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Multiscale measures of equilibrium on finite dynamic systems

M. Bigerelle, A. Iost *

Laboratoire de Mee�tallurgie, Physique et Gee�nie des Matee�riaux, CNRS UMR 8517, Equipe Surfaces et Interfaces, ENSAM Lille, 
8 boulevard Louis XIV, 59046 Lille Cedex, France

Abstract

This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity

of information. The system is divided into elementary cells and the quantity of information is studied with respect to the

cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic en-

tropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy

follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equi-

librium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of

equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given

confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the

proposed simulation. It follows that the time to reach equilibrium for a constant error probability, te, depends on the

number, n, of elementary cells as: te / n2:22�0:06 . For an infinite system size (n infinite), the intrinsic entropy obtained by

statistical modelling is a pertinent characteristic number of the system at the equilibrium.

1. Introduction

In the field of materials science, phenomena such as diffusion, fatigue crack growth, and wear for example involve

dynamical models. Some states of the system are modified in time and generally tend to settle at a final value. For an

isolated system, the second principle of thermodynamics involves that the most probable state leads to the maximal

entropy on average. If in the ideal case of an infinite system this equilibrium state can never be obtained, equilibrium is

only reached after a finite time for a finite system size. How to define equilibrium for discretised systems? In the usual

case, entropy must be maximal. However, when stochastic simulations such as the Monte-Carlo method are used,

entropy can not only be defined by Boltzmann definition but is related to its statistical estimation. This consists in

dividing the system into a phase space. The size of the elementary cell is difficult to choose, particularly when the

system is numerically simulated. We shall then (1) study the system with different decreasing divisions, (2) give a

measure on each cell, (3) analyse this measure at different scales, and (4) find an unscaled measure of the state of the

system. The main problem is to define a measure on this system. There is a remarkable likeness between information

and entropy in physics, which allows to solve the problem of Maxwell’s demon. Brillouin [1] proved that information

could be considered as the negative of the system’s entropy called ‘‘Negentropy’’. Entropy measures the lack of in-

formation and gives the total amount of information missing on the micro-states of a system. However, the tools used

to quantify Negentropy remain theoretical mathematical objects rather than applied mathematical ones [2]. In the
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Information Theory, we must start by giving a precise definition of the word ‘‘Information’’. The problem involves a

certain number of possible answers. Information is a function of the ratio of the number of possible answers before and

after a logarithmic law is retained to ensure the additivity of information. This theory first described by Shannon [3] is

used in classical problems relating to information (coding, computer science, and telecommunication). There are

powerful tools to quantify information in a discretised system associated with the multifractal theory [4,5], to analyse

the concept of measure at different scales and to model it by some power laws. If the measure is well chosen, then it

can be related to the entropy of the system via the Shannon entropy [3]. However, this theory describes the system in

term of probability and then the system is seen as an infinite set. When physician observed a system, it is by nature a

finite one (i.e. a sample) and then all probability measures are become statistical estimators meaning that all proba-

bilities are estimated with uncertainly. As all multifractal measure that leads to calculate some space dimensions are

based on probability calculus then, due to intrinsic fluctuation, dimensions becomes uncertain. El Naschie proved

that Cantorian space–time e1 possess an irreducible uncertainly [6] that amounts to a realistic resolution of the

measurement problems. Consequently, all topological dimensions and Hausdorff dimensions must be described in

terms of expectation [7] proving that nature is fundamentally and irreducibly statistical [8]. In a first part, we shall give

a brief introduction of multifractal formalism and propose a relation between entropy and information. In a second

part, we shall apply these concepts to Monte-Carlo simulation to analyse the kinetic and scaling laws of a dynamic

system.

