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Abstract: Bi-allelic mutations in the dedicator of cytokinesis 8 (DOCK8) are responsible for a
rare autosomal recessive primary combined immunodeficiency syndrome, characterized by atopic
dermatitis, elevated serum Immunoglobulin E (IgE) levels, recurrent severe cutaneous viral infections,
autoimmunity, and predisposition to malignancy. The molecular link between DOCK8 deficiency and
atopic skin inflammation remains unknown. Severe atopic dermatitis (AD) and DOCK8 deficiency
share some clinical symptoms, including eczema, eosinophilia, and increased serum IgE levels.
Increased serum IgE levels are characteristic of, but not specific to allergic diseases. Herein, we aimed
to study the metabolomic profiles of DOCK8-deficient and AD patients for potential disease-specific
biomarkers using chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS).
Serum samples were collected from DOCK8-deficient (n = 10) and AD (n = 9) patients. Metabolomics
profiling using CIL LC-MS was performed on patient samples and compared to unrelated healthy
controls (n = 33). Seven metabolites were positively identified, distinguishing DOCK8-deficient from
AD patients. Aspartic acid and 3-hydroxyanthranillic acid (3HAA, a tryptophan degradation pathway
intermediate) were up-regulated in DOCK8 deficiency, whereas hypotaurine, leucyl-phenylalanine,
glycyl-phenylalanine, and guanosine were down-regulated. Hypotaurine, 3-hydroxyanthranillic
acid, and glycyl-phenylalanine were identified as potential biomarkers specific to DOCK8 deficiency.
Aspartate availability has been recently implicated as a limiting metabolite for tumour growth and
3HAA; furthermore, other tryptophan metabolism pathway-related molecules have been considered
as potential novel targets for cancer therapy. Taken together, perturbations in tryptophan degradation
and increased availability of aspartate suggest a link of DOCK8 deficiency to oncogenesis. Additionally,
perturbations in taurine and dipeptides metabolism suggest altered antixidation and cell signaling
states in DOCK8 deficiency. Further studies examining the mechanisms underlying these observations
are necessary.
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1. Introduction

Dedicator of cytokinesis 8 (DOCK8) deficiency is caused by the loss of function mutations in
the dedicator of cytokinesis 8 (DOCK8) gene [1,2], characterized by susceptibility to sinopulmonary
infections, atopic eczema, asthma, food allergies, severe viral infections, and increased incidence
of malignancy leading to premature death [2,3]. DOCK8 is a cytoskeletal protein, which contains
two related conserved protein domains DHR1 and DHR2, with bi-allelic DOCK8 mutations having
both been reported with frequent large deletions and point mutations, leading to protein loss of
function [2,4]. It is highly expressed in the immune system, especially in lymphocytes, but is also
expressed in the placenta, kidney, lung, and pancreas [5]. DOCK8-deficient patients develop atopic
dermatitis, asthma, and severe allergies to food and environmental antigens in early infancy [6].
Chronic viral infections are also distinctive features with the common pathogens being herpes simplex
virus (HSV), human papillomavirus (HPV), molluscum contagiosum virus (MCV), and varicella-zoster
virus (VZV). In general, all DOCK8-deficient patients are susceptible to recurrent sinopulmonary
infections caused by a wide variety of pathogens including Streptococcus pneumoniae, Haemophilus
influenzae, Pneumocystis jirovecii, Histoplasma capsulatum, and Legionella pneumophila [7].

Atopic dermatitis (AD) or eczema is a prevalent pediatric chronic inflammatory skin disease and
specific food allergens and nutrients are closely related to the development and severity of this disease.
AD is characterized by intense pruritus, occurring primarily in infants and children, with approximately
70% of cases starting before the age of five years. Eczema classically involves the face, scalp, and extensor
surfaces of extremities. Impaired innate and adaptive immunity, environmental changes, and alterations
in genes involved in epidermal barrier functions contribute towards the clinical manifestations of
this disease [8]. These patients are susceptible to superficial infections with Staphylococcus aureus, but
invasive infections rarely occur in AD, unlike DOCK8-deficient patients. Treatment of AD is directed
mainly towards the prevention and management of infection and immunomodulation to control the
associated rash and pruritus. Topical corticosteroids, systemic antibiotics, and antifungal agents are
used for both prophylactic and symptomatic treatment in conjunction with topical therapy. Atopic
dermatitis and DOCK8 deficiencies share similar clinical symptoms including eczema, eosinophilia,
and characteristic elevated levels of serum Immunoglobulin E (IgE).

