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A numerical method to calculate the Abbott parameters:
A wear application

M. Bigerellea,b, A. Iostb,�
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Abstract

A numerical technique was proposed to plot the Abbott curve and to compute its associated parameters defined by the DIN 4776 and 
ISO 13565 norms. These parameters were then extended and applied to non-sigmoid Abbott curves. By studying the discretisation errors, 
we show that a minimum of 200 intercepts, with parabolic interpolations between discretised data profiles, have to be taken into 
consideration to calculate the parameters as accurately as possible. Experimental profiles were eroded by means of a numerical wear 
model, and it was shown that the Abbott parameters correlate well with the wear model parameters. Our numerical estimations of 
Abbott parameters were performed for electro-eroded, tool machined, polished, worn and sandblasted surfaces. Manual measures were 
compared with our algorithmic method and it was shown that the difference is lower than 1% for Mr1 and Mr2 Abbott parameters, but 
the numerical technique leads to a lower dispersion.
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1. Introduction

The Abbott curves [1] are usually used to quantify wear
phenomena such as lubricant influence, bearing materials
[2] or surface texture [3]. The roughness parameters
computed from these curves are defined by the DIN 4776
norm [4] superseded by ISO 13565 [5]. The present
development of methods (spectral, fractal, wavelet et al)
and their implantation led us to connect a computer to
roughness profilometers and to compute numerical estima-
tions of the roughness parameters. This way, we developed
an algorithm to plot the Abbott curve and to compute the
norm parameters. The discretisation of the Abbott curves
is studied and the efficiency of the algorithm is tested on
various kinds of profiles.

2. The Abbott curves

First, we briefly report on the Abbott roughness
parameters defined by the DIN 4776 and the ISO 13565
normalisation.

2.1. Asperities’ height distribution

Asperities’ height distribution (AHD) is the ratio (in
percentage) between the length intercepted by the roughness
profile and the scan length L (Fig. 1) at a given height, called
c (cA[Rmin,Rmax] where Rmin is the minimal amplitude of the
profile and Rmax is the maximal one), from the reference line
which is the least square line of the profile:

AHDðcÞ ¼ 100
X

i

ðLi=LÞ, (1)

where Li(c) are all the segments of the intersection of the
profile y ¼ f(x) with the intercept y ¼ c. The Abbott curve is
finally obtained by plotting c versus AHD(c). An example is

presented in Fig. 2(a) for an experimental electro-eroded
profile and Fig. 2(b) for its related Abbott curve.

2.2. The Abbott curve parameters

Parameters computed from the Abbott curves are
represented in Fig. 2b. Let F(x) be the equation of the
straight line that best adjusts the linear part of the Abbott
curve, and let us define c1 and c2 by c1 ¼ F(0) and
c2 ¼ F(100). Finally, let us denote by A(x) the Abbott curve
equation and by A�1(x) its reciprocal application. The
Abbott parameters are defined in Table 1. All these
parameters depend on the F(x) equation that represents
the best-fitted line calculated in the ‘‘linear part’’ of A(x).
The main problem consists in finding the interval [a,b]
where A(x) could be considered as linear.

2.3. Remarks on the ISO 13565 normalisation

The Abbott curves correspond exactly to 1�f(x), where f

is the cumulative density function (CDF) of surface height,
provided the profiles are considered as a continuous
function. However, for a discretised profile, the results
could be different according to the method used to
calculate the length intercepted by the roughness profile
and the intercepted length c. It will be then judicious
to use some parametric estimations (like maximal like-
lihood estimation), if a probability density function (PDF)
cannot be rejected, or a non-parametric one (like kernel
density) to estimate the CDF in the other cases. The
norm specifies that a straight line must be fitted to the
central line of the PDF corresponding to a 40% interval
length. No mathematical or statistical justification was
given for this interval range. To obtain a linear Abbott
curve in the whole interval meaning that A(x) ¼ F(x) ¼ a
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x+b 8xA[0, 100], the stationary signal has to be a
triangular one mathematically speaking. The domain of
the linear assumption can then be characterised as an
amplitude range where roughness can be approached by a
triangular signal. If we suppose that the amplitude signal
gets a Gaussian PDF (the most current PDF met in
tribology), then no linear part exists in the Abbott curve.
However, the linear assumption can be a good approxima-
tion over a wide range. To visualise the results of the
approximation, a Gaussian profile (discretised in 100 000
points) is simulated, the CDF is calculated and then the
linear part is plotted according to the ISO 13565 norm. As
can be shown in Fig. 3, the central linear part is a good
approximation of the real PDF on the 40% interval length.
This approximation can be justified by the following
remarks:

� A linear relation is no unreasonable approximation for
the CDF central parts.
� The central part represents the maximal mass of the

material and a linear relation could involve mathema-
tical simplifications of wear models (or more generally
physical models) based on the interaction of the surface
with a physical process [6,7].

