moisture expansion differs in the re-
inforcements and in the surrounding matrix, and internal elastic stresses are
induced even if the outer boundary of the composite is a free surface. These
stresses will affect the water uptake because of the coupling between stresses
and absorption. Of course, external loads can also be applied to the compos-
ite, that would modify the hydrostatic pressure in the polymer matrix, but
this additional contribution is postponed to the last section of the paper. The
hydrostatic pressure induced in the matrix may a priori be nonuniform and,
since it is coupled to a nonuniform moisture content at equilibrium, its com-
putation is complex. Of course, if both fields happen to be uniform in some
circumstances, an analytic solution may be obtainable and a relation similar to
(16) is expected, where kp would be replaced by a smaller coefficient K (since
some volume change is allowed) depending on the volume fraction of reinforce-
ments f , with (15) recovered for f = 0. In these conditions, the stationary
stress-diffusion coupled problem considered will to some extent be similar to
a thermoeasticity problem, with moisture content replacing temperature.

Consider a composite reinforced by parallel continuous fibers, such that its ef-
fective elastic behavior is transversely isotropic. Although transversely isotropic
fibers could be considered in the analysis that follows, the elastic behavior of
the fibers is assumed isotropic, with a bulk modulus kr and a shear modulus
Gr, in order to get more tractable expressions. The reason for getting more
involved equations when the fibers are transversely isotropic is that matrix
swelling induces a longitudinal extension of the fibers that requires an addi-
tional stiffness modulus in that case. The derivations, not reported here but
similar to those given below, lead to similar conclusions as for isotropic fibers
about the uniformity of the hydrostatic pressure in the matrix. No external
stress is applied, and let the consequences of an assumed uniform water con-
centration c in the matrix phase be analyzed. Since the hydrostatic pressure
in the matrix is of interest here, its average value can be related to the relative
volume change of the composite as follows, by extending the procedure used
by Kreher (1990) for isotropic composites:

∆V/V = [(1 − f)〈ε〉p + f〈ε〉r] : i = (1 − f)〈sp : σ + ηc i〉p : i + f〈sr : σ〉r : i

(17)
using 〈·〉p and 〈·〉r to denote the volume averages over the matrix and the
reinforcements, respectively, where the compliance tensors are sp and sr. Since
there is no external stress, (1− f)〈p〉p + f〈p〉r = 0 applies and, combined with
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(17), gives

∆V/V = (1 − f)

(
1

kr
− 1

kp

)
〈p〉p + 3(1 − f)ηc . (18)

Another expression of ∆V/V can be deduced from the relation derived by
Levin (1967) for thermal expansion, which can be adapted readily to the
present swelling problem and gives

∆V/V = (1 − f)ηc i : i + ηc i : (sr − sp)
−1 : [fsr + (1 − f)sp − s] : i (19)

where s is the composite compliance tensor. Since the matrix and the fibers
are isotropic, this relation simplifies to

∆V/V = 3(1 − f)ηc + 3ηc
f/kr + (1 − f)/kp − 1/k

3D

1/kr − 1/kp
(20)

where 1/k
3D

= i : s : i denotes the elastic compressibility of the compos-
ite, i.e., the (anisotropic) volume change of the composite would be equal to

−pex/k
3D

if it were submitted to an (isotropic) external outer pressure pex. Fi-
nally, an expression of the average pressure in the matrix induced by a uniform
water concentration c is obtained from (18) and (20):

〈p〉p =
3η c

1 − f

f/kr + (1 − f)/kp − 1/k
3D

(1/kr − 1/kp)2
. (21)

The fibers arrangement dictates the value of k
3D

, and (21) applies actually
to any two-phase composite made of isotropic phases, be it anisotropic or
isotropic.

In order to decide if the hydrostatic pressure in the matrix is uniform or not,
it is necessary to compute the elastic energy U stored in the composite by the
swelling process. Summing the local elastic energy in the two phases gives

2U = (1 − f)〈σ : ε − η c σ : i〉p + f〈σ : ε〉r = 3(1 − f)η c 〈p〉p (22)

since Hill’s lemma (Hill, 1963) leads to (1 − f)〈σ : ε〉p + f〈σ : ε〉r = 0 with
no external stress applied. This lemma can also be applied by replacing σ by
∂σ/∂kp when a fictitious variation of the matrix bulk modulus is considered:

∂U

∂kp
= (1 − f)

〈
∂U

∂kp

∣∣∣∣∣
σ

〉

p

+ (1 − f)

