
CORE Metadata, citation and similar papers at core.ac.uk

Provided by ResearchOnline at James Cook University
royalsocietypublishing.org/journal/rstb
Research
Cite this article: Jurriaans S, Hoogenboom

MO. 2019 Thermal performance of scleractinian

corals along a latitudinal gradient on the Great

Barrier Reef. Phil. Trans. R. Soc. B 374:

20180546.

http://dx.doi.org/10.1098/rstb.2018.0546

Accepted: 27 April 2019

One contribution of 12 to a theme issue

‘Physiological diversity, biodiversity patterns

and global climate change: testing key

hypotheses involving temperature and oxygen’.

Subject Areas:
physiology, ecology

Keywords:
thermal heterogeneity, thermal performance

curve, respirometry, acclimatization, plasticity,

reaction norm

Author for correspondence:
S. Jurriaans

e-mail: saskia.jurriaans@my.jcu.edu.au
& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

4496081.
Thermal performance of scleractinian
corals along a latitudinal gradient on the
Great Barrier Reef

S. Jurriaans1,2 and M. O. Hoogenboom1,2

1Marine Biology and Aquaculture, College of Science and Engineering and 2ARC Centre of Excellence for Coral
Reef Studies, James Cook University, Townsville, Queensland, Australia

SJ, 0000-0003-1534-8301

Species have evolved different mechanisms to cope with spatial and temporal

temperature variability. Species with broad geographical distributions may

be thermal generalists that perform well across a broad range of temperatures,

or they might contain subpopulations of locally adapted thermal specialists.

We quantified the variation in thermal performance of two coral species,

Porites cylindrica and Acropora spp., along a latitudinal gradient over which

temperature varies by approximately 68C. Photosynthesis rates, respiration

rates, maximum quantum yield and maximum electron transport rates

were measured on coral fragments exposed to an acute temperature increase

and decrease up to 58C above and below the local average temperature.

Results showed geographical variation in the performance curves of both

species at holobiont and symbiont level, but this did not lead to an alignment

of the optimal temperature for performance with the average temperature of

the local environment, suggesting suboptimal coral performance of these

coral populations in summer. Furthermore, symbiont thermal performance

generally had an optimum closer to the average environmental temperature

than holobiont performance, suggesting that symbionts have a higher

capacity for acclimatization than the coral host, and can aid the coral host

when temperatures are unfavourable.

This article is part of the theme issue ‘Physiological diversity, biodiver-

sity patterns and global climate change: testing key hypotheses involving

temperature and oxygen’.
1. Introduction
Many species have wide geographical distributions that cover broad latitudinal

gradients and a correspondingly broad range of environmental conditions.

For instance, populations that reside at higher latitudes are exposed to colder

environments than populations that occur around the equator [1], and the ther-

mal environment is generally more variable at higher latitudes compared with

at the equator [2]. To cope with thermal heterogeneity along latitudinal gradi-

ents, species have evolved different thermal responses associated with a wide

range of physiological, morphological and behavioural traits [3]. Consequently,

two species may tolerate a similar range of temperatures, and occupy the same

geographical range, using very different mechanisms to cope with temperature

variation. As climate change scenarios predict increased fluctuations in temp-

erature and thermal extremes [4], there has been an increased focus on the

impacts of climatic variability on the physiology and ecology of individuals,

populations and communities [5] and generally suggest that plasticity increases

in more variable environments [6], although many studies failed to incorporate

extreme events [7]. The relationship between temperature and a trait can be

fixed or (more or less) plastic along a temperature gradient [3,8]. Plasticity of

this relationship may lead to thermal acclimatization, defined as the adjustment
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of a physiological trait in response to changes in the environ-

mental temperature that alters the performance to enhance

fitness (not to be confused with ‘acclimation’ which refers

to physiological responses to changes in an environmental

variable in the laboratory [9]). As such, thermal acclimatiz-

ation can be reversible and occur constantly throughout an

organism’s life. However, if physiological adjustments

occur during early life, the changes can become fixed

during the life of the organism (known as ‘developmental

plasticity’ [10]). When the relationship between temperature

and performance is fixed, the species requires a broad ther-

mal tolerance according to the entire temperature gradient

that is encountered throughout its geographical distribution.

This thermal generalist strategy is likely to occur if gene flow

among local populations prevents local adaptation [11],

if temperature fluctuations are rapid and unpredictable

making acclimatization ineffective [12], or if the costs of

plasticity outweigh the benefits [13]. Alternatively, a species

might select specific thermal microhabitats within its geo-

graphical range, by way of behaviour or through habitat

selection at settlement, such that it experiences a homo-

geneous thermal environment and plasticity is not required.

Such thermal specialist species can be expected to have

higher maximal performance than thermal generalists [14].

Lastly, a species could perceive the thermal environment as

heterogeneous among populations, but homogeneous within
populations [12]. Such species can maximize performance

within each population through thermal acclimatization,

and/or local adaptation in cases where populations are iso-

lated, and can be referred to as ‘plastic’ thermal specialists.

Consequently, a plastic thermal specialist species can survive

under a similar range of temperatures to that of a thermal

generalist species, but uses a very different strategy to do so.

Thermal performance curves (TPCs) are widely used to

quantify the thermal sensitivity of species (see review by

Angilletta [3]). TPCs show the instantaneous performance

of an organism in response to short-term (acute) environ-

mental fluctuations along a temperature gradient [15].