2. Mathematical definitions

A few mathematical definitions will now be introduced. The fractal dimension is insufficient to define the geometry

and to give a quantitative description of a measure taken on a set. From the definition of the Haussdorf dimension, we

can define the f ðaÞ exponent which characterises the fractal dimension of the Ea subset. The f ðaÞ spectrum can be

obtained from the Dq curves thanks to the Legendre transform:

sðqÞ ¼ ðq� 1ÞDq ð1Þ

a ¼ � osðqÞ
oq

ð2Þ

f ðaÞ ¼ sðqÞ � qa ð3Þ

This Legendre transform being mainly used in thermodynamics, with the following analogy:

f ðaÞ () entropy sðqÞ () free energy

a () energy q () inverse temperature

Indeed, the characteristic shape of the plots of f ðaÞ versus a is reminiscent of the dependence on E of the entropy for a

thermodynamic system [5]. In particular the Dimension of Information D1, can be defined for q ¼ 1 in Eq. (3) and leads

to:

D1 ¼ að1Þ ¼ f ðað1ÞÞ ¼ lim
e!0

SðeÞ
log e

ð4Þ

where

SðeÞ ¼
XNðeÞ

i¼1

liðeÞ logliðeÞ ð5Þ

can be seen as entropy measured at the size e. From Eqs. (4) and (5), one gets SðeÞ ¼ S0e�D1 . As the system is discretised,

the smallest cell will be equal to unity, as defined in the Non-Standard Analysis, and does not tend to the null value. A

minimal cell size lower than a critical value ec is really physically meaningless since e < ec would lead to a more precise

specification of the system than allowed by quantum theory defined by the Heiseinberg’ uncertainly principle. There-

fore, S0 ¼ lime!1 SðeÞ is the intrinsic entropy value of the system that does not depend on the size of the cells. In

conventional cases, li will be the fraction of the total set mass contained in the ith box. In the following section, we

propose to study the relevance of the intrinsic entropy on a discretised system obtained by the Monte-Carlo simulation.

At the outset, the system is far from equilibrium. It tends to equilibrium to maximise the statistical entropy when

increases time.
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3. Monte-Carlo simulation

The phenomenon, which is presented above is the diffusion of A* atoms in A. This system is computed for two-

dimensional systems represented by a n2 Boolean matrix (0¼A; 1¼A* Atom) with n2=2 A atoms on the right part of

the matrix (Fig. 1).

The A jump elementary process occurs as follows: on average and for each iteration, each A* atom can jump

randomly in one of the four directions in order to occupy an empty neighbouring site. One crore Monte-Carlo sim-

ulations (MCS) are carried out for seven different sizes of the system (82, 162, 322, 642, 1282, 2562, and 5122 cells). Then

the Box Counting Algorithm [5] is applied onto each system at different times. X ðt; nÞ is the system defined at time t with
a system of size n2 that contains n2=2 A* particles. For each system X ðt; nÞ, the quantity of information SðeÞ is computed

for different sizes e that follow a dyadic decreasing size. By plotting SðeÞ versus logðeÞ, the regression line is a straight

line that allows us to calculate the slope, D1, and the intrinsic entropy S0 by the intercept thanks to the least square

method. Fig. 2 shows the S0 evolution versus simulation time for the seven different system sizes (each point is the mean

of several simulations). As can easily be shown, the entropy S0 increases with time: diffusion increases the information of

the physical system. Moreover, when the process reaches equilibrium, an asymptote occurs leaving unchanged the

values of entropy we shall call SEq
0 , the intrinsic entropy of equilibrium. To analyse more precisely this asymptote,

10,000 systems X ð5000; 32Þ were simulated at the thermodynamical equilibrium (A and A* atoms are uniformly dis-

tributed and then the entropy is maximal) and SEq
0 are computed. Then the probability density function of SEq

0 is plotted

(Fig. 3) and follows a Gaussian law that is similar to the law of entropy fluctuation of a system at equilibrium [9].

Entropy variation entails information variation quantified by the intrinsic entropy. As shown by El Naschie [8], most

Fig. 1. Monte-Carlo simulation of the diffusion of A* atoms (left part of the matrix) in A atoms (right part). Iterations represent the

number of random jumps per atom called Monte-Carlo steps (0, 1000, 4000, 15,000, 60,000 and 5,000,000 MCS). The orange colour

represents the higher sizes of site percolation clusters of A* and respectively the blue colour the higher sizes of site percolation clusters

of A. Black cells represents the A* atoms and white ones the A atoms that both are not included in the percolation clusters. Notes that

the percolation threshold at equilibrium is pc ¼ 0:5927460 and as the number of A* and A are identical (p ¼ 0:5 < pc), no percolation is

present.
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statistics of fundamental processes related to basic problems are Gaussian and fundamental statistics are a subcategory

of Gaussian distributions that involves some fluctuations in the information dimension.