〈
∂U

∂σ

∣∣∣∣∣
kp

:
∂σ

∂kp

〉

p

+ f

〈
∂U

∂σ

∣∣∣∣∣
kp

:
∂σ

∂kp

〉

r

=

= −1 − f

2k2
p

〈p2〉p +(1−f)

〈
ε :

∂σ

∂kp

〉

p

−η c(1−f)

〈
i :

∂σ

∂kp

〉

p

+f

〈
ε :

∂σ

∂kp

〉

r

=

= −1 − f

2k2
p

〈p2〉p + 3(1 − f)η c
∂ 〈p〉p
∂kp

, (23)
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which, combined with (22), allows to relate the average hydrostatic pressure
in the matrix to the average of its square:

〈p2〉p = −3η c
∂ 〈p〉p
∂1/kp

. (24)

This expression could alternatively be obtained by combining several results
of Kreher (1990), but a direct derivation has been preferred here for clarity.
Uniformity of the pressure in the matrix is equivalent to its variance 〈(p −
〈p〉p)2〉p = 〈p2〉p −〈p〉2p being zero, which reads as follows, using (24) and (21):

∂1/k
3D

∂1/kp
=

1

1 − f



1/k
3D − 1/kr

1/kp − 1/kr




2

(25)

for any two-phase composite with isotropic constituents, whatever its mi-
crostructure. If condition (25) is satisfied by the overall compressibility of
the composite, it will develop a uniform hydrostatic pressure in the matrix
if the latter is submitted to a uniform swelling, and therefore the stationary
coupled problem can be solved easily.

In order to compute k
3D

, the Mori and Tanaka (1973) model is considered
now, since it is widely used in the composites literature. This model predicts a
transversely isotropic behavior for a composite reinforced by continuous fibers,
whatever the arrangement of the fibers in the cross section. With an overbar
denoting macroscopic stresses and strains, and using Hill’s (1964) notations
for the composite moduli, such a behavior reads






σxx = (k
2D

+ m) εxx + (k
2D − m) εyy + l εzz

σyy = (k
2D − m) εxx + (k

2D
+ m) εyy + l εzz

σzz = l εxx + l εyy + n εzz

(26)

for the components of interest here, with direction z taken parallel to the fibers.

k
2D

is the composite transverse compression modulus, i.e., a lateral pressure
σxx = σyy = −p applied in plane strain (εzz = 0) induces 2εxx = 2εyy =

−p/k
2D

, and l, m, n are the other composite moduli that come into play in

the absence of longitudinal shear. The expression of k
3D

can be obtained by
first solving (26) with respect to the strain components:






εxx = 1

4m(nk
2D

−l
2

)
{[n(k

2D
+ m) − l

2
]σxx − [n(k

2D − m) − l
2
]σyy − 2lm σzz}

εyy = 1

4m(nk
2D

−l
2

)
{−[n(k

2D − m) − l
2
]σxx + [n(k

2D
+ m) − l

2
]σyy − 2lm σzz}

εzz = 2m

4m(nk
2D

−l
2

)
(−l σxx − l σyy + 2k

2D
σzz)

(27)
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and then computing k
3D

= −p/(εxx + εyy + εzz) for σxx = σyy = σzz = −p,
which gives :

k
3D

=
n k

2D − l
2

k
2D − 2 l + n

. (28)

As shown by Hill (1964), l and n can be deduced from k
2D

:

l =
[3(kr − kp) − 2(Gr − Gp)] k

2D − 3(krGp − kpGr)

3(kr − kp) + Gr − Gp
(29)

and

n = (1 − f)
(
kp +

4Gp

3

)
+ f

(
kr +

4Gr

3

)
+

+

[
3(kr − kp) − 2(Gr − Gp)

3(kr − kp) + Gr − Gp

]2 [
k

2D − (1 − f)
(
kp +

Gp

3

)
− f

(
kr +

Gr

3

)]
,

(30)

which means that k
3D

can be computed from k
2D

only. For continuous fibers
with a circular cross section, the Mori and Tanaka model leads to the following
expression for the transverse bulk modulus (Chen et al., 1992):

k
2D

=
f(kr + Gr/3)(kp + 4Gp/3) + (1 − f)(kp + Gp/3)(kr + Gr/3 + Gp)

f(kp + 4Gp/3) + (1 − f)(kr + Gr/3 + Gp)
(31)

and, combining with (28), (29) and (30), it follows that

k
3D

=
[(1 − f)Gp + (1/3 + f)Gr][fkr + (1 − f)kp] + [1 + f(Gr/Gp − 1)]kpkr

(1 − f)Gp + (1/3 + f)Gr + [1 + f(Gr/Gp − 1)][(1 − f)kr + fkp]
.

