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1. Introduction

Conventional computing that involves stor-
ing data in, and retrieving it from, memory
results in numerous interactions between
the slow memory and the fast processors.
In addition, the data movement between
memory and processor produce a bottle-
neck that is limited by the available band-
width in the computing platform used.[1–3]

This significantly affects the computation
speed, in particular when a large amount
of data is to be processed in a short time.
Furthermore, the excessive data movement
in conventional sequential- and parallel-
processing computers results in very high
power consumption. Even though super-
computers with highly parallel processing
capabilities are presently used to satisfy
the high throughput of computationally
complex tasks, they are extremely power
hungry.[4]

The prevalence of big data and a need for
low-power and high-speed processing in
everyday life and edge computing devices
demands a shift to computers with elevated
capabilities but with low power consump-
tion. This may be achieved through uncon-
ventional computing methods,[5] among
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The ever-increasing processing power demands of digital computers cannot
continue to be fulfilled indefinitely unless there is a paradigm shift in com-
puting. Neuromorphic computing, which takes inspiration from the highly
parallel, low-power, high-speed, and noise-tolerant computing capabilities of
the brain, may provide such a shift. Many researchers from across academia
and industry have been studying materials, devices, circuits, and systems, to
implement some of the functions of networks of neurons and synapses to
develop neuromorphic computing platforms. These platforms are being
designed using various hardware technologies, including the well-established
complementary metal-oxide semiconductor (CMOS), and emerging memristive
technologies such as SiOx-based memristors. Herein, recent progress
in CMOS, SiOx-based memristive, and mixed CMOS-memristive hardware
for neuromorphic systems is highlighted. New and published results from
various devices are provided that are developed to replicate selected func-
tions of neurons, synapses, and simple spiking networks. It is shown that
the CMOS and memristive devices are assembled in different neuromorphic
learning platforms to perform simple cognitive tasks such as classification of
spike rate-based patterns or handwritten digits. Herein, it is envisioned that
what is demonstrated is useful to the unconventional computing research
community by providing insights into advances in neuromorphic hardware
technologies.

PROGRESS REPORT
www.advintellsyst.com

Adv. Intell. Syst. 2020, 2, 1900189 1900189 (1 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

mailto:mostafa.rahimiazghadi@jcu.edu.au
mailto:yfchang@utexas.edu
https://doi.org/10.1002/aisy.201900189
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.advintellsyst.com


which neuromorphic computing is a promising approach, where
engineering inspirations are taken from the noise-tolerant, par-
allel, low-power, and high-speed signal processing abilities of bio-
logical brains.[6]

Neuromorphic computing was coined by Mead,[7] when
he envisioned that while exploiting the similarities between
semiconductor physics and biological neural systems, one may
develop brain-inspired computing platforms. Ever since, neuro-
morphic research has evolved and researchers are implement-
ing various technologies, from conventional semiconductors, as
proposed by Mead,[8–12] to memristive systems,[2,13,14] to hybrid
CMOS–memristive designs[15,16] to develop neuro-mimicking
platforms for replicating experimental results observed in
biology[14,17] or for neuro-inspired platforms used in computing
systems.[18–20]

In this article, as shown in Figure 1, we provide an overview of
neuromorphic computing with CMOS, SiOx-based memristive,
and mixed CMOS–memristive technologies. Our work covers
neuro-mimicking designs, which are able to replicate some
known aspects of biological neurons and synapses. We also
use these neuro-mimicking components to show they can be
used in simple cognitive tasks such as spike-based pattern
classifications or image sensing. In addition, we use memristive
devices to perform more complex classification tasks such
as classifying Modified National Institute of Standards and
Technology (MNIST) hand-written digits using networks devel-
oped mainly from memristive weight elements, where these
elements show good performance despite device variations
and nonidealities.

2. Neuromorphic Components Design

In this section we discuss some previously published as well
as some new results on CMOS and memristive neuromorphic
neurons and synapses. These designs are toward one of the main
goals of neuromorphic engineering, i.e., replicating the underly-
ing principles of neural systems, with the hope to understand
them better and discover the use of technology for artificial
neural components. Using these components, we will then, in
the next section, design systems that perform neuromorphic
learning and computation, which are essential purposes of neu-
romorphic systems.

2.1. CMOS Synapse and Neuron Design

Silicon technology that has reached maturity in the past 40 years
has been widely used in neuromorphic computing, from the
early works of Mead’s team such as the Mahowald and
Douglas silicon neuron[21] to cooperation between Mead’s stu-
dents and the wider neuromorphic community in constructing
CMOS implementations of various neuron models.[22] In addi-
tion, synaptic plasticity, which is believed to play an essential
role in learning and memory in the brain, has also been imple-
mented in CMOS in various forms. These range from detailed
biophysical models[23,24] to computational rate- and timing-based
synapse models.[25–27]

When implementing CMOS-based neuronal and synaptic mod-
els, one could design a circuit that utilizes the above-threshold[23]

or subthreshold[28] region of the operation of transistors to
implement various mathematical expressions, which are mainly
devised by computational neuroscientists.[29] One of the main
advantages of analog CMOS designs for neuron and synapse
circuits is that the designer can produce almost any behavioral
characteristics of the neuron or synapse, which has been approx-
imated and mapped through a mathematical model. In that
case, the designer will route together transistors, and in some
cases capacitors (which can be realized using transistors), to
realize those rules.

In the following sections we discuss the design and implemen-
tation of some previous neuron and synapse circuits implemented
using CMOS technology and discuss their behaviors, which
closely mimic the observations in biological experiments.

2.1.1. CMOS Synapse Design

Here, we describe the design of an analog synaptic circuit that
closely mimics some of the known behavioral characteristics
of synapses in the visual cortex and hippocampus.[30,31] The cir-
cuit that is shown in Figure 2a has been designed and fabricated
in CMOS to implement the triplet spike timing-dependent
plasticity (STDP) rule proposed in a previous study.[32] STDP
is a recognized synaptic plasticity rule that alters the synaptic
weight based on the timing differences between pre- and post-
synaptic spikes. If a presynaptic spike arrives before a postsyn-
aptic one, it can result in potentiation, whereas a reverse spiking
order may cause depression. Triplet STDP, on the other hand,
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considers not only the timing differences between pre- and post-
synaptic spikes, but it takes into account the timing difference
between a pair of pre- or a pair of postsynaptic spikes in the pres-
ence of a post- or presynaptic spike, respectively.[32]

Our newly proposed STDP circuit that resembles, but is
simpler than a previous design presented in a previous study,[33]

is capable of reproducing the outcome of a wide range of
synaptic plasticity biological experiments, including spike
pair, triplet, and quadruplet performed in the hippocampus,
as shown in a previous study.[30] In addition, it can mimic
frequency-dependent pairing experiments performed in the
visual cortex, as shown in a previous study.[31] There are three
different circuit parts shown in Figure 2a that each correspond
to a different feature of a computational model which repre-
sents the triplet STDP rule proposed in a study by Pfister
et al.[32] Here, the red middle part implements the pair-based
dynamics of STDP. With the addition of two side parts, shown
in blue, extra pre-pre or post-post interaction dynamics are
added up to the base-line pair-based dynamics (shown in red).
For more details on the circuit and its functionality, please refer
to the study by Azghadi et al.[33]

Figure 2b, c shows measurement results from the circuit in
(a), which was fabricated using a 1-poly 6-metal 0.18 μm Austria
Micro Systems (AMS) CMOS process. In this circuit, the synaptic
weight is represented by the charge stored in the weight capaci-
tor, CW. Here, the top purple trace in (b) shows the change in the
synaptic weight due to a pre-post-pre triplet of spikes, when only
the pair-based STDP (red part) of the circuit is active. In contrast,
the bottom trace demonstrates the synaptic weight change in the
results of the same spike combination and timings but when the
complete triplet circuit, i.e., all red and blue parts, is active.
Similarly, in the top purple trace in (c), the synaptic weight poten-
tiation as a result of the pair-based pre-post interaction is shown

to be smaller compared with the triplet-based weight change.
The higher potentiation of the triplet-based STDP is due to the
additional post-pre-post interaction, which is activated through
the blue triplet parts of the circuit. This figure shows the first
physical implementation of a very large-scale integration (VLSI)
synaptic device that accounts for higher-order STDP rules.

