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1 Introduction 

The equal a priori probability postulate is fundamental to all statistical mechanisms and 
allows full discussion of the properties of systems at equilibrium. By supposing  
time-differentiable systems when probabilities and transition probabilities are well 
known, i.e., for an infinite, and isolated system, theorems like the H one give only 
mathematical conditions. However, numerous systems cannot be considered as infinite 
and then have some intrinsic fluctuations. Under these conditions, the term ‘equilibrium’ 
has to be defined more precisely. In thermodynamic formalism, the final  
time-independent equilibrium situation is reached if the distribution of the system over 
these accessible states remains uniform (i.e., randomly uniform). The definition  
of equilibrium is then reduced to the definition of randomness. Since Chaitin (1987) 
shows, using the theory of information (Shannon, 1948; Brillouin, 1956), that 
randomness depends on algorithmic complexity, we have chosen to analyse the system  
in terms of data compression rather than quantify information by purely theoretical 
mathematical objects. The higher the information, the lower the ratio of data 
compression. By unifying these different theories and to shortly summarise our 
theoretical approach, we postulate as an axiom that a system will be integrally described 
if the size of the system after compression by applying all data compression algorithms is 
minimal. Since the data compression algorithms entail the knowledge of the physical 
system, the size of the programme becomes a mathematical measure of Negentropy. 
Negentropy, corresponding to negative entropy, that represents the quality or grade  
of energy must always decrease and is at the foundation of Kelvin’s principle of 
‘degradation of energy’. Under some adequate properties of the data compression 
algorithm, we proved in a recent paper (Bigerelle and Iost, 2002) that it is possible  
to quantify the rate of the diffusion states, which implies that the average information 
contained by the diffusion process can be described by this theory. The aim of this paper 
is to analyse whether the same approach can allow us to quantify fluctuations around 
equilibrium and to compare these relations to those obtained by statistical 
thermodynamics. Finally, we shall show that a linear relation exists between the 
computational energy and the physical energy of the system. 
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2 Mathematical definitions 

The mathematical definitions that will be used to deal with our thermodynamic system 
are first briefly introduced (all formalisms with proofs will be published later). 

Let X be a set (discretised system), T the bijective algebra that transforms the system 
X into a system Y, noted Y = T(X), and Card(X) is the size of the X set. 

T(X) is said contractile if  

card( ( )) card( ).T X X  (1) 

Example: 100 particles follow the Fermi-Dirac statistics law with 100 possible states.  
The set X is defined by X = {1, 1, , 1} and then card(X) = 100 (the elementary unit  
is the bit). Let us define the T algebra by writing X states in a decimal notation.  
Then, card(T(X)) = R[log2(card(X))], where R[z] rounded z to the higher integer.  
As card(T(X)) = R[log2(100)] = 7, then card(T(X))  card(X) meaning that T(X) is 
contractile. 

Let {A} be a set of algebra, F is said {A}-maxi contractile in  if there exists one 
algebra noted Tmin  {A} such that: 

min, { }, card( ( , )) card( ( , )).X T A F X T F X T  (2) 

F(X) is said { }-maxi contractile in , F is maxi contractile in  for all the sets of all 
possible algebrae defined by arithmetics. 

Theorem 1: There exists at least one maxi-contractile algebra in .

Theorem 2: The arithmetic method is unable to construct the algebra Tmin  { }.

Theorem 3: It is always possible to find an algebra T  { } for any subset x  
such that: (T)card(F(x, Tmin))  card(F(x, T)) (T)card(F(x, Tmin)), (T)  1, (T)  1, 

(T) < (T).

3 Fluctuation of a system at equilibrium 

3.1 Thermodynamic description 

An isolated system A represented by a B2 Boolean matrix noticed A(B) (0: empty; 1: full) 
with 50% of full cells (maximal entropy). At equilibrium, the probability P of finding  
A follows P  where  is the number of accessible states. As a result from the 
statistical fluctuations, the system deviates from its equilibrium state. The classical 
thermodynamic approach consists in dividing A into two equal parts with N + k exciting 
states in the first part and N kin the second and therefore: 

( ) 2 !/(( )!( )!).k N N N k N k  (3) 

The maximal value, 0(N), is the configuration of the average equilibrium state. Using 
the classical Stirling approximation, the well-known relation is obtained: 

2
0 exp( / )k n N  (4) 
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which is a Gaussian Probability Density Function (PDF) if an adequate normalisation  
is performed. 