3.1. Equilibrium time

Then the question is ‘‘Is equilibrium reached and how long does it take?’’ We shall prove that this question has no

physical sense in absolute and one has to admit a probability error to the answer. We postulate that the equilibrium

time will be the time te in which S0ðteÞ ¼ SEq
0 . However, this equality can only be true in a statistical sense with a given

confidence level. Let us analyse results obtained for the 322 cells system: as SEq
0 follows a Gaussian PDF with mean

lSEq
0

¼ 0:0308 and standard deviation of rSEq
0

¼ 0:00308, at 95% for the confidence interval, we find S0ðteÞ ¼ 0:0246 and

from Fig. 4 the value of te ¼ 600 MCS is obtained. ‘‘Does this mean that after 600 MCS equilibrium is reached?’’ In

Fig. 2. Plot of the intrinsic entropy S0 evolution versus simulation time (in Monte-Carlo step) of the Monte-Carlo simulation of the

diffusion of A* atoms in A atoms for seven different system sizes (82, 162, 322, 642, 1282, 2562 and 5122 cells). All points are the mean of

several simulations.

Fig. 3. Histogram of intrinsic entropy SEq
0 at equilibrium for a system size of 322 cells. The histogram is obtained by 50,000 simulations

of the equilibrium and the Gaussian PDF is plotted with mean lSEq
0

¼ 0:0308 and standard deviation of rSEq
0

¼ 0:00308.
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fact, in a philosophical sense, it is impossible to give either positive or negative answer. This theory only asserts that we

cannot answer positively. In fact, we will prove that the quantity of information is not large enough to reject the state of

equilibrium if the equilibrium is not reached. Suppose that instead of observing one system, we observe p systems that

follow the same dynamic structure. Then the entropy can be averaged at each Monte-Carlo step, and as S0ðteÞ follows a
Gaussian PDF, the standard deviation of the mean will also follow a Gaussian PDF with standard deviation equal to

rS0ðteÞ=
ffiffiffi
p

p
. Two important remarks have to be made:

Let us note DSEq
0;p;n ¼ SEq

0 ðte;nÞ � SEq
0 ðt̂te;n;pÞ where t̂te;n;p is an estimation given by statistical analyses to determine the

equilibrium time of a system of size n2 with p simulations and te;n is the real unknown time to reach equilibrium.

Therefore, DSEq
0;p;n represents the sampling error made on measuring the intrinsic entropy.

• For a given n, DSEq
0;p;n decreases (in mean) as p increases. Consequently, te will increase with the number of observa-

tion p: the more frequently a dynamic system is observed, the longer the time of equilibrium is. It becomes impossible

to assert that equilibrium is reached only in an asymptotically sense that is not implicitly numerically obtained.

• For p fixed, one gets limn!1 DSEq
0;p;n > 0 and as a consequence te will always increase with n for a fixed number of

observations p. It is impossible to affirm for any system size that equilibrium is reached for a given number of ob-

servations of the system.

The main problem is now to answer the following question: ‘‘at the limit, does the system reach its equilibrium?’’ In

other words, ‘‘Is the intrinsic entropy a pertinent measure to detect asymptotically the equilibrium state?’’ To answer, it

is first necessary to estimate the standard deviation of S0ðt̂te;n;pÞ noted rSEq
0

ðt̂te;n;pÞ that depends on the size of the system and

the number of observations for the mean computation. For only one observation, the value of rSEq
0

ðt̂te;n;1Þ versus the

system size, n, was plotted in Fig. 5 which gives by regression analysis rSEq
0

ðt̂te;n;1Þ / n�1=5. Then from p observations of the

system, one gets from the Central Limit Theorem rSEq
0

ðt̂te;n;pÞ / n�1=5p1=2. As consequence, limn!1 limp!1 rSEq
0

ðt̂te;n;pÞ ¼ 0 and

with a probability equal to 1, it is possible to affirm that the equilibrium state is reached at the limit, and then our

intrinsic entropy is an asymptotic measure of the equilibrium state and the time to reach equilibrium in a finite dis-

cretised system.

