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1.  INTRODUCTION

Biological control utilizes living organisms (control
agents) to suppress the population density and subse-
quent impact of a specific pest organism by leveraging
ecological interactions through predation, parasitism,
herbivory, or other natural mechanisms (Eilenberg et
al. 2001). Biological controls are used extensively in
agriculture, where the tactical release of parasites or
predators is used to reduce insect pest species of eco-
nomic importance (Smith & Basinger 1947, Simmonds
et al. 1976, Greathead 1994, Eilenberg et al. 2001). In

aquaculture, high stocking densities of cultured or-
ganisms can facilitate transmission of pathogens and
parasites, requiring analogous approaches for disease
management (Deady et al. 1995, Tully et al. 1996,
Maeda et al. 1997, Powell et al. 2018). In the northern
hemisphere, cleaner fishes (e.g. ballan wrasse Labrus
bergylta Ascanius, 1767 and, more recently, lumpfish
Cyclopterus lumpus Linnaeus, 1758) are bred in cap-
tivity and subsequently cohabited with farmed salmon
(primarily Salmo salar Linnaeus, 1758) to remove ec-
toparasitic copepods (e.g. Lepeophtheirus salmonis
[Krøyer, 1837]; Tully et al. 1996). This non-chemical
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approach to pest management is preferable to costly
treatments, which stress cultured fish and reduce ap-
petite (Skiftesvik et al. 2013, Powell et al. 2018).
Within coral aquaculture and the marine ornamental
trade, the peppermint shrimps Lysmata wurdemanni
(Gibbes, 1850), L. seti caudata (Risso, 1816), L. bog -
gessi, and L. ankeri Rhyne & Lin, 2005, as well as the
nudibranch Berghia sp. are used for biological control
of anemones Aiptasia spp. (Rhyne et al. 2004, Calado
et al. 2005, Rhyne & Lin 2006). The reef fishes Thalas-
soma duperrey (Quoy & Gaimard, 1824) and Chaeto -
don auriga Forsskål, 1775 are also potential candi-
dates to mitigate infestations of the corallivorous
nudibranch Phestilla sibogae Begh, 1905 in captivity
(Gochfeld & Aeby 1997).

Control of pests of Acropora spp. coral is highly
desired, given that it is the most represented genus
imported into many countries globally (Rhyne et al.
2014), and Acropora spp. are commonly used for reef
restoration efforts (Barton et al. 2017). A problematic
coral pest, Prosthiostomum acroporae (Rawlinson,
Gillis, Billings, & Borneman, 2011), commonly known
as the Acropora-eating flatworm, has plagued hob-
byist aquaria for many years (Delbeek & Sprung
2005). P. acroporae is an obligate associate of Acrop-
ora spp. and actively consumes coral tissue, which
results in characteristic ~1 mm circular pale feeding
scars, often resulting in coral tissue necrosis. Infesta-
tions are associated with colonial mortality at high
densities in captivity (Nosratpour 2008). P. acroporae
infestations are challenging to detect because of their
highly cryptic nature, which facilitates their spread
into new systems undetected. Infestations impact
coral health through reduction of host coral fluores-
cence over time and hinder the coral’s ability to photo-
acclimate to changes in lighting conditions (Hume et
al. 2014). Infestations are often not de tected until
compromised host health is observed through visual
signs, at which point flatworm population density is
high and colonial mortality of the coral may occur.
There is no current empirical evidence to support
effective treatment or prevention measures for P.
acroporae infestations, although Barton et al. (2019)
examined the life cycle under a range of temperature
conditions and suggested timed intervention to dis-
rupt the life cycle.