Typically, this produces a curve from which three important

parameters can be derived [16]: the maximal performance

(Pfmax), the temperature for optimal performance (Topt) and

the temperature range over which the performance is posi-

tive, known as the thermal breadth (Tbr). Through thermal

acclimatization, the shape and position of the curve can

change in response to changes in the thermal environment

[17]. Each shift represents a trade-off between the cost of

acclimatization and the benefit gained from enhancing per-

formance in the changed environment [18]. For instance,

increasing Topt will enhance performance in warm environ-

ments, but can be costly if the environmental temperature

decreases unpredictably. Thus, to maximize performance, it

is important to adopt a thermal strategy that corresponds to

the present and future thermal environment. Because nearly

all environments vary both within and among populations,

particularly for long-lived species with wide geographical

distributions, optimality models predict that shifting Topt

through developmental plasticity is only beneficial if the

thermal heterogeneity among sites is greater than within

sites [19], and environmental cues are accurate [20]. Addition-

ally, increasing Tbr is only beneficial if the temperature does

indeed fluctuate during the organism’s lifetime, because

increased thermal breadth comes at the cost of reduced

Pfmax [14]. In summary, the thermal generalist strategy
enables species to have positive performance across a wide

temperature range, but allows for misinterpretation of

environmental cues. By contrast, developmental plasticity

allows a plastic thermal specialist to maximize performance

within a narrow temperature range but comes at the cost of

poor performance when environmental cues are not accurate.

Lastly, TPCs vary between traits owing to different proximate

mechanisms that underlie the phenotypic expression [18].

Therefore, the performance of multiple traits at various

levels of physiological organization should be measured

when comparing TPCs of populations along a latitudinal

cline.

Corals reefs are among the most productive and biologi-

cally diverse ecosystems on Earth [21]. The Great Barrier

Reef (GBR) off the coast in northeastern Australia is the

world’s largest coral reef ecosystem containing approximately

3000 individual reefs extending over 148 of latitude. Accord-

ingly, there is a thermal gradient along the GBR with a

cooler and more variable thermal environment in the southern

GBR and a warmer and more stable thermal environment

towards the northern GBR [22], yet many hard coral species

have distribution ranges throughout the entire GBR [23].

Consequently, the thermal environment these species experi-

ence varies significantly across space and through time,

while their thermal strategy is largely unknown. This is

partly because studies of coral thermal biology focused on

identifying the upper thermal thresholds for coral bleaching

(i.e. the breakdown of the symbiosis between corals and

their photosynthetic algae), e.g. [24–26]. Additionally, studies

that investigated coral performance over a temperature

gradient are ambiguous about the species-specific and

environmental controls on coral thermal tolerance. For

instance, Topt for growth of the tropical species Pocillopora
damicornis varied between populations with different thermal

environments [27], suggesting a plastic thermal specialist strat-

egy, whereas Castillo & Helmuth [28] showed no difference in

Topt for net productivity of Montastraea annularis among popu-

lations. A more recent study [29] showed no variation in the

Topt for multiple coral host and symbiont-related performance

traits for Mediterranean corals from populations with different

thermal environments, suggesting a thermal generalist strat-

egy. Studies comparing the thermal performance of multiple

coral species, and across multiple physiological traits, are

required to assess whether and how thermal tolerance

strategies differ among species.

The overarching aim of this study was to determine

whether and how the coral thermal physiology varies between

species and among populations distributed along a latitudinal

gradient in the GBR over which temperature varies by

approximately 68C, and thereby assess their thermal perform-

ance. We investigated the shape and position of the TPC of two

coral species from three populations with different thermal

environments. This allowed us to answer whether these popu-

lations were acclimated to their specific thermal environment,

suggesting a plastic thermal specialist strategy, or if they

shared a common TPC, suggesting a thermal generalist

strategy. Additionally, we investigated the variation in the

thermal strategy between species with a similar thermal

range across their geographical distribution. Assuming that

there was limited gene flow between reefs [30], the TPCs

should vary predictably along the latitudinal gradient. We

hypothesized that corals from the southern reef have their

Topt at a lower temperature than corals from the central or
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Figure 1. Coral collection and experimental study sites located along a latitudinal gradient in Great Barrier Reef (a) and monthly average seawater temperatures (b).
Dashed lines indicate the average ambient temperatures at the start of the thermal experiment for each location. Data sourced from AIMS 2017 [22].
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northern reefs, and that the Tbr increases with increasing ther-

mal heterogeneity. Knowledge of the plasticity of the thermal

performance of coral species and their thermal tolerance strat-

egies will provide insight into how global warming might

shape coral reefs, as a plastic thermal specialist strategy may

result in higher fitness under global warming than a thermal

generalist strategy.
2. Material and methods
(a) Experimental design
The study locations (figure 1a) occurred along a latitudinal gradi-

ent between Lizard Island (LI) situated in the northern GBR

(148 4000800 S, 1458 2703400 E), Orpheus Island (OI) in the central

GBR (188 3700600 S, 1468 2903700 E) and Heron Island (HI) in the

southern GBR (23826’18.7100 S, 151854’30.2300 E). LI and HI are

both further offshore (approx. 30 km and approx. 80 km, respect-

ively) compared with OI (approx. 17 km), and the latter generally

experiences higher turbidity. The temperature along this gradient

varies by approximately 68C during the summer months, ran-

ging from approximately 248C at HI to approximately 308C at

OI and LI. Seawater temperature data from December 2015 to

March 2017 were recorded by in situ data loggers deployed by

the Australian Institute of Marine Science (AIMS) [22] at LI, OI

and HI at a depth of 10.1 m, 5.8 m and 5.4 m, respectively.

