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1  | INTRODUC TION

Advances in sequencing technology have greatly expanded our abil‐
ity to harness the power of metabarcoding for studying microbial 
communities, and it is now possible to sequence an entire commu‐
nity using a minuscule amount of starting material. However, our 

ability to detect organisms from just a few fragments of nucleic acid 
is both a blessing and a curse; while it greatly improves our detection 
of target species, it also carries the risk of sequence contamination. 
Indeed, there is growing recognition that contamination (especially 
bacterial contamination) is a serious hindrance in microbiome stud‐
ies, and several studies have documented that contamination is 
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Abstract
Contamination is a ubiquitous problem in microbiome research and can skew re‐
sults, especially when small amounts of target DNA are available. Nevertheless, no 
clear solution has emerged for removing microbial contamination. To address this 
problem, we developed the R package microDecon (https​://github.com/donal​dtmck​
night/​micro​Decon​), which uses the proportions of contaminant operational taxo‐
nomic units (OTUs) or amplicon sequence variants (ASVs) in blank samples to system‐
atically identify and remove contaminant reads from metabarcoding data sets. We 
rigorously tested microDecon using a series of computer simulations and a sequenc‐
ing experiment. We also compared it to the common practice of simply removing 
all contaminant OTUs/ASVs and other methods for removing contamination. Both 
the computer simulations and our sequencing data confirmed the utility of micro‐
Decon. In our largest simulation (100,000 samples), using microDecon improved the 
results in 98.1% of samples. Additionally, in the sequencing data and in simulations 
involving groups, it enabled accurate clustering of groups as well as the detection of 
previously obscured patterns. It also produced more accurate results than the exist‐
ing methods for identifying and removing contamination. These results demonstrate 
that microDecon effectively removes contamination across a broad range of situa‐
tions. It should, therefore, be widely applicable to microbiome studies, as well as to 
metabarcoding studies in general.
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ubiquitous, even in places that should be DNA/RNA free, such as 
molecular grade water, PCR polymerases, and DNA extraction kits 
(Corless et al., 2000; Hang et al., 2014; Kulakov, McAlister, Ogden, 
Larkin, & O'Hanlon, 2002; Peters et al., 2004; Shen, Rogelj, & Kieft, 
2006; Weiss et al., 2014). Contamination is particularly problematic 
for studies using low‐biomass samples, where even a small amount 
of contamination can severely affect the results (Salter et al., 2014).

Although this problem is widespread, no clear solution has 
emerged. Good laboratory techniques are important but cannot 
eliminate contamination, because many kits and PCR reagents are 
contaminated (Salter et al., 2014) and contamination can occur when 
the samples are being collected. To address these issues, strategies 
such as using a single kit for all extractions or randomizing sam‐
ples across kits and PCR runs have been recommended (Salter et 
al., 2014; Weiss et al., 2014). Additionally, various methods have 
been proposed for removing contamination from kits and reagents, 
but mixed levels of success have been reported, and they often 
cause PCR inhibition (Champlot et al., 2010; Mohammadi, Reesink, 
Vandenbroucke‐Grauls, & Savelkoul, 2005; Rueckert & Morgan, 
2007).

None of the proposed methods are likely to eliminate contami‐
nation in all cases; therefore, there is still a need to identify and deal 

with contamination postsequencing. Some researchers have advo‐
cated for a log‐ratio test for identifying contamination (Robinson, 
Crabtree, Mattick, Anderson, & Dunning Hotopp, 2017), while oth‐
ers have suggested that contaminants can be identified by looking 
for negative correlations between prestandardization amplicon 
concentration and the relative abundance of operational taxonomic 
units (OTUs) postsequencing (Jervis‐Bardy et al., 2015). Similarly, 
Davis, Proctor, Holmes, Relman, and Callahan (2018) proposed the 
R package decontam for using presequencing quantification data to 
identify contaminant amplicon sequencing variants (ASVs; for sim‐
plicity, we will refer to OTUs hereafter, but all concepts and methods 
we will discuss also apply to ASVs). Perhaps the most effective and 
straightforward suggestion is simply to use negative controls (here‐
after called “blanks”) that are carried through the entire collection, 
extraction, amplification, and sequencing process (Barton, Taylor, 
Lubbers, & Pemberton, 2006; Salter et al., 2014). These blanks can 
then be used to quantify the levels of contamination present.

Regardless of the mechanism used to detect contamination, the 
problem of what to do once it has been detected remains. One op‐
tion is to simply report the level of contamination, but this is unsat‐
isfactory as it is difficult to know the influence of contamination on 
comparisons among groups. To solve this dilemma, some researchers 

Box 1. Definitions of Terms
•Blank = a negative control collected at the same time as the samples and carried through the entire 
extraction, amplification, and sequencing process 
•Constant = an OTU that is entirely contamination and is used as the basis for decontaminating 
samples 
•Contaminant OTUs = OTUs that amplified in the blank
•Entirely contamination = contaminant OTUs that would not be found on an uncontaminated sample 
(i.e., they do not occur on the species, substrate, etc. that is being studied)
•OTU = operational taxonomic unit. For simplicity and consistency with our sequencing experiment, 
we will refer to “OTUs” throughout, but this method is not specific to OTUs and works equally well 
for amplicon sequencing variants (ASVs).
•OTUs not in the blank = OTUs that did not amplify in
the blank
•Overlapping OTUs (overlap) = contaminant OTUs
that would also be found on an uncontaminated sample 
(i.e., they occur on the species, substrate, etc. that is 
being studied as well as in the source of contamination; 
thus, some of their reads are real and some are from 
contamination)
•Simulation control = a comparison between 
uncontaminated and decontaminated/contaminated 
samples using only the OTUs that were not in the blank 
(subsetting is done before any transformations). Because 
those OTUs are unaffected by contamination, they act as 
a control for background heterogeneity.