The aim of the present study was to evaluate the
potential of 2 biological controls to reduce infestation
by the Acropora-eating flatworm P. acroporae on
coral. Biocontrol candidates included the peppermint
shrimp L. vittata (Stimpson, 1860), which has been
previously reported to remove parasites on fish and
in the environment (Vaughan et al. 2017, 2018a,b),

and the wrasse Pseudocheilinus hexataenia (Bleeker,
1857), based on anecdotal evidence that it may
reduce P. acroporae populations in aquaria through
active foraging (Delbeek & Sprung 2005). This study
examined the efficacy of potential biocontrols on
adults and eggs of Prosthiostomum acroporae in
 captive systems over a 24 h period in vivo.

2.  MATERIALS AND METHODS

2.1.  Species selection, husbandry, and culture

Twenty Lysmata vittata and 10 Pseudocheilinus
hexataenia were purchased from Cairns Marine,
Cairns, Australia, and maintained for 1 mo before
any experimentation. Because of space limitations,
shrimps were housed together in one 50 l flow-
through aquarium system (10 turnovers d−1) with
approximately 5 kg of ‘live’ rock for hiding and pro-
tection between molts. P. hexataenia were housed
individually in 50 l flow-through aquarium systems
(10 turnovers d−1) with a 60 mm PVC tee (3-way junc-
tion) each for shelter. Filtered seawater (0.04 µm
nominal pore size) at 27°C was used to supply the
system. Shrimps and fish were fed twice daily to sati-
ation with a mixture of thawed Tasmanian mysid
shrimp, Ocean Nutrition® Marine Fish Eggs, Ocean
Nutrition® Cyclopods, and Vitalis® Platinum formu-
lated feed. Animals were fed the morning prior to the
commencement of each experimental trial but not
during their trial period.

Adult Prosthiostomum acroporae were collected
from a culture of infested captive Acropora spp. colo -
nies. Flatworms were maintained in culture using
established methods (see Barton et al. 2019).

2.2.  Coral fragment preparation, infestation, and
egg collection

To provide A. millepora for biological control trials,
96 A. millepora fragments (approximately 50 mm
height; 30 mm width) were generated from donor
colo nies harvested from 2 colonies sourced from
Davies Reef, Australia (harvested September 2017;
GBRMPA Permit: G12/35236.1), and 5 captive colo -
nies originating from Orpheus Island, Australia (har-
vested May 2016; G14/36802.1). A combination of
bone cutters and a band saw (Gyrphon® Aquasaw
XL) was used to prune A. millepora fragments, which
were then fixed onto aragonite coral plugs (32 mm
diameter) with cyanoacrylate glue.
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To infest A. millepora fragments with P. acroporae,
fragments were housed temporarily in individual 5 l
containers. Before the start of each experimental
trial, 5 P. acroporae individuals, approximately 3 mm
in size, were directly pipetted onto each A. millepora
fragment. After 60 s, each fragment was gently
shaken to ensure P. acroporae had laterally ap -
pressed themselves to the host coral’s tissue and
were not stuck in the coral mucus (flatworms can dis-
lodge if stuck in mucus). Any worms that detached
were attempted to be reattached once and then dis-
carded for another specimen if unsuccessful.

Egg capsules were naturally laid on Acropora
skeleton in the P. acroporae culture and then har-
vested using bone cutters to remove the section of
skeleton with these eggs. The underside of each sub-
sequent skeletal fragment was glued onto clean
aragonite disks or ‘frag plugs’ with cyanoacrylate
glue. The number of eggs per cluster was determined
by counting them under a dissecting microscope
(Leica EZ4, 10−40× magnification) while immersed in
seawater to prevent desiccation. Only fragments of
coral skeleton bearing unhatched and undamaged
egg capsules were selected for experimentation.