However, for a discretised system, the size and the number of observations are finite and the affirmation that

equilibrium is reached cannot be stated without any error probability. Let us now define two probability errors:

d: error of rejecting erroneously the equilibrium state although equilibrium is reached.

b: error to accept the equilibrium state although it is not reached.

Let DSR
0;p;n ¼ ðSUnEq

0 ðtÞ � SEq
0 ðt̂te;n;pÞÞ=rSEq

0
ðt̂te;n;pÞ (with X is the mean of X ) the reduced error on the equilibrium state: the

higher DS0;p;n is, the lower error b is (for a fixed value of error d). Under Gaussian assumption of the SEq
0 ðt̂te;n;pÞ PDF, the

b values could be modelled by:

Fig. 4. S0 intrinsic entropy variation versus simulation time (in Monte-Carlo step) for the Monte-Carlo simulation of the diffusion of

A* atoms in A atoms for a system size of 322 cells. All points are the mean of several simulations. Each bar represents the mean values

and the 95% confidence interval obtained by 50,000 simulations.
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P ðDSR
0;p;nÞ ¼ 1� bðDSR

0;p;nÞ ¼ F ðu1�d � DSR
0;p;n

ffiffiffi
p

p Þ ð6Þ

with F ðuÞ ¼
R u
�1

1ffiffiffiffi
2p

p expð�u2

2
Þdu and F ðuaÞ ¼ d. For the system size n ¼ 32 we have plotted the different curves

PðDSR
0;32;5Þ; PðDSR

0;32;10Þ; . . . ; P ðDSR
0;32;35Þ for a fixed risk d ¼ 0:0001. Let us now illustrate these curves by an example: we

choose to make an error of 1/10,000 (d ¼ 0:0001) that our simulation rejects the equilibrium although equilibrium is

reached. We accept with a 10% error (P ðDS0;p;nÞ ¼ 0:9) to accept the equilibrium state although it is not reached and will

only be reached after 70 MCS (t ¼ t̂te;32;p � 70). From the histogram in Fig. 3, one gets SEq
0 ðt̂te;n;pÞ ¼ 0:0295,

rSEq
0

ðt̂te;n;pÞ ¼ 0:00308 and for 70 MCS (Fig. 2) one gets SUnEq
0 ðtÞ ¼ 0:0285. Then according to Fig. 6, we report the point

(0.9, 0.0285) and we must process 48 simulations, or physically observe the system 48 times.

3.2. Equilibrium time determination

We shall now introduce an original algorithm to detect the time to reach equilibrium. As can be observed in Fig. 4,

S0ðt̂te;n;pÞ becomes constant at equilibrium from a statistical point of view. S0ðt̂te;n;pÞ PDF approximately follows a

Gaussian PDF with homogeneous variances. Let us note S0ðti;n;pÞ the ith measure of entropy for the pth system of size n
(with ti;n;p < tiþ1;n;p, i 2 f1; . . . ; Ig, p 2 f1; . . . ; Pg. Let us note ie the time indicia such that tie ;n;p will be the time to reach

equilibrium and then S0ðtie ;n;pÞ ¼ S0ðtieþ1;n;pÞ ¼ S0ðtieþ2;n;pÞ ¼ � � � ¼ S0ðtI ;n;pÞ in a statistical sense.

We shall then introduce the algorithm to test this equality. The equilibrium hypothesis will lead to:

lbS0ðtie ;n;P Þc ¼ lbS0ðtieþ1;n;P Þc ¼ � � � ¼ lbS0ðtI;n;P Þc ð7Þ

where lbS0ðtk;n;P Þc is the mean of the intrinsic entropy calculated for a system of size n with P simulations obtained at

time tk (we will note also r2bS0ðtk;n;P Þc, the variance at the intrinsic entropy at same state).