3. Materials, surface machining and roughness recording

To test whether our algorithm holds or not, surfaces
were machined using various processes.

3.1. Electro-erosion

35NC16 steel sheets (0.35% C, 4% Ni, Cr) were cut by
electro erosion. All process parameters were unchanged
except for the pulse times, which are, respectively, 1.5 and
2.5m s for samples (el_a) and (el_b). Profiles were recorded

Table 1

Definition of Abbott parameters

Definition Formula

A1 Quantity of solid peaks
A1 ¼

RA�1ðc1Þ

0 ðAðxÞ � c1Þdx
(2)

A2 Quantity of solid valleys A2 ¼
R 100

A�1ðc2Þ
ðAðxÞ � Að100ÞÞdx (3)

Mr1 Threshold as the minimal AHD Mr1 ¼ A�1ðc1Þ (4)

Mr2 Threshold as the maximal AHD Mr2 ¼ A�1ðc2Þ (5)

R
k

Kernel or core roughness depth Rk ¼ c1�c2 (6)

Rpk
‘‘Reduced’’ height peak amplitude Rpk ¼ A(0)�c1 (7)

Rvk
‘‘Reduced’’ height valley amplitude Rvk ¼ c1�A(100) (8)
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using a mechanical stylus profilometer with 8mm working
length discretised in 8000 points.

3.2. Turning

Ten 35NCD4 steel sheets (0.35% C, 1% Ni, Cr, Mo)
were machine-turned through the following process: five
with a feed rate of 0.1mm/rev (U_a) and five with a feed
rate of 0.35mm/rev (U_b). Twenty profiles were recorded
perpendicular to the grooves using a mechanical stylus
profilometer with 4mm working length discretised in 8000
points.

3.3. Shot peening

Tin base samples (0.95% Sn, 0.05% Sb) E5 were
sandblasted (53/106 mm) under two different environmental
conditions: E2 in dry environment and E3 in humid
environment. Thirty profiles chosen at random were
recorded from each sample using a mechanical stylus
profilometer with 4mm working length discretised in 8000
points.

3.4. Wear

Two regions of a Ti-6Al-4V hip prosthesis head,
explanted from a human body after 10 years, were named
TF (part of the prosthesis where friction is higher) and TB
(lower friction area). Using a scanning confocal micro-
scope. 280 profiles were recorded The 85 mm scaling length
is discretised in 800 points.

3.5. Grinding

Ti-6Al-4V samples were polished using carborundum
disks 80 (P80), 1200 (P1200) or 4000 (P4000). The roughness
was recorded using a mechanical stylus profilometer with
4mm working length discretised in 8000 points.

4. Results and discussion

4.1. Determination of parameters

4.1.1. Principle

The algorithm used to calculate the linear part of the
Abbott curve, F(x), could be summed up by five steps:

(i) A minimal set of adjacent points of A(x) is chosen to
calculate F(x).

(ii) Linear least-square adjustment is computed.
(iii) Slope precision is quantified by using an appropriate

statistical method (Student’s confidence interval).
(iv) An adjacent point is further added and steps (ii), and

(iii) are reiterated.
All configurations are tested to find the set of points
that leads to the best regression coefficient slope:

(v) The Abbott parameters are calculated.

4.1.2. The Abbott curves’ linear part

4.1.2.1. Linear least-square methods (LLSM). Let n be
the number of points of the Abbott curve, xi the abscissa
(in percentage) of the ith point and yi its ordinate (asperity
height). The coefficients a and b of the equation
F(x) ¼ a+bx were calculated by the linear-least square
method with a residual variance s2 given by

s2 ¼
Xn

i¼1

ðyi � y0iÞ
2=n� 2, (9)

where y0i ¼ aþ bxi are the predicted values and the slope
variance estimator s2bis given by

s2b ¼ s2=
Xn

i¼1

ðxi � x̄Þ2, (10)

where x̄ ¼
P

nðxi=nÞ.Following the Gauss–Markov hypoth-
eses [8] and if the residual yi � y0i obeys a Gaussian PDF, the
random value (b�b)/sb (where b is the unknown value of the
slope and sb its standard deviation) obeys a Student PDF
with u ¼ n� 2 degrees of freedom. The confidence interval
of the slope at the 1�a level is defined by

b� t1�a=2;n�2sbpbpbþ t1�a=2;n�2sb, (11)

where tx,k is the fractile of the Student PDF with k degrees
of freedom and a the significant level of x.