2.3.  L. vittata experiments

Experiments with L. vittata were conducted on 4
separate trial days (i.e. 6 control and 6 treatment
replicates per trial; n = 24 control; 24 treatment). On
the day before each L. vittata trial, a random number
generator was used to designate treatments and con-
trols to aquaria. PVC blocks (80 × 80 × 25 mm; 32 mm
diameter depression with central 10 × 15 mm hole to
hold 32 mm diameter aragonite plugs in all repli-
cates) were placed in each aquarium (3.5 l) before
each trial. After their morning feeding, 6 L. vittata
were haphazardly caught from their holding system
using a 500 ml wide−mouth container and placed
into their respective experimental tanks. L. vittata
were given a minimum of 2 h to acclimate to their
surroundings in the replicate experimental flow-
through aquaria (5 l h−1) maintained at 27 ± 0.1°C. L.
vittata were considered acclimated once they settled
on the bottom of each aquarium.

A. millepora fragments (1 per aquarium) infested
with 5 P. acroporae each were introduced to each of
the 3.5 l aquaria (treatment and control) for 24 h to
determine if the presence of L. vittata (treatment)
influenced the number of remaining flatworms on
each coral fragment. The number of flatworms
remaining was determined using a seawater screen-

ing method (Barton et al. 2019). In addition, the PVC
blocks and clear tanks were inspected for flatworms
with the naked eye after each trial, with any flat-
worms found added to the remaining total of flat-
worms. Experiments examining the influence of L.
vittata on P. acroporae egg capsules were conducted
using the same approach, with the exception of egg
capsules being counted before and after the trial
under a stereo microscope (Leica EZ4, 10−40× mag-
nification). Skeletal fragments (n = 48) were divided
equally across treatments and controls (i.e. n = 24
control, 24 treatment) in L. vittata trials with 47.27 ±
19.09 (mean ± SD) egg capsules per fragment. L. vit-
tata do not forage immediately before or after molt-
ing (D. Vaughan pers. comm.), therefore any shrimps
that molted during the 24 h trial were excluded (i.e.
4 replicates were removed due to molting; n = 20).

2.4.  P. hexataenia experiments

P. hexataenia (n = 9) were acclimated for approxi-
mately 2 wk to their randomly allocated flow-through
aquaria at 27 ± 0.1°C with PVC blocks in place. The
50 l aquaria (n = 9 with wrasse, 9 without) were sep-
arated by black plastic because of the acute eyesight
and territorial behavior of P. hexataenia. After accli-
mation, each fish regularly accepted food and did not
exhibit signs of physical or behavioral stress.

Following morning feeding of P. hexataenia, in -
fested A. millepora fragments (5 flatworms each) were
introduced to each 50 l aquarium and left for a dura-
tion of 24 h to assess if the presence of the wrasse in-
fluenced the number of flatworms remaining on each
coral fragment. Flatworms were recovered using an
established screening method (Barton et al. 2019).
The surfaces of the aquaria and the PVC blocks hold-
ing the fragment plugs were inspected visually for
any remaining worms, which were added to the total
remaining flatworms if present. Experiments examin-
ing the influence of P. hexataenia on P. acroporae egg
capsules were conducted similarly, but egg capsules
were counted before and after in spection with a
stereo microscope (Leica EZ4, 10−40× magnification).
The 18 skeletal fragments used in P. hexataenia trials
(n = 9 treatment, 9 controls) had 42.33 ± 16.95 (mean ±
SD) egg capsules per skeletal fragment.

2.5.  Statistical analysis

Binomial generalized linear mixed models (GLMMs)
and generalized linear models (GLMs) were gener-
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ated in RStudio (Version 1.0.143; R packages ‘car,’
Fox & Weisberg 2019, and ‘lme4,’ Bates et al. 2015) to
assess the effect of L. vittata treatments on P. acropo-
rae egg capsules and individual flatworms. Treat-
ment was considered a random effect and trial iden-
tity a fixed effect in the model to ensure that there
were no effects that changed the results significantly
(p < 0.05) between L. vittata trials. Lacking any sig-
nificant effects from trial identity in both experiments
testing L. vittata egg and individual consumption, the
GLM with pooled data denoted any significant
effects (p < 0.05) of treatment on consumption for
each experiment. Four replicates were removed from
statistical analysis of the L. vittata vs. egg capsule
experiment because these replicates molted during
the experimental trial. Kruskal-Wallis tests were
used to assess the results of P. hexataenia experi-
ments with a significance threshold of α = 0.05.