2.1.2. CMOS Neuron Design

A CMOS-based circuit design of an adaptive exponential inte-
grate and fire (IF) neuron circuit[22,34] is shown in Figure 3a.
The circuit is composed of several parts including an input
differential pair integrator low-pass filter (ML1-ML3), a second
low-pass filter (MG1-MG6) which implements spike frequency
adaption, a noninverting amplifier with current-mode positive
feedback for address event representation (AER) (MA1-MA6),
and a reset block (MR1-MR6) for resetting the neuron and imple-
menting the required refractory period. Figure 3b shows
measurement results from the neuron fabricated in a 0.35 um
AMS CMOS process.[18] Here, the silicon neuron’s membrane
voltage stored on Cmen is shown in response to a constant current
injection (Iin). This closely resembles the spiking behavior of
cortical neurons measured in response to somatically injected
currents.[35] As the figure shows, the neuron can be controlled
to exhibit behaviors similar to biology.

2.2. SiOx Memristive Synapse and Neuron Design

Memristive and resistive random access memory (RRAM) devi-
ces have been extensively used to implement synapse and neuron
circuits for neuromorphic devices, circuits, and systems.[36]
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Figure 1. The structure of the article at a glance. a) The article is composed of discussions on CMOS, memristive, and hybrid CMOS–memristive neuro-
morphic components and systems. b) The tree structure of the article outline is shown.
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In this article, we focus mainly on silicon oxide (SiOx) memris-
tive devices for neuromorphic computing.

SiOx is commonly used as a gate dielectric for metal-oxide-
semiconductor field-effect transistors (MOSFETs) due to its sta-
ble physical and chemical characteristics, i.e., relative dielectric
constant: 3.9, energy gap: 9 eV, dielectric strength 13.5MV cm�1,
and thermal stability >1050 �C.[37] In addition to its excellent
insulating properties, CMOS compatibility, and controllability,
SiOx-based resistive switching phenomena have recently been
demonstrated in vacuum[38] and in ambient atmospheric condi-
tions,[39] indicating that this traditionally passive material can be
utilized as an active memory element (memristor), controlled by
an external electrical field.[40,41]

Furthermore, the microstructure plays a crucial role in
air-stable resistance switching in pure silicon oxide. The colum-
nar structure in sputtered silicon oxide films provides preferen-
tial parts for filaments formation.[42] The control of the interface

roughness between the bottom electrode and the switching
layer affects both the switching voltages and endurance.[43]

Apart from the intrinsic CMOS compatibility, switching prop-
erties of silicon oxide-based RRAMs compare favorably against
other more commonly used RRAMmaterials. We direct readers
to the extensive review.[39] These features make SiOx an
attractive material for neuromorphic computing.

Many different mechanisms could govern the resistance
switching in silicon oxide. Generally, the filamentary resis-
tance switching mechanisms are classified into those that
are intrinsic to the oxide material—commonly known as
valance change or intrinsic switching mechanisms—and those
that involve metallic diffusion from electrochemically active
electrodes (e.g., silver or copper) or metal doping to form
metallic filaments—commonly known as electrochemical
metalization, conductive bridge, or extrinsic switching
mechanisms.[44]
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Figure 2. A synapse circuit implemented in CMOS to realize triplet-based STDP a) can modify synaptic weight based on pair-based STDP (top traces in
[b,c]) when only its pair-based (red) part is activated, whereas it shows triplet-based weight change dynamics (bottom traces in [b,c]) when all its parts,
i.e., the triplet depression (left blue) and triplet potentiation (right blue), work in conjunction with the pair-based (red) part. Note that a pre-post-pre spike
triplet b) can result in a higher synaptic depression in triplet STDP interactions (bottom trace), whereas it shows a lower depression (top trace) in the pair-
based spike interaction, due to considering only the post-pre pair, and not the pre-post-pre triplet. Similarly, in the case of post-pre-post spiking in (c),
higher potentiation is expected when considering the triplet combination (bottom trace), whereas lower potentiation is elicited when only a pre-post pair
is considered (top trace).
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Here, we only focus on intrinsic switching in silicon oxide
that can further be subdivided into air-stable switching and
air-sensitive switching.[39] The first type has been studied with
devices with exposed oxide surfaces and also in bulk and porous
oxides.[45–47] Air-sensitive switching occurs only in vacuum as
the oxidation of conductive filaments occurs in an oxidizing
ambient. The second type, air-stable switching, is possible either
in oxygen-rich or nonoxidizing environments, as conductive
filaments form far from surfaces and are more critically affected
by the oxide microstructure.[42,43,48] The taxonomy of resistance
switching in SiOx-based RRAMs is shown in Figure 4.

2.2.1. SiOx Memristive Synapse Design

SiOx memristive devices are used to implement both STDP[49,50]

and synaptic weights in physical implementations of artificial neu-
ral networks.[15,51] STDP is often regarded as a key local learning
rule in biological systems, modulating synaptic weights in
accordance with the degree of temporal overlap between pre- and
postsynaptic action potentials. It has been shown that memristive
devices can implement a pulse timing-dependent change of resis-
tance by suitably overlapping voltage pulses.[52] Most realizations
use bipolar resistance switching, but unipolar SiOx-RRAMs can
perform STDP plasticity by controlling set and reset processes.

In this case, the STDP response is generated using identical
square voltage pulses, where the post-synaptic pulse is modified
by a capacitor and converted into a triangular pulse before being
applied to an RRAM device. The purpose of pulse modification is
to achieve the desired device response to leading and trailing
pulse edge slopes. The concept is described in detail in a previous
study.[50] Figure 5 shows the results of the implementation of
STDP-like response in unipolar SiOx-RRAM devices. In this fig-
ure, (a) shows a nonidentical STDP-mimicking pulse set up. If a
square pulse and a triangular pulse are below threshold there is
no change in device resistance if a single pulse is applied.
However, if the sum of these two pulses is above the threshold
it is possible to adjust device resistance. In these examples the
square pulse is a presynaptic spike and the triangle pulse is a

postsynaptic spike. The presynaptic spike arrives earlier than
the postsynaptic spike; the resulting sum is a slow leading edge
above the threshold. This leads to a decrease in resistance
(increase in conductance—set process). The postsynaptic spike
arrives earlier than the presynaptic spike; the resulting sum is
a slow trailing edge above the threshold. This causes an increase
in resistance (decrease in conductance—reset process). Figure 5b
shows the percentage of the expected successful operation, i.e.,
if a conductance decrease or increase is expected for a specific Δt,
does that happen or not on the actual device? Figure 5c,d shows
the resulting STDP synaptic weight (conductance) changes in
response to Δt values in the range from �600 to þ800 μs.

All the above memristive synapse results are for air-stable devi-
ces. However, one-diode-one-resistor (1D–1R) air-sensitive test
structures can also be used for vacuum-type SiOx-based synapse
device demonstration, as shown in Figure 6. In this figure, (a)
demonstrates a secondary electron microscopy (SEM) image of the
top-down view of the fabricated device, whereas (b) shows a cross-
section image of the 1R device, including its layer information. The
synapse device structure and characteristics of this 1D–1R design
have been described in detail in a previous study.[53]

To fabricate this device, the active SiOxmemory layer is depos-
ited to a thickness of 40 nm using plasma-enhanced chemical
vapor deposition (PECVD). The reactive ion etch (RIE) step then
clears out the SiOx layer inside the hole and creates a SiOx

sidewall where the memory device is formed (Figure 6b). The
active memory area of the 1 R device is 2� 2 μm2 and the overall
size including metal interconnects is 21.9� 21.9 μm2. The over-
all size of the 1D device is 41� 19 μm2.