Metabolomics is a rapidly growing and promising discipline enabling the quantification of the
group of small molecules involved in intermediary metabolism encoded by genomic DNA. Over the last
decade, both targeted and untargeted metabolomics studies have identified several relevant biomarkers
involved in complex clinical phenotypes in diverse biological systems. Significant environmental and
clinical disturbances can be monitored at the metabolomic level by examining an array of different
pathways that are crucial for cellular homeostasis [9,10]. As the metabolome is complex and dynamic,
newer and more reliable quantitative technologies have enabled the discovery of biomarkers specific
enough to distinguish patients in various health states from healthy subjects [11–13].

Chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) is a robust
and emerging analytical platform used in biomarker discovery, where different labeling reagents are
used to target functional groups based on sub-metabolomes [14,15].

Apart from cytokine biomarkers capable of distinguishing DOCK8-deficient from AD patients [16],
definitive metabolomics biomarkers have not been identified yet. Therefore, we aimed to employ
in-depth metabolomics technologies to study the metabolomic profiles of a cohort of patients with
DOCK8 deficiency and severe AD to explore biomarkers that potentially reflect disease pathogenesis
and may contribute towards improved disease monitoring, and ultimately novel clinical interventions.
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We, therefore, applied CIL LC-MS targeting the amine/phenol sub-metabolomes to identify novel and
differentially expressed biomarkers in hereditary DOCK8-deficient and AD patient groups.

2. Results

2.1. Clinical Characterizations in DOCK8-Deficient and AD Patients

The clinical and laboratory characteristics of the study cohorts are represented in Table S1.
The mean age of the DOCK8-deficient and AD cohort was 13.2 ± 5.9 and 10.8 ± 1.4 years, respectively.
Whereas the mean age of healthy controls collected from adults was 23 ± 1.03 (Table S1). Comparatively,
the CD4+/CD8+ white blood cells count ratio in the DOCK8-deficient cohort (2.8 ± 0.99) was higher
compared with that of the AD cohort (1.43 ± 0.14). While eosinophilia was present in all patients,
the counts were significantly different in the DOCK8-deficient cohort compared with AD. On the other
hand, there is no significant difference in neutrophil counts between the two cohorts. The mean red
blood cells (RBC) and white blood cellsWBC counts in DOCK8-deficient patients were 4.5 ± 0.5 (1012/L)
and 10.53 ± 2.3 (109/L), respectively, whereas in AD patients, they were 5.3 ± 0.16 (1012/L) and 6.74 ± 0.9
(109/L), respectively. The Severity Scoring of Atopic Dermatitis (SCORAD) and the Visual Analogue
Scale (VAS) pruritus scores were calculated for both DOCK8-deficient and AD groups (Table S1) (table
was reproduced with permission) [16].

The most commonly seen clinical presentations in our DOCK8-deficient cohort were atopic dermatitis,
food allergies, pneumonia, and staphylococcal infections, whereas in AD patients, pneumonia or invasive
staphylococcus infections were not observed. As anticipated, total IgE levels in both DOCK8-deficient
and AD groups were elevated when compared with the control group, with DOCK8-deficient patients
showing significantly higher serum IgE levels (p-value < 0.05) compared with AD patients and controls
(5–500 KU/L), and eosinophil levels were seen to be significantly up-regulated in DOCK8-deficient
patients compared with AD (Figure 1A). Among the DOCK8-deficient cohort, splicing mutations
were the most common (64%), followed by deletion mutations (27%) and stop codon mutations (9%)
(Figure 1B).

2.2. Metabolomics Profiling

Pathway analysis (Figure 2A) identified nitrogen (global) amino acid metabolism pathways
to be the most perturbed, followed by an amino acyl-tRNA biosynthesis when DOCK8 deficiency
was compared with AD and Ctrl. The global metabolomics profile was dissected in several binary
analyses for a better understanding of the distinctive contribution of each gene in the DOCK8-deficient
group compared with either the AD or Ctrl groups. The partial least square-discriminant analysis
(PLS-DA) score plot demonstrates significant separation between the DOCK8-deficient and Ctrl
groups (Figure 2B). The univariate and volcano plot analyses were also performed and a total of 3438
metabolites features were detected; among them, a group of metabolites (n = 481) was differentially
expressed and visualized in the volcano plot (Figure 2C). The cutoff p-value has a corresponding
q-value of less than 0.05 and a fold change cutoff value of 1.5. Among the 481 dysregulated metabolites,
274 metabolites were up-regulated, while 207 metabolites were down-regulated in the DOCK8-deficient
group (Figure 2C). However, only 40 metabolites were positively identified using the dansyl standard
library based on the exact mass and retention time match for the metabolite and its labeled internal
standard (Table S2).