3.2 Algebra description 

At this stage, the terms 0 must be analysed by the information theory. 

Theorem 4: There exists F{ }-maxi ultimately uniformly contractile in A(B), F is 
independent of B (B finite) such that F is said (A(B), Tmin, k) -pertinent: 

min mind / d ( )d ( ( ), , ) / d .k k T F A B T k k  (5) 

This theorem clearly entails that a linear relation exists between the  fluctuations 
(entropy fluctuation) and the size of an adequate algorithm based on a Tmin algebra.  
As Tmin cannot be constructed (Theorem 2), only an approximation can be given 
(Theorem 4). We have shown (Bigerelle and Iost, 2002) that a good approximation that 
reduces (T) (T) is obtained by composing both R.L.E (Salomon, 1998) and Huffman 
algebra (Huffman, 1952) noted ( ( ,  RLE),  Huf ) ( ,  Huf  RLE)F F X F X .

3.3 Numerical simulation of equilibrium 

Two integer random numbers a and b (a B, b B) representing the position  
(a, b) of a cell A(B) and a Boolean random number c representing its state are chosen  
to construct the set A(B) at equilibrium. This same step is reproduced until the number  
of active cells reaches B2/2 (Fermi-Dirac statistics). 1000 systems A(B) are simulated 
with different sizes (B  {25, 75, 100, , 1000}) and their associated values 
card(F(A(B), Huf  RLE)) are calculated. Figure 1 represents snapshots of different 
system sizes with the empirical PDF (E  PDF(B)) of card( ( ( ),  Huf RLE))F A B  in 
computer byte units. On these densities, we have calculated the mean and the standard 
deviation and plotted the Gaussian curves. Two remarks can be inferred: 

They follow Gaussian density. However, a discretisation effect appears for small 
system sizes. 

Both the mean and the standard deviation increase with the system size B.

For the 1000 simulations performed for different system sizes B, the mean values of the 
programme size noticed card( ( ( ),Huf RLE))F A B  and the standard deviation are 
calculated. Figure 2(a) is a linear representation of the mean values versus the number of 
elementary cells n = B2:

2
0.00004 6card( ( ( ), Huf RLE)) 0.18040 605F A B B  (6) 

where the intercepted value (605) representing the implementation size of the algebra can 
be seen as the handle of the programme compression. 

From Figure 2(b), the standard deviation follows the regression equation: 
std

0.004 0.1card( ( ( ), Huf RLE)) 0.0966 1.6 .F A B B  (7) 
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Figure 1 Four random systems with sizes B  {25, 50, 200, 500} for A(B) systems at equilibrium 
and their associated empirical probability density functions of card(F(A(B), Huf  RLE) 
including mean (m) and standard deviation (s) (see online version for colours) 
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Figure 2 Mean (a) and standard deviation (b) of program size (in byte) obtained from  
1000 simulations performed for different system sizes B  {25, 75, 100, , 1000} 

3.4 Interpretation of the simulation 

By introducing 0 1/ N  for the purpose of normalisation in probability 
1k , equation (4) becomes a Gaussian density with a standard deviation / 2N .