Figure 6c shows an endurance of sequential long-term poten-
tiation (LTP) and long-term depression (LTD) behaviors using
nonidentical pulses in 1D–1R architecture with different voltage
increment steps for potentiation and depression: 0.1 V (top),
0.2 V (middle), and 0.3 V (bottom). For depression, the pulse
height modulates from 11 to 17 V with 10 μs pulse width; for
potentiation, the pulse height changes from 4.0 to 10 V with
10 μs pulse width. Such flexible artificial control built with syn-
aptic devices could provide a suitable platform for a broad weight
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Figure 3. a) A neuron circuit implemented in CMOS (Adapted with permission.[34] Copyright 2014, IEEE.) is capable of reproducing b) the spiking
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range of computing applications. Some of the advantages that
SiOx-based synaptic devices provide over other resistive switch-
ing materials include a higher dynamic range (104) and the
potential to achieve as many as 10–60 multilevel states (depen-
dant on the stability, e.g., retention and endurance) in both LTP
and LTD by changing the increment/decrement of the voltage
step, as shown here.

Figure 6d,e shows that the SiOx-based 1D–1R synaptic device
can mimic STDP. These figures show a total of ten different con-
ductance levels of the device, when positive and negative spike
timing differences, as well as spike widths, are used, to emulate
the potentiation and depression window behavior of STDP,
observed in experimental[30,49] and computational experiments.[32]

2.2.2. SiOx Memristive Neuron Design

Memristive and RRAM devices are more commonly used to
implement synaptic weight plasticity in spiking neural networks
(SNNs) or represent weights in artificial neural networks.
However, unipolar SiOx-RRAMs have also been considered for
modeling aspects of the electrical activity of the neuron. It has
been demonstrated that specific operational procedures could
lead to the generation of controlled voltage transients that
resemble spike-like responses seen in biological neurons.
Additionally, the integration and thresholding capabilities that
are crucial for neuronal functionality have also been demon-
strated. Further, redox-based resistance switching models can

Figure 4. Taxonomy of resistance switching in silicon oxide. Upper LHS: Schematic of extrinsic resistance switching. Upper RHS: Schematic of intrinsic
resistance switching. Lower LHS: Air-sensitive resistance switching: typically, electroforming and resistance switching occur only in devices with an
exposed oxide surface and not in bulk devices. This is attributed to re-oxidation of surface-based silicon filaments by an oxidizing ambient. Lower
RHS: Air-stable resistance switching. This type of switching occurs in ambient (oxidizing) conditions and is defined by the microstructure of the oxide
material. Switching voltages are typically lower for air-sensitive switching. Reproduced with permission.[39] Copyright 2018, John Wiley and Sons.
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be related to the Hodgkin–Huxley (HH)[54] conductance model
by analyzing the equivalent electrical circuits[55] and are found
to be very similar.

Figure 7 shows the thresholding, spiking, and integration
capabilities of SiOx RRAM-based neurons. The main idea is to
control the competing set and reset processes (the former being
field driven, the latter current driven) by stressing devices with
appropriate current inputs. A constant current bias is used to test
thresholding and spiking functionality, whereas current pulses
are used to implement integration.

The unipolar switching in SiOx-RRAM devices is utilized to
generate voltage transients (resembling voltage spikes) by apply-
ing a constant current bias. By applying currents larger than the
reset current, the device is put in the metastable state, fluctuating
between the low resistance state (LRS) and the high resistance
state (HRS). As a result, the voltage spiking is measured at
the output of the device. If the input current is lower than a
threshold (reset) current, the resistance states are stable; there-
fore, no voltage spiking is observed. Figure 7a shows threshold
spiking behaviour. Furthermore, the integration functionality is
demonstrated by applying a train of excitatory current pulses
while changing the timing between the pulses. A much smaller

current pulse senses the voltage across the device. Figure 7b–f
shows the obtained results. The frequency of input current
pulses controls the rate of voltage spiking. The results resemble
the leaky IF (LIF) model. A more in-depth analysis of the results
and the experimental setup can be found in a previous study.[55]

In addition to the neuron spiking behavior shown in Figure 7,
a simple one-resistor-one-resistor (1R–1R) test structure can be
used for air-stable type SiOx-based neuron device demonstra-
tion, as shown in Figure 8. The detailed neuron device structure
and characteristics have been described in previous studies.[38,56]

For this neuron design, two device structures have been fabri-
cated: a) SiOx/HfOx stacking bilayer as shown in Figure 8a,b and
b) vanadium electrode (V)/SiOx single layer shown in Figure 8d.
For the SiOx/HfOx stacking bilayer structure, the SiO2 layer
of 30 nm thickness was sputtered and HfO2 of 1 nm thickness
(confirmed by the transmission electron microscopy (TEM)
image, as shown in Figure 8a) was deposited using atomic layer
dDeposition (ALD) at 250 �C. The TaN layer of 170 nm that
serves as a top electrode WAS deposited also through sputtering.
For the V/SiOx single-layer structure, vanadium electrode of
200 nm and SiO2 layer of 6 nm was deposited by sequentially
sputtering without a vacuum break.
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Figure 5. a) Illustration of the experimental setup to test STDP-like behavior: Non-identical pre- and postvoltage pulses and the resulting overlapping
voltage across the device. b) The plot demonstrates successful device operations (conductance increase or decrease depending on time delays). Plots
demonstrate STDP-like behavior for c) mean and d) median change in device conductance. Dotted lines serve as a visual guide. Adapted under the terms
of the CC BY license.[50] Copyright 2018, The Authors, published by Frontiers Media.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2020, 2, 1900189 1900189 (7 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.advintellsyst.com


The SiOx/HfOx stacked structure exhibits excellent reliable
threshold switching in air with an ultralow operation voltage
(<0.5 V) (Figure 8b). The nonlinearity/selectivity of this device
is about 180, which can stably operate at 0.3 V threshold voltage,
whereas the holding voltage is 0.1 V, as shown in Figure 8c. The
self-compliance current is also observed here, which is due to
the internal filament limitation.[57] Figure 8d shows the other
SiOx-based threshold switching structure formed by V/SiOx

single-layer stacking. The nonlinearity and selectivity of this
device is about 102, which can stably operate at 1.2 V, where

the device threshold voltage is 1.1 V. Note that an electroforming
process is necessary before any operation.[38,56]

One of the promising features of these two threshold switch-
ing devices is that they are able to demonstrate the all-or-none
principle in neuronal behavior. It means that, if a neuron
responds at all, then it must respond completely. Also, it means
that a greater intensity of stimulation does not produce stronger
spiking but can increase firing frequency.[58,59] Figure 8e
shows the schematic of the simple 1R–1R test circuit and
its actual experimental setup to realize the all-or-none principle

Figure 6. SiOx-based 1 R–1 D synaptic device. The device structure is shown in SEM images shown in a) for top view and b) cross-sectional view. c) The
device shows great controllability to increase and decrease its conductance in response to pulse amplitude modulation. d) The device is used to dem-
onstrate ten different conductance change behaviors as a result of an STDP experiment, where positive and negative spike timing difference as well as
spike widths are used. Here, (e) shows the same data as (d) but in the reversed order. a,b,d,e) Reproduced under the terms of the CC BY license.[53]

Copyright 2016, The Authors, published by Springer Nature.
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biomimetically. By applying the green input pulse shape as
shown in Figure 8e and measuring the voltage between the resis-
tance and the measurement instrument (Agilent DSO9254A),
we can distinguish the all-or-none principle, as shown in
Figure 8f in blue color. When the applied voltage (CH2, 2 V)
is below the threshold voltage (note to the voltage divider setting,
which is 0.4 V for the SiOx/HfOx stacked structure and 1.1 V for
V/SiOx structure), there are no spikes firing. However, when the

applied voltage is at or above the threshold voltage (3.7 V),
a sequential and repeatable 1.2 V output spike (peak-to-peak
voltage) with 25 μs period is generated.