(32)

It can be verified that k
3D

= k if kp = kr = k, and that Gp = Gr = G does
give the exact solution obtained by Hill (1964):

k
3D

= k
2D − G

3
=

4G[fkr + (1 − f)kp]/3 + kpkr

4G/3 + (1 − f)kr + fkp
. (33)

Moreover, longitudinal extension is prevented when the fibers tend to be rigid

and, consequently, k
3D

tends to k
2D

; this is satisfied by (32) and (31).

It can be verified readily that (32) does satisfy (25), and therefore a uniform
matrix swelling induces a uniform hydrostatic pressure in the matrix of a com-
posite that obeys the Mori and Tanaka model. It is interesting to note that
(31) is also obtained from other models: the generalized self-consistent scheme
(Christensen and Lo, 1979), which improves over the Mori and Tanaka model
at high volume fractions of fibers, and the Hashin cylinder assemblage (Hashin,
1972). The latter model does not predict the effective transverse shear modu-
lus m, but it can be observed that the latter is not required in (28). Moreover,
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the same expression also gives the lower Hashin (1965) bound for compos-
ites where parallel continuous reinforcements of arbitrary cross-sections with
random orientations about the longitudinal axis provide overall transverse
isotropy in the statistical sense. Since the pressure uniformity depends only
on the expression of k3D, which can be deduced from k2D by using (28), it can
be concluded readily that the pressure is uniform in the matrix for all these
models.

The value of the pressure in the matrix can be computed from (21) and (32):

p = 3Kη c with K =
f

f
kp

+ 1−f
kr

+ 1+f(Gr/Gp−1)
(1−f)Gp+(1/3+f)Gr

. (34)

This pressure is positive for fibers stiffer than the matrix (Gr > Gp is suffi-
cient), which is consistent with the fibers preventing the matrix from swelling
freely. The fact that a uniform pressure is obtained in the polymer matrix for
a given uniform water concentration leads to a uniform generalized chemical
potential in the matrix, since µw in (8) is defined by the local concentration
and hydrostatic pressure, and there remains only to fulfill the boundary condi-
tion at the matrix-air interface to obtain the complete solution to the problem
considered, which validates the initial assumption of a uniform concentration
in the matrix.

As explained in the previous section, the boundary condition relates through
(15) the concentration and hydrostatic pressure near the interface to the par-
tial vapor pressure in the humid air, which gives

c =
S (1 − 3AK η2 c) pw

1 + β (1 − 3AK η2 c) pw
. (35)

when (34) is used to express p. The resulting second degree equation in c has
a single positive solution when β < 0 and, among its two positive solutions
when β > 0, only one gives c = 0 for pw = 0 (no water uptake in dry air). In
both cases, the solution reads

c = S
1 + χpw

2β(χ − β)pw


1 −

√√√√1 − 4β(χ − β)p2
w

(1 + χpw)2


 (36)

with χ = β + 3SAK η2. This expression simplifies notably if the unreinforced
polymer matrix obeys Henry’s law, i.e., if β = 0:

c =
S pw

1 + 3SAKη2 pw

. (37)

As stated at the beginning of this section, (37) is similar to (16), with K < kp,
as can be seen from (34), and (15) is recovered if f = 0. In order to get the
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average water concentration cc in the composite (mass of water over mass of
dry composite), which is the directly measurable quantity, (37) can be recast
as follows:

cc =
(1 − f̃) S pw

1 + 3SAKη2 pw
, (38)

where f̃ is the mass fraction of fibers in the composite, related to f by:

1

f̃
= 1 +

ρp

ρr

(
1

f
− 1

)
(39)

with ρr denoting the mass density of the reinforcements. Therefore, if a com-
posite is reinforced by isotropic continuous fibers with such a microstructure
that its transversely isotropic effective elastic properties can be described by
the Mori and Tanaka model, by the generalized self-consistent scheme, by
the Hashin cylinder assemblage, or by the Hashin lower bound, its sorption
isotherm (38) is of Langmuir’s type albeit its swelling polymer matrix material
obeys Henry’s law. The composite absorbs less water than the unreinforced
polymer for two reasons: because the reinforcements do not absorb water,
this corresponds the 1 − f̃ factor in (38), and because they induce internal
stresses that restrict water absorption in the matrix, this is expressed by the
denominator in (38). This effect depends on the elastic properties of the ma-
trix and reinforcements, and on the volume fraction of the latter, among other
parameters.

