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RÉSUMÉ. This  paper deals  with a reliability approach applied on composite  plates  which  
should be used in railway structures under low velocity impact loading.
Impacted composite plates in bending configuration are considered as an application of the  
reliability approach to composite materials. Mass of projectile, height of fall and distance  
between supports are the three variables considered. A limit state function G is defined by the  
impact force compared to a critical one. Using reliability approach, the reliability index 
allows to estimate the probability of failure P f . It is then assessed for several values of the  
critical force using Monte Carlo direct method and First Order Reliability Method (FORM)  
approximated method. For FORM method, genetic algorithms are investigated to obtain the  
best reliability index  . Results  obtained by the approximated FORM method are finally  
discussed and compared to Monte Carlo simulations considered as a reference .
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1. Introduction

Fatigue  is  known  to  be  responsible  for  the  majority  of  failures  of  structural  
components in transportation applications but impact loading is also critical due to 
damage not always visible (Ballère & al., 2009). The main subject of this research is 
to develop a reliability approach (Méalier & al., 2010; Lemaire, 2008) for analyzing 
a composite plate under low velocity impact loading when variabilities are taken 
into account . Applying such a reliability approach on composite materials is not so 
usual in literature.
Both  experimental  and  numerical  aspects  are  performed  in  the  present  work. 
Experimental  investigations  concern  the  impact  tests  on  composite  plates  using 
experimental  design  technique  while  numerical  ones  are  related  to  mechanical 
reliability models based on experimental results to predict the probability of failure 
taking into account variabilities. Impact tests have been carried out to understand the 
main damage mechanisms and to determine the different mechanical responses of 
the impacted structure: the contact  force between the striker and the sample, the 
contact duration and the out of plane displacement. Previous mechanical responses 
have been represented using the Response Surface Methodology (RSM) established 
from the experimental  design. Each investigated response is then modeled by an 
empirical  polynomial  for  which  the  coefficients  are  calculated  from the  chosen 
experimental design (Doehlert, 1970, 1972). For reliability analysis, the projectile 
mass (m), the height fall (h) and the span of the simply supported composite plate 
(p) are considered as mechanical uncertain input variables. The maximum value of 

the contact force, denoted by Fcontact , is analysed as the mechanical output response 
variability thanks to reliability tools so that the reliability index  and the failure 

probability  level P f could  be  achieved.  Then,  direct  Monte  Carlo  method  and 
approximated First Order Reliability Method (FORM) are especially investigated. 
The  reliability  index  , needed  for  numerical  FORM application  is  determined 
using  Genetic  Algorithm  (GA)  (Cantú-Paz,  2000)  coupled  with  Deterministic 
Algorithm (DA), an original alternative (DA) mainly used in the most of current 
reliability tools.  Results obtained by the approximated FORM method are finally 
discussed and compared to Monte Carlo reference simulations  before concluding.

2. Experimental stage

2.1. Impact device

The impact tests have been performed using a dropping mass set-up designed in our 
laboratory to simulate accidental falls on a structure,  Figure 1. The contact force 
history  between  the  striker  and  the  composite  specimen  is  measured  by  a 
piezoelectric sensor clamped to the mass. A first laser sensor placed just underneath 
the center of the specimen provides the out-of-plane displacement history. Such a 
sensor allows measurement without contact. It  is particularly adapted to dynamic 
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measurement. A second laser sensor measures the striker displacement versus time 
so that the velocity of the dropping mass can easily be assessed.

2.2. Composite samples and striker

The plate used in this study is made of an eight layers carbon/thermoset  laminated 
composite. It was elaborated by hand lay-up technique and was cured under vacuum. 
Samples were cut from a large plate for which : i) the total thickness is close to 
4.2mm and ii) the fiber volume fraction is estimated to 56%.
Each sample is simply supported on two metallic supports fixed on a solid mass and 
impacted on its center, Figure 1.
The stricker is hemispherical of diameter 16 mm. It is supposed to be indeformable.

Fig. 1. Drop tower and composite sample.