The above memristive neurons only replicate the threshold-
based spiking IF behavior of neurons. However, biophysical
neurons are considered to provide richer dynamical behavior
and more computational complexity in comparison with
their bioplausible counterparts such as IF and LIF neurons.

Figure 7. a) Voltage transients (spikes) do not occur until the constant current of 5 mA is applied (current threshold). b) Schematic of the LIF neuronal
model. The lower figure shows the integration of input current pulses over time. Theta is the voltage threshold for spiking. c) Excitatory current pulses
(4 mA) are applied to the device, and small current pulses (1 μA) are used for sensing the voltage across the device. Device voltage response is shown for
pulse time separations of d) 640ms, e) 215ms, and f ) 65 ms. These demonstrate that spiking occurs for the smaller number of pulses if the separation
between input current pulses is shorter. Adapted under the terms of the CC BY license.[55] Copyright 2016. The Authors, Published by Frontiers Media.
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HH neuron[54] and its simplified version such as Morris–Lecar
(ML)[60] are members of the biophysical neuron family and due to
their neurocomputational properties, nonbiomimetic CMOS
circuits are not capable of reproducing their dynamics efficiently
in terms of energy and area. The introduction of memristor devi-
ces has transformed the design of HH neuron circuits,[61,62]

whose design progress slowed due to the lack of built-in stochas-
ticity in CMOS circuits for buildingmore realistic brain-plausible
neuromorphic platforms.[63,64]

We have previously shown that the known functionalities
of HH[65] and ML[66] neuron models can be simulated using
behavioral memristive models. Figure 9 shows two different
panels, each describing one bioinspired memristive neuron
circuit diagram, memristive channel characteristics, and bifurca-
tion behaviors at different frequencies, for a different neuron
model. In the top panel of Figure 9, (a) shows the basic circuit
schematic for the HH neuron memristor-based circuit model
with memristive behavior of sodium and potassium channels.
A voltage-gated potassium (sodium) channel is emulated by
positively (negatively) biased memristor devices coupled with a
membrane capacitor. In this panel, (b) shows the tonic spiking
behavior of memristive HH neuron and potassium (Kþ) and
sodium (Naþ) channels for HH model. In the bottom panel,

(c) shows the ML neuron model circuit diagram and the behavior
of potassium and calcium channels for the ML memristive
circuit model in response to a 2.5 V sinusoidal input voltage
at different frequencies. The otassium channel memristor I–V
curve is shown at 5 Hz, 50 Hz, and 5 kHz (from left to right).
The calcium channel memristor I–V is displayed at 100Hz,
500Hz, and 50 kHz (from left to right). The scaled ML neuron
bifurcation behavior for different current stimulus is shown in
Figure 9d. The membrane voltage, calcium channel’s current,
potassium channel’s current, and state variables (M, N) have
been also displayed for the stimulus currents of 60 and 100 μA.

In the last two sections, we presented a number of designs
implementing synaptic and neuronal functionalities such as
LTP, LTD, and STDP for memristive synapses and all-or-none
and threshold spiking behavior for memristive neurons.
Except for the simulation-based HH and ML memristive neuron
models discussed, all other designs explained using SiOx struc-
tures. In addition to the design presented earlier, SiOx-based
devices have been extensively used in other neuromorphic
systems, specifically for synaptic behavior demonstration. Here,
we provide a comparison of various SiOx-based memristive
synaptic devices discussing their functionalities and physical/
switching structures, as shown in Table 1.

Figure 8. SiOx-based 1R–1R neuron device. a) TEM cross-section image of metal–insulator–semiconductor (MIS) structure: TaN/30 nm-SiOx/1 nm-
HfOx/Nþ Si substrate. b) 100 times I–V threshold switching of MIS device in air. c) Threshold switching in the air for selectivity and nonlinearity
of the stacking bilayer structure shown in (a). d) Typical I–V threshold switching of vanadium electrode/6 nm-SiOx/TiN structure. e) Experimental setup
for a simple neuron circuit by the SiOx-based threshold switching selector. f ) The screenshot of measurement instrument (Agilent DSO9254A) and
measured voltage results in CH1 (green line) and CH2 (blue line). Pulses with 100 μs width are used here. When CH1 is below the firing threshold
(e.g., at 2 V), there is no firing observed, whereas if threshold switching occurs (e.g., input pulse amplitude> 3.7 V), the neuron firing begins on CH2
(damping Vp 1.2 V). a,b) Adapted with permission.[38] Copyright 2018, The Royal Society of Chemistry.
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As Table 1 shows, various techniques have been used to imple-
ment different devices with diverse layer stacks, deposition meth-
ods, switching polarity, switching type, and SiOx thicknesses.

These designs that operate at different set/reset voltages, as
low as 0.5 V and as high as 10–15 V, offer various degrees of func-
tionality and on/off ratios. Some of these devices also present a

Figure 9. Bioinspired memristive neuron circuit diagrams, memristive channel characteristics, and bifurcation behaviors at different frequencies, for HH
(top panel) and ML (bottom panel) neuron models. Adapted with permission.[65,66] Copyright 2016 and 2017, IEEE.

Table 1. Comparison of switching characteristics and parameters of SiOx-based resistive switching devices.

Device stacks Deposition method Switching polarity SiOx thickness Set [V] Reset [V] On/Off ratio Multi level LTP /LTD STDP

Gao et al.[67] LiCoO2/porous SiOx Thermal Bipolar 150 nm 4 �4 <106 Yes Yes –

Zarudnyi et al.[50] SiOx Sputtering Unipolar 37 nm 3.7 2.5 <102 – – Yes

Wang et al.[69] SiOx/TaOx Ion beam Bipolar 1, 2, 4 nm 0.5 �0.5 <103 – Yes Yes

Acevedo et al.[70] LCMO/SiO2 Native Bipolar 2 nm 5 �5 <102 Yes – –

Chen et al.[68] SiOx PVD Bipolar 100 nm 1 �1 <10 Yes Yes –

Chang et al.[53] SiOx PECVD PECVD unipolar 40 nm 4–10 �15 <102 Yes Yes Yes

Mehonic et al.[42,51] Mo/SiOx/Ti/Au Reactive sputtering Bipolar 35 nm �1 1 <104 Yes Yes Yes
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multilevel structure, which is useful in implementing neuromor-
phic computing systems. It is worth noting that, not all designs,
except for two of our previous works[51,53] are able to implement
the three investigated synaptic plasticity functionalities, i.e., LTP
and LTD, and STDP.

Note that in Gao’s study,[67] a porous silicon oxide structure
has been used. The main function of SiOx here is to facilitate
lithium-ion migration in forming a conductive path, with well-
controlled lithium ions in the SiOx layer. These features enhance
neuromorphic computing performance, i.e., LTP and LTD, sim-
ilar to those observed in the SiOx device developed in a previous
study.[68] In the work by Wang et al.,[69] an opposite SiOx func-
tionality is used to enhance the resistive switching characteristics
for analog resistance modulation. The SiOx here was found to
have a denser microstructure compared with the TaOx layer.
This microstructural attribute could lead to the retardation of
oxygen diffusion in the SiOx layer. Also, the diffusion constant
is 1–6 orders of magnitude lower than that in the substoichiomet-
ric TaOx. Therefore, in their proposed device, the diffusion rate
of oxygen ions is expected to decrease in SiOx. As a result, the
resistive switching in the cell is likely to take place in the more
stoichiometric and insulating SiOx layer that is in series with the
substoichiometric and more conductive TaOx layer (valence
change-type memristor). Similarly, in Acevedo’s study,[70] it is
reported that SiOx drives the observed resistive switching behav-
iors by taking and releasing oxygen ions to and from the nearby
manganite layer. These results confirm that the combination of
two active oxides (stacked structure) improves the neuromorphic
functionalities compared with the single-oxide structures, as
shown in Table 1. However, some materials (such as LiCoO2

or LCMO) may not be fully CMOS compatible.