4.1.2.2. Analysis of the LLMS. Eq. (11) is only theore-
tically valid if the Gauss–Markov hypotheses are not
violated and if the residual follows a Gaussian PDF.
It can be shown that the Gauss–Markov hypotheses are
not respected, meaning that the LLSM method cannot
formally be applied. However, using the Bootstrap regres-
sion, it can be shown that these violations do not affect the
determination of the linear part of the Abbott curve. The
values of the coefficients a and b of the straight line are
unaffected; so are the Abbott parameters. Then, the LLSM
method can be applied without any restriction.

4.1.3. Algorithm

Let M be the number of intercepts used to calculate the
asperities’ height distribution. Let bxi ;xj

with xioxj be the
slope obtained by regression analysis using the set of points
ððxi; yiÞ; ðxiþ1; yiþ1Þ; . . . ; ðxj ; yjÞÞ with i 2 ½1;Mð1� wÞ� and
j 2 ½i þ 1;Mw� where w (wA[0..1]) represents the minimal
ratio of adjacent points used to calculate the slope. In the
case of the ISO Norm, w ¼ 0.4 meaning that 40% of the
interpolated line will be used to compute F(x). (This ratio
imposes a minimal critical length to avoid detection of
abnormal small linear part.) All the configurations bxi ;xj

are
computed with their confidence intervals and the ‘‘best’’
slope is obtained when the range of confidence interval
(Eq. (11)) is minimised.

Remark. as an adjacent point is added or deleted during
this algorithm, it is possible to optimise the computation
time by using a recursive method to calculate the regression
equation.
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4.1.4. Intercept calculation related to the Abbott curves

The intercepted length Ll can be defined by the following
set of points:

Ll ¼ fðxl ; ylÞ; ðxk; ykÞ;xk4xl=yl ¼ c,

yk ¼ c; yi4c; i 2 ½l þ 1::k � 1�; Ll ¼ xk � xlg. ð12Þ

4.1.4.1. Different methods. As the roughness profile is
discretised by the recording device, experimental points
with exactly the same amplitude as the intercept are rarely
obtained. More precisely, it is unusual to get the conditions
yl ¼ c, yk ¼ c and, consequently, an interpolation of
experimental points must be implemented. Four methods
can then be applied (Fig. 4) to interpolate intersection
between intercept and profile:

� First method (L0) considers the upper point (xl, yl) of
the profile for the beginning of the intercept and the
lower point (xk, yk) for the end of the intercept (Fig. 4a).
In mathematical terms this relation is given by

Ll ¼
ðxl ; ylÞ; ðxk; ykÞ; xk4xl ; yl4c; yl�1oc; yk4c;

ykþ1oc; yi4c; i 2 ½l þ 1::k � 1�;Ll ¼ xk � xl

( )
.

(13)

� Second method (L1): From the two adjacent points
(xl+1, yl+1) and (xl, yl) satisfying Eq. (13),the linear
equationD0 ¼ a0x+b0is calculated, xleftis defined by
xleft ¼ ðc� b0Þ=a0. With the same method, xright is
obtained with (xk, yk) and (xk+1, yk+1) which gives
D00 ¼ a00x+b00with xright ¼ (c�b00)/a00and finally Ll ¼

xright�xleft (Fig. 4b).
� The third method (L2) could lead to better results. In

method 2, to calculate the intersection between the
profile and the value of the intercept, the Abbott curve
was interpolated by a straight line (Fig. 4c). A more
precise intersection can be found when (xi�1, yi�1),

(xi, yi) and (xi+1, yi+1), with yi�1oyiocoyi+1, are
interpolated by a parabola. To calculate the intersec-
tion, we first evaluate the equation F(x) ¼ ax2+bx+d,
the two roots of the equation ax2+bx+d ¼ c are
calculated and the solution xleft is the root included in
[xi, xi+1]. In the same way, the root xright included in
the interval [xj, xj+1] is calculated with [xj�1, yj�1],
[xj, yj] and [xj+1, yj+1] with yj�14yj4c4yj+1.
� Fourth method (L3): In this method, (xi�2, yi�2),

(xi�1, yi�1), (xi, yi) and (xi+1, yi+1), where yi�2oyi�1o
coyioyi+1, are interpolated by a third-degree poly-
nomial curve (Fig. 4d).