In equation (6), the term B2 represents the total number of cells with B2/2 active cells.  
In equation (3), the system contains 2N cells and then N = B2/4. Neglecting the intercept 
(B large enough) in equation (6), an elementary cell contains in mean 0.18 byte at 
equilibrium and then an active one represents 0.18  2 = 0.36 byte. As a consequence,  
a linear relation exists between k fluctuations and the size of a programme related to the 
computer cost: 

One computer unit: I = 0.36. (8) 

After normalisation, equation (4) follows a Gaussian zero-centred with the following 
standard deviation: 

/ 2 ² / 4 / 2 / 2 2.k N B B  (9) 

By neglecting the intercept in equation (7), equation (9) leads to: 
stdcard( ( ( ), Huf RLE)) 2 2 0.00966 0.27 .k kF A B  (10) 

Therefore, the correspondence between the size of the programme and the states  
of the distribution will exist if: stdcard( ( ( ), Huf RLE)) kF A B I . The value 0.27 in 
equation (10) is close to the computer cost I = 0.36. This means that I, which is 
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independent of the system size B, is an intrinsic measure of an isomorphism between the 
programme size and the number of accessible states of the system. 

As the Gaussian PDF is defined by its mean and its standard deviation, the relation 
between the computer size and the number of states of the system is given by: 

2

2

card( ( ( ), Huf RLE))
1/ ² / 4 exp .

( ² / 4)( )k

kI F A B
I B

B I
 (11) 

Considering B = 50, we shall now summarise with an example that all the 
transformations allow us to transform the number of states of the system into a 
programme size (Figure 3). 

Figure 3 Different isomorphic transformations for the state function of an equilibrium system  
of B = 50 into the size of the program in byte used to described the  
thermodynamical system 

Step 1: Calculation of the state functions k(502/4). For k varying from 200 to 200, 

2
2

(2(50² / 4))!exp( /(50² / 4)).
((50² / 4)!)k k

Step 2: Normalisation in probability. Multiplying the abscissa by 1/ 50² / 4  gives the 
 following PDF: 21/ 50² / 4 exp( /(50² / 4)).k k

Step 3: Scaling k  into information units: 

2

0.18 21/ 0.36 50² / 4 exp .
(50² / 4)(0.36)k

k

Step 4: Translation of 0.18k  to the mean value card( ( (50),Huf RLE)) 913F A .
 The final PDF is: 
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2

2

(0.36 913)1/ 0.36 50² / 4 exp .
(50² / 4)(0.36)k

k

Figure 4 represents the variation of the programme size (box) and the theoretical density 
probability (solid line) defined by the isomorphism between the number of accessible 
states of the system (including statistical fluctuations) and the size of an optimised 
computer programme constructed with the composition of two algebra Huf RLE .
The good agreement seems to conclude that the algebra Huf RLE  tends to be  
maxi-ultimately-uniformly-contractile to allow us to describe the thermodynamic 
equilibrium system and its fluctuations. 

Figure 4 Comparison of the program size (in byte) defined by the isomorphism on the  
entropy given by equation (11) (solid line) with the experimental values (box)
obtained by the Monte Carlo simulation for a system size of B = 50 (see online
version for colours) 

4 Relation between entropy and free energy with computational energy 

The fluctuations of the number of accessible states n around the maximum value 0

(the most probable state) depend on an entropy fluctuation Sn by the Bolzmann 
formulae equation (4) and leads to: 

ln( )n nS k  (12) 

where
2

0ln( ) ln( ) ln( ) .n n
n
N

 (13) 

Equations (12) and (13) show that entropy will always be decreased when the system 
fluctuates around the most probable state. From equation (8), we get 

2
1

0

1 ,
I

n
n I N

then from equation (13) 
0

ln n nS
K

, and: 
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2

0

ln .n
nS kI  (14) 

Since the internal energy is null, the free energy of the system resulting from fluctuations 
is:

2

0 0

ln ln 0.n n
nG Tk TkI  (15) 

Fluctuation from equilibrium decreases the programme size that decreases the entropy 
and increases the free energy of the system. Within I2 factor, the gain of information in 
bit of the programme seems to be transformed into energy in the system. 

5 Conclusion 

We have shown that there exists a duality between the variation of the free energy  
of an isolated system and the variation of the programme size used to describe it, if this 
programme satisfies a maxi-ultimately-uniformly-contractile algebra. A fluctuation 
towards equilibrium decreases the size of the programme that decreases the entropy and 
increases the free energy of the system. Under the above hypotheses, the computer 
energy used to simulate the systems can be considered as similar to the free energy of the 
system (to within a constant factor). 
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