Box 1 Figure 1. Hypothetical sequencing reads, 
illustrating the terms used in this paper (in an 
actual study, the uncontaminated sample would 
be unknown)



16  |     MCKNIGHT et al.

have advocated the use of mock communities that are extracted, 
amplified, and sequenced alongside actual samples (Brooks, 2016; 
Wilner et al., 2013). In some situations, this is likely to be a very use‐
ful approach, especially when working with low‐diversity communi‐
ties and in situations where a research group frequently works with 
similar communities. Indeed, in situations with little contamination, 
it may even be possible to use the mock community to establish an 
abundance threshold that can be used to filter out contamination 
(Brooks, 2016; Wilner et al., 2013). For many applications, such as 
sequencing diverse communities and exploratory research, how‐
ever, constructing a meaningful mock community is often not feasi‐
ble, and thresholds will not be effective for communities with either 
many rare OTUs or high quantities of contamination.

One obvious solution is to simply remove any contaminant 
OTUs from all samples (Jervis‐Bardy et al., 2015; Segal et al., 2013). 
In cases where there are very few contaminant OTUs, or there is a 
solid biological basis for thinking those OTUs should not be present, 
or both, that may be a good solution. In many cases, however, con‐
taminant OTUs are likely to occur naturally on the host or in the en‐
vironment being studied, as well as being present as contamination 
(hereafter these will be called “overlapping OTUs”). Therefore, sim‐
ply removing any contaminant OTUs removes potentially important 
data and can either artificially exaggerate or reduce any differences 
among groups (depending on whether those OTUs are equally abun‐
dant across groups). The recently developed R package decontam 
(Davis et al., 2018) attempts to solve this by using statistical models 
to identify OTUs in the blanks that should be removed, but there is 
still a risk of removing OTUs that were actually present in low num‐
bers in the system being studied. A final option is to simply subtract 
the contaminant reads from the reads in the samples; however, this 
is also problematic because read depth typically differs among sam‐
ples. Furthermore, because samples are amplified and standardized 
prior to sequencing, samples with few OTUs (such as contaminated 
blanks) will have more reads per OTU than diverse samples.

Because of the problems associated with the removal of contam‐
ination enumerated above, a better solution is clearly needed. Thus, 
we developed, and rigorously tested, the R package microDecon, 
which provides several easy‐to‐use tools for identifying and remov‐
ing contamination. microDecon uses information from blank sam‐
ples to calculate and remove the contaminant reads for each OTU, 
rather than simply consigning an entire OTU to contamination. As 
such, it provides a substantial improvement over current methods, 
and importantly, avoids the loss of useful data.

2  | METHODS

2.1 | microDecon

The package microDecon operates on the principle that all the 
samples will receive the same proportions of contamination from 
a common source. For example, if a contaminated reagent contains 
100 ng/µl of OTU1 and 50 ng/µl of OTU2, then each sample should 
receive approximately twice as much OTU1 contamination as OTU2 

contamination. Thus, if we can identify an OTU that is entirely con‐
tamination (hereafter referred to as the “constant”), we can use it to 
calculate the number of reads in the actual sample that originated 
from contamination. microDecon does this in the following steps (il‐
lustrated in Figure 1). First, it subsets the data to include only the 
contaminant OTUs (i.e., OTUs that amplified in the blank). Second, it 
estimates the number of overlapping OTUs and uses that estimate 
to identify the best OTU to use as the constant (the algorithms it 
uses are based on regression equations that we developed through 
numerous simulations; details in Appendix S1). Third, it divides the 
reads for each OTU in the blank by the number of reads for the con‐
stant in the blank. Fourth, it multiplies those values by the number 
of reads for the constant in the actual sample. This produces the 
number of reads in the actual sample that are from contamination, 
and those reads are then subtracted. This entire process is done it‐
eratively for each sample. Thus, each sample is treated completely 
independently.

As an example, consider a sample and blank with two OTUs that 
amplified in the blank. In the blank, OTU1 has 1,000 reads, and 
OTU2 has 100 reads. Thus, the ratio for those OTUs in the blank is 
10:1. If we also know that one of those OTUs is entirely contamina‐
tion (i.e., a constant), we can use that to determine the number of 
reads in the sample that are from contamination for both OTUs. If, 
for example, we know that OTU1 is entirely contamination, and in 
the sample, OTU1 has 600 reads while OTU2 has 100 reads, we can 
deduce that all 600 reads for OTU1 are from contamination and, 
based on the 10:1 ratio in the blank, 60 of the reads for OTU2 are 
from contamination. Therefore, a decontaminated sample would 
have zero reads for OTU1 and 40 reads for OTU2. Because this 
method relies on the proportions of OTUs in the blank relative to a 
constant, rather than the raw number of reads, it does not require 
samples to have consistent amounts of starting material or read 
depths. Thus, the results of the example with two OTUs would be 
the same if the OTUs in the blank had one million reads and one 
hundred thousand reads (respectively) or ten reads and one read 
(respectively).