4.1.4.2. Analysis of the intercepted peak length. At first,
peak length error has to be analysed. For this purpose,
different intercepted peak lengths estimated by the four
methods are applied on the 800 experimental profiles
described in Section 3. As the sampling length depends on
the class of profiles, we shall normalise the error on the
length determination in sampling length unit. With this
unscaled unit, the error is bound to 2. In the same
way, to normalise the influence of the profile amplitude
on the peak length precision, the amplitude is divided by
the range roughness. Then, we calculate the mean error for
the four methods. The differences between the length
obtained by method L3 (it is obvious that method L3
should be considered as the best one in terms of
interpolation) and the others (L3�L0, L3�L1 and
L3�L2) allow us to analyse the error for 20 normalised
heights of intercept corresponding to all experimental
profiles. This statistical technique was applied to analyse
the bias on determining the length versus the height of
intercept (in %). Then the error is plotted in sampling
length units versus the height of the intercept (Fig. 5).
As a matter of fact, the values obtained by method L3 are
higher than those obtained by applying the method L0
for small intercept heights, and lower for higher intercepts.
The biggest difference reaches 4% of the sampling length:
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Fig. 4. Methods L0 (no profile interpolation), L1 (linear interpolation), L2 (parabolic interpolation) and L3 (third-degree polynomial interpolation) used

to calculate the intercepted length.
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when a peak, or a valley, is defined with fewer than 5
points, method L0 underestimates the intercepted length
for the valleys and on the contrary overestimates the
intercepted length for the peaks. Method L1 gives
worse precision than the L0 one. This surprising result
can be explained by the analysis of the second order
derivative of the profile ðq2y=q2xÞ. In case of convexity
ðq2y=q2x40Þ, method L1 overestimates the intercepted
length. If the profile possesses an inflection point
ðq2y=q2x ¼ 0Þ, the error is minimal and corresponds to
the value y ¼ 50% for a high number of experimental
profiles. In case of concavity ðq2y=q2xo0Þ, method L1
underestimates the intercepted length and method L2
gives better results. The main problem of the L2
interpolation is that the parabola and the profile intersec-
tion are not centred on the interpolation points. In
fact, L2 minimises xleft and xright. However, if we consider
that a peak can be statistically symmetrical to its maximal
value, the length L ¼ xleft�xright should be centred on its
true value. To verify this hypothesis, xleft and xright are
computed using both the L2 and L3 methods for 20 values
of c on each peak of the 800 profiles. An analysis of
variance shows that this difference does not depend on the
intercept height. we obtain xL3

left � xL2
left ¼ 0:0297� 0:0003,

xL3
right � xL2

right ¼ 0:0301� 0:0003 that gives a difference on
the intercept length of LL3

�LL2
¼ 0.000570.0003. This

difference is statistically insignificant, and therefore the
hypothesis (symmetrical peaks) is statistically confirmed.
The conclusion from this analysis is that method L1 has to
be proscribed and method L0 is appropriate if the
optimisation of the computation time is searched rather
than a better precision on the intercept length determina-
tion. Method L2 is more accurate when a better precision
in the intercept length calculation is wanted. Finally,
method L3 is required when the co-ordinates of the
interception between profile and intercept have to be
calculated for a particular roughness analysis.

4.1.5. t-Student computation

The tx,k calculation, used to estimate the confidence
interval (Eq. (11)), needs complex integral with root research
on integral functions. However, some approximate analy-
tical formulae exist to estimate the t PDF and tx,k are found
using a large series function with cosine terms that require
much computational time. As the algorithm requires the
computation of a high number of t PDF, an alternative
approach consisting in approximating the t values, can be
applied. As will be seen later, only one x value is required in
our method. Consequently, tx,k was evaluated by a simple
formula for one x and for any k: t0.995,k is approximated by
the original following equation (Fig. 6):

t0:995;k ¼ 2:57þ 82:611e�1:18k�1:17 þ 5:43=ðk � 0:898Þ. (14)

The high confidence level of 1�a ¼ 0.995 is justified:
indeed when a high number of simulations is carried out, we
are certain (in five cases out of 1000) that the estimated slope
is included in the calculated confidence interval. If the usual
statistical interval 1�a ¼ 0.95 was used, five cases out
of 100 would not be included in the confidence interval. As
our algorithm leads to the calculation of over 1000 slopes,
it is then possible to find a high number of slopes that
would not be included in the confidence interval: conse-
quently for different values of 1�a, different ranges of the
linear part of the Abbott curve are obtained. The lower
the significant level 1�a, the higher the range of the linear
part. To quantify experimentally the influence of the
significant level on the determination of the Abbott
parameters, the values of Mr1 and Mr2 are estimated
from 10 electro-eroded profiles for different values of 1�a
(Fig. 7). As could be shown, the values of Mr1 and Mr2

(that affected all other Abbott parameters) are affected if
1�a40.95. As a consequence, the majored value of
1�a ¼ 0.995 is retained for the determination of the linear
part of the Abbott curves.