3.  RESULTS AND DISCUSSION

The peppermint shrimp Lysmata vittata consumed
both settled flatworm individuals and egg capsules
laid on coral skeleton. The presence of L. vittata
 significantly reduced (GLM; p < 0.001) Prosthiosto-
mum acroporae infestations over 24 h, with 82.0 ±
26.76% of the flatworms consumed (mean ± SD; n =
20; Fig. 1). Control tanks (n = 24)
showed a loss of 5.83 ± 10.77% (n =
24; Fig. 1). This indicates that approx-
imately 94% of flatworms were re-
covered using the screening method,
which is consistent with previous use
(Barton et al. 2019). L. vittata also sig-
nificantly reduced P. acroporae egg
capsules (GLM; p < 0.05), with 63.7 ±
43.48% (n = 20) of the egg capsules
removed compared to only 1.0 ±
2.99% (n = 24) in the control (Fig. 1). 

Lysmata shrimps use their setae-
covered antennules to detect chemi-
cal cues (via cuti cular sensilla) from
their environment and locate suitable
prey items (Zhu et al. 2011, Caves et
al. 2016). Because they do not use vi-
sual mechanisms to locate and cap-
ture prey, L. vittata predation on P.
acroporae is not hindered by the
camouflage of these flatworms. How-
ever, L. vittata must physically en -
counter P. acroporae eggs or individ-
uals while foraging to consume them,

thus potentially limiting their ability to control P. acro-
porae populations in larger aquaria (aquaria >3.5 l
were not tested in this study), where the probability of
a direct encounter would be limited by proximity and
the availability of alternate food sources (L. vittata
were not fed during the trials). Despite this possible
limitation, L. vittata remain useful as a potential treat-
ment of P. acroporae infestations because intimate co-
habitation with Acropora enables shrimp to scavenge
among coral branches and consume P. acroporae indi-
viduals and egg capsules. L. vittata are also an aggre-
gating species and can be kept in high numbers when
provided with sufficient food and shelter (Vaughan et
al. 2018b). Future research could examine diet prefer-
ences of L. vittata, which may contribute to their effi-
cacy in removing flatworms from Acropora colonies
(e.g. Grutter & Bshary 2004).

Experimental trials with Pseudocheilinus hexa -
taenia demonstrated that these fish are effective at
 reducing the P. acroporae population, with their pres-
ence having a significant effect on flatworm abun -
dance remaining on A. millepora fragments (Kruskal-
Wallis; p < 0.001). All P. acroporae exposed to P.
hexataenia were removed over 24 h (100%; n = 9),
compared to a loss of 7.5 ± 13.92% of flatworms (mean
± SD; n = 9) in controls. In contrast, all egg capsules
were recovered intact in the experimental treatments
(100%; n = 9) when cohabited with P. hexataenia. In
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Fig. 1. Proportion of Acropora-eating flatworm individuals and egg capsules
removed (error bars: ±SD) in the presence and absence of biocontrols. (A)
Lysmata vittata and flatworm individuals (n = 24), (B) L. vittata and flatworm
eggs (n = 20 egg clusters), (C) Pseudocheilinus hexataenia and flatworms (n =
9), and (D) P. hexataenia and flatworm eggs (n = 9 egg clusters). *: statistical
significance between treatments and controls. Photos: = L. vittata and P. hexa-
taenia. (P. hexataenia photo credit: creative commons license istockphoto.com 

user: marrio31 id#471448553)
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the control, 2.39 ± 3.84% egg capsules (mean ± SD;
n = 9) were not recovered, resulting in significant dif-
ferences between treatment and control (Kruskal-
Wallis; p < 0.05), likely from incidental mechanical
damage to egg capsules through handling.

