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Abstract. 

A Kossel microdiffraction experimental set up is under development inside a Scanning Electron 

Microscope (SEM) in order to determine the crystallographic orientation as well as the inter- and 

intragranular strains and stresses. An area of about one cubic micrometer can be analysed using the 

microscope probe, which enables to study different kinds of elements such as a grain boundary, a 

crack, a microelectronic component, etc. The diffraction pattern is recorded by a high resolution 

Charge-Coupled Device (CCD) camera. The crystallographic orientation, the lattice parameters and 

the elastic strain tensor of the probed area are deduced from the pattern indexation using a 

homemade software. The purpose of this paper is to report some results achieved up to now to 

estimate the reliability of the Kossel microdiffraction technique.  

Introduction 

Due to the growing complexity of new materials and their applications, it is increasingly necessary 

to know the strain and the stress state at a lower scale, a micrometer one, particularly in the case of 

micro- and nanosystems. Kossel microdiffraction is a tool that has been adapted for use in the 

Scanning Electron Microscopes (SEM), which enables to determine not only the crystallographic 

orientation, but also the inter- and intragranular strain and stress state while observing the 

microstructure and its possible evolution during in situ mechanical tests. 

Different techniques are available to obtain residual stresses at the micrometer scale: for instance 

micro-Raman spectroscopy [1], X-Ray microdiffraction with a white synchrotron beam [2], 

convergent beam electron diffraction inside a transmission electron microscope [3]. Kossel 

microdiffraction is currently being developed because of some advantages comparing to these 

techniques [4]. Indeed, the use inside a SEM is easy, non destructive and can be applied to metallic 

components. Moreover, spatial and strain resolutions are competitive. 

In the 1970s, Kossel microdiffraction was used for the determination of crystallographic 

orientations and lattice parameters [5,6,7]. Patterns were recorded on photographic films. In the 

1990s, the development of high resolution CCD cameras began allowing easier and faster data 

collection. Lattice strain measurements finally began to be feasible [8]. 

The aim of this study is to check the reliability of the Kossel technique. Kossel line patterns on 

single crystals under loading have been recorded and the goal is to compare the stresses given by the 

technique with the stresses applied to the samples. We also compare results with those obtained by 

classical X-Ray Diffraction (XRD). 

Kossel technique 

In a SEM, when an electron beam is focused on a material, the latter is excited and thus an X-rays 

spherical wave is emitted. A part of these rays is diffracted by the crystallographic planes forming 

the so-called Kossel cones, in accordance with the Bragg’s law: λ = 2d sin θ (λ: wavelength of the 
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excited element, d: interreticular length, θ: Bragg’s angle). A CCD camera intercepts a part of these 

cones, which are all emitted at the same time (one diffraction cone for each (hkl) diffracting plane). 

Kossel conics (lines or complete circles) are calculated from the orientation of the cones and the 

distance between the sample and the screen (Fig. 1).  

It is possible to excite the material with different types of radiation. Conventionally, an electron 

beam is used to excite either the sample directly or a target placed close to the sample [9]. This 

latter technique is called pseudo-Kossel. Kossel microdiffraction can also be obtained by employing 

synchrotron radiation [10]. 

Fig. 1: The principle of the Kossel microdiffraction inside a SEM 

Several materials have already been tested with this technique: copper, nickel and titanium alloys, 

steels and germanium. An example of a Kossel line pattern from a grain of interstitial free (IF) steel 

is shown in Fig. 2b. The grain that was selected is circled in Fig. 2a. The spatial resolution is 

estimated to be about 1µm
3
, for a 20kV microscope voltage.

Fig. 2: a) SEM image of the microstructure showing the grain analysed by Kossel diffraction - 

b) Experimental Kossel line pattern from an IF steel grain

The obtained Kossel line pattern is then indexed using a semi-automatic program, KSLStrain, 

developed by Adam Morawiec [11]. Several parameters are fulfilled in the program: the radiation 

wavelength of the emitted X-rays that is known with relatively high accuracy, the unit cell of the 

material, the pixel size of the camera and approximate values of the camera geometry parameters 

(sample-to-detector distance and the location of the pattern centre). Then, conics on the pattern are 

marked manually selecting a number of points per each Kossel line (Fig.3a). Starting with fixed 

reference values of lattice parameters, a procedure is used to find the geometry of the pattern. Once 

200 µm 
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the crystal orientation is determined and the camera geometry parameters are tuned, the program can 

proceed with the refinement of lattice parameters. The program uses the so-called “K-line equation 

based scheme”. Kossel conics manually marked by the operator are matched to corresponding 

conics in simulated patterns. At the end, the camera geometry parameters, the crystal orientation and 

the strain components are fitted together. Visual example of a result is shown in Fig.3b. The strain 

resolution is estimated to be about 3.10
-4

 [11].