Similarly, the binary comparison between AD patients and Ctrl groups (Figure 2D) showed
clear cluster separation between the two groups (Q2 = 0.976), and a total of 418 metabolites were
dysregulated, including 232 up-regulated and 186 down-regulated metabolites (Figure 2E).

In this group, only 37 metabolites were positively identified using the dansyl standard library
(Table S3). Seven metabolites were positively identified using the dansyl standard library after
a binary comparison between DOCK8-deficient and AD cohorts (Figure 3A,B), while a total of
147 metabolites were dysregulated (118 and 29 metabolites were up and down-regulated in DOCK8
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deficiency group, respectively). The seven positively identified metabolites are presented in Figure 3C–I
(Table S4). Among those, aspartic acid and 3-hydroxyanthranillic acid were significantly up-regulated
in DOCK8-deficient patients, whereas the dipeptides leucyl-phenylalanine and glycyl-phenylalanine
were down-regulated compared with the AD patients. Hypotaurine, guanosine, and 2-aminooctanoic
acid were not found to be significantly differentially expressed in DOCK8 deficiency compared with
AD after using one-way analysis of variance (ANOVA)/post-Tukey’s method (Figure 3G–I).

2.3. Biomarker Evaluation

As a result of the binary comparisons between DOCK8-deficient versus Ctrl, AD versus Ctrl,
and DOCK8-deficient versus AD groups, receiver operating characteristics (ROC) exploring curves
were generated (Figure 4A). Multivariate exploratory ROC analysis was generated using PLS-DA as a
classification and feature ranking methods. The combination of the top metabolites in ROC curves
shows areas under the curve (AUCs) ranging from 0.68–0.82 (Figure 4A). The significant features of
the positively identified metabolites (Figure 4B) show aspartic acid and 3-hydroxyanthranilic acid
to be up-regulated, whereas hypotaurine, leucyl-phenylalanine, glycyl-phenylalanine, guanosine,
and 2-aminooctanoic acids were found to be down-regulated in DOCK8 deficiency. Hypotaurine is not
significant (Figure 4C), whereas 3-hydroxyanthranillic acid is up-regulated (Figure 4D) compared with
glycyl-phenylalanine (Figure 4E), and is down-regulated in DOCK8-deficient patients. The combination
of all seven analytes gave the maximum confidence of differentiation and detection of DOCK8-deficient
from the AD with an AUC = 0.922.

Metabolites 2019, 9, x FOR PEER REVIEW 3 of 15 

 

2.1. Clinical Characterizations in DOCK8-Deficient and AD Patients 

The clinical and laboratory characteristics of the study cohorts are represented in Table S1. The 
mean age of the DOCK8-deficient and AD cohort was 13.2 ± 5.9 and 10.8 ± 1.4 years, respectively. 
Whereas the mean age of healthy controls collected from adults was 23 ± 1.03 (Table S1). 
Comparatively, the CD4+/CD8+ white blood cells count ratio in the DOCK8-deficient cohort (2.8 ± 
0.99) was higher compared with that of the AD cohort (1.43 ± 0.14). While eosinophilia was present 
in all patients, the counts were significantly different in the DOCK8-deficient cohort compared with 
AD. On the other hand, there is no significant difference in neutrophil counts between the two 
cohorts. The mean red blood cells (RBC) and white blood cellsWBC counts in DOCK8-deficient 
patients were 4.5 ± 0.5 (1012/L) and 10.53 ± 2.3 (109/L), respectively, whereas in AD patients, they were 
5.3 ± 0.16 (1012/L) and 6.74 ± 0.9 (109/L), respectively. The Severity Scoring of Atopic Dermatitis 
(SCORAD) and the Visual Analogue Scale (VAS) pruritus scores were calculated for both 
DOCK8-deficient and AD groups (Table S1) (table was reproduced with permission) [14]. 

The most commonly seen clinical presentations in our DOCK8-deficient cohort were atopic 
dermatitis, food allergies, pneumonia, and staphylococcal infections, whereas in AD patients, 
pneumonia or invasive staphylococcus infections were not observed. As anticipated, total IgE levels 
in both DOCK8-deficient and AD groups were elevated when compared with the control group, 
with DOCK8-deficient patients showing significantly higher serum IgE levels (p-value < 0.05) 
compared with AD patients and controls (5–500 KU/L), and eosinophil levels were seen to be 
significantly up-regulated in DOCK8-deficient patients compared with AD (Figure 1A). Among the 
DOCK8-deficient cohort, splicing mutations were the most common (64%), followed by deletion 
mutations (27%) and stop codon mutations (9%) (Figure 1B). 