The above results can be compared with what would be obtained for an
isotropic composite. Spherical reinforcements can be considered, with either
a composite sphere assemblage structure or with such microstructures that
the Mori and Tanaka model or the generalized self-consistent scheme applies,
but elongated reinforcements (possibly fibers) are also included provided that
the distribution is statistically isotropic and that the Hashin and Shtrikman
(1963) lower bound is a reasonable estimate. In all these cases, the following
expression is obtained for the effective bulk modulus:

k
3D

=
4Gp[fkr + (1 − f)kp] + 3kpkr

4Gp + 3[(1 − f)kr + fkp]
, (40)

and it can be verified easily that (40) satisfies (25). Therefore, as shown previ-
ously by Derrien and Gilormini (2007), the pressure is uniform in the matrix
for these isotropic composites if the water concentration is uniform, and (38)
applies with

K =
f

f
kp

+ 1−f
kr

+ 3
4Gp

. (41)

Comparing with the transversely isotropic case (34), it may be noted that the
reinforcement shear modulus is absent from (41): the fibers are extended by
matrix swelling in the transversely isotropic case, whereas the reinforcements
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are loaded spherically in the isotropic case. Moreover, the third term in the
denominator of (34) is less than 3/(4Gp) if Gr > Gp and, consequently, the
water uptake (38) is smaller in a composite with parallel continuous fibers than
with the same volume fraction of isotropically distributed reinforcements, in
the same humid environment. If Gr = Gp the water uptake is identical for both
microstructures, since (41) coincides with (34): this is because a two-phase
material with a uniform shear modulus is isotropic whatever the distribution
of the phases, as shown by Hill (1964).

4 Discussion

The stationary stress-sorption coupled problem could thus be solved exactly
for classes of microstructures, namely the composite cylinder assemblage, the
case of long fibers with a circular section if the Mori and Tanaka model or
the generalized self-consistent scheme applies, and all transversely isotropic
microstructures for which the Hashin lower bound gives an acceptable esti-
mate of the effective properties. The key to the solution was the noticeable
uniformity of the hydrostatic pressure induced by a uniform swelling of the
matrix, but other microstructures or models may lead to more complex fields
in the matrix. It can also be shown as follows that this does happen if the
differential model (Boucher, 1976) is used.

This model predicts overall elastic moduli that are comparable to those given
by the generalized self-consistent scheme for moderate reinforcements contents
(Christensen, 1990), but it requires a system of coupled differential equations
to be solved. For fiber composites, this system was given by McLaughlin

(1977), and the computation of k
3D

is coupled to m through the following
pair of simple differential equations when the fibers are rigid:





dk
3D

df
=

1

1 − f

(
k

3D
+ m

)

dm

df
=

1

1 − f

(
k

3D
+ m

)(
1 + k

3D

2 m

)
−1

(42)

where the above mentioned equality k
3D

= k
2D

for rigid fibers has been used.

Eliminating f from the system allows to express k
3D

with m:

k
3D

= 2m + Q
√

m (43)

where Q is a constant, and the computation of k
3D

consequently reduces to
solving

dk
3D

df
=

1

1 − f

[
k

3D
+

1

16

(
Q −

√
8k

3D
+ Q2

)2
]

. (44)
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Since (43) applies for any value of f , Q can be obtained for f = 0, giving

Q = (kp − 2Gp)/
√

Gp and therefore Q = 0 if the matrix has a Poisson’s ratio

νp of 2/7. For this special case, (44) can be integrated readily and gives

k
3D

= kp(1 − f)−3/2 . (45)

To the best of our knowledge, this analytical solution for the differential scheme
applied to a composite with continuous fibers has not been given previously.
It differs from the isotropic case considered by Zimmerman (1991), where
rigid spheres are dispersed in a matrix with a Poisson’s ratio of 1/5 and the
exponent of 1 − f is −2 instead of −3/2. In order to test if the pressure is

uniform in the matrix phase, (25) requires ∂k
3D

/∂kp to be computed. Taking
the partial derivative of (44) with respect to kp, then applying the νp = 2/7
condition and using (45) leads to the following differential equation

d

df


∂k

3D

∂kp


 =

3

2(1 − f)

∂k
3D

∂kp
− 1

2(1 − f)7/4
(46)

which gives

∂k
3D

∂kp
=

1 + 2(1 − f)3/4

3(1 − f)3/2
= 1 + f +

17

16
f 2 + ... (47)