This method is clearly dependant on identifying an appropriate 
constant. The algorithms for doing this are described in detail in 
Appendix S1, but briefly, the percent difference between the pro‐
portions of reads in the blanks and portions of reads in the samples 
(i.e., the fourth table in Figure 1) are useful for determining if an OTU 
is entirely contamination. When the percent difference is positive, it 
suggests that an OTU is under‐represented in the sample, likely indi‐
cating that it is entirely contamination; whereas when it is negative, 
it suggests that the OTU is over‐represented in the sample, likely 
indicating that it is an overlapping OTU. Based on our simulations, 
most OTUs with a positive percent difference will perform well as 
a constant, but both very large and very small positive percent dif‐
ferences tend not to perform optimally. Therefore, we used exten‐
sive simulations to examine correlations between known parameters 
in a dataset and the rank of the best OTU to use as the constant. 
From those simulations, we developed several regression equations 
for identifying the constant, and microDecon automatically selects 
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F I G U R E  1   The basic steps used by microDecon to decontaminate samples. The process is iterative and each sample is treated completely 
independently. The constant is an OTU that is entirely contamination (i.e., should not be present in an uncontaminated sample). Because 
the constant is entirely contamination, it can be used as a point of comparison to determine how many reads in the sample are from 
contamination. Percent differences are calculated as: ([blank proportion − sample proportion]/blank proportion) × 100. Some numbers 
reported in the fourth table appear to be slight deviations of the expected values based on the third table. This is simply an artefact of 
rounding the values in the third table to four decimal places. *Full details on the algorithms are available in Appendix S1
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among those regressions based on the data set it is given (see 
Appendix S1 for details).

Due to the potential pitfalls of any novel method, we rigorously 
tested microDecon over a wide range of situations, including both 
simulated 16S data sets and a real, sequenced data set, to ensure 
that the method was robust. We also compared microDecon with 
the common strategy of simply removing all contaminant OTUs, the 
method of detecting and removing contaminant OTUs proposed in 
Jervis‐Bardy et al. (2015), and the decontam R package (Davis et al., 
2018). We used the primary function in the microDecon package 
(decon()) on its default values for all tests. The function, its input 
parameters, and the tests we used to identify the best default values 
are explained in the microDecon User's Guide.

2.2 | Simulation 1: Individual samples

We wrote a simulation in R (R Core Team, 2017) to test the utility 
of microDecon (Appendix S2). For each iteration, this simulation 
creates an uncontaminated microbial sample, as well as an artificial 
contaminant community. It then uses the contaminant community 
to contaminate the sample (a copy of the contaminant community 
is saved as a blank). Next it processes and “sequences” the sample 
and the blank. Finally, it uses microDecon to decontaminate the con‐
taminated sample.

Within each iteration, each OTU in the contaminant community is 
multiplied by a number that is randomly selected from a user‐defined 
normal distribution before adding the contamination to the sample 
(a new number is selected for each OTU). This simulates heteroge‐
neity from DNA extraction and library preparation. Additionally, the 
communities are in‐silico “sequenced” by repeatedly randomly se‐
lecting DNA copies from the entire community (each OTU is coded 
as a number of DNA copies), which simulates heterogeneity from 
actual sequencing. Full details on the simulation and input OTU dis‐
tribution are available in Appendices S3 and S4.

We ran 100,000 iterations of this simulation over a broad 
range of situations, including varying amounts of starting mate‐
rial and varying amounts of contamination (varied both in terms 
of numbers of OTUs and DNA yield for those OTUs). For each it‐
eration, the input parameters were randomly selected from the 
following values: number of OTUs that were entirely contamina‐
tion = 0–150, number of OTUs not in the blank = 50–1000, and 
number of overlapping OTUs = 0–150 (OTUs were randomly sam‐
pled from a supplied distribution, resulting in varying amounts 
of DNA per OTU). We created within‐iteration heterogeneity in 
the contamination that was applied to the sample by multiplying 
each OTU by a number that was randomly selected from a normal 
distribution with a mean between 0.15–1.0 and SD that was the 
mean multiplied by 0.1–0.7 (a new number was randomly selected 
for each OTU, and a new mean and SD were randomly selected 
for each iteration). This produced a median contamination level of 
0.12 (range = 0.0002–10.4; i.e., the amount of contaminant DNA 
that was applied to a sample divided by the amount of DNA in the 
uncontaminated sample). Finally, the number of sequencing reads 

for the blank and the sample were independently selected from a 
range of 18,000–20,000.

For each iteration, we calculated Bray–Curtis dissimilarities (BC) 
between the uncontaminated versus contaminated sample and un‐
contaminated versus decontaminated sample and used those dissim‐
ilarities to judge the effectiveness of microDecon. Throughout this 
study, we calculated all BC by transforming the data to proportions 
(McKnight et al., 2018) and using the vegan package in R (Oksanen et 
al., 2017). Additionally, we applied multiple linear regression to the 
results to see how different factors influenced the effectiveness of 
microDecon (results are presented in Appendix S3).