 Figure 1. Demographic profiles in dedicator of cytokinesis 8 (DOCK8)-deficient and atopic dermatitis
(AD) patients: (A) Only blood eosinophil counts were statistically different between DOCK8-deficient
and AD patients. (B) Distribution of mutations in DOCK8-deficient patients. (one-way analysis of
variance (ANOVA), post hoc Tukey’s method, ** p-value < 0.05, * p-value < 0.001). SCORAD, Severity
Scoring of Atopic Dermatitis; VAS, Visual Analogue Scale. (measuring itch intensity).
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Figure 2. Pathway analysis and binary comparisons in serum of patients with DOCK8 deficiency and
atopic dermatitis. (A) Pathway analysis for DOCK8-deficient patients vs. Ctrl comparison. (B) DOCK8-
deficient (n = 10 run in duplicates) vs. Control (n = 33 run in duplicates). PLS-DA score plot with a
calculated space R2 = 0.995 and Q2 = 0.920. Five latent variables were used because it has the highest
cross-validation Q2 value. (C) Volcano plots (DOCK8 deficient patients vs. control) with fold change
>1.5 (up-regulated=274 metabolites) and <0.67 (down-regulated = 207 metabolites); q = 0.049, p = 0.107,
40 metabolites were positively identified. (D) Atopic dermatitis (AD) (n = 9) vs. Control (n = 33).
PLS-DA score plot, with a calculated space R2 = 0.976 and Q2 = 0.901, three latent variables were
used because it has the highest cross-validation Q2 value. (E) Volcano plot with fold change >1.5
(up-regulated = 232) and <0.67 (down-regulated = 186), q = 0.050, p = 0.055, a total of 37 metabolites
were positively identified. Abbreviations: DOCK8, dedicator of cytokinesis 8; AD, atopic dermatitis;
PLS-DA, partial least square discrimination analysis; PC, principal component.



Metabolites 2019, 9, 274 6 of 14

Metabolites 2019, 9, x FOR PEER REVIEW 6 of 15 

 

deficiency group, respectively). The seven positively identified metabolites are presented in Figure 
3C–I (Table S4). Among those, aspartic acid and 3-hydroxyanthranillic acid were significantly 
up-regulated in DOCK8-deficient patients, whereas the dipeptides leucyl-phenylalanine and 
glycyl-phenylalanine were down-regulated compared with the AD patients. Hypotaurine, 
guanosine, and 2-aminooctanoic acid were not found to be significantly differentially expressed in 
DOCK8 deficiency compared with AD after using one-way analysis of variance 
(ANOVA)/post-Tukey's method (Figure 3G–I). 

 

 

Figure 3. Positively identified serum metabolites in DOCK8-deficient patients vs. AD vs. Ctrls. 
(A) PLS-DA score plot for binary comparison between DOCK8-deficient patients and AD, with a 
calculated space Q2 = 0.996 and R2 = 0.807, four latent variables were used as they have the highest 

cross-validation Q2 value. (B) Volcano plot analysis with fold change >1.5 (up-regulated = 118) and 
<0.67 (down-regulated = 29), a total of seven metabolites were positively identified. (C) L-Aspartic 
acid is up-regulated in DOCK8-deficient patients compared with AD patients. (D) 
3-Hydroxyxanthranillic acid is up regulated in DOCK8-deficient patients. Dipeptides 
leucyl-phenylalanine and glycyl-phenylalanine are up-regulated in AD patients compared with 
DOCK8-deficient (E, F, respectively). (G) Hypotaurine is down-regulated in DOCK8-deficient 
patients compared with Ctrl. (H) Guanosine is up-regulated in DOCK8-deficient and AD patients, 
while 2-aminooctanoic acid is up-regulated in AD patients only. (I) For paired analysis, a 