2.3. Hybrid CMOS–Memristive Neuromorphic Designs

Although neuronal and synaptic behaviors have been replicated
using memristors, as discussed in the previous sections, silicon
and CMOS-based neuron designs have shown more convenient

implementation processes and better functionalities.[22] Unlike
neurons, synaptic behaviors and functionalities are more conve-
niently implemented using memristive devices. Therefore, one
may choose to use memristive devices to implement synaptic
learning in a neuromorphic system, whereas all other compo-
nents of the system are implemented using analog and digital
CMOS.[15] This requires seamless integration of CMOS and
memristive technologies in a hybrid design, so the benefits of
both domains are achieved in the final system.

There have been many previous hybrid CMOS–memristor
neuromorphic designs in the literature.[15,71–73] In most of these
systems, the neuron and interfacing circuitry are designed in
CMOS, whereas synapses implementing targeted synaptic plas-
ticity rules, such as STDP, are realized using one or a few mem-
ristors, which are programmed through shared or individual
CMOS circuits. Here, we show a hybrid CMOS–memristor neu-
romorphic synapse that implements rate-based synaptic plastic-
ity in the form of the Bienenstock Cooper Munro (BCM)[74] rule,
as a neuromorphic component. In addition, in Section 3.3,
we show a hybrid system implementing spike-based image
sensing.[16]

In a previous work,[15] we proposed a hybrid CMOS–
memristor neuromorphic synapse that was shown to be capable
of reproducing a number of biological experiments including
pair-based, triplet, and quadruplet, similar to the CMOS circuit
shown in Figure 2a. The hybrid synapse circuit that is connected
to a presynaptic and a postsynaptic neuron is shown in
Figure 10a. Here, we show for the first time that this circuit
can generate BCM-like behavior, which is observed in biological
experiments.[75] Figure 10b shows the weight modifications
achieved using the circuit in (a), driven by random pre- and
post-synaptic Poissonian spike trains. This experiment is com-
posed of ten trials. In each trial, a random presynaptic spike train
with the rate ρpre along with a random postsynaptic spike train
with the rate ρpost, both of a 10 s duration, are applied to the
bimemristive hybrid synapse. The rates of pre- and postsynaptic
spike trains are considered equal and are swept over the range

S1

S1 +

-

VREF

S1

PRE

POST

Rpair

Rtrip

(a) (b)

Figure 10. a) A hybrid CMOS–memristor neuromorphic synapse connected to CMOS pre- and postsynaptic devices (Adapted with permission.[15]

Copyright 2017, IEEE). The crossed square in the synapse circuit is representative of a multiplication/rectification circuit. In addition, S1 is a digital
signal that activates two switches in the synapse and one in the neuron, to implement the correct timings required for the STDP rule.[15] b) The hybrid
synapse is able to reproduce a BCM-like weight modification behavior,[74,75] by modifying Aþ

3 , a triplet STDP potentiation parameter, which dictates the
amplitude of potentiation due to the interaction between a postsynaptic spike, with its two immediate previous postsynaptic and presynaptic spikes.[32]
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of 0–50Hz. Figure 10b shows the average weight change and
their standard deviations over the ten trials. This figure shows
the main characteristic of the BCM rule, which is turning
LTD to LTP at a specific spike rate, i.e., the BCM threshold.
Additionally, this figure shows the sliding threshold feature of
the BCM rule, which can alter the frequency at which LTD turns
to LTP. This turning threshold as shown in a previous study[32]

can be controlled using the STDP parameters. Here we have uti-
lized the triplet potentiation amplitude, Aþ

3 , to slide the threshold
toward lower or higher depression.[15]

Although previous CMOS circuits implementing triplet STDP
have also shown the ability to realize BCM behavior, they occupy
a large silicon real estate, mainly due to the large capacitances
required to store the synaptic weight and provide time constants
required for triplet STDP dynamics. However, the proposed
memristor-based hybrid circuit, compared with its CMOS coun-
terparts, occupies up to a ten times smaller chip area.[15] This
feature makes it a promising component for large-scale neuro-
morphic systems with spike-based learning capabilities and
encourages designers to benefit from hybrid designs in more
applications, such as neuromorphic image sensing.

3. Neuromorphic Systems Design

In Section 2, we discussed the design and implementation of var-
ious CMOS, memristive, and hybrid CMOS–memristive neuro-
morphic circuits that were designed and implemented to realize
neuronal or synaptic behaviors. We showed that the devices and
circuits designed are able to replicate some known functionalities
and behaviors of biological systems, such as LTP, LTD, STDP,
triplet STDP, all-or-none spiking, threshold spiking, HH and
ML neuron channel characteristics, and bifurcation behaviors.
In this section, we utilize several of the designed circuits devel-
oped and explained earlier to implement neuromorphic comput-
ing systems applied to spike-based as well as artificial neural
network learning. We also discuss the design and implementa-
tion of a hybrid CMOS–memristor neuromorphic sensing
system.

3.1. CMOS Neuromorphic Computing

A neuromorphic system can be implemented completely using
digital[76,77] or using a mix of analog and digital CMOS
technology.[18,27] If the system is implemented in digital, the
behaviors of neurons and synapses are approximated and the
spiking and AER structure of the system is realized in digital
architectures.[8,76,78] However, if the system is designed in mixed
analog–digital domain, the synaptic and neuronal behaviors are
replicated closely in analog, whereas AER and interfacing are
realized using digital technology.[9]

Most of the previous CMOS-based neuromorphic systems
include fixed learning and neuron circuits, where an array of
analog synaptic cells implementing a fixed learning rule, such
as STDP[28] or SDSP,[25] is connected to an array of IF neurons.
These implementations offer great biomimicing properties
because their components closely mimic biological experiments;
however, they can only be used with the learning rules imple-
mented in their hardware. Some neuromorphic systems, such

as those described in a previous study,[18] provide more flexibility
by giving the user the ability to describe the network structure
as well as the required learning rule in software, whereas the
neuron and synapse components are implemented in analog
hardware. The AER and spike transmission in these systems
use digital technology and are usually implemented on field pro-
grammable gate arrays (FPGAs)[79] that facilitate programmabil-
ity and reproduction.[76]

Here, we describe the operation and use of such a hardware–
software system[18] that uses CMOS circuits providing program-
mable synaptic learning. This programmability gives the user
the freedom to explore any arbitrary spike-based learning rule.
The design that is shown in Figure 11a is composed of a) an
asynchronous static random access memory (SRAM) array that
can be programmed as virtual synapses, connected to b) an array
of CMOS synapses, which integrate a current proportional to the
weight stored in their corresponding SRAM cells, to feed into
c) IF neurons similar to the neurons explained in Figure 3, which
receive/transmit spikes from/to other neurons/synapses in a set
network, through d) asynchronous control and interfacing cir-
cuits that manage the AER communication. All analog compo-
nents on the chip are tuned by biases received from e) a bias
generator circuit.

Figure 11b shows an example SNN that has been imple-
mented on the chip shown in (a). The chip receives AER input
spikes, which contain information on a) the address of the
postsynaptic neuron, b) the address of the programmable
SRAM-based virtual synapse connected to this neuron, c) the
type and address of the physical integrator synapse, and
d) the new five-bit weight value that will be written to the
addressed virtual synapse (SRAM cell). The AER output spikes,
in contrast, only show the address of the postsynaptic neuron
that generated them.