It is readily verified that (25) can be written as ∂k
3D

/∂kp = 1/(1 − f) =
1 + f + f 2 + ... for rigid fibers, and therefore differs from (47). Consequently,
the pressure is not uniform in the matrix with the differential scheme, although
it is with the other models mentioned in the preceding section, since (32) leads
to

k
3D

=
kp + (1/3 + f)Gp

1 − f
(48)

when the fibers are rigid, which does satisfy (25). It may be noted that the
differential model satisfies (25) when f � 1, as shown immediately by the
agreement to first order between the preceding two series expansions, but
not for finite f values. The reason is that the matrix modulus kp is replaced
by the current effective bulk modulus in the high-dilution expressions used
incrementally by the differential model.

When external loads are applied to a composite structure, a uniform hydro-
static pressure is very unlikely to develop through the matrix phase, with a
subsequent nonuniform concentration which excludes probably an analytical
solution to the coupled problem. However, an approximate procedure may be
proposed that retains part of the analytical result obtained in Section 3, but
still requires validation by finite element simulations for instance. If the field
of water concentration in the matrix of an elementary volume of the composite
can be assumed smooth enough to be replaced by its average 〈c〉p, then the
field of hydrostatic pressure induced by swelling can be computed as above
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with c replaced by 〈c〉p. Moreover, if the additional field of hydrostatic pres-
sure induced in the polymer matrix by the stresses applied to the composite
volume element can also be assumed smooth enough to be replaced by its
average 〈pex〉p (that may be obtained from the suitable stress localization ten-
sor in the matrix, if available), then p + 〈pex〉p, with p computed from 〈c〉p, is
the pressure that must be used in (15) to state the equilibrium of chemical
potential from a composite volume element to another, up to the interface
with humid air. With these assumptions, the following approximate result is
obtained readily in the composite volume element considered:

cc =
(1 − f̃)Spw

1 + 3 SA Kη2pw
(1 − A η 〈pex〉p) (49)

if the matrix material obeys Henry’s law, with

K =
1

1 − f

f/kr + (1 − f)/kp − 1/k
3D

(1/kr − 1/kp)2
(50)

where k
3D

is the bulk modulus of the composite. Of course, (38) is recovered
when no stresses are applied (〈pex〉p=0), and (15) is obtained when stresses are

applied to an unreinforced polymer volume element (K = 0 if f̃ = 0). Note
that (49) can be applied to either transversely isotropic or isotropic compos-
ites, since (50) includes both cases. Moreover, (49) can be used whatever the
model, including the differential scheme, that gives a reliable prediction of the
elastic bulk modulus of the composite considered, since it relaxes the require-
ments of the analytical solution by considering an average concentration.

Finally, two practical applications of the results obtained in this paper can be
mentioned. First, the prediction of the water content in the polymer matrix
of a composite may be related to chemical ageing in this phase, that would
lead to degradation of the composite on long time periods. Second, swelling
induces stresses at the fiber-matrix interfaces that may, in addition to the
effect of external applied stresses, lead to decohesions. The prediction of this
damage initiation would require, in addition to the results given here, the use
of a macro-to-micro model to compute the local stresses at the interfaces.

5 Conclusions

(i) A model has been presented to relate applied stresses and absorption
capacity for an unreinforced swelling polymer. Based on standard ther-
modynamic grounds, and able to include a variety of sorption isotherms
for the unstressed polymer, it depends on simple material parameters
only and does confirm the intuitive trend that a compressive stress re-
duces the amount of water absorbed.
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(ii) This model has been applied to composite materials where reinforce-
ments do not absorb water and thus induce internal stresses. A uniform
water concentration in the matrix is found to induce a uniform hydro-
static pressure when the Mori and Tanaka model, or the generalized
self-consistent model, or the Hashin cylinder assemblage, or the lower
Hashin bound gives a good estimate of the effective bulk modulus.

(iii) As a consequence of the coupling between internal stresses and absorp-
tion capacity, the sorption isotherm of a composite is found to be ruled by
the (nonlinear) Langmuir equation when the unreinforced matrix obeys
the (linear) Henry’s law.

(iv) It has been shown that the uniform-pressure result does not hold for
the differential scheme, although it does for the high-dilution solution
that this model uses. Thus, in order to generalize our results and to
include nonzero external loads applied, an approximate procedure has
been proposed. It still requires validation, by comparing to numerical
simulations for instance, but it leads to a simple expression.
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