Finally, we ran 10,000 iterations of a slightly modified version of 
simulation 1 that tested the effects of simply removing contaminant 
OTUs (i.e., all contaminant OTUs were set to zero in the final sample). 
It returned BC for the contaminated versus uncontaminated sample, 
decontaminated (with microDecon) versus uncontaminated sample, 
and sample with contaminant OTUs removed versus uncontami‐
nated sample. We used the same settings as simulation 1.

2.3 | Simulation 2: Groups of Samples

We used a second simulation to examine the effects of microDecon 
at a group level (i.e., the effects when examining multiple samples 
from different populations, species, environments, etc.; Appendix 
S5). The core code and functionality of this simulation is similar to 
simulation 1, but there are a few key differences. First, it simulates 
two groups with a user‐defined number of samples per group (sam‐
ples in each group are more similar to each other than to samples in 
the other group). Additionally, it creates variability in the amount of 
DNA present in each sample. The samples are then contaminated 
as in simulation 1, but the procedure for producing heterogeneity in 
the contaminated community is applied separately for each sample. 
Thus, there is variation in the proportions of OTUs in the contami‐
nation applied to each sample. Within each group, it returns mean 
BC for comparisons between the uncontaminated and contaminated 
samples as well as the uncontaminated and decontaminated sam‐
ples. Additionally, it returns mean BC for comparisons between the 
groups for the uncontaminated, contaminated, and decontaminated 
samples. Full details on the simulation and input OTU distribution 
are available in Appendices S3 and S6.

We used this simulation to compare groups of 5, 10, and 20 sam‐
ples each (100 iterations per group size). For each iteration, there 
were a total of ~500 OTUs, of which ~120 amplified in the blank (the 
exact numbers varied because of stochasticity in the simulation). 
Of the ~120 contaminant OTUs, ~30 were entirely contamination, 
~30 overlapped with group 1, but not group 2, ~30 overlapped with 
group 2 but not group 1, and ~30 overlapped with both groups. We 
varied the level of contamination between groups by giving sam‐
ples in group 1 an average of 2.2 times the amount of starting ma‐
terial as samples in group 2. As a result, the level of contamination 
(DNA yield in contamination/DNA yield in sample) in group 1 had a 
mean of 0.05 (range = 0.02–0.13) and group 2 had a mean of 0.11 
(range = 0.05–0.27).
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2.4 | Sequencing experiment

We constructed a sequencing experiment using fungal microbiota. 
We used fungal microbiomes because they are less prone to contam‐
ination than are bacterial microbiomes and eliminating unwanted 
background contamination was vital for this experiment. Therefore, 
conducting this experiment on bacteria was not possible because 
contamination‐free bacterial samples are extremely difficult to 
achieve. Nevertheless, because microDecon simply uses ratios of 
OTUs, it is not taxa‐specific, and there is no a priori reason to ex‐
pect it to behave differently for different taxa. Indeed, this becomes 
obvious when one considers the fact that microbiome simulations 
do not specify the taxa, and simulated OTUs can be discussed as 
bacterial OTUs, fungal OTUs, protist OTUs, etc. (similarly, “OTU” can 
be replaced with “ASV”). Thus, given that the same methodologies 
are used to produce bacterial and fungal OTU tables, testing this 
method on fungi rather than bacteria is completely valid and does 
not affect the applicability of our results.

Briefly, we constructed a contaminant fungal community (con‐
sisting of cells, rather than DNA). We then collected eight soil 
samples: four from a forest (group 1) and four from a nearby dry 
streambed (group 2) and added two fungal species that we included 
in our contaminant community. We did this to ensure that at least 
a few OTUs would be present among all samples, as well as in our 
contamination. Next, we homogenized the samples, split them in 
half, and added 90 µl of our contaminant community to one of the 
halves of each sample, producing both an uncontaminated and con‐
taminated copy of each sample. For one sample from each group, we 
split it into thirds and only contaminated one third so that we would 
have replicate uncontaminated samples; unless otherwise noted, 
we only used the first of those two replicates in the analyses and 
summary statistics to avoid pseudo‐replication. We also added 90 µl 
of contamination to each of four empty vials. These served as our 
blanks and allowed us to test the assumption that the contamination 
ratios would be homogeneous across samples. To account for back‐
ground contamination, we also analyzed a control vial that did not 
receive our contaminant community. This produced a total of three 
reads from only two OTUs; therefore, given that the actual samples 
consisted of thousands of reads and had been diluted to a standard 
concentration prior to sequencing (whereas this control sample did 
not have detectable levels of DNA by either gel electrophoresis or 
Enspire quantification), we considered that level of background con‐
tamination to be inconsequential and do not discuss it further.

We extracted the DNA from all samples using a CTAB protocol 
(Doyle & Doyle, 1987) modified to include a bead beating step, and, 
with a few exceptions, we followed the Illumina 16S Metagenomics 
Sequencing Library Preparation guide (“16S Metagenomic 
Sequencing Library Preparation,” 2017) to prepare our samples. We 
used the ITS3_KY02/ITS4 primer pair to amplify the ITS2 region of 
the fungal genome (Toju, Tanabe, Yamamoto, & Sato, 2012). Also, 
we used 10  µl reactions and 30 cycles for the amplification PCR, 
and 40 µl reactions for the indexing PCR. For clean‐ups, we used 
Sera‐mag SpeedBeads rather than AMPure beads. We sequenced 

the samples on an Illumina Miseq (Reagent kit V3 600 cycles PE, 
Illumina, USA). More details of our experimental design and methods 
are available in Appendix S3.