2.3. Impact tests

Three main parameters have been chosen to qualify a test : mass and velocity of the 
striker and the span. The width of the plate is defined such as the ratio 'width/span'  
remains a constant value (about 3.00) so that results could be compared more easily.
For  each  test  the  different  values  for  all  the  parameters  are  suggested  by  an 
experimental  design  (Droesbeker,  1997).  Doelhert  experimental  design  based  on 
simplex method is adopted (Doehlert, 1970, 1972) due to its main properties: i) the 
experimental points are uniformly distributed in the experimental design space ii) 
new variable can be  easily  added iii)  this  is  a  second order design space which 
permits to elaborate surface response on the mathematical form given in Eq. (1).

height (h)

mass (m)

span (p)
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Setting up an experimental design method involves several steps. Firstly, the 
nature and limit values of the variables must be fixed. The degree of the polynomial 
must then be chosen. Thereafter, the matrix giving all the values for the parameters  
can be established according to strict rules (Droesbeker, 1997). Moreover, in order to 
make easier the determination of the relative influence of the different parameters, 
the  variables  are  expressed  in  centred,  reduced  co-ordinates.  Their  amplitude  of 
variation is therefore standardized into the range [-1,+1]. Codification is detailed in 
Table 1.

Table 1 : Impact test parameters in physical and centred reduced co-ordinates.

Variable Name Level +1 Level 0 Level -1
mass (kg) x1 3,50 2,75 2
height (m) x2 1,0 0,6 0,2
span (mm) x3 480 305 130

Using Doelhert theory, the experimental matrix is given by Table 2.

Table 2 : Test matrix using Doelhert theory.

N° 1 2 3 4 5 6 7 8 9 10 11 12 13
X1 0 1 -1 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0 -0.5 0

X2 0 0 0 0.87 -0.87 -0.87 0.87 0.29 -0.29 -0.29 0.58 0.29
-
0.58

X3 0 0 0 0 0 0 0 0.82 -0.82 -0.82 -0.82 0.82 0.82

We  can  notice  that  only  13  tests  are  needed  to  obtain  the  empirical 
polynomial including the influence of the coupling between the different variables 
(Xi). A last interesting point of the Dolhert approach is that all the variables can not 
have the same number of level. For instance, x1 can take five different values (-5, -1, 
0,  1,  5)  while  x2 can  change  7  times  (-0.87,  -0.58,  -0.29,  0,  0.29,  0.58,  0.87). 
Advantages are: i) to increase the polynomial approximation accuracy according to 
particular  variables,   ii)  to  limit  the  number  of  device  settings  when  discrete 
parameter is involved (the mass for instance).
Then, polynomial coefficients,  â,  are estimated using a multilinear regression, Eq. 
(2).

a= x t x −1 x t y (2)

with  a=a0 a1 a2 a3 a12 a13 a23 a11 a22 a33 ,  x a  matrix  for  which  each  row 

corresponds  to  a  realization  1 x1 x2 x3 x1 x2 x1 x3 x2 x3 x1
2 x2

2 x3
2 ,  and 

 y the output column matrix.
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The quality of the polynomial (Eq. (1)) has to be checked using the variance analysis  
(Saporta, 1990). It  consists in verifying that the approximated response variation,
Fcontact , is really involved by variation of parameters  X1, X2 and X3 and not due to 

experimental  noise.  Moreover,  the  total  error  coming  from  the  choice  of  the 
experimental design can be established using Eq. (3) before doing any tests.

e= xt x−1 (3)

An example of e considering only the variable X1, X2, is illustrated in Fig. 2. It can 
be noticed that the accuracy is lower around the corners of the domain.

Fig. 2. Error due to the type of the investigated experimental design.

Although the analysis of the impact test responses is not the main objective of this 
work, an example of a registered curve Force versus Time is given in Fig.  3 . It 
represents a mechanical response as a superposition of a quasi-static behaviour and a 
vibratory part which mainly reveals the striker, the plate and metallic supports eigen 
modes  participation.  More  details  about  mechanical  behaviour  of  impacted 
composites are available in literature (Guillaumat, 2000, 2005).
Fcontact will correspond to the maximum measured value, that is to say 569 N in the 

present case.

The damage, induced by the impact, is mainly represented by longitudinal localized 
cracks under the contact zone between the sample and the striker and delamination 
always inside the cracked zone, Fig. 4.
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Fig. 3. Typical force versus time curve.

3. Response modelisation

Based on the previous experimental design, the contact force Fcontact is modeled by a 
response surface avoiding heavy calculations with (FE) or numerous experimental 
tests to assess the variability of  the response and perform future reliability analysis.