Fragments of Acropora intermedia (at HI and LI), Acropora
valenciennesi (at OI) and Porites cylindrica (at LI, OI and HI)

were collected. Two species of Acropora were sampled owing to

their local abundances at the study locations. Both species have

similar morphologies (arborescent branching), contain similar

symbiont species Cladocopium C3 [31–33]) and are sensitive to

high temperatures [34], whereas P. cylindrica contains Cladoco-
pium C15 [31–33] and is more tolerant to high temperatures

[24]. Between-genus differences in the shape and position of

the TPCs were therefore expected. Twenty-five fragments of

each species (approx. 8 cm tall, 5 per colony) were collected by

hand using a bone cutter at depths between 4 and 6 m by

SCUBA diving. Fragments were collected from the top of the

mother colony to minimize variation in the light environment

between colonies. The duration of the thermal experiments

meant that data collection could not be collected at all locations

in the same season in a single year, consequently corals were col-

lected in November/December 2015 at OI (thermal experiment

starting 25 January 2016), mid-February 2016 at LI (thermal
experiment starting 2 March 2016) and mid-February 2017 at

HI (thermal experiment starting 6 March 2017).

After collection, fragments were transported to the research

station situated on the island, attached to nylon string, labelled

to keep track of colony identity and randomly distributed

among two adjacent large (50 l) shaded outdoor tanks with

two fragments of the same colony per tank. Both tanks received

a constant supply of seawater pumped from the adjacent reef flat

at equal inflow rates (approx. 90 l h21). Therefore, the corals

experienced the same light environment and water chemistry

between tanks. The average (and maximum) seawater tempera-

ture measured over two weeks prior to the start of the thermal

experiment on the reef flat was 29.9 (30.7)8C at LI, 29.3 (30.2)8C
at OI and 27.6 (28.8)8C at HI (figure 1b). Fragments were given

at least two weeks to recover from collection and acclimate to

the tank conditions before starting the measurements.

Care was taken to minimize variation in the experimental

procedure at each research station and the following description

of the thermal experiment applies to each location, unless speci-

fied. Corals were divided into two groups (two fragments of each

colony per group); one group was exposed to progressively

lower temperatures, while the other group was exposed to pro-

gressively higher temperatures. This design enabled calculation

of two TPCs per colony over the entire temperature gradient.

Coral performance (described below) was first measured at

ambient temperature, after which one fragment of each colony

was immediately frozen at 2808C (n ¼ 5) for tissue analyses.

After that, the water temperature in each tank was increased,

or decreased, each day by 0.58C using a chiller/heater unit

(TK-2000, TECO, Italy) connected to a pump (Aquapro

AP1050, Aquatec, Australia) that circulated the water at a rate

of 500 l h21. This continued for 10 days, resulting in a total temp-

erature change of 58C above and below ambient temperature. At

every 18C increment, several response variables were measured

as an indicator of the acute coral performance (or instantaneous

thermal sensitivity [4]) at that temperature. Qualitative obser-

vations were made about the coral colour (paleness) and

tentacle expansion of the fragments in the holding tank twice

per day (morning and evening). At the end of the thermal exper-

iment, fragments were frozen at 2808C and transported to

laboratory facilities at James Cook University for tissue analyses.
(b) Coral performance
Different response variables were measured to differentiate

between the thermal responses of the holobiont versus the
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photosynthetic symbionts specifically. Net photosynthesis and

respiration rates, measured using oxygen respirometry, are

mostly dominated by the coral host physiology because the

biomass of the coral tissue is much larger than the biomass of

the symbionts [35]. Maximum quantum yield and electron trans-

port rate were measured using fluorometry, as a proxy for the

symbiont response, because this measuring technique quantifies

the fluorescence signal from the photosynthetic pigments within

the symbionts specifically.

(c) Holobiont response variables
Net photosynthesis (Pn) and respiration (R) rates of the coral frag-

ments were measured in transparent experimental cells (six cells,

550+5 ml). Five cells contained filtered (15 mm) seawater and

one coral fragment (suspended on a nylon string in the upright

position similar to the holding tank), and a separate control cell

contained only filtered seawater to account for background respir-

ation of microorganisms in the seawater. The cells were placed on a

submersible magnetic stirrer plate (MIXdrive 6, 2mag, Germany)

in a water bath that controlled the water temperature inside the

cells. A magnetic stirrer bar inside each cell ensured continuous

mixing of the water to prevent diffusion limitation of gas exchange

[36]. The temperature of the water bath was controlled by a chiller/

heater unit (TK-2000, TECO). Care was taken to minimize air

exposure and manual handling of coral fragments during transfer

to the respirometry chambers. Fifteen minutes after placing the

corals in their incubation chambers, the dissolved oxygen concen-

tration inside each cell was measured at 1 min intervals for 1 h

using optical dissolved oxygen sensors (LDO101, Hach, USA)

connected to a meter device (HQ40D, Hach). Oxygen sensors

were factory calibrated and there was no indication of drift

over time. Pn rates were measured at a light intensity of

350 mmol photons m22 s21 provided by LED lights (R420r,

180 W, Maxspect Razor). At OI, two wide beam lamps (Oracle Syl-

vania, Australia) with 150 W metal halide bulbs were used.