After sequencing, we used PIPITS (v1.4.5) (Gweon et al., 2015) 
to prepare a read pairs list (pipits_getreadpairlist), process the reads 
(pipits_prep) using PEAR (Zhang, Kassian, Flouri, & Stamatakis, 2013), 
and extract the ITS region (pipits_funits), according to the user man‐
ual. We followed this with chimera checking (identify_chimeric_seqs.
py) using usearch61 (Edgar, Haas, Clemente, Quince, & Knight, 2011), 
and de novo OTU picking (pick_de_novo_otus.py) in QIIME (v1.9) 
(Caporaso et al., 2010), using the 97% sequence similarity UNITE da‐
tabase (12_11, alpha release) (Abarenkov et al., 2010). In some cases, 
multiple OTUs were identified as the same species; therefore, we 
combined those OTUs for each fungal species. Sequencing results 
are available in Appendices S7 and S8.

Following sequencing, filtering, and annotation, we applied mi‐
croDecon to the contaminated samples, producing three data sets: 
uncontaminated, contaminated, and decontaminated. We used the 
data from all four blanks to decontaminate the samples (tests com‐
paring the effects of using multiple blanks are available in Appendix 
S1).

We tested the utility of microDecon in several ways. First, we 
used PERMANOVAs via the adonis2() function in the vegan package 
(Oksanen et al., 2017) to compare the uncontaminated and contam‐
inated samples, as well as the uncontaminated and decontaminated 
samples (contamination status and group were factors; sample was 
the strata; 5,000 permutations). To avoid spurious signals from het‐
erogeneity in OTUs that were not present in the blanks and more 
effectively test microDecon, we subset the data to include just the 
contaminant OTUs. Additionally, we examined BC both within and 
among groups.

To compare microDecon with existing methods, we applied two 
other methods to our data set. First, we used the method of detect‐
ing and removing contaminant OTUs proposed in Jervis‐Bardy et al. 
(2015). This test and its results are available in Appendix S3. Second, 
we used the decontam R package (Davis et al., 2018). We tested both 
the “frequency” method (which does not require data from blanks) 
and the “prevalence” method (which requires blanks), as well as the 
built‐in method for combining approaches. We ran all methods using, 
the default threshold (0.1), a threshold of 0.5, and a threshold that 
we selected separately for each method based on the approach de‐
scribed in Davis et al. (2018).

3  | RESULTS AND DISCUSSION

3.1 | Simulation 1: Individual samples

microDecon reduced or eliminated the contamination in 98.1% of 
simulated samples (out of 100,000, each with a different starting 
community and different contaminant community). As expected, 
the BC between the uncontaminated and decontaminated samples 
was consistently lower than the BC between the uncontaminated 
and contaminated samples, with the effect becoming exaggerated 
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as the amount of contamination increased relative to the amount of 
DNA in the sample (Figure 2). This indicates that microDecon was 
accurately removing contamination and restoring samples to their 
proper OTU distributions.

Nevertheless, because our simulations included heterogeneity 
from extraction and sequencing, as would occur in actual stud‐
ies, we did not expect decontaminated samples to perfectly match 
their uncontaminated counterparts, even if they were fully decon‐
taminated. To assess this background heterogeneity, for each de‐
contaminated sample, we used “simulation controls” by subsetting 
the sample to only the OTUs that did not amplify in the blank and 
comparing that subset community with the corresponding OTUs 
in the uncontaminated sample. Because microDecon only affects 
the OTUs that amplified in the blank (i.e., contaminant OTUs), the 
OTUs that did not amplify in the blank would have been unaf‐
fected by microDecon but would have been affected by stochas‐
ticity in the simulation. Therefore, they could be used to measure 
the background heterogeneity.

We compared the BC frequency distribution between the simu‐
lation controls, decontaminated samples, and contaminated samples, 
with the expectation that the simulation controls and decontami‐
nated samples should have similar distributions, while the contami‐
nated samples should be shifted towards high BC. The results largely 
matched our predictions, suggesting that microDecon was success‐
fully removing contamination (Figure 3a). The decontaminated distri‐
bution was shifted slightly from the simulation control distribution, 
but this was not unexpected, because BC increased as the number of 
OTUs increased (Figure 3b), and the control communities consisted 
of a subset of the OTUs in the decontaminated communities. Thus, 
the decontaminated communities always contained more OTUs and, 
therefore, we expected them to always have slightly higher BC.

To examine the failure rate of microDecon, we examined the 
number of iterations in which the decontaminated sample versus the 
uncontaminated sample had a higher BC than the contaminated sam‐
ple versus the uncontaminated sample (i.e., cases where microDecon 
shifted the community further from the uncontaminated commu‐
nity). If microDecon was effective, then we expected that there 
would be few of these cases, the increases in BC should be small, 
and most “failures” should occur when then contamination levels 

F I G U R E  2   Simulation 1 results showing the ability of 
microDecon (“Decontaminated”) to corrected contaminated 
samples. Data (Bray–Curtis dissimilarity between the sample and 
uncontaminated copy of the sample) were grouped based on the 
proportion of contamination. The simulation control box is based 
on subsetting the data to only the OTUs that did not amplify in 
the blank. Whiskers represent the 90th and 10th percentile. For 
readability, outliers represent the 95th and fifth percentile. A total 
of 100,000 iterations were run, but 2,395 had contamination levels 
higher than 1 and are excluded (all iterations and outliers are visible 
in Appendix S3)