The Fcontact polynomial estimated  by  the  Eq.2  from  the  experimental  results 
according to the Doelhert's experimental design (Doehlert, 1970, 1972), is expressed 
by Eq. (4).

Fig. 4. Delamination and matrix cracks after impact.
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F contact=1272171 x1485 x2−516 x3−20 x1 x271x1 x3−79 x2 x3

−97 x1
2−49 x2

2262 x3
2

(4)

Using Eq. (4), Fcontact response can be then simply evaluated with minimum cost; 
only 13 tests are needed to establish this  polynomial.  A plot  of  this  response is 
illustrated on Fig. 5 when the mass parameter is fixed to its mean value while the 
two other ones vary.

Fig. 5. Response surface of the contact force during impact.

According to this plot, the force evolution seems to be physically acceptable; the 
span decreases (coming from +1 upto -1) the force increases because of the increase 
of the sample stiffness. Moreover, a slightly nonlinear shape can be noticed for the 
response surface.

4. Reliability approach

4.1. Performance function

The  reliability  approach  begins  by  the  definition  of  the  physical  mechanism 
responsible of the structure failure. Then, this mechanism is translated into terms of  
a performance function, denoted G, Eq. (5), which classically compares the stress to 
the  strength  of  the  investigated  phenomenon (Lemaire,  1997).  In  this  study,  the 
maximum contact force F contact (stress) is compared to an ultimate force F ultimate  
(strength) such as:

G=F ultimate−F contact (5)
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Obviously, the stress and strength can depend on several variables.
G equal to 0 corresponds to the so-called 'limit state function' (Eq. (6)), separating 
the failure and safety domains as illustrated in Fig. 6.

G=F ultimate−F contact=0 (6)

The 'safety domain' (pale area) defined by G>0 and the “failure domain” (dark area) 
by G<0 are also illustrated in Fig. 6.

Fig. 6. Joint Density of Probability (JDP)

The next step consists in representing the distribution of uncertain quantities. The 
mass (m), the height (h), and the span (p) are such quantities in this study. They will 
be  described  by  a  normal  distribution.  This  choice  doesn't  result  from  any 
measurements  but  it  is  only  an  assumption  coming from the  fact  that  generally 
physical data is well described by such a distribution.
It is quite obvious that the resulting level of probability can be largely influenced by 
the nature of the input variable distribution. The proof is given in Fig. 7 where two 
different statistical distributions (Gaussian and uniform) were used to compare their  
influences on the probability level. Monte Carlo method (see bellow) was applied on 

Eq. 6 using Eq. 4 for the F contact to obtain these probabilities.
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Fig. 7. Statistical distributions influence on probability levels

A great  variation  between  the  two  situations  can  be  noted.  The  Gaussian  law 
provides a lower probability level because the values are more concentrated around 
the mean compared to the uniform law. Thus, the frequency of a value far from the 
mean is lower in a Gaussian case that implies a lower probability level. This simple  
example highlights the large influence of  the distribution choice which has  been 
established using mechanical tests.

4.2.  Failure probability assessment

Classically, several methods are available to perform reliability analysis following 
the main objective: to estimate the failure probability or a reliability index. To this  
purpose, the following methods are often used: Monte-Carlo, the  derivative Monte 
Carlo method such as Monte Carlo by importance sampling (Lemaire, 2008), and 
the others approximated methods such as  First Order Reliability Method (FORM) 
and Second Order Reliability Method (SORM).
In Monte-Carlo approach, all the variables are randomly sampled according to their 
statistical distribution in order to create a random vector. For each trial (a set of data) 
the  G function; Eq. (5), is then evaluated. The next step consists in counting the 
number  of  situations  giving  G negative.  Finally,  the  failure  probability P f  is 
classically estimated by Eq. (7).

P f =
number of situations G≤0

total number of simulations
(7)
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Using this method, it is possible to establish the error depending on the trials number 

(n) and the estimated probability level: P .  It  can advantageously be obtained by 
Shooman (Shooman, 1968) formula, Eq. (8).