4.1.6. Minimal percentage on the Abbott curves

A small part of Abbott curves may present a good linear
part that does not represent the central roughness
amplitude. To avoid this artefact, the DIN norm proposes
to take exactly 40% of the points to plot the linear part of
the Abbott curve. Is this value the best one? To answer this
question the Abbott parameters were calculated for all the
profiles using L3 method with 200 intercepts by imposing
the minimal range of AHD in the interval [5%, 95%]
to estimate the precision on the amplitude coefficients
(Rk, Rvk and Rpk). The precision on these coefficients
depends on the precision in the determination of the slope
of the linear part of the Abbott curve. The confidence
interval of F(x) at a point x0 is given by

aþ bx0 � t
1� a=2S

n� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=nþ x0 � x̄ð Þ

2=
Xn

i¼1

xi � x̄ð Þ
2

s
,
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where x̄ is the mean of the n consecutive values of xi

included in the linear part.
Consequently, Rvk, Rk and Rpk standard deviations are,

respectively, given by

sRpk
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

n
þ

ðx̄Þ2Pn
i¼1ðxi � x̄Þ2

s
,

sRvk
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

n
þ
ð100� x̄Þ2Pn
i¼1ðxi � x̄Þ2

s
; and

sRk
�

sRvk
þ sRpk

2
. ð16Þ

These parameters can be considered as new roughness
ones that characterise the disorder of the profiles. To
analyse the effect of the minimal range of AHD, (AHDmin),
profiles are normalised by dividing the profile height by the
maximal range amplitude (Rt). Then for different values of

AHDmin (5–95% with an incremental step of 5%) and for
each profile, sRk was calculated, and finally the mean
m[sRk] and the standard deviation s[sRk] of sRk were
calculated for all profiles. It was found that the mean
increases exponentially when AHDmin increases (Fig. 8)
but is quite constant for AHDmin lower than 20%. As
AHDmin increases, the probability that the straight line fits
well with the Abbott curve decreases. Therefore, if the
linear assumption is not respected, the probability of
finding points of the Abbott curves far from the linear part
rises, which will increase the standard deviation of
sRk

;sRpk
and sRvk

. However, taking the shortest AHDmin

could lead to false results because of the presence of a short
well-fitted linear part whose slope differs from the real
linear Abbott domain. Consequently, AHDmin has also to
minimise s[sRk] for each category where s[sRk] is minimal.
As regards (Fig. 9), the Abbott parameters get good
stability by taking a minimal range AHDminE15%.

Fig. 6. Plot of t0.995,k, Student’s t value, versus degree of freedom (k). Full line corresponds to the non-linear regression given by Eq. (14).
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4.1.7. Intercept numbers on the Abbott curves

The number of intercepts (N) used to plot the Abbott
curves influences the precision of the parameters since their
true values are ideally obtained for an infinite number of
intercepts. However, computational time increases with N

and its choice must be optimised. A1, A2, Mr1 and Mr2

precision depends on the discretisation step length between
two intercepts. For example, precision on Mr1 or Mr2

would not exceed 100/N.
To evaluate N, two methods can be applied:

(i) Creating an iterative algorithm to find the minimal
number of intercepts that gives the precision on the
parameters defining a norm and using a convergence
criterion.

(ii) Analysing convergence parameters on experimental
profiles and finding the pertinent N.

The first method is the more efficient since no condition
is imposed on the profile. However, increasing N increases
the number of points of the Abbott curve and leads to a
linear part with a high number of points. By a computation
complexity study, it can be shown that an iterative
algorithm increases time by eight times more than the
deterministic one. For this reason, the iterative algorithm is
left aside. We have analysed the influence of the number of
intercepts used to plot the Abbott curves. All the profiles
are computed with a number of intercepts included in
the interval [20y 500]. Then the means of the Abbott
parameters for each group and the means of these means
are computed. As Mr1 and Mr2 parameters determine
totally the accuracy of the others, the variation of Mr1 and
Mr2 are plotted versus the number of intercept lines
(Fig. 10). It has to be noticed that after 250 points, the
error on the determination of the parameters is lower than
2% for Mr1 and lower than 0.1% for Mr2. The difference
in accuracy between Mr1 and Mr2 is a consequence of the
peak profiles’ variations being more important than the
valleys’. With the same analysis, it was proved that errors
on Rpk, Rk and Rvk are less than 0.6% by taking 250

intercept lines and errors on A1 and A2 do not exceed 1%.
For these reasons, all the Abbott curves will be plotted with
250 intercepts.