F I G U R E  3   (a) Distributions of Bray–Curtis dissimilarities (BC) from 100,000 iterations of simulating individual samples. For readability, 
the X axis stops at 0.5, but there were 1,756 contaminated points and 20 decontaminated points greater than that (max = 0.906 and 0.712 
respectively). The simulation control distribution is from the OTUs in the decontaminated sample that did not amplify in the blank. (b) 
Relationship between the number OTUs and the BC for the simulation controls (i.e., stochastic variation). Increasing numbers of OTUs 
resulted in greater dissimilarities, which were partially responsible for the slight shift in the decontaminated distribution in Figure 3a. 
Whiskers represent the 90th and 10th percentile, and outliers are shown as the 95th and fifth percentile
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were extremely low (in terms of DNA yield), thus making them indis‐
tinguishable from stochastic fluctuations in the simulation (Figure 3). 
These expectations were met. Out of the 100,000 iterations, only 
1,885 (1.9%) were “failures,” and those samples were characterized 
by low levels of contamination, resulting in low BC when either the 
contaminated or decontaminated samples were compared to the 
uncontaminated samples (Appendix S3). Additionally, the shifts in 
BC were generally small. For 1,019 of these samples (54.1%) the de‐
contaminated BC were less than 0.005 BC units higher than the con‐
taminated BC, for 1,463 (77.6%) the BC were less than 0.01 higher, 
and for 1,720 (91.2%) the BC were less than 0.02 higher. Only 20 
iterations were off by more than 0.05.

Nevertheless, a few of the iterations with higher BC do appear to 
be true microDecon failures and merit further discussion. These gen‐
erally occurred when samples had very few OTUs that were entirely 
contamination (Appendix S3). Indeed 84 of the “failures” (including 
the worst one) had no OTUs that were entirely contamination. Given 
that microDecon operates by finding an OTU that is entirely contam‐
ination (the constant), it makes sense that it would struggle in situ‐
ations where no OTUs are entirely contamination. Nevertheless, in 
the entire data set (all 100,000 iterations), there were 605 cases with 
no OTUs that were entirely contamination, and in every case except 
for these 84, microDecon still improved the results, which can be 
viewed as an 86.1% success rate even under the worst situation for 
this method. Additionally, in real microbiome studies, it is unlikely that 
all of the contaminant OTUs would overlap with the sample's natural 
(noncontaminant) OTUs. Also, it should be stressed that these results 
are for individual samples. Thus, the net effect on a group may still be 
positive, even if one particular sample was negatively affected. Finally, 
these samples all used two runs of the decon() function (default), but 
for samples with very low contamination, the results can be improved 
by only using one run (see microDecon User's Guide).

Finally, our comparison of microDecon versus the method of 
simply removing contaminant OTUs showed that microDecon pro‐
duced more accurate results (Figure 4). As expected, the problems 
with simply removing contaminant OTUs became exaggerated as the 
proportion of OTUs that were contaminants increased, and when 
over roughly 20% of the OTUs were contaminants, removing them 
was actually worse than making no correction at all (Appendix S3). 
However, even when fewer than 5% of the OTUs were contaminants, 
applying microDecon was superior (mean BC = 0.054: SD = 0.01) to 
removing the contaminant OTUs (mean = 0.06; SD 0.02).

3.2 | Simulation 2: Groups of samples

If microDecon was effective, then we expected the mean BC per 
group to be lower for decontaminated versus uncontaminated 
samples than for contaminated versus uncontaminated samples 

F I G U R E  4   A comparison of the effectiveness of microDecon 
versus removing all contaminant OTUs for simulated data. Using 
microDecon (“Decontaminated”) was superior to either removing 
contaminant OTUs (“Contaminated OTUs removed”) or making 
no adjustments for contamination (“contamination”). Whiskers 
represent the 90th and 10th percentile. For readability, outliers are 
shown as the 95th and fifth percentile (full data in Appendix S3)

F I G U R E  5   Results of simulations on entire groups (Simulation 2), showing the ability of microDecon (“Decontaminated”) to 
correct contaminated samples. Means are per group per iteration. For the simulation controls, comparisons were made between the 
decontaminated and uncontaminated samples using only the OTUs that were not in the blank (i.e., the ones unaffected by contamination 
and decontamination). Controls were expected to be slightly lower than decontaminated samples because they contained fewer OTUs (see 
Figure 3). Whiskers represent the 90th and 10th percentile, and all outliers are shown
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(Figure 5). This prediction was met for both groups in all 300 itera‐
tions, once again demonstrating that microDecon restores samples 
to their correct distributions. This was particularly true for group 2, 
which had less than half the sample DNA of group 1 (on average).