% error=200 1− P f

n P f

(8)

On the opposite, this method can be very time consuming when limit state function 
calculation is  complex and needs for  instance the use of  Finite Element  Method 
(FEM).
From this point of view, the use of a surface response like an empirical polynomial 

to  represent the approximation response Fcontact  (see section 3)  is  quite  justified. 
Then, Monte Carlo approach can be easily performed in this work with minimum 
cost. Results issued from this 'direct method' will be considered later as reference.
On  the  other  hand,  the  FORM  (and  SORM)  method  consists  in  an  analytical 
approximation of the failure probability by calculating a reliability index  (Hasofer 
& Lind, 1974). It is necessary, in this case, to formulate the limit state, Eq. (6), in a 
reduced  variable  space,  usually  called  standard  space,  where  each  variable 
distribution  becomes  a  so-called  normalized  reduced  Gaussian  distribution  after 
isoprobabilistic transformation. In this standard space, the mean becomes zero, the 
standard deviation becomes unit, Xi become ui, G becomes H and all the level curves 
are circular, Fig. 8.

Fig. 8. Isoprobabilistic transformation.

In the case where the statistical distribution in the physical space is a Gaussian, the 
transformation is simply given by Eq. (9).
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u i=
xi−mi

 i

(9)

mi and si stand for mean and standard deviation of xi.
In the standard space, the reliability index  represents the shortest distance from 
the limit state surface (defined by H) to the origin. Optimization algorithms are then 
needed to determine this index. Deterministic ones are not always the most efficient 
to find the global minimum depending on the function to minimize. Thus, genetic 
algorithms are investigated in this work (see section 4.3) looking for the best value 
of this index (global minimum) (Cantú-Paz, 2000).
Then, having  index, the failure probability can be easily deduced by Eq. (10).

P f =−=1−   with  
= 1

2
∫−∞


e
−u2

2 du (10)

where  stands for the standard normal Cumulative Distribution Function (CDF).
The main assumption in this First Order Reliability Method (FORM) is to consider 
the limit state as a hyperplane. With FORM method, no error estimation is available 
contrary to Monte Carlo approach but it is less time consuming.
In general way, coupling several methods for 'reliable' failure probability estimation 
is preferable in order to obtain the maximum information.

4.3. Obtaining the reliability index 

The failure probability estimation will be as much suitable than  index (needed by 
FORM approach) issued from optimization algorithms is sufficiently accurate: its 
determination is of first importance. In the standard space, the optimization problem 
is formulated as:

=∑i
u i

2 (11)

Finding ui which minimize the distance  from the limit state surface to the origin, 
Fig. 9, and satisfying: 

H ui =0 (12)

Function  H in Eq. (12) represents the performance function expressed (Eq. (6)) in 
the  standard  space.  Moreover,  by  use  of optimization  algorithms,  Xi variables 
corresponding to  index can be obtained, which is of prime importance for design. 
Having these coordinates, the statistical influence of every variable on the failure 
probability level can be estimated.

Let's  keep  in  mind  that  if  we  consider  only R=F ultimate and S=F contact as  two 
independent Gaussian variables then the   index can be obtained analytically by 
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Eq. (13). It corresponds to the analytical definition of the smallest distance between 
the origin and a straight line representing, here, the limit state function.

=
R−S

 R
2S

2 (13)

where R and S respectively denote R and S mean whereas sR and sS denote R and S 
standard deviation.
In this work, the  index is obtained by various ways: either analytically using Eq. 

(13)  with  R=F ultimate  and  S=F contact  variables  considered  in  this  case  as 
independent Gaussian variables, (see section 4.2), or numerically using optimization 
algorithms. Genetic Algorithms (GA) are especially investigated in this study. In this 
case, x1 (mass), x2 (height) and x3 (span) are also considered as independent Gaussian 
variables.  It  is  only  an  assumption  in  this  work  but  generally  they  could  be 
represented by any statistical distribution.
Genetic algorithms (GA) (Cantú-Paz, 2000; Chang, 2006;  Cheng, 2007; Deep & 
Tackur, 2007;  He & Sýkora, 2007) are here coupled with deterministic algorithms 
(DA) to improve global minimum research: the best  value is expected in our case. 
Generally known to be time consuming when they are coupled to finite element 
analysis, GA become powerful when the formulation is quite explicit like in this 
study and when the limit surface has a complicated shape. GA can reveal themselves 
more  efficient  than  using  only  DA,  even for  simple function.  Such  a  case  is 
illustrated Fig. 9 (Méalier  & al., 2009) where a paraboloid function is considered. 
Critical points  P1* or  P2* (feasible exact solutions) are systematically found with 
GA whereas point  P is  often obtained using DA; DA are influenced by gradient 
descent method and does not converge to the right optimum in this case! 