Using the network shown in Figure 11b, two UP and DOWN
rate-based spike patterns (shown at the top of Figure 11c), with
20% correlation (6 fixed common input spike trains shown with
red circles, from the total 30), are learned through triplet
STDP,[32] to be classified unsupervised. The four panels in the
figure show the output neuron firing rate during learning.
In the first trial, learning has not happened yet; hence, the output
neuron fires with a similar rate for both UP and DOWN patterns.
As the learning progresses, at each trial either the UP or DOWN
spike-based pattern is randomly selected to be applied to the net-
work. Also, a new Poissonian spike train is generated for each of
the 18 active synaptic inputs for either UP or DOWN. It is seen
that after 20 trials, the output neuron successfully distinguishes
between the two patterns, showing a higher firing rate for UP
patterns. The figure shows the results for 20 runs, each including
20 trials. For each run, the initial synaptic weights, the order in
which UP and DOWN patterns are applied to the network over
20 trials, as well as the definition (spike timing intervals and dis-
tribution) of UP and DOWN patterns are randomized. Note that
the learning rule used for this classification, implemented in
software to program the SRAM virtual synapses on the chip, pro-
vides the same functionality as the circuit shown in Figure 2a.
We have shown that this classification task can achieve 100%
accuracy, even in the presence of 87% (i.e., 26 common input
spike trains) correlation between the two patterns.
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3.2. SiOx Memristive Neuromorphic Computing

SNN and artificial neural network systems that utilize memris-
tors as their learning components or simply as a programmable
element have been researched extensively.[15,19,80–83] Here, we
mainly focus on neuromorphic systems that utilize SiOx mem-
ristive devices for learning, where memristors are used as weight
elements. We also show simulation results of neuromorphic
learning using spike-based learning and STDP, realized using
ideal memristor models. However, there exist challenges in
the use of memristive devices as learning components, which
should be considered in neuromorphic learning systems design.
Here, we show and discuss some of these challenges that mainly
arise from the unavoidable device nonidealities.

In addition to the ability to replicate STDP-like behavior for
spike-based learning (shown in Figure 5), memristive and
RRAM crossbars offer the execution of vector-matrix multiplica-
tion in the analog domain.[19] When voltage pulses are applied on
one side of the programmed RRAM crossbar, and current is
sensed on the orthogonal terminals, this system provides approx-
imate vector matrix multiplications (multiply and accumulate
[MAC]) operations in constant time steps using Kirchhoff ’s
and Ohm’s laws.[84] This approach promises speed and power
efficiency improvements of many orders of magnitude compared
with conventional CMOS systems.[19] However, there exist
obstacles on the way of utilizing memristive devices as STDP-
enabling synaptic devices or MAC operation facilitators.

The main obstacle to realizing the full potential of RRAM
crossbars is the number of both device-level and system-level
nonidealities. These include device-to-device and cycle-to-cycle
variabilities, a limited number of resistance states or a narrow

operational range of resistance modulation, nonlinearity of both
voltage–current characteristics and pulse response of devices,
and high line resistances in crossbar arrays. Despite these,
SiOx-RRAM devices have been used to implement weights
in physical neural networks, in which multiple weight values
(memristive resistance states) are required.[51]

Figure 12a,b shows the feasibility of achieving multiple resis-
tance states in intrinsic SiOx-RRAM devices by controlling the
reset process (i.e., varying the reset voltage) during voltage
sweeps. Stable resistance states are achieved as devices reset
gradually from the LRS to the HRS. However, for practical appli-
cations, pulse operation is preferred. In this case, the gradual
reset dynamics is highly dependent on voltage amplitude and
pulse width, as clearly shown in Figure 12c,d. Programming
curves that gradually switch devices from the LRS to the HRS
(see for instance Figure 12d) are typically called LTD and are akin
to synaptic functionality. As these figures show, the memristive
devices could be challenging for implementation of distinct resis-
tance levels required for learning and inference in artificial neu-
ral networks. In addition, other nonidealities such as device
failure and fabrication yield are present that can affect the net-
work performance.

We have studied extensively the effects of various memris-
tors’ nonidealities on inference accuracy, using the MNIST
handwritten digits dataset,[51] where the neural network weights
are represented as memristive device-resistant states, as shown
in Figure 13. Figure 14 shows examples of the impact of
yield and device failure on inference accuracy, as well as that
of varying the number of resistance states with different
schemes to map device resistance onto ANN weights, as shown
in Figure 13.
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From these figures, it is evident that higher-device nonidealities
result in lower inference accuracy in the implemented classifica-
tion task for MNIST. The figure also suggests that small-device
nonidealities (<10%) do not significantly affect the performance
of the implemented SiOx-based neuromorphic system, which uses
memristors as programmable weights, whereas learning happens
through supervised backpropagation (BP).[51]

In a similar study to the one explained earlier, we developed
another SiOx-based memristor neuromorphic learning platform,
in which a three-layer neural network (shown in Figure 15a) was
designed and trained for the classification of MNIST dataset
(784� 64� 10) and topology patterns (TP) of the atmosphere
effect (256� 64� 7).[38] Note that the experimental LTP and
LTD property of the synaptic devices was used to devise a
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Figure 12. a) I–V curves demonstrate a typical bipolar resistance switching. b) Adjustment of reset voltage shows a gradual reset process achieving
multiple stable resistance states. Dynamics of resistance increase (LTD) is highly dependent on both pulse amplitude and pulse width. This is demon-
strated in (c) and (d) receptively. e) Three very different LTD curves are obtained from the same RRAM device by changing the pulse amplitude and width.
Reproduced under the terms of the CC BY license.[51] Copyright 2019. The Authors, published by Frontiers Media.
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function of synaptic weight (W ) with respect to the input pulse
numbers.[85] During the training process, the feedback error of
network weights obtained from the BP algorithm was modulated
using the function. Then, the deviation between the output and

the target signal was minimized in the learning process.
We found that the network learning performance relied heavily
on the linearity and accuracy of the weight resistance tuning
process that was developed for the memristive network.
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Figure 13. a) The structure of the implemented ANN for MNIST classification task. b) The network weights at each layer are mapped to a two-xbar
structure. Here, the network has two hidden layers. Reproduced under the terms of the CC BY license.[51] Copyright 2019. The Authors, published by
Frontiers Media.
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Figure 14. The decrease in inference accuracy of RRAM-based ANNs from a) the effect of un-electroformed devices, b) devices failed at HRS, and
c) devices failed at LRS. Adapted under the terms of the CC BY license.[51] Copyright 2019. The Authors, published by Frontiers Media.
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Figure 15b shows that the best learning accuracies achieved for
MNIST and TP are around 89% and 80%, respectively. The figure
also shows that there is no clear difference between various device-
to-device variation cases. Furthermore, the accuracy correlation
with LTP and LTD nonlinearity (as defined in a previous study[85])
is shown in Figure 15c. It is shown that the implemented neuro-
morphic learning system that uses SiOx-based weight reaches a
simulated accuracy of up to 90%, but the accuracy decreases with
the increase in nonlinearity by a slope of 6.

The promising neural network learning results shown in
Figure 15 were achieved using the simple SiOx-based metal–
insulator–metal (MIM) structure in place of the network weight
elements, in a crossbar structure. In addition, it has been
shown[86,87] that such MIM devices simplify memory array
design if used in a crossbar architectures. However, the leakage
through the sneak paths inevitably induced while accessing MIM
crossbar networks may cause weight variation issues detrimental
to the development of reliable memristor-based neuromorphic
learning and computation.[88] To mitigate the sneak paths cur-
rents, a diode or a selector device is usually positioned in series
with a memristor cell to form a 1D–1R or 1S–1R structure.[89,90]

These configurations considerably increase fabrication and cir-
cuit design complexity and cost.

To address this problem, in Figure 16, we have developed a
selectorless memristor, which does not require a 1D or 1S series
connection. This is achieved using simple high-k/low-k bilayer
stacks (as shown in Figure 16b). The intrinsic selectorless prop-
erty (or the nonlinear I–V characteristics, as shown in Figure 16a)
can be realized by inserting an ultra low-k layer (e.g., SiOx layer
or graphite oxide layer).[91] The main benefit here is that the ultra
low dielectric constant layer provides nonlinearity intrinsically
by carrier transport formulation design, specifically in Poole–
Frenkel defect cases.[92]

Here we use this selectorless memristor to demonstrate neu-
romorphic learning. Figure 16a shows typical bipolar resistive
switching I–V characteristics during DC voltage sweeps for
HfOx single layer (H11) and HfOx (7 nm)/graphite (5 nm)
stacked (H7G5) bilayer selectorless memristive devices. The
sneak path current in H7G5 device can be avoided by taking
advantage of nonlinearity in the self-rectifying I–V characteristics

of this device. The I–V characteristics shows that the H11 has a
higher sneak path current at LRS. Therefore, the H7G5 structure
can be used that shows the self-rectifying behavior, where the LRS
current is suppressed and sneak paths current can be eliminated.