The benefits of decontamination could also be seen when the 
two groups were compared within an iteration (Figure 6). Because 
contamination affected all samples in an extraction/sequencing run 
(iteration), we expected it to make samples more similar to each 
other, and that is what we observed. Furthermore, the decontami‐
nation procedure corrected this, and returned the groups to approx‐
imately the correct level of difference (Figure 6). We also visualized 
this using PCoAs (we used the cmdscale() function in the package 
vegan) (Figure 7a–c). Although the decontamination procedure 
clearly improved the samples, it did not produce BC that were quite 
as low as the simulation controls. As explained in the Simulation 1 
section, this is at least partially an artefact caused by more OTUs 
being present in the decontaminated samples. We also used stacked 
bar plots (with each OTU as a bar) to visually examine the effects of 
microDecon. These visualizations further confirmed that it was suc‐
cessfully removing contamination and restoring communities (plots 
are available in Appendix S3: Figure 7).

3.3 | Sequencing experiment

The sequencing experiment provided powerful evidence that micro‐
Decon performs well under experimental conditions and accurately 
removes contaminant reads while retaining the reads from the ac‐
tual sample. It also demonstrated the validity of our assumption that 
each sample would receive roughly equal ratios of contaminants.

Sequencing produced a total of 1,598 OTUs; however, the ma‐
jority of OTUs were not present in most samples, and on average, the 
uncontaminated samples contained only 361 OTUs (range = 183–
511). There were 74 OTUs in the contaminated blanks (when all 
four blanks were averaged), 47 of which overlapped with the un‐
contaminated samples in group 1, and 48 of which overlapped with 
the uncontaminated samples in group 2. Additionally, the second 
most common OTU in the blank (S. cerevisiae; mean  =  31.6% of 
reads in the blank) was also highly abundant in the uncontami‐
nated samples (mean = 44.4%; range = 25.6%–69.4%), and the most 
abundant OTU in the blank (an unidentified fungus; mean = 33.6% 
of reads in the blank) was present in the uncontaminated samples 
at low levels (mean = 0.1%, range = 0.03%–0.38%). Finally, to ob‐
tain a proxy for contamination level, for each sample we divided 
the number of reads that were removed by microDecon by the 
number of reads in the decontaminated sample, which resulted in a 
mean contamination level of 0.31 (range = 0.14–0.63). This combi‐
nation of high levels of contamination, and lots of OTUs that over‐
lapped between the blank and the sample (including overlap with 
one of the most numerous members of each community) produced 
a situation approaching a worst‐case scenario for microDecon. 

F I G U R E  6   Mean Bray–Curtis dissimilarities for comparisons 
between groups (groups consisted of 5, 10, or 20 samples). For each 
iteration (100 per panel), comparisons were made between groups 
for the uncontaminated, decontaminated (with microDecon), and 
contaminated samples. Whiskers represent the 90th and 10th 
percentile, and all outliers are shown. Note: The Y axis should 
simply say "Mean Bray-Crutis dissimilarity" and not "(sample vs 
uncontaminated)"

F I G U R E  7   PCoAs (based on square root transformed Bray–
Curtis dissimilarities [BC]) comparing groups (“g1” and “g2”) for 
uncontaminated, decontaminated, and contaminated samples. The 
data were subset to the OTUs that amplified in the blank so that 
the effects of contamination and microDecon (“Decontaminated”) 
could be seen more clearly. (a–c) Best, median, and worst results 
out of 100 iterations (judged based on mean BC between the 
uncontaminated and decontaminated samples for group 2). 
Group 2 had lower DNA yield and, therefore, was more affected 
by contamination. (d) Results from the sequencing experiment, 
showing that microDecon effectively removed the contamination
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Therefore, this experiment should provide a useful test of the 
method's effectiveness.

Several tests confirmed the utility of microDecon. At the broad‐
est scale, and as we would expect given that microDecon should be 
decontaminating samples and making them more similar to uncon‐
taminated samples, there was no significant difference between 
the uncontaminated and decontaminated samples (PERMANOVA; 
pseudo‐F  =  0.25, p  =  0.939), whereas there was a significant dif‐
ference between the uncontaminated and contaminated samples 
(pseudo‐F = 8.14, p < 0.001). These results demonstrate that con‐
tamination caused the communities to shift away from their true val‐
ues, and microDecon restored them to approximately their proper 
(uncontaminated) distributions. For these tests, all four blanks were 
used, however, there was little heterogeneity among the blanks and 
the choice of blank had little impact on the results, thus supporting 
the assumption that the contamination ratios would be similar across 
samples (Appendix S1).

The utility of microDecon was also supported by the BC. For 
all eight samples, the BC was lower for the uncontaminated versus 
decontaminated sample than it was for the uncontaminated versus 
contaminated sample. This is also reflected in the PCoAs (Figure 7d) 
and stacked bar plot (Figure 8). Because heterogeneity in the OTUs 
that were not in the blank partially obscured the effects of both con‐
tamination and decontamination, subsetting the data allowed the 
trends to be seen more clearly, so we subset the data to just the 
contaminant OTUs for both visualizations. In Figure 7d, it is clear 
that contamination made the two groups more similar to each other 
and resulted in greater overlap between them, while the decon‐
taminated results aligned closely with the uncontaminated results. 
Similarly, in Figure 8, there are several prominent OTUs in the con‐
taminated samples that were completely or largely removed in the 
decontaminated samples. While the proportions for the OTUs that 

were retained in the decontaminated samples closely matched the 
proportions for the OTUs in the uncontaminated samples, they did 
not match perfectly, but that was expected because background 
heterogeneity causes small variations among groups, illustrated by 
the differences between the replicate uncontaminated samples.