By analysis of variance (ANOVA) we test the hypothesis lbS0ðti;n;P Þc ¼ lbS0ðtiþ1;n;P Þc ¼ � � � ¼ lbS0ðtI ;n;P Þc at the

significant level d.
At equilibrium r2bS0ðtie ;n;P Þc ¼ r2bS0ðtieþ1;n;P Þc ¼ � � � ¼ r2bS0ðtI;n;P Þc and we shall note r2bS0ðtie ;...;I;n;P Þc the estimation

of these variance entropy given by ANOVA. In the same way, we shall note s2bS0ðtie ;...;I ;n;P Þc the variance of the entropy
between each different time and then the random value F bS0ðtie ;...;I ;n;P Þc ¼ s2bS0ðtie ;...;I ;n;P Þc=r2bS0ðtie ;...;I ;n;P Þc will follow a

Snedecor probability density function U at ðI � ie; ðP � 1ÞðI � ie þ 1ÞÞ degrees of freedom noted /I�ie ;ðP�1ÞðI�ieþ1Þ. Let us

finally note PbS0ðtie ;...;I ;n;P Þc the critical probability such that:

Z 1

F ½S0ðtie ;...;I ;n;P Þ�
/I�ie ;ðP�1ÞðI�ieþ1Þ d/ ¼ P½S0ðtie ;...;I;n;P Þ� ð8Þ

Fig. 5. Evolution of intrinsic entropy at the equilibrium SEq
0 ðt̂te;n;pÞ versus the size of the system. The fitting line gets the following

regression equation rSEq
0

ðt̂te;n;1Þ ¼ 0:06n�0:2 obtained by the least square method.
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Suppose that we erroneously affirm that all the systems, at time tie�1;n;p; tie ;n;p; tieþ1;n;p; . . . ; tI ;n;p, are at equilibrium (this

is false because we include the unequilibrated system Sðtie�1;n;pÞ), then the s2bS0ðtie�1;...;I ;n;P Þc will increase and

r2bS0ðtie�1;...;I ;n;P Þc will statistically stay unchanged. Therefore, the value F bS0ðtie�1;...;I;n;P Þc will increase and the proba-

bility PbS0ðtie�1;...;I ;n;P Þc to reject erroneously the equilibrium state will decrease.

The research of the equilibrium time algorithm can now be described in five steps:

Step 0: Choice of a probability to reject erroneously the equilibrium state: d,
Choice of the system size: n,
Choice of the repetition simulation number: P ,
Choice of the number of MCS times: I ,
Computing simulations.

Step 1: Initialisation: equilibrium subscript time te ¼ 1.

Step 2: Calculus of F bS0ðtie ;...;I ;n;P Þc.

Fig. 6. Probability to reject erroneously the equilibrium state although it is not reached for different numbers of measures of the system

for a fixed risk d ¼ 0:0001 (probability error to reject the equilibrium state although equilibrium is reached) versus the real value of the

entropy before equilibrium SUnEq
0 ðtÞ.

Fig. 7. Evolution of the probability to reject erroneously the equilibrium state, P½S0ðt1;...;1000;32;100Þ�, versus the supposed equilibrium

time for a system size of 322 cells. For the values of d ¼ 0:0001, the equilibrium time is te ¼ 635.
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Step 3: Integral evaluation of the probability: PbS0ðtie ;...;I ;n;P Þc that represents the probability to reject falsely the hy-

pothesis Eq. (9).

Step 4: If PbS0ðtie ;...;I ;n;P Þc < d then ie ¼ ieþ1 go to Step 2 or else Continue.

Step 5: Equilibrium time is te.

Fig. 7 represents the evolution of the integral evaluation of the probability P½S0ðtt;...;1000;32;100Þ� versus time t. We shall

choose the value of d ¼ 0:0001 and then get the equilibrium time te ¼ 635. For each size of the system, the te time when

equilibrium is reached is statistically calculated with the method described below. Then logðteÞ is plotted (Fig. 8) versus

the system size (in log–log co-ordinates). The points obey a linear fit (r2 ¼ 0:996) with a slope of the 2.22 for the re-

gression line meaning that te / n2:22�0:06 , where n2 is the number of elementary cells. The equilibrium time follows a

power law with respect to the size of the system. From a different point of view, n can be seen as a characteristic length

of the system and we get n / t0:45�0:01
e . The rate exponent 0.45 is lower than the well-known exponent of the diffusion

shown by Einstein that is 0.5. This fact can be explained by the border effect that inverses the flux of atoms and then

decreases the diffusion rate.