Figure 16b shows the TEM image of the H7G5 stacked selec-
torless memristor device. The device structure and fabrication
processes have been fully described in a previous study.[93]

The immunity to the sneak path currents introduced through
the nonlinearity of the selectorless devices introduced here mit-
igates the potential weight variability in neuromorphic learning
and computing applications. Moreover, the selectorless device
introduced can result in larger crossbar sizes, as shown in the fig-
ure. This results in a larger number of wordlines, which in turn
means a bigger network suitable for extended computing demands.

Figure 16c shows LTP (top) and LTD (bottom) behaviors using
identical pulses method to examine the conductance flexibility
and modulation in H7G5 devices. For depression, the pulse
height is �0.7 V with 50 μs pulse width; for potentiation, the
pulse height is 1.54 V lasting for 100 μs. Figure 16d shows the
simulation accuracy results obtained using H11 and H7G5 selec-
torless devices mapped into the three-layer neural network
shown in Figure 15a for classifying the handwritten digits
MNIST dataset. As the figure shows, the best classification accu-
racy achieved using the network composed of the H7G5 devices
is around 85%, which is far better than that of the network using
H11 devices (30%). This network uses selectorless RRAM devi-
ces as their weight elements, which suppress the sneak path cur-
rent without the need for additional transistors compared with
previous designs.

In all aforementioned learning experiments performed using
SiOx devices, neural networks were simulated with realistic
device models, where learning occured through machine learn-
ing approaches such as BP. In these networks, the memristive
devices were mainly used as weight elements, which are pro-
grammed to represent a certain resistance state. Therefore, no
unsupervised learning through neural-inspired algorithms such
as STDP, similar to that shown in Figure 11c, occured. However,
it has been shown that memristive devices can be used to per-
form unsupervised learning through synaptic plasticity mecha-
nisms used in neuromorphic systems. In the next section, we

Figure 15. a) The structure of the simulated neural network is shown. It learns through BP algorithm and supervised training. b) The actual network sizes
are 256� 64� 10 and 256� 64� 7, which achieved different accuracy levels after 100 learning epochs for various device-to-device variation levels (each
curve), averaged around 89% and 80%, for the two network sizes for MNIST and TP classification. Note that the convergence speed was similar in both
network sizes and for various device variation levels. c) Correlation between LTP and LTD nonlinearity effect and the simulated accuracy is shown.
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provide simulation results of a memristive neuromorphic system
that uses STDP for unsupervised learning of simple patterns.

3.3. Hybrid CMOS–Memristive Neuromorphic Sensing

The use of memristors as a processor of input sensory informa-
tion has rapidly gained traction but has only had limited success
in the frontend generation of sensory data. For example, in pre-
vious studies,[16,94] both works use memristive meshes for spa-
tiotemporal smoothing of information as a way to reduce noise
through averaging. The resistive power dissipation and lack of
equal set/reset processing speeds have made it too difficult to
justify the additional fabrication steps required to implement
thin-film metal-oxide memristors in the back-end-of-the-line
(BEOL) for CMOS integration.

In the circuit shown in Figure 17a, we present a novel
memristor–CMOS image circuit that utilizes temporal storage
of information in RRAM to block signals in the absence of
temporal change in light intensity. This circuit is an extension
and improvement on what is presented in the image sensing
circuit from a previous study,[16] which relied on the use of a

separate match line for voltage comparisons to a constant refer-
ence. A constant referencemeans that an output was generated at
the source of a transistor M3 when input intensity exceeded
some threshold; that is to say, there was no detection of temporal
difference of intensity, and therefore light adaptation was a
mechanism of DC thresholding. We draw inspiration from
dynamic vision sensors here, but rather than using a capacitance
to block DC content, we rely on the identical signals generated
from the application of a read pulse to a pair of identically pro-
grammed memristors at two consecutive points in time to block
the output. The voltage and memristor state X read-out are
shown in Figure 17b, and the use of the match line alone in
a spike-based programming scheme is shown in Figure 17c.
The output signal from the image-sensing circuit is passed
through a subthreshold amplitude-to-frequency converter
which generates voltage spikes, in a manner similar to that of
the retinal ganglion cells,[95,96] the schematic of which is shown
in Figure 17d, and array-based architecture of image sensor
interfacing to subthreshold cell circuits in Figure 17e. The final
spiking output results are shown in Figure 17f for a given input
of light intensity change. The chip is fabricated in the SK Hynix

Figure 16. a) I–V characteristics of bipolar resistive switching operation in HfOx single-layer memristor (H11) and selectorless HfOx (7 nm)/graphite
(5 nm) stacked memristor (H7G5) (Adapted under the terms of the CC BY license.[91] Copyright 2019. The Authors, published by Springer Nature). b) TEM
image of a sample H7G5 stacked device is shown at the top (Adapted with permission.[93] Copyright 2019, The Royal Society of Chemistry.) and crossbar array
size calculation based on measured nonlinearity and memory window with various device sizes (0.4, 0.6, 0.8, 1 μm) on H11 and H7G5 devices are shown
at the bottom. c) The LTP/LTD behaviors using identical pulses are shown for H7G5 devices. d) Neural network simulation accuracy using BP algorithm
and supervised training is shown. The accuracy is around 85% for H7G5% and 30% for H11. A similar network to that shown in Figure 15a was used.
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180 nm process, VDD¼ 1.8 V and Vth¼ 0.4 V. Here, VGOUT
is the

voltage-converted current output, whereas VAON
and VGIN

are the
voltage-converted inputs from the preceding stage. Note that
the response is shifted negatively to replicate a biologically
plausible resting membrane potential.

3.4. Simulation of Memristive Neuromorphic Computing

Biophysical neuron models, such as those developed for HH
and ML neurons, have shown memristive behavior in their

footprint.[97,98] There exist only a few experimental implementa-
tions[62,99] of memristor-based biophysical neurons due to the
high complexity of the neuronal dynamics and bifurcation behav-
iors. To the best of our knowledge, there is no memristive bio-
physical neuron-based network, which has been tested for any
type of application. To address this challenge, one approach is
to develop and utilize simulation frameworks for memristive
neuromorphic networks. Significant research[64,100–102] has been
conducted on simulating memristive networks, where experi-
mental implementation cannot be conducted due to the network

Figure 17. a) The schematic structure of the CMOS–RRAM photoreceptor. b) Photoreceptor cell output and state response. c) Photoreceptor cell pulsing.
d) Circuit schematic of a ganglion cell-inspired subthreshold CMOS amplitude-to-frequency converter. The ganglion cell circuit accepts current as input
from the previous image-sensing stage and will only generate an output where there has been a change in intensity, to achieve retina-like power optimi-
zation. e) Retinal network CMOS chip layout. The full flow of photocurrent commencing at a 128� 128 array of photoreceptor cells, which are averaged to
a 64� 64 bipolar cell network to produce a graded action potential and are subsequently converged to a 16� 16 retinal ganglion cell network for fast spike
generation. f ) Experimental results of the RRAM–CMOS retinomorphic architecture. e,f ) Reproduced with permission.[16] Copyright 2018, IEEE.
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size, complexity, technology limitations, etc. The simulation
analysis can provide insight into the dynamical behavior of
the equivalent memristive circuit model of various neuron mod-
els and the learning behavior and performance of their network.