4.2. The extended Abbott parameters

As in the DIN norm the Abbott parameters are defined for
sigmoid curves, some errors may appear when parameters
are computed on non-sigmoidal ones. Two possibilities can
then be considered to avoid eventual artefacts. Firstly, when
the computed parameters do not respect rigorously the DIN
norm specification, the parameters will not be performed.
Secondly, the DIN norm is modified to calculate all the
parameters for the non-sigmoidal curves, and to obtain the
same values as the norm states for sigmoidal ones. For
example, if we analyse the Abbott curve of a sinusoidal
profile, no DIN parameter can be computed (Fig. 11). Let us
analyse the physical meaning of the Rpk: this parameter was
created to represent the mean height of peaks that passes
over the distribution of the ‘‘peaks of the interior profile’’ and
then to characterise some physical surface properties like the
wear processes. For the sinusoidal profile, no peak exists over
the interior profile. Consequently, the DIN norm could
present this major defect when Abbott parameters are
used to quantify the effect of a physical process on the
modification of the surface topography: suppose that a wear
phenomenon has to be characterised by the modification of
the surface topography during wear cycles. On the initial
surface, Abbott parameters are computed respecting the
DIN norm. Then the wear process erodes the peaks at each
wear cycle that will decrease the RPK value. During the wear
process, it may happen that peaks are too eroded to be
characterised by the RPK with respect to the DIN norm. As a
consequence, the wear damage can only be characterised by
the Abbott parameters on a reduced time interval. This
example proved that the DIN norm has to be extended under
the following assumptions:

(i) respect the DIN philosophy,
(ii) parameters can always be computed,
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(iii) give exactly the same parameter values as the DIN
norm if Abbott curves are sigmoidal,

(iv) the values of all parameters have to be numerically
continuous in the transition [calculable by the DIN
norm—non-calculable by the DIN norm],

(v) looking at Abbott parameters, experimenters must be
able to conclude if the parameters tally with the DIN
norm or are extended DIN parameters.

For example, let us analyse the parameter Mr1 (Fig. 11)
of the Abbott curve applied to a noisy sinusoidal profile.
To be computed by the DIN norm, the Abbott curve must
lie above the regression line. Mr1 equals zero if the
regression line and the Abbott curve are superposed. If the
Abbott curve is under the regression line, then Mr1 cannot

be computed. However, let Mr1 be the value of the
intersection between the highest point of the Abbott curve
and the regression line, then A1 becomes the area between
the highest point and the Abbott curve. This area becomes
negative and characterises an excessive wear of the peak. It
becomes obvious that this parameter is continuous and no
discontinuity appears in the transition A1 ¼ 0. The same
method is applied for A2 computation.

4.3. Experimental profiles

In this part, Abbott and extended Abbott parameters are
computed to analyse the modification of surface topogra-
phy due to different physical processes.

4.3.1. Electro-erosion

Does pulse time duration have an influence on surface

roughness? To answer this question, the Abbott parameters
were computed for different profiles (Fig. 12). By analysis
of variance, it can be remarked that Rpk, Rk, Rvk, A1 are
highly discriminating for the electro-erosion process. On
the contrary, Mr1, Mr2 and A2 do not allow us to
discriminate it. To normalise these parameters, we decided
to reduce each Abbott curve by dividing Rpk, Rk and Rvk by
Rt (with Rt ¼ Rpk+Rk+Rvk) to obtain the reduced
coefficients R�pk, R�k and R�vk (Table 2). A new analysis
of variance led us to conclude that R�pkel_a

¼ R�pkel_b
,

R�kel_a
¼ R�kel_b

and R�vkel_a
¼ R�vkel_b

. That means that peaks

and valleys get the same morphology. As Mr1 and Mr2 do
not depend on the scale unit and as it was proved by
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the statistical analysis that amplitude structure is scale
independent, then electro-erosion profiles are statistically
self-affine, describing a fractal structure.

4.3.2. Turning

All the Abbott parameters characterise the feed rate
parameters (Fig. 13). When the feed rate increases,
all parameters that characterise peaks increase except
for Rvk. Increasing the feed rate from 0.1mm/rpm
(Fig. 13a) to 0.35mm/rpm (Fig. 13b) increases the
roughness amplitude (RpkU_a

þ RkU_a
þ RvkU_a

¼ 21:5 mm,

RpkU_b
þ RkU_b

þ RvkU_b
¼ 28:8mm). As shown earlier

(Section 4.3.1), the amplitude roughness parameters were

standardised (Table 2). We can conclude that decreasing
the feed rate decreases the peak amplitude due to friction
between the material and the turning tool. The material is
snatched away for small feed rates and is peeled off for
higher ones. The values of Mr1 confirm this hypothesis
(Mr1U_a ¼ 6.5, Mr1U_b ¼ 18.2) as the most important
volume of peaks for the profiles U_b (A1U_a ¼ 2.5,
A1U_b ¼ 81.9).