Fig. 9. Paraboloid state limit function.

As a consequence, the  estimated failure probability could be very different to the 
right value because of its high sensitivity to this index (see Equ 10). Fig. 10 gives a 
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good illustration of this phenomenon. Curves indicate the resulting inaccuracy on 
the failure probability due to 1%, 2%, 5% and 10% inaccuracy on  index.

Fig. 10. Influence of   inaccuracy.

 

Several strategies of research have been investigated for this work to find the better

 index. Optimization algorithm GA alone and GA coupled with DA are especially 
investigated.  Based  on  GA  optimization toolbox  program  in  Matlab  software 
(Matlab software), a new program involving 'Islands' strategy GA algorithm (Maeda 
& al.,  2006) and coupling the previous GA with classical DA (Haftka & Gürdal, 
1993) have  been  developped.  This  program,  named  'GARelDe'  (as  Genetic 
Algorithm for Reliable Design) is not detailed in this paper. Many tests have been 
performed  using  highly  nonlinear  and  multi-modal  limit  state  function  from 
literature.  The good performances of  GA coupled with DA, using  GARelDe,  are 
proved in the following investigated Test 1 and Test 2. For these tests, illustrations 
are given in Fig. 11 and  Fig. 12, the data are provided in  Table 3 and the results in 
Table 4 and Table 5. For each method, 100 simulations have been performed and a 
percentage of  satisfaction  is  given. The  criterion  of  satisfaction  represents  the 
number of times leading to the expected  index value within a fixed error range.

Table 3 
Data for Test1 and Test 2.

Test 1

variables and research range: [x1;x2] in [-5;5]2

performance function: 
G1 x1, x2 =e

0.4 x126.2−e
0.3x25−200
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design point theorical value: [-2.5397;0.9454] 

research methods: 
- DAMatool: Matlab (Matlab software) Deterministic Algorithm
- GAMatool: Matlab (Matlab software) Genetic Algorithm
- GARelDe without coupling: Present tool without coupling GA and DA
- GARelDe with coupling: Present tool with coupling GA and DA

population for GA application: 90 individuals

Test 2

variables and research range: [x1;x2] in [-10;10]2

performance function:
G2 x1, x2=−100∑ i log ∣x i−4∣50∣x i∣

cos² π /3 x i2 x i−1²

design point theorical value: [0.989;0.989]

research methods: 
- DAMatool: Matlab (Matlab software) Deterministic Algorithm
- GAMatool: Matlab (Matlab software) Genetic Algorithm
- GARelDe without coupling: Present tool without coupling GA and DA
- GARelDe with coupling: Present tool with coupling GA and DA

population for GA application: 90 individuals

Fig. 11. Graphical representation of G1 limit state function (test1).
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Table 4
Comparisons of optimization techniques for Test 1.

Error on  ±5 % ±10 %

Satisfaction rate in %

DAMatool 100 100

GAMatool 5 8

GARelDe (without coupling) 39 48

GARelDe (with coupling) 100 100

Error on  ±2 %

Satisfaction rate in %

DAMatool 14

GAMatool 54

GARelDe (without coupling) 27

GARelDe (with coupling) 97

For the simple limit state function used in Test 1, DAMatool  and GARelDe lead to 
the same performances. Neverthless, DAMatool remains the most efficient owing to 
less consuming time compared to GARelDe with coupling in this case. For the Test  
2, GARelDe with coupling is the most efficient algorithm.

Fig. 12. Graphical representation of a multi-modal function (test 2)
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Finally, a synthesis of results obtained for all tests is given in Table 6. Design point 
coordinates are also mentioned in this table. 

Table 5
Synthesis  for  all  tests.The results obtained by the present  GARelDe  program are 
compared  to  Theory,  Phimeca  (Phimeca  software),  Elegbede  (Elegbede,  2005), 
Gayton  (Gayton  & Bourinet,  2003),  Borri  ( Borri  & Speranziniones,  1997)  and 
Kiureghian (Kiureghian, 2006) ones.