Irradiance was at 350 mmol photons m22 s21 measured with LI-

193 Spherical Underwater Quantum Sensor (LI-COR, USA). This

irradiance level is within the range of what corals naturally experi-

ence at HI, OI and LI (electronic supplementary material, table S1)

and approximates saturating irradiance for various coral species

across the GBR (e.g. [37–41]). After the photosynthesis measure-

ment, the room was darkened and the corals were given 15 min

to acclimate to darkness before measuring R rates during 1 h.

Afterwards, corals were returned to their holding tanks. Pn and

R rates were corrected for background oxygen consumption/pro-

duction by subtracting the differential oxygen concentration of the

empty control cell, and multiplying by the water volume of the cell.

Data were normalized by coral skeletal surface area using the wax

dipping method described by Veal et al. [42].

(d) Symbiont response variables
After the dark respirometry, the maximum quantum yield (Fv/

Fm) of photosystem (PS) II was measured on the dark-adapted

fragments using a pulse-amplitude modulated fluorometer

(DIVING-PAM, Walz, Germany). Fv/Fm describes the maximum

capacity of open PS II reaction centres (within the symbiont) to

capture light energy for photosynthesis [43]. The quantification

of Fv/Fm over a temperature gradient provides an indication of

the PS II activity, or ‘performance’, of the symbiont at each temp-

erature increment. Minimum and maximum chlorophyll

fluorescence (respectively, F0 and Fm) were measured with a

fibreoptic probe at a fixed distance (approx. 3 mm) from the

coral surface. Fv/Fm was calculated as [Fm – F0]/Fm [44]. On

each coral fragment, five measurements, evenly distributed

over the coral surface, were made from which an average Fv/

Fm was calculated. Corals were assumed to be dark-adapted

after 40 min in darkness [45].
After the light respirometry, rapid light curves (RLCs) were

measured on the light-adapted fragments using the DIVING-

PAM. RLCs provide information on the saturation characteristics

of the electron transport and the photosynthetic performance of

the symbiont [46]. Here, RLCs were used to assess the photosyn-

thetic capacity of PS II at different temperatures as a function of

instantaneous irradiance after illumination for a fixed time

period. RLCs were measured using an internal program of the

DIVING-PAM that provided a sequence of nine light steps with

light intensities increasing from 5 to 1800 mmol photons m22 s21.

Each illumination period lasted 10 s and finished with a saturating

pulse that measured the effective quantum yield (DF/Fm
0) of the

light-adapted sample. The relative electron transport rate (rETR)

was then calculated as:

rETR ¼ DF
Fm
0 � PAR� 0:5, ð2:1Þ

where PAR is the photosynthetically active radiation and 0.5 cor-

rects for two photons of light required for the transport of one

electron. RLCs were created by plotting rETR against instant

irradiance, from which the maximum rETR (rETRm) was taken.

(e) Chlorophyll concentration
Chlorophyll concentrations were measured in fragments sampled

at the start of the experiment (ambient group, n ¼ 5) and the end

of the experiment (heated and chilled group, n ¼ 10 per group).

Coral tissue was removed from the skeleton using an airbrush

and 15 ml filtered (15 mm) seawater. The tissue slurry was

homogenized using a homogenizer (T25 Ultra-Turrax, IKA,

Germany) and centrifuged for 10 min at 5000g (Rotina 380R, Het-

tich Lab Technology, Germany). The supernatant was discarded

and 5 ml of 90% acetone was added to the pellet and left in dark-

ness overnight at 48C. Absorbance was measured at 630, 663 and

750 nm using a spectrophotometer (Spectramax M2 Reader,

Molecular Devices, USA). Chlorophyll a and c2 concentrations

were calculated using equations of Jeffrey & Humphrey [47] and

normalized by skeletal surface area.

( f ) Data analyses
Data were analysed using the statistical software R v. 3.0.3 (The R

Foundation for Statistical Computing).

To assess whether the temperature response of P. cylindrica
and Acropora spp. varied between locations and species, nonlinear

least-squares regression models were fitted to the data for each

response variable (Pn, R, Fv/Fm and rETRm). A symmetrical Gaus-

sian function [29] was chosen over an asymmetrical function as

this provided a better fit with fewer parameters [48]:

P ¼ Pfmaxexp �0:5
abs (T–Topt)

Tbr

� �2
" #

, ð2:2Þ

where P is the temperature-dependent physiological response,

Pfmax is the maximum value of that response, Topt is the temp-

erature at which the response value is optimal (i.e. the mean

value) and Tbr provides a measure of the breadth of the response

curve (i.e. the standard deviation).