4.3.3. Shot peening

By analysing variance, it can be shown that all the
parameters discriminate among the different samples
except for Mr1 (Fig. 14). Those experimental profiles are
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Table 2

Values of reduced Abbott amplitude parameters

Study R�pk (%) R�k R�vk
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Tool machine milling U_a U_b U_a U_b U_a U_b

18 40 46 50 36 10

Shot penning E2 E3 E5 E2 E3 E5 E2 E3 E5

23 29 26 47 41 34 30 40 40

Wear of hip prothesis head TB TF TB TF TB TF

8 36 30 21 62 9
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quite satisfactory as far as the fractal structure is
concerned. If we use the reduced amplitude Abbott
parameters, it can be concluded that profiles E5, before
shot peening, get the same parameters as the E3 ones
after shot peening in dry environment (Table 2).
It could statistically be proved by Student’s test that
R�pkE3

� R�pkE5
, R�kE3

� R�kE5
, R�vkE3

� R�vkE5
, Mr1�E3 �

Mr1�E5 and Mr2�E3 �Mr2�E5. This clearly means that shot

peening in dry environment does not affect the mass peak
distribution. However, profiles E5 present a more dis-
ordered aspect. This example proves that Abbott para-
meters do not characterise the frequency feature of the
profile (like the usual roughness amplitude coefficient Ra).

4.3.4. Wear of hip prosthesis head

Firstly, the worn surface of the prosthesis head gets
quite a higher amplitude than the unworn one (Rpk+
Rk+Rvk ¼ 5.49 mm against 6.78 mm) (Fig. 15). The main
aspect is the difference between the percentage of valleys
for the more solicited part (TF) and the less solicited
one (TB). The central roughness amplitude is not large

(Table 2). This analysis is confirmed by the values
of Mr1 and Mr2 (Mr1TB ¼ 7.5, Mr1TF ¼ 23.5 and
Mr2TB ¼ 80.7, Mr2TF ¼ 91.3). As regards these values,
profiles TB and TF seem to be inverted in amplitude. An
analysis of the wear mechanisms shows that the wear
surface TF is damaged by a TA6V fibre between the hip
prosthesis and the cup. Biomedical and chemical investiga-
tions show that fibre moves (when the human body does)
without constraint in the TB region and is immobilised in
the constraint zone (TF) during an undetermined period.
This hypothesis seems to be confirmed by this study of
roughness parameters: immobilised fibre creates important
valleys and then the linear part of the Abbott curves is
displaced into the peak zone.

4.3.5. Polished surface

It may be logical to find a statistical self-affinity fractal
structure because the abrasive grains get the same morphol-
ogy (Fig. 16). By this fact, the same values of the reduced
amplitude Abbott parameters are expected. However, this
fact is not confirmed by the experimental values and could
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be explained by the difficulty in evaluating the intercept
length when the number of intercepts is decreasing.

4.4. Simulated profiles

To validate the efficiency of our algorithm, different
categories of profiles were simulated. As analytical func-
tions are not stochastic and lead to identical results (that
do not allow us to validate our algorithm), a stochastic
fractal profile was added to the original non-stochastic
ones to obtain global stochastic ones. To simulate
consequent profiles that look like experimental ones, we
choose the Weierstrass–Mandelbrot function [9] (Fig. 17a).
Six categories of profiles were simulated on purpose
to represent most of the profiles met in surface analyses
(Fig. 17b–g). One hundred profiles were simulated, the
related Abbott parameters were calculated by our algo-
rithm and finally descriptive statistics were computed.

The profile (a) presents a sigmoidal Abbott curve on
which the DIN norm is applied without any restriction. All
values are positive except for A2 meaning that the area is
calculated under the straight line.

The Profile (b) shows an Abbott curve on which only
extended DIN parameters can be computed. As a result, A1,
A2, Rpk, Rvk get opposite signs because the Abbott curve is
under the straight line on the left and above on the right.

Profiles (c) and (d) represent, respectively, a half-
sigmoidal curve and inverted one, then Rpk and Rvk get
opposite signs. The range [Mr1, Mr2] is located on the
upper profile height for (d) and in lower profile for (c).

Profile (e) represents a sigmoidal profile with small A1

and A2. If no fractal noise is introduced in this triangular

profile, A1 ¼ A2 ¼ 0 and Abbott curves will be straight
lines. In this case, A1 and A2 are a measure of the fractal
noise.
For profiles (f) and (g), the slopes of the Abbott curves

are calculated from valley (f) and from peak (g) for two
reasons:

(i) peaks or valleys get large amplitude when compared
with the fractal amplitude function,

(ii) peaks or valleys get less variance in a statistical sense
than the fractal noise: points are aligned in the Abbott
graph in which regression is computed.

In this case, Abbott curves formally have to be
decomposed in two parts that represent macro and micro
roughness, and the cut-off between these two stages could
lead to new Abbott parameter definitions (micro and
macro). Using these publication results, a new definition of
parameters characterising the two stages will emerge.

4.5. Wear analysis

The method developed before also has to be validated on
a dynamic physical process. In this part, we first simulated
a wear model, applied it to the curves (a)–(f) of Fig. 17 and
then analysed the evolution of the wear process through the
evolution of the Abbott parameters.