Performance function Method x1 x2 

 x1−1² x2−1 ² Theory
GARelDe

1
1

1
1

1.414
1.414

e
0.2 x11.4−x2

Theory
GARelDe
Phimeca
Elegbede
Gayton

-1.680
-1.682 
-1.675
-1.688
-1.686

2.898
2.897
2.901
2.893
2.892

3.350
3.350
3.350
3.349
3.348

−1/2x1 ²x 2 ²−2 x1 x 2− x1x2/√ 23
Theory
GARelDe
Phimeca
Borri

-0.765
-0.744
2.121
-0.752

1.472
1.482
2.121
1.480  

1.658 
1.659 
3.000
1.660 

5−1/2 x1−0.1 ²−x2

Theory
GARelDe
Phimeca
Elegbede
Kiureghian

-2.741
-2.741
-2.741
-2.742
-2.741

0.965
0.965
0.966
0.963
0.965

2.906
2.906
2.906
2.906
2.906

e
0.4 x126.2−e

0.3x 25−200
Theory
GARelDe
Phimeca
Elegbede

-2.540
-2.540
-2.540
-2.548

0.945
0.940
0.944
0.924

2.710
2.710
2.710
2.710

x1
32 x2−5.x1−1² Theory

GARelDe
0.617
0.617

0.248
0.251

0.666 
0.666 

x2
2−x122−5 Theory

GARelDe
-1.000
-1.001

2.450
2.449

2.646
2.646

These results confirm the good performance of the association GA (islands strategy ,  
Maeda & al., 2006) and DA in GARelDe computer program. For previous reasons, 
GARelDe will be used for present application of impacted composite plate.
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5. Simulations and results

All variables distributions are supposed, in this study, to be Gaussian, so completely 
defined by the mean and the standard deviation.
Fultimate is  considered as a variable for this work. Its variation is  justified by the 
Fcontact  mean value  of  1271 N,  which  is  a constant value  in  Eq.  (1). Fultimate is  

considered as a Gaussian distribution, the mean value varies from 600 N to 2100 N 
by increment of 30 N and the same variance coefficient of 5% is used for each case. 
In this way, the  probability of failure varies from 1 up to a very small value.  For 
each  variable  x1,  x2 and  x3, varying  in  the  range  [-1,+1]  as  suggested  by  the 
experimental design (see section 2.3), a zero mean value and 0.2 standard deviation 
are retained. Choosing a small standard deviation avoids to truncate the distribution.
For Monte Carlo approach, the performance function G is directly evaluated by the 

approximation given in Eq. (4) for Fcontact . A first series of Monte Carlo simulations, 
denoted MC1, is performed. It consists in one million of trials for each variable. For 
each variable set, function  G is evaluated using Eq. (6). The failure probability is 
finally estimated by Eq. (7).  A second series of Monte Carlo simulations,  MC2, is 
next performed. For this one, only linear terms in Eq. (4) are considered to evaluate 
Fcontact  and then G function.

Two  ways  of  calculating  the   index  are  performed  for  each  Monte  Carlo 

calculation:  i)  an  analytical  calculation issued  from  Eq.  (13)  where Fultimate and 
Fcontact  are considered as independent Gaussian variables, as explained in section 

4.3. Results are denoted FORM1-Anal when complete expression given in Eq. (4) is 
used and  FORM2-Anal  when only first order terms are conserved. ii)  a numerical 
calculation using genetic algorithms where  x1 (mass),  x2 (height) and (span)  x3 are 
considered  as  independent  Gaussian  variables.  Results  are  denoted  FORM1-GA 
when complete expression given in Eq. (4) is used and  FORM2-GA when only first 
order terms are conserved.
First of all, a comparison between the Monte-Carlo (MC1)  and FORM (FORM1-

Anal)  methods  is  shown  on  Figure  13.  The Fultimate mean  value,  used  for  the 
Gaussian distribution with a variance coefficient of 5%, is mentioned on the curve in 
X-coordinate.
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Fig. 13. Probability versus Fultimate estimated by MC1 and FORM1-Anal 

A gap between the two simulations is obviously visible beyond  Fultimate =1500 N. 
The main explanations are due to the fact that i) firstly, the number of trial becomes  
insufficient  as  regard  to  the  probability  level  for  the  Monte-Carlo  technique,  ii) 
secondly, second order polynomial (Eq. (4)) induces a non-Gaussian distribution for 
Fcontact (Figure  14).  So, an  error  can  be  observed  in  the  FORM  analytical 

calculation.