For each response variable, the function was first fitted to the

data regardless of location and species, then fitted to the data

separated by either species or location, then to the data separated

by both species and location, and finally to the data separately

for each coral colony of each species and at each location. The

Akaike information criterion (AIC) was used to assess whether

the shape of the TPC differed significantly between species and

among locations. We summed the AIC values over the multiple

fits of the equation to different divisions of the data, and chose

the division of the data with the lowest AIC value as the

model that was most strongly supported by the data.
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As the overall aim of this study was to determine whether

coral populations are acclimatized and/or adapted to the ther-

mal regime of their local environment, we focused primarily on

the average responses of the species at each site. Therefore, the

population response was calculated for each parameter of

the TPC (Pmax, Topt and Tbr) by averaging the colony responses

at every location (per species). A one-way analyses of variance

(ANOVA) was used to detect differences in the parameter esti-

mations between the populations. When there were significant

differences, Tukey post hoc analyses were performed. p-values

were considered significant when p , 0.05.

Chlorophyll data were tested for assumptions of normality

using the Shapiro–Wilk test and Levene’s test for homogeneity

of variance and log or square root transformed when the

assumption of homogeneity was violated. To detect differences

in the mean chlorophyll concentrations within species across

location and treatment, data were analysed using mixed-effects

ANOVAs with treatment (heated and chilled) and location as

fixed effects and colony as random effect. Chlorophyll concen-

trations of the fragments collected at the start of the experiment

at ambient temperature were analysed separately, using a two-

way ANOVA with species and location as main effect, to detect

differences in the chlorophyll concentration between locations

and species.
80546
3. Results
(a) Thermal environment at study locations
The average (and maximum) seawater temperature was 29.4

(30.2)8C at OI in January 2016, 29.7 (30.7)8C at LI in February

2016 and 27.6 (29.1)8C at HI in February 2017. Temperature

data were not available for LI during December 2015 and Jan-

uary 2016, but overall, seawater temperatures were distinctly

lower at HI compared with OI and LI, with the latter two

sites having similar summer temperatures (electronic sup-

plementary material, table S2). However, in winter, OI

experienced cooler temperatures than LI and therefore, the

annual variability in temperature was larger at OI than at

LI (minimum and maximum temperature in 2016/2017 at

OI was 22.28C to 31.08C and at LI 24.28C to 30.88C). The

annual temperature variability was even greater at HI,

where temperature fluctuated from 18.18C to 29.18C in

2016/2017, which was 1.7 times larger than the fluctuation

at LI and 1.3 times larger than that at OI.

(b) Thermal performance
The corals showed high survival during the experiments,

with 93% remaining alive at the end of the thermal exper-

iment. At LI, all four fragments from one Acropora colony

showed tissue necrosis after Texp þ 38C and Texp 2 48C.

These fragments were excluded from the experiment because

the cause of the tissue necrosis could not be reliably deter-

mined. Some paling of tissues was observed for Acropora
fragments at both HI and LI, when the experimental tempera-

ture reached Texp þ 58C and tentacle expansion was no longer

observed at those temperatures.

The response variables generally showed nonlinear

relationships with temperature for both Acropora (figure 2)

and Porites (figure 3). Model selection based on AIC revealed

that data divided by location, by species and by individual

coral colony provided the best fit to the host and symbiont

response variables (electronic supplementary material, table

S3). Dividing the data by location and by species provided
the next best fit to the data and the model selection technique

did not support pooling data across locations or across

species, which indicates that the thermal performance

varied among locations and between species.

(c) Holobiont response
The temperature at which Pn was maximum, Topt, was below

the environmental temperature at all three locations for both

species, except for the Porites population at HI where the opti-

mal temperature was approximately the same as the

environmental temperature (figure 3a). There was no clear

trend of increasing Topt corresponding to increasing environ-

mental temperature for either species; for Acropora, the

highest Topt was observed at OI (27.8+1.58C), whereas for

Porites, this was at HI (28.1+2.48C; table 1). The breadth of

the curve (Tbr) for Acropora was significantly larger at HI

(9.2+ 2.78C) than at the other two locations (5.2+0.48C
and 5.5+ 2.18C; ANOVA, p ¼ 0.012; electronic supplemen-

tary material, table S4), consistent with the greater

variability in temperature at HI. For the Porites populations,

there was no significant variation in Tbr among locations.

The maximum Pn was highest at HI for both Acropora and

Porites (table 1). Overall, the performance curves of the Acro-
pora populations shifted vertically (through increased Pfmax at

HI), horizontally (through increased Topt at OI) and by chan-

ging the performance breadth (through increased Tbr at HI).

For the Porites populations, the performance curve shifted

vertically (highest Pfmax at HI and lowest at OI) and horizon-

tally (lowest Topt at OI), but there was no change in the

performance breadth.

R rates of the Acropora (figure 2d–f ) and Porites
(figure 3d– f ) populations at HI and LI increased with

increasing temperature and then decreased at approximately

Texp þ 38C. At OI, R rates of the Acropora population

increased linearly with temperature even at high tempera-

tures, while the respiration rates of the Porites population

were not strongly influenced by temperature. This resulted

in relatively high Topt estimates, ranging from 28.6+0.58C
for the Porites population at HI up to 39.6+ 6.28C for the

Acropora population at OI (table 1). We note that Topt corre-

sponds to the highest R rate which is generally interpreted

to reflect metabolic costs (e.g. tissue maintenance, stress)

rather than metabolic processes that contribute to growth.