We have developed and simulated simple crossbar struc-
tured memristive networks to validate the functionality of the

biologically-inspired ML and HH memrisitive neurons (that
were shown in Figure 9), in a simple pattern classification task.
Figure 18a shows the STDP learning mechanism for two coupled
HH neurons with memristive synapses in a small-scale crossbar
structure. Figure 18b shows the membrane voltage of pre- and
postsynaptic HH neurons connected by a memristive synapse for

Figure 18. Simple patterns are classified by HH and ML memristive neurons, connected through crossbar structures of memristive synapses, following
STDP learning, through overlapped input spikes. Adapted with permission.[65,66] Copyright 2016 and 2017, IEEE.
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a 15 μA stimulus current. Figure 18c shows a 2� 2 two-layer
perceptron network with HH neurons and memristor synapses,
where the inputs are two classes of two-pixel images. The classi-
fication results of the two-pixel input patterns performed by the
2� 2 memristive network are shown in Figure 18d. Here, the
membrane voltages of the presynaptic (black) and postsynaptic
(blue) memristive HH neurons are shown. Initially, postsynaptic
neurons spike without any specific pattern, and it takes some
times for them to follow the input patterns. The learning is unsu-
pervised and the winner neuron follows one of the patterns based
on its initial weight vector. When the class 2 image is assigned
to postsynaptic neuron 1, the weight of memristive synapse 1
increases due to STDP. As post-synaptic neuron 1 spikes after
presynaptic neuron 1 (a black pixel makes a neuron spike),
the weight of memristive synapse 1 increases. Also, the weight
of memristive synapse 2 decreases as postsynaptic neuron 2 is
inactive whereas presynaptic neuron 1 spikes.

Figure 18e shows a 4� 2 two-layer perceptron network with
ML memristive neurons and memristive synapses. In this case,
inputs are two classes of four-pixel images. Four presynaptic
neurons’ membrane voltages are shown in Figure 18f, which
show their spiking activity, after applying the input spike trains.
LTD and LTP phenomena are shown in Figure 18g during the
classification in the memristive network on the synaptic devices.
Finally, Figure 18h shows postsynaptic neurons’ membrane
voltages and the results show successful classification of the two
classes of input patterns, where after 5 s, neuron 1 fires for one
pattern, whereas neuron 2 fires for the other pattern.

4. Discussion and Conclusions

Neuromorphic computing is a far-reaching field that encom-
passes the hardware implementation of basic artificial neural
networks, through to biologically plausible spike-based systems.
In both cases, learning and inference are the cornerstones of
building functional large-scale networks that facilitate tasks that
are fundamentally tied to neural cognition.

We have shown how CMOS and memristive systems have
become highly pervasive in neuromorphic computing as they
mimic the functional primitives of SNNs and artificial neural
networks alike and reproduce neuronal and synaptic models
at the device/physics level. While various RRAM switching
mechanisms are available, we have focused on the use of
filamentary-based switching and joule-heating modulation in
SiOx memristors to construct substantially simplified neurons
and synaptic circuits when compared with their purely CMOS
counterparts. In essence, the integration of nanoscale nonvolatile
devices in the BEOL has completely removed reliance on physi-
cally disparate volatile DRAM or SRAM arrays, where informa-
tion transfer is thwarted by restricted bus sizes.

The von Neumann bottleneck in conventional computing sys-
tems is alleviated by leveraging analog domain in-memory com-
puting in memristive crossbar systems capable of spike-based
and nonspiking training and inference, both supervised and
unsupervised. This was demonstrated in both oxygen migration
of hafnium-oxide devices and filamentary growth within SiOx

memristors, which may be integrated with active CMOS arrays
or passive arrays by exploiting highly nonlinear characteristics

that exhibit diode-like suppression of sneak paths currents. As
cognitive neuroscientists better understand that learning mech-
anisms that occur within our neural systems, having a funda-
mental physical device-level primitive enables an optimized
mode of implementation that can be used to successfully dem-
onstrate more complex learning rules and higher-order behaviors
such as triplet-based, quadruplet-based STDP, and beyond.

In-memory processing has also been demonstrated in similar
analog domain form by implementing multibit flash cells, but
these are bottlenecked by the lower-limit technology nodes that
floating-gate transistors are fabricated in, and memristive devices
appear to be the prime candidates for moving beyond such
limitations. An alternative in both array-based computing and
biological spike generation has been shown in the form of sub-
threshold analog circuits such as those shown in this article,
which take advantage of ultralow power consumption but suffer
from extremely high RC delays which are introduced from high
drain-to-source equivalent resistance values when the channel
has not been fully inverted due to low voltages applied at the gate.

Neuromorphic engineering is not limited to drawing inspira-
tion from the processing that occurs within the brain and can be
broadened to any biological process. We have demonstrated neu-
romorphic vision sensing by developing a RRAM-based adaptive
image sensor, which is equally important as a method to opti-
mize the frontend procurement of information that is transmit-
ted to the processor. The notion that event-based processing
strips input data of redundancy and that the retina implements
ultralow power processing through adaptive vision are replicated
in our sensory neuromorphic RRAM–CMOS integrated system.
The realization of fully optimized systems may require similar
approaches in integrating neuromorphic processing with front-
end neuromorphic sensing.

The advantages of RRAM-based neuromorphic computing
are naturally counterbalanced by the requirement to convert
read-out currents into digital domain information for interfacing
with computing systems, and this requires the use of analog-
to-digital converters (ADCs) which partially offset the power,
speed, and area advantages of purely RRAM neuromorphic
systems. Current integration techniques use active resistive
switching layers above higher-level metal layers for any technol-
ogy process, which enables us to take advantage of vertical real
estate of a chip and relax the burden of planar topological area.
The same methodology has been applied in using FinFET tech-
nology to reduce the impact of electron traps in creating channels
with a larger cross-sectional area for CMOS scaling below 5 nm
feature sizes. There is a continued need to explore the effect of
noise associated with analog computing and quantization effects
on precision but with the silver lining that neural networks can
be designed to be robust to minor errors, signal fluctuations and
nonidealities, making them optimal candidates for applications
in soft computing.

In addition, retention degradation (i.e., time-dependent
RRAM state decay) and its impact should be considered in neuro-
morphic computing, as it is done in previous works such as a
study by Wu et al.[103] At a temperature of 85 �C, stacked TaOx

devices have shown retention times of over 10 years.[104] Though
when baking at higher temperatures, a 12% degradation in classi-
fication on the MNIST dataset is observed, and most degradation
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occurs after 104 s.[105] As a result, a refresh operation is required
in practical applications to maintain the accuracy.

To further improve retention, electrical design at the state level
(e.g., compliance current limiters) should be fine tuned. From a
structural and architectural perspective, oxygen exchange layer
(OEL) and one transistor-one resistor (1T–1R) cells are needed
to mitigate stochastic oxygen vacancy generation, annihilation,
and overshooting pulses. The use of stacked-layer structures
and thin-film plasma treatment are also helpful to eliminate
the defective states recovery. At the board level, a passive heat
sink is a common practical solution to prevent thermal throttling
during heavy workload cycles.

It should also be noted that semi-volatile devices, such as
WOx from previous studies,[106,107] which display millisecond
retention characteristics, may also be leveraged as LIF neurons.
This enables devices to reproduce time-dependent spiking adap-
tations which have been observed in pyramidal neurons and is
useful in reservoir computing, thus efficiently processing tempo-
ral information.[108]

At this stage, researchers have a strong idea of the architecture
of biological cells within sensory systems such as the retina and,
to some extent, the brain as well. However, what is lacking is a
unified account of the computation that takes place within
biological sensors and how they process, filter, and store infor-
mation before transmitting them to the brain. As neuroscientists
converge toward a better understanding of the biological process-
ing that takes place across the nervous system, CMOS and
memristive researchers will be able to continue to cooperate
in building large-scale systems to both better understand the cog-
nitive circuits in performing functional and behavioral tasks such
as pattern recognition and higher-order interpretation and intro-
duce the low-power and highly adaptive advantages of biological
processes to conventional computing.
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