Fig. 14. Fcontact non-Gaussian distribution

Even if the distribution seems to be not so far from a Gaussian distribution, it has 
not strictly the right shape. It means that the  only knowledge of the mean and  the 
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standard deviation calculated from this distribution are not enough for its complete 
characterization. Consequently, the FORM method is not powerful in this case. The 

Henry  test  (Droesbeker,  1997)  also  reveals  that  the Fcontact distribution  is  not  a 
Gaussian  one  (Figure  15)  because  the  obtained  points  (circle)  do  not  follow  a 
straight line.

Fig. 15. Henry test for a non-Gaussian distribution.

Indeed, this curve obtained by Henry test  deviates from the straight line beyond
Fcontact ~1500  N,   that  means  that Fcontact distribution  deviates  from  a  Gaussian 

distribution from this value.
Percentage of error  obtained with Monte Carlo method, coming from Eq. (8),  is 

mentioned for different values of Fultimate , see Figure 8. It indicates that Monte Carlo 

results are probably reliable until  Fultimate ~1900 N ; approximatively 10% error is 
reached at this level. Beyond this value, % error rapidly increases. The  number of 
simulations becomes insufficient.

On the other hand, results issued from MC2 and FORM2-Anal (only linear terms are 

kept for Fcontact ) are compared on Fig. 16.
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Fig. 16. Probability evolution evaluated by MC2 and FORM2-Anal.

Figure 17 shows the result of the Henry test applied on the distribution representing 
the polynomial with only the linear terms. The distribution can be now considered as 
a Gaussian one.

Fig. 17. Henry test for a Gaussian distribution.

Better agreement is observed compared to the previous case (Figure 13).  FORM 
approximated method gives an 'exact' estimation of the failure probability due to the 
Gaussian nature of all the distributions used in this simulation. Concerning Monte 
Carlo results, same remarks than previous ones for  MC1 can be done. Results are 
reliable as much as the number of simulations is in agreement with the expected 

probability level. The limit of result validity is around Fultimate ~1850 N. Beyond this 
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value, error is over 10% and rapidly increases. On the opposite, FORM2-Anal gives 
correct  failure probability  estimation without limitation.  Indeed,  as  FORM2-Anal  
results are validated by MC2 ones for high probability levels (till around Pf=3.10-4 

corresponding to 10% error), the validation can be extended for small probabilities 
level as regards FORM properties in this case of linear limit state function.
Moreover,  MC1,  FORM1-Anal  and FORM1-GA  results  are  finally  presented  on 
Figure 18. Those obtained by FORM1-GA are encouraging but need to be improved 
as regards discrepancies for low probability levels. Obviously, this technique should 
be better in case of complex shapes for the limit state function.

Fig. 18. Comparison between FORM1-Anal, FORM1-GA and MC1.

Finally, this kind of results is very usefull for designers to define some dimensions 
of the structure for a given probability of failure. For example, in our case the x 3 

variable (span) could be considered as a distance between two panel stiffeners. It 
means that using the methodology developed in this work, it is possible to link some 
structures data to a level probability in order to estimate a risk.

6. Simulations and results

In  this  work,  a  reliability  approach  for  designing  composite  plates  as  a  part  of 
railway structure under low velocity impact loading is developed. A methodology is 
presented for this approach. First of all, it consists in using experimental design to 
approximate  correctly  the  interaction  force  between the  structure  and  the  striker
Fcontact  during the impact. Doing so, the limit state function G comparing Fcontact to 

a  critical  one Fultimate can  be  easily  evaluated.  The  failure  probability  is  then 
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calculated  by  FORM  determining  the  reliability  factor  either  analytically  or 
numerically. Genetic algorithms are principally investigated for the numerical way. 
Results  issued  from  each  technique  are  compared  to  Monte  Carlo  simulations 
standing for reference. Good agreement are observed. Feasibility of  determination 
using genetic algorithms is very satisfying and encouraging. In this case of explicit 
problem formulation,  previous algorithms happen to be interesting. Nevertheless, 
they may be used carefully and the crossing of several methods is indispensable.
Future works are envisaged to consolidate the present approach and to deal with 
performance functions involving local  damage mechanisms in composite  such as 
debonding, delamination, crackings .
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Fcontact  : Contact force between impactor and target

F ultimate : Ultimate force
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P f : Estimated failure probability

     : Cumulative Distribution Function (CDF).

      GA : Genetic Algorithm

      DA : Deterministic Algorithm

      GARelDe : Genetic Algorithm for Reliable Design

FORM : First Order Reliability Method

SORM : Second Order Reliability Method

MC : Monte Carlo
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