Caution must also be taken when interpreting the R rates,

as declines in respiration at temperatures beyond Topt are

probably owing to impairment of the enzyme-driven reac-

tions rather than a decrease in metabolic costs. Tbr for

respiration was relatively broad and not significantly differ-

ent across locations for either species (electronic

supplementary material, table S4). However, the R rate of

the Porites population at HI was more than twofold higher

compared with LI, and threefold higher compared with OI.

Among the Acropora populations the variation in Pmax was

not significant (electronic supplementary material, table S4).

Overall, the performance curve of the Acropora populations

did not show any significant shift (either vertically or hori-

zontally), while among Porites populations, the curve only

shifted vertically (highest Topt at HI).

(d) Symbiont thermal response
Temperature did not have a strong effect on the Fv/Fm of the

Acropora populations (figure 2g– i) or Porites populations
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(figure 3g– i) at any of the study locations. This resulted in

flattened performance curves, even though high experimental

temperatures (Texp þ 48C and Texp þ 58C) caused a strong

decline in Fv/Fm. Data points at 348C of the Acropora popu-

lation at LI were excluded when fitting the nonlinear

regressions, because we did obtain reliable measurements.

Nevertheless, the Topt of both species was below the environ-

mental summer temperature at every location. The variation

in Topt among the Acropora populations was not significantly

different, ranging from 25.9+1.38C at OI to 26.6+ 0.78C at

LI (table 1). There was slightly more variability in Topt

among the Porites populations, with a Topt at OI significantly

higher than at LI (27.7+ 0.98C and 25.5+2.18C, respectively;

Tukey post hoc, p ¼ 0.038). Tbr of both species were broad but

became narrower with decreasing environmental variability,

but this trend was not significant (electronic supplementary

material, table S4). Lastly, Fv/Fm was higher in Acropora
than in Porites. Overall, the performance curve of Acropora
did not change significantly among locations, while the per-

formance curve of Porites only shifted horizontally (Topt at

OI the highest).
For the rETRm, Topt significantly increased with environ-

mental temperature for Acropora (figure 2j– l ) and Porites
(figure 3j– l ). In addition, Topt was also close to the environ-

mental summer temperature for the populations at OI and LI,

suggesting that acclimatization to the local temperature

environment occurred at symbiont level for this particular

photosynthesis trait. Likewise, Tbr of both species were sig-

nificantly larger at HI and smaller at OI and LI (table 1;

electronic supplementary material, table S4), similar to the

trend observed for Fv/Fm and likely to be associated with

the larger variability in environmental temperatures at HI.

Lastly, rETRm was highest at HI and lowest at LI (table 1).

Overall, the performance curves of both species shifted verti-

cally (highest Pfmax at HI), horizontally (lowest Topt at HI)

and in the performance breadth (widest Tbr at HI).
(e) Within-population variability
There was strong model support for different thermal

responses among locations, species and colonies (electronic

supplementary material, table S3), indicating that the
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thermal performance varied considerably among colonies

within species across all locations (electronic supplementary

material, tables S5–S7). Regarding Topt (figure 4), variability

between colonies was generally larger for the holobiont

responses compared to the symbiont responses. For instance,

Topt for Pn within the Acropora population at LI ranged from

17.9 to 29.08C, while for Fv/Fm, this ranged only from 25.9 to

26.88C within the same population. Similarly for Porites,

the Topt range for Pn within the population at HI was

6.28C, while for Fv/Fm, this was only 2.38C. Although

these ranges are within the annual temperature range (elec-

tronic supplementary material, table S2), there were several

Porites colonies with a Topt above the maximum annual

temperature (figure 4a). The variability in Topt among Porites
colonies was slightly larger than that observed for Acropora.

Interestingly, the variability for Pn at OI was greatest among

Porites colonies but smallest among Acropora colonies

(respectively, 10.8 and 3.78C; figure 4b) and vice versa at LI

(figure 4c).
For most colonies of both species, Topt values were within

the range of the environmental variability (except for respir-

ation, since that requires a different interpretation, as

mentioned above). Generally, the Topt of the holobiont

performance were closer to the lower thermal threshold

(only at HI was the Topt of several Porites colonies above the

upper threshold), while the Topt for the symbiont perform-

ances were closer to the average environmental temperature

experienced during the weeks prior to the thermal experiment

(solid line in figure 4a–c). These results suggest a higher

capacity of acclimatization at symbiont compared with holo-

biont level, and poor performance of most colonies during

summer in their local environments.
( f ) Chlorophyll concentration
The thermal experiment affected the chlorophyll concentration

in both species (mixed effect model with main effect of treat-

ment for Acropora and Porites, respectively, F1,38 ¼ 61.586,



Table 1. Average+ standard deviation of the parameter estimates for the physiological thermal response variables of Acropora spp. and P. cylindrica at HI, OI
and LI computed through least square nonlinear regression for individual colonies (n ¼ 5).

ther. resp.
parameter
estimate

Acropora spp. Porites cylindrica

HI OI LI HI OI LI

Pn Pmax (O2 h21 cm22) 0.77+ 0.16 0.30+ 0.06 0.29+ 0.07 1.16+ 0.11 0.25+ 0.02 0.64+ 0.22