4.5.1. Wear simulation

The following elementary model is used to simulate a
wear process. Let W(x), be the probability that a wear
phenomenon erodes an element with height dh during each
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wear cycle (the higher the dh, the less wear resistant the
material). Let Zmax be the maximal height of the profile
and Zmin the minimal one. As the wear process does not
erode materials on a depth lower than Zmin, we defined the
probability to erode an elementary volume of the material
during every wear cycle by

W ðxÞ ¼ k

Z Zmax�z

0

e�lx dx, (17)

where k and l are real numbers. The higher the l, the higher
the wear phenomenae (intensity stress, corrosion and so on).
This trivial model can be applied only on regular profiles
without auto-correlation. Wear integral (Eq. (17)) is

normalised to obtain a PDF, then k
RZmax�Zmin
0

e�lx dx ¼

1 and the following expression can be deduced:

k ¼ ð1� e�lðZmax�zÞÞ=l
� ��1

. (18)

The probability that an elementary material volume can
be eroded at a height z is finally given by

W ðxÞ ¼ 1� k 1� e�lðZmax�zÞ
� �

. (19)

4.5.2. Wear results

Wear algorithm is applied to curves presented in Fig. 17.
With parameters l ¼ 0.1 and dh ¼ 0.01. For every 100
wear cycles, the Abbott parameters are computed up to
2000 cycles. The profile and the associated Abbott curves
are represented at the end of the wear process in Fig. 18.
During the wear process A1 decreases, i.e. peaks are eroded
by the wear phenomenon. A1 is positive for fewer than 900
wear cycles and becomes negative after (Fig. 18d). As was
stated in section 4.2, the transition from the DIN
parameters to the extended DIN ones respects continuity.

4.6. Manual-computer comparison

Generally, the Abbott parameters are manually calcu-
lated and the main difficulty consists in drawing the slope
of the Abbott curves and determining Mr1 and Mr2. In
this part, we shall compare the manual and the computa-
tion methods.

4.6.1. Methodology comparison

Sixty profiles were recorded by a tactile profilometer on
an electro-eroded surface discussed in Section 3.1 (Fig. 2a)
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where the Abbott curves are sigmoidal. Then three
evaluations were carried out on all the profiles by different
experimenters to determine the Abbott parameters. We

retained only the Mr1 and Mr2 estimations since the
precision on the other Abbott parameters mainly depends
on the determination of these two parameters.
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Fig. 18. Profiles and Abbott curves after 2000 wear cycles applied on original profiles of Fig. 17.
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4.6.2. Results from comparison

Statistical results are reported in Table 3. Both Mr1 PDF
(manual and automatic) obey a Gaussian law (critical
values of the Shapiro Wilks test on manual determination:
0.1497, automatic: 0.1352). Mr2 also obeys a Gaussian
PDF for both methods (manual: 0.97, automatic: 0.98).
Both automatic Mr1 and Mr2 determinations are higher
than manual ones: experimenters unconsciously minimise
the range of the linear part of the Abbott curves that lead
to a lower range for F(x) equation given by the algorithm.
The dispersion is higher if the parameters are evaluated
manually without any computation. However, the differ-
ence between manual and automatic evaluations is less
than 1%. As a result our algorithm is reliable and could
accurately be applied to experimental profiles.

5. Conclusion

An algorithm was performed in order to have an
automatic evaluation of the Abbott curve parameters.
Execution time does not exceed 0.1 s on a personal
computer. Discretisation artefacts are discussed by analys-
ing experimental and theoretical profiles, and lead to the
conclusion that parameter estimations are accurate. As a
high number of different profiles were accurately analysed,
we think that our algorithm can be applied to a high
number of experimental profiles. Like all numerical
techniques, some particular profiles could lead to erro-
neous results (high isolated peak, or valley, non-stationary
profiles, micro and macro-roughness, etc.). However, the
Abbott curves have no application in those typical cases
and another parameters will be more appropriate to
characterise such types of profiles. It was shown that
fractal functions could be used to simulate a wear process
or to validate the efficiency of the parameter. This method

was applied for over 3 years in our laboratory and nothing
outrageous was found moreover it can be extended to 3D
surfaces [10] without any problem. Finally, some algo-
rithms and results described in this paper will be helpful to
calculate other roughness parameters such as the number
of peaks, the radius of curvature and so on.
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Table 3

Comparison between manual and the computed methods to calculate Mr1 and Mr 2 parameters on 60 profiles of electro-eroded surface (Fig. 2)

Parameter Determination methods Mean Median Minimum Maximum Standard deviation

Mr1 Manual 11.98 11.95 7.06 16.30 2.24

Mr1 Algorithm 11.36 11.63 6.04 14.94 1.85

Mr2 Manual 89.82 89.94 83.42 96.19 2.37

Mr2 Algorithm 90.86 90.94 85.96 94.72 1.72
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