Finally, in our tests, microDecon outperformed the decontam 
package (Figure 9; Appendix S3). When looking just at the OTUs in the 
blanks (to avoid heterogeneity from sequencing and to see results more 
clearly), contaminated samples compared to their uncontaminated 
counterparts had a mean BC of 0.27 (SD = 0.04). Samples that were 
decontaminated with microDecon had a mean BC of 0.04 (SD = 0.01) 
when compared to uncontaminated samples (indicating successful re‐
moval of contamination), whereas samples that were decontaminated 
with decontam had mean a mean BC of 0.07–0.98 (SD = 0.01–0.04) 
depending on the method and settings used. Furthermore, decontam 
often had high false positive rates when looking at entire communi‐
ties. These results likely occurred because microDecon has two dis‐
tinct advantages over decontam. First, decontam is sensitive to the 
number of samples being used, and our test used only eight samples. 
In contrast, the core function of microDecon treats each sample sep‐
arately and is not affected by sample size. Second, the most important 
innovation of microDecon is the ability to remove contaminant reads, 

F I G U R E  8   Comparison of uncontaminated (U), decontaminated 
(D), and contaminated (C) samples for the sequencing test. Stacked 
bars show the percent of each sample that was comprised by 
each OTU (each color/section is an OTU). Each group of 3–4 
bars is a sample. The last sample in each group has a replicate 
uncontaminated sample. Data were subset to the OTUs that 
amplified in the blank (contaminant OTUs) so that trends could 
easily be seen. There were several prominent OTUs in the 
contaminated samples that were removed or greatly reduced by 
microDecon. Note: The "D" and "C" labels are flipped (i.e., C = 
decontaminated)

F I G U R E  9   PCoA based on Bray–Curtis dissimilarities comparing 
uncontaminated samples, contaminated samples, and samples 
that were decontaminated using microDecon or decontam. Each 
shape is a sample and should be compared across methods. Hollow 
shapes are from group 1 and shapes with crosses are from group 
2. Using decontam, we tested three methods with three thresholds 
each and have only presented the best (“frequency,” 0.5 theshold) 
and third best methods (“combined,” 0.5 threshold; the second 
best method, [“frequency,” 0.4 threshold] was nearly identical to 
the best method, therefore we did not visualize it here). Results of 
other methods were almost indistinguishable from contaminated 
samples, or in some cases, worse than contaminated samples. To 
better visualize the effects of contamination and decontamination, 
the data were subset to just OTUs that amplified in the blanks, but 
decontam also had many false positives when looking at the full 
data sets (see Appendix S3 for additional details and tests)
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rather than entire OTUs. Thus, unlike other existing methods, it can 
correct OTUs that occur in both the contamination and in real sam‐
ples. Additional details, discussion, in silico tests, and comparisons of 
microDecon and decontam using the Salter et al. (2014) 16S data set 
are presented in Appendices S3 and S9.

4  | CONCLUSION AND 
RECOMMENDATIONS

We have demonstrated the usefulness of the microDecon package 
for decontaminating samples via both computer simulations and a 
sequencing experiment, and we believe that this package will be 
broadly applicable across the microbiome research community. Our 
tests covered a wide range of situations, including low‐yield samples 
and samples with high levels of contamination, and our method is 
robust to these situations. Indeed, our sequencing experiment in‐
cluded high contamination levels and a large overlap between the 
contaminant community and real community, but microDecon was 
still able to closely recover the real community. Therefore, we rec‐
ommend that researchers use the following steps in their research.

1.	 Collect several blank samples at the same time and in the 
same manner as the actual samples are collected. These should 
be carried through the entire extraction process, rather than 
simply using no template PCR controls.

2.	 If possible, do all DNA extractions using a single kit and single 
batch of reagents. If this is not possible, then use several blanks (at 
least 3–4) per kit and per batch of reagents. Treat these statisti‐
cally as blocks and randomize your samples across the blocks.

3.	 Sequence the samples and blanks, including several blanks per 
block. If a study involves many blocks and has insufficient se‐
quencing depth for all of the blanks, then pool the blanks per block 
prior to indexing. If multiple blanks are included within a block in 
the final analysis, microDecon converts them to proportions and 
uses the mean of those proportions (see User's Guide for details).

4.	 Use standard filtering and bioinformatic processing steps to pro‐
duce an OTU table, but do not transform, normalize, rarefy, or 
otherwise modify the read counts prior to using microDecon. Do 
not remove OTUs that are suspected to be entirely from contami‐
nation prior to running microDecon.

5.	 Carefully examine the blanks to ensure that they are reasonably 
consistent (e.g., via stacked bar plots and ordination plots). micro‐
Decon inherently assumes a common source of contamination. 
Therefore, if the contamination was from poor laboratory prac‐
tices (e.g., cross‐contamination among samples), the method will 
not be effective. If substantial differences among blanks occur 
only across experimental blocks, such as extraction kits (sug‐
gesting consistent contamination within a block), then use micro‐
Decon separately for each block. If, however, there is substantial 
variability among blanks within blocks (suggesting contamina‐
tion from poor laboratory techniques), microDecon will not be 
effective.

6.	 Run microDecon (we recommend the decon() function on default 
settings).

7.	 Examine the OTUs in the blank and compare the contaminated 
and decontaminated samples to ensure that the results are rea‐
sonable for the given study system (the decon() and decon.diff() 
functions provide useful outputs for making these comparisons).
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