These results indicate that P. hexataenia is highly
efficient at eating flatworms using well-developed
eyesight (Gerlach et al. 2016) but does not interact
with the hard shell of flatworm egg capsules. The
implementation of P. hexataenia as biological con-
trols must consider their ecology and husbandry
requirements. In the wild, these fish actively forage
in their established territory (Geange & Stier 2009,
Geange 2010), generally only coming together for
mating purposes (Kuwamura 1981). While their for-
aging behavior appears similar in captivity, the soli-
tary and territorial nature of P. hexataenia renders
keeping more than 1 individual in smaller aquaria
(e.g. <1000 l) problematic. More than 1 individual
could be kept in aquaculture systems large enough
to avoid territorial confrontation, but the ‘patrol’
range of this territory may remain relatively constant.
It is for this reason, combined with the fact that this
fish does not interact with flatworm egg capsules,
that they may not be as suitable for treating acute
infestations of P. acroporae compared to L. vittata.
However, their performance in our trials suggests
that this colorful labrid is a useful tool for consuming
adult flatworms, thus mitigating the chronic impacts
of a given P. acroporae infestation by removing or
reducing the P. acroporae density to non-lethal levels
for the Acropora host.

P. hexataenia and L. vittata identify prey items in
different ways while foraging, which has implica-
tions for how they are used in the captive environ-
ment and their ecological roles in native ecosystems.
Little is understood about the dynamics of wild P.
acroporae populations, although our results may pro-
vide further understanding of the trophic relation-
ships between P. acroporae and natural predators in
reef ecosystems. P. acroporae are cryptic and there
are no documented infestations causing colonial mor-
tality of Acropora colonies in the wild. It does remain
likely that some proportion of wild mortality of Acro-
pora colonies attributed to other causes (e.g. sedi-
mentation and algal competition) is instead experi-
encing negative secondary effects on coral health
from P. acroporae infestation. However, the presence
of natural predators of P. acroporae (e.g. P. hexatae-
nia and L. vittata) may reduce incidences of mortality
in wild Acropora colonies.

In captive systems, pairing both of these biologi-
cal control organisms with the manual removal of

P. acroporae egg clusters is likely to be highly effec-
tive in reducing the overall infestation within a given
aquarium system. However, consideration must be
given to the sustainable supply of the organisms if
used as biological controls. L. vittata are available
through the ornamental trade and can be bred in
captivity. Although peppermint shrimp species from
other regions (e.g. L. wurdmenii, L. boggessi, Rhyne
& Lin 2006) were not investigated in the present
study, they could also be examined for their ability to
interact analogously with P. acroporae and could be
supplied sustainably for biocontrol of flatworm infes-
tations. Although P. hexataenia is categorized as
Least Concern (Bertoncini 2010; IUCN Red List
2010), overharvesting for use as biological controls in
the ornamental trade could impact local populations.
Lessons should be taken from the Scandinavian
salmonid industry, where harvesting of wrasse
broodstock used for biological control of sea lice par-
asites has exerted considerable pressures upon wild
populations (Brooker et al. 2018, Powell et al. 2018).

In summary, this study provides the first empirical
evidence of potential biological control organisms for
P. acroporae in captivity. The ability of both L. vittata
and P. hexataenia to consume P. acroporae renders
them useful preventative measures of infestation in
addition to potentially being used to treat colonies
infested with adult flatworms and thereby drastically
reducing the impact of this pest on captive colonies.
While P. hexataenia had no apparent interest in P.
acroporae egg capsules, L. vittata displayed the
added benefit of consuming egg capsules through
their foraging activities, with encounters with the
egg clusters likely to further control the flatworm
populations in captive systems. The addition of sus-
tainable biological control organisms adds a valuable
tool for flatworm control, which is suitable for both
aquarium hobbyists and large-scale coral aquacul-
ture facilities.
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