Topt (8C) 21.7+ 2.0 27.8+ 1.5 23.6+ 3.9 28.1+ 2.4 22.8+ 3.3 26.0+ 1.8

Tbr (8C) 9.2+ 2.7 5.2+ 0.4 5.5+ 2.1 7.5+ 2.4 9.2+ 2.4 7.1+ 1.4

R Pmax (O2 h21 cm22) 0.52+ 0.03 0.44+ 0.20 0.26+ 0.08 0.78+ 0.19 0.24+ 0.12 0.38+ 0.08

Topt (8C) 29.0+ 0.5 39.6+ 6.2 37.0+ 10.3 30.5+ 1.9 40.5+ 22.8 28.6+ 0.5

Tbr (8C) 8.2+ 0.6 10.3+ 4.4 11.5+ 6.1 7.0+ 1.5 14.4+ 11.4 6.2+ 0.7

Fv/Fm Pmax (no unit) 0.73+ 0.01 0.72+ 0.01 0.74+ 0.03 0.69+ 0.01 0.67+ 0.03 0.70+ 0.01

Topt (8C) 26.1+ 0.4 25.9+ 1.3 26.6+ 0.7 26.0+ 1.0 27.7+ 0.9 25.5+ 2.1

Tbr (8C) 16.7+ 1.8 15.4+ 4.2 10.7+ 4.5 17.3+ 1.4 15.2+ 5.2 16.0+ 6.5

rETRm Pmax (no unit) 123.3+ 4.9 78.1+ 7.1 52.1+ 5.0 100.3+ 5.7 83.6+ 10.8 49.7+ 8.3

Topt (8C) 23.7+ 1.7 28.6+ 0.4 29.4+ 0.6 24.0+ 2.7 29.2+ 0.9 30.2+ 0.6

Tbr (8C) 10.2+ 1.7 3.6+ 0.2 5.9+ 1.1 9.4+ 3.3 4.7+ 0.7 6.8+ 1.7
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p , 0.001 and F1,40 ¼ 24.950, p , 0.001), with generally a

higher chlorophyll concentration in the fragments that were

exposed to the chilled treatment than those exposed to the

heated treatment (figure 5a,b). Only among the Acropora popu-

lations was there variation in the chlorophyll concentration

between locations (mixed effect model with main effect of

location for Acropora, F2,12 ¼ 112.223, p , 0.001), with a

higher concentration at OI possibly owing to the different

Acropora species at this site (A. valenciennesi instead of A. inter-
media). The chlorophyll concentration in fragments at ambient

temperature was higher in Porites (figure 5b) than in Acropora
(two-way ANOVA with main effect of species, F1,27 ¼ 11.654,

p ¼ 0.002), which corresponds to the higher net photosynthetic

performance observed with Porites fragments compared with

Acropora fragments.
4. Discussion
Our study showed that the thermal performance varied

between two coral species that occur across the same latitudi-

nal gradient along the GBR, and that have broadly similar
Indo-Pacific geographical distributions [49,50]. Moreover,

our results indicate that both species are plastic thermal

specialists, rather than thermal generalists, because the ther-

mal performance differed within species among locations

which could potentially be attributed to variation in sym-

biont types harboured within the coral populations at the

different locations. Nevertheless, the observed differences in

thermal performance among populations did not lead to an

alignment of the optimal temperature for performance with

the average temperature of the local environment. Therefore,

we hypothesize that the capacity for thermal acclimatization

of coral populations was constrained.

Thermal acclimatization of symbionts led to a closer align-

ment of the thermal performance with local environmental

conditions compared to that which occurred at holobiont

level. This was apparent by the performance curves fitted to

the data segregated by location and species, as well as those

fitted to the data segregated by colony. These results are con-

sistent with Howells et al. [51] who showed that Symbiodinium
species from warm environments maintained greater photo-

synthetic performance at high temperatures than the same

species from cooler environments. However, as we did not
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identify the Symbiodinium types in our study, it is also possible

that different symbiont species with different physiological

traits were present among the coral populations (e.g. [52]).

For instance, the Acropora corals at HI may harbour a different

symbiont population than the corals at lower (and warmer)

latitudes [53]. Further research is required to determine

whether acclimatization at the symbiont level observed here

was owing to differences in Symbiodinium types, or owing to

local acclimatization and/or adaptation of local populations

of the same symbiont type.

Regarding the symbiont traits more specifically, Topt and

Tbr for rETRm increased with average environmental temp-

erature and variability, according to our hypotheses. For

Fv/Fm, the Tbr increased with environmental thermal varia-

bility, while the Topt were below the average environmental

temperatures and remarkably similar between locations for

both coral species. These different results for different sym-

biont traits suggest that the effect of temperature on

photosynthesis is sequential instead of simultaneous: where

the electron transport rate is reduced at increased tempera-

ture, this could prevent inhibition of the maximum

quantum yield. This interpretation is based on other studies

which showed that during the early stages of thermal

stress, the enzyme activity in the Calvin–Benson cycle is

slower, which directly influences the rate of electron transport

but does not directly damage the photosystems (see review

by Allakhverdiev et al. [54]). Additional research is required

to assess functional differences between coral symbiont

species, and whether and how different symbiont species

make variable contributions to coral host energetics.