4. Intrinsic entropy, anti-entropy and unscaled intrinsic entropy

From Fig. 2, it can be observed that the value of the intrinsic entropy at equilibrium decreases when the size of the

system increases but the decrease is lower and lower as the size of the system increases. We shall then plot the value of

the equilibrium intrinsic entropy versus the system size (Fig. 9). Thanks to the non-linear regression with a very high

coefficient of correlation (r2 ¼ 0:99997), we get the following power law for the intrinsic entropy:

Sðtie ;n;P Þ ¼ 0:0066�0:0005 þ 0:0593�0:0002=n0:263�0:006 ð9Þ

The intrinsic entropy represents the amplitude factor of the scaling law of the entropy in the phases system and is

equal to the minimal entropy compatible with the Heisenberg’ principle. Two remarks have to be made according to the

definition of anti-entropy defined Michael Conrad [10]. We have shown that the intrinsic entropy follows a Gaussian

law (truncated) meaning that fluctuations still occur at all scales. As entropy is defined as the maximal probable state,

fluctuations will decrease locally entropy i.e. create anti-entropy at all the scales [10]. The main interesting results is that

the intrinsic entropy depends on the size of the macroscopic system that can be seen as an isolated system (universe).

Intrinsic entropy at equilibrium decreases when size of macroscopic system increases (Figs. 2 and 9). Thanks to the

multiscale evaluation of the information, the Intrinsic Entropy possesses the properties of the vertical approach in-

troduced by Conrad [11]: complex system can be seen as a kind of percolation network in which information is

transduced from macro- to micro-scales and amplified from micro- to macro-scale and then must consider the interplay

of phenomena at all scales. These properties can be explained by an analogy between the recorrelation and decorre-

Fig. 8. Plot of the equilibrium time te in MCS (in log co-ordinate) versus the size of the system n (in log co-ordinate). The points obey a

linear fit (r2 ¼ 0:996) given by the regression equation logðteÞ ¼ �0:495þ 2:23 logðnÞ.
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lation processes [12] and intrasec entropy. Decorrelation increases entropy due to the phase decorrelation of the wave

function describing the system following the linear superposition principle. However, recorrelation process can be seen

as a continual recorrelation of the quantum mechanic phase factor that will decrease entropy or create anti-entropy.

Following this theory [13], the smaller the scale, the greater the contribution to decorrelation and the longer the scale,

the greater the contribution of recorrelation. In our system description, the greater the system, the higher the proba-

bility to obtain some correlated structures that increase the order and therefore decrease the mean quantity of infor-

mation at all the scale that finally decrease the intrinsic entropy. In a philosophical sense, the higher the observable

universe, the higher the probability to met some organised micro-systems at all the scales and this ‘‘self-organisation’’ is

characterised by the intrasec entropy.

A new definition of the entropy S1 can be stated by taking S1 ¼ limn!1 Sðtie ;n;P Þ, the entropy obtained for an infinite

system size, which we call the unscaled intrinsic entropy, we get S1 ¼ 0:0066�0:0005. S1 is a characteristic number of the

system at equilibrium independently of the system size. In another publication, we shall show that this entropy has the

same characteristics as the mixed entropy.

5. Conclusion

We have shown that the multifractal analysis allows a simple description of a discrete dynamic system. Particularly,

the study of the information dimension that can be related to the entropy is pertinent to analyse the rate to reach

equilibrium. The main interest in the multifractal formalism is to quantify a measure at different scale and then it is

possible to build independent indicia scale. With this approach, we have built an unscaled entropy to characterise the

state of the system. It will then be possible to use some usual procedures of the descriptive statistics to quantify different

physical characteristics such as the time used to reach equilibrium and to propose some power laws that describe the

kinematics of the physical process. The unscaled entropy defined in this paper is a powerful quantity to analyse dy-

namical systems such as those based on simulations as for dynamical molecular simulation, Monte-Carlo simulation

and of course chaotic systems. The relation between the quantity of information and the physical entropy is an analogy

rather than equivalence. In a future article, we shall prove that there exists a duality, rather than an analogy, between

our unscaled entropy and thermodynamic entropy thanks to the thermodynamic cost of information computation.
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