Fig. 3: a) IF steel pattern with some conics marked - 

b) Simulated pattern after the fittings superimposed with the experimental pattern

Measurements on single crystals under loading 

To check the consistency of the stress results given by the Kossel microdiffraction, we have 

performed measurements on a nickel-based single crystal superalloy during an in situ tensile test. 

The chemical composition (in weight %) of the material is the following: Base Ni - 8% Cr - 5% Co 

- 8% W - 2% Mo - 5% Al - 1.5% Ti - 6% Ta. Its main feature is a high yield strength (about 

900MPa). In fact, it is made of two coherent phases: a Ni matrix γ and ((Ni, Co, Cr)3 (Al, Ti, Ta)) 

cubic precipitates γ’ (Fig.4a). We used a small tensile testing device (Fig.4b) to apply loading to 

“dog bone” specimens up to about 700MPa.  

Fig. 4: a) SEM image of the nickel-based superalloy microstructure - 

b) In situ uniaxial tensile/compressive testing device

Kossel experiments were performed by two different ways. First, a monochromatic synchrotron 

beam (European Synchrotron Radiation Facility, ID13 beamline, Fig.5a) was used to excite the 

material fluorescence. The beam size was about 3 micrometers. Photon energy of 9.4 keV was 

chosen to be just above the K-edge of the nickel. Data was collected at different loadings and stress 

a b 
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http://www.scientific.net/feedback/112958
http://www.scientific.net/feedback/112958


tensors were determined assuming a biaxial stress state, due to the low emission depth of X-rays 

(Fig.5b).  

Fig.5: a) Experimental set up used at ID13 (ESRF) to obtain Kossel line patterns from a 

monochromatic synchrotron beam - b) Stress tensors (MPa) obtained by Kossel diffraction with a 

synchrotron beam at different stress states. σ11 according to the tensile direction.  

Assumption: biaxial stress sate. 

The same experiments were performed inside the SEM. Results are shown in Table 1 and an 

example of a Kossel line pattern is shown in Fig.6. 

Table 1: Stress tensors (in MPa) obtained by Kossel diffraction inside the SEM at different stress 

states. σ11 according to the tensile direction. Assumption: biaxial stress sate.  

Initial state 400MPa loading 680MPa loading 
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Fig.6: Simulated pattern after the fittings superimposed with the experimental one (400MPa 

loading) 
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Single crystal XRD stress analyses, using the Ortner’s method [12], were carried out within a four-

circle goniometer to compare with Kossel experiments (Table 2). The probed area was about a few 

mm². 

Table 2: Stress tensors (MPa) obtained by single crystal XRD. 

σ11 according to the tensile direction. Assumption: σ33=0. 

With the assumption of a biaxial stress state for the stress calculation from Kossel patterns, in situ 

stress results given by the three techniques and the macroscopic stress applied by the machine were 

compared, showing a good agreement.  

XRD measurements in one grain take several hours, so a slight relaxation of the tensile device can 

explain why the σ11 obtained is a little below the applied stress. The σ22 compressive values, which 

are the same for the two loadings, are probably due to the surface preparation. 

In synchrotron experiments, only one Kossel line pattern was obtained per loading. The synchrotron 

beam was focused at a random location on the single crystal surface. On the other hand, in the SEM, 

three patterns were recorded per loading and stress tensors shown in Table 1 correspond to an 

average of three measurements. Three electronic spot locations were chosen a few hundreds of 

micrometers apart. The results are consistent with the loading applied but we noticed high standard 

deviations. The σ11 deviations are shown in Table 3. For the initial state, the non-uniform surface 

preparation could explain these deviations. Once the material is loaded, the standard deviations 

decrease.  

Table 3: σ11 standard deviations (∆σ11) calculated from three different Kossel analyses. 

These deviations are probably due to the stress distribution between the two phases, the lattice 

misfit or local deviations of residual stresses induced by the surface preparation. The last value 

(about 70MPa) can also give information about the stress resolution of the Kossel microdiffraction, 

when such a pattern as shown in Fig.6 is obtained. 

Conclusion 

This paper reports on microscale stress measurements using a non-destructive method, Kossel 

microdiffraction. Kossel patterns were obtained during in situ tensile experiments on single crystals 

in the Scanning Electron Microscope and with a monochromatic synchrotron beam. The patterns, 

recorded by a high resolution CCD camera, contained enough lines to determine the 

crystallographic orientation of the crystal and the elastic deformation of the lattice. Nickel-based 

single crystal superalloys were analyzed: different loadings up to 700MPa were applied on these 

specimens with a tensile micromachine and compared with the values obtained using the Kossel 

technique. A good agreement was observed. The results show how Kossel microdiffraction can be 

used as a precise tool to obtain residual stresses in polycrystalline samples. This technique could be 

Initial state 400MPa loading 680MPa loading 

∆σ11 [MPa] 135 75 70 
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used, for example, to analyse residual stresses in microelectronic components like Cu-MEMS 

(Micro Electro Mechanical Systems). 
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