We hypothesized that the TPCs of subpopulations of

plastic thermal specialist species would change shape and

position according to the thermal variability and mean

environmental temperature of their local environment,

as observed for various physiological traits of other coral

species (e.g. [55,56]). Specifically, we expected increas-

ing thermal breadth with increasing latitude owing to

greater thermal heterogeneity at high latitudes, but decreas-

ing thermal optima with increasing latitude owing to lower

mean environmental temperatures. Results for the thermal

performance of symbiont traits showed a general trend con-

sistent with these hypotheses, but not for the thermal

performance of holobiont traits. In fact, although the optimal

temperature for holobiont performance (Pn and R) varied

among coral populations, it did not consistently match the

(recent) average environmental temperatures at each site as
previously observed for the temperate coral Oculina patago-
nica [29]. Instead, Topt was below the environmental

temperature at all three locations (R excluded), except for

the Porites population at HI. Thermal acclimatization along

a latitudinal cline of the photosynthetic performance specifi-

cally has been observed for a variety of organisms. For

instance, a positive correlation between latitude and Topt for

photosynthesis has been observed for macrophytes [57]. Simi-

larly, Topt for net photosynthesis was higher in tropical tree

species than in temperate tree species [58]. However, the

absence of a correlation between latitude and Topt for photo-

synthesis for corals has now been reported in three studies

[29,59]. Collectively, these findings suggest the presence of

factors that constrain thermal acclimatization of local coral

populations more so than for other taxa.

Despite the observed mismatch between Topt and local

mean environmental temperatures, the Tbr of each population

was wide and generally encompassed the range of tempera-

tures experienced at each location. This means that corals

live at suboptimal conditions for performance, but declines

in performance at temperatures above and below the

optima are relatively small. Similarly, wide performance

breadths are observed previously on corals [29,60,61],

suggesting that this finding is not species-specific. Broad

Tbr could explain why Topt did not consistently match the

average environmental temperatures because the small

increase in performance achieved through ‘perfect’ acclimat-

ization of the thermal response might not outweigh the

costs of acclimatization. However, the observed Tbr (pre-

sented as the average across multiple coral colonies at each

location) also reflects the high level of variation in perform-

ance among colonies. A likely explanation for this high

among-colony variation is dispersal of coral larvae across

large distances, and among subpopulations with different

thermal histories. Coral recruits can be sourced from the

local reef [62], but many spawning species (including the

species studied here) produce larvae with a relatively long

planktonic stage that can disperse to maintain moderate to

high levels of gene flow along the GBR [30]. Hence, the

influx of maladapted (cold or warm) genotypes or pheno-

types on reefs around LI, OI and HI may have prevented

perfect acclimatization of each population and increased

within-population variation. Moreover, despite collection of

coral fragments from colonies that were approximately the

same size, these colonies potentially settled onto the reef in

different years with different environmental conditions.
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Strong developmental plasticity at the time of settlement

could also drive high variation in thermal responses later

observed among adult colonies. Lastly, the variation in Topt

for holobiont dominated responses between Acropora colonies

was larger than the thermal variation they experience

annually. Although this negates successful acclimatization

of the overall population performance, the silver lining is

that this high level of natural variation in thermal perform-

ance provides raw material for natural selection and

adaptation and can therefore promote survival under climate

change. In addition, the notion that the performance curves at

symbiont level appear better acclimated to the local environ-

ment supports the idea that maladapted immigrated colonies

are able to take up well-acclimated/adapted symbionts from

the local environment.

The respiration, or oxygen consumption, rate represents

the whole-organism metabolism, although symbiont respir-

ation is considered to be negligible, as the symbiont : coral

ratio generally ranges somewhere between 0.03 and 0.1

depending on the coral species [35,63]. Thus, the observed

changes in the respiration rate in this study were mostly

owing to changes in the host physiology. For corals, interpret-

ation of the thermal optima for respiration rate is

complicated. For instance, Topt were well above 308C for

most populations considered here, temperatures only rarely

experienced in the environment. Within the temperature

range that corals can tolerate, respiration is often found to

increase with increasing temperature [64]. Therefore, it is

likely that the performance curve for respiration is asymme-

trical, with a sharp sudden decrease in the respiration rate

close to the upper thermal threshold. Indeed, a recent study

demonstrated such a left-skewed performance curve for the

respiration rates of the temperate coral Astrangia poculata
[55]. Additionally, high respiration rates are generally associ-

ated with high levels of stress and metabolic costs [65],

suggesting that the parameter estimation for Topt signified

the temperature at which metabolic costs were highest
rather than the temperature at which performance was maxi-

mized. We observed declined respiration rates for the

populations at HI after approximately 308C, but at OI and

LI, respiration declined only at the highest two temperatures

measured (greater than 338C). This suggests that the latitudi-

nal thermal cline influenced the thermal acclimatization to

some extent. Further research encompassing a wider temp-

erature scope, and during which cellular responses are

monitored in addition to whole-organism respiration rates

will provide more insight into the true shape of the curve.

In summary, our findings show that the holobiont ther-

mal performance varied among locations and between

species, therefore excluding a thermal generalist strategy,

although thermal specialization through acclimated Topt

and narrow Tbr was neither observed. Instead, populations

of both species across all locations generally lived at tempera-

tures above their optima, constraining their performance

nearly all year round. While these temperatures may not be

lethal to the corals in the short term, they are suboptimal

for fitness which may significantly reduce their resilience to

future summer extremes.
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