Figure 3. Positively identified serum metabolites in DOCK8-deficient patients vs. AD vs. Ctrls. (A) PLS-DA
score plot for binary comparison between DOCK8-deficient patients and AD, with a calculated space
Q2 = 0.996 and R2 = 0.807, four latent variables were used as they have the highest cross-validation Q2

value. (B) Volcano plot analysis with fold change >1.5 (up-regulated = 118) and <0.67 (down-regulated
= 29), a total of seven metabolites were positively identified. (C) L-Aspartic acid is up-regulated
in DOCK8-deficient patients compared with AD patients. (D) 3-Hydroxyxanthranillic acid is up
regulated in DOCK8-deficient patients. Dipeptides leucyl-phenylalanine and glycyl-phenylalanine are
up-regulated in AD patients compared with DOCK8-deficient (E, F, respectively). (G) Hypotaurine is
down-regulated in DOCK8-deficient patients compared with Ctrl. (H) Guanosine is up-regulated in
DOCK8-deficient and AD patients, while 2-aminooctanoic acid is up-regulated in AD patients only.
(I) For paired analysis, a combination of t-test and fold change analyses are represented in this volcano
plot, where the x-axis, False discovery rate (FDR-corrected p-value) and the y-axis are true positive.
Statistical analysis was performed using one-way ANOVA and post hoc Tukey’s test, where * indicates
significance with p-value < 0.05, ** p-value < 0.001, and otherwise not significant (ns). Abbreviations:
DOCK8, dedicator of cytokines 8; AD, atopic dermatitis; Ctrl, healthy controls; PLS-DA, partial least
square discrimination analysis.
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Figure 4. Receiver operating characteristics (ROC) curve and loading plots for positively identified serum
metabolites in the comparison between DOCK8-deficient and AD patients. (A) ROC was generated by the
PLS-DA model showing an area under the curve (AUC) = 0.822. (B) Frequency plot with seven positively
identified metabolites. (C) Hypotaurine is not significantly expressed in DOCK8-deficient patients, AUC
= 0.567 and p-value of 0.41537. (D) 3-Hydroxyxanthranillic acid is up-regulated in DOCK8-deficient
patients, AUC = 0.882 and p-value of 4.4491 × 10−5. (E) Glycyl- phenylalanine is down-regulated in
DOCK8-deficient patients compared with AD patients, AUC = 0.667 and p-value of 0.04766. Data were
normalized; transformed; and scaled by median, log, and Pareto scaling to make sure all the data are
under the Gaussian distribution. For paired analysis, a combination of t-test and fold change analyses are
represented, where the x-axis (FDR-corrected p-value) and the y-axis are true positive. Abbreviations:
DOCK8, dedicator of cytokines8; AD, atopic dermatitis; Ctrl, healthy controls.

Previous studies have provided evidence demonstrating the influence of age and sex on the
metabolome, both cross sectionally and longitudinally [17–22]. Therefore, it is very important to match
the healthy control and affected subjects for age and sex, among other variables, to avoid such an effect.
In this study, most of the children who were eligible for sample collection were not as healthy as they
should be “based on the study design”. Therefore, we used the youngest healthy adults we could
recruit as controls. When we compared each of the patients’ groups with Ctrl, we only showed the
differences without explicit interpretation owing to the age and gender confounding factors. However,
the age difference between the study groups is not too huge compared with the differences between
the 40 metabolites (DOCK8 vs. Ctrl) or the 37 metabolites (AD vs. Ctrl) (data not shown). When we
compare the two groups of the dysregulated metabolites for the two comparisons (the lists of 40 and 37
metabolites), we concluded that age is not an effector on the reported metabolites. However, the gender
might still have an effect on some metabolites, which were excluded from our final list of biomarkers.
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3. Discussion

It is critical to recognize DOCK8 deficiency and differentiate its various clinical and molecular
forms before severe life-threatening complications arise. For example, Aydin, et al. (2015), in a study
on 136 DOCK8-deficient patients, reported malignancies in 17%, life-threatening infections in 58%, and
non-infections cerebral events in 10% of their patients [23]. Differentiating DOCK8-deficient from AD
patients can be difficult in infants and young children because of overlapping clinical and laboratory
findings. The DOCK8 protein regulates intracellular signaling networks, proliferation, differentiation,
migration, synapsis formation, adhesion, and survival of affecting innate and adaptive immunity
reflecting complex function [3,24,25].

The identification of predictive biomarkers to distinguish DOCK8-deficient from AD, based
on serum metabolite changes, requires a highly sensitive platform to allow the detection of very
low abundant (pmol to fmol) metabolites. Chemical isotope labeling LC-MS represents a robust
method for metabolomics profiling and biomarker discovery, as the 13C-labeled pool served as an
internal standard and compensated for the fluctuations in MS response [26]. In this study, seven
metabolic features were found to significantly differentiate between DOCK8-deficient and AD patients.
Taken together, these seven differentially expressed metabolites paint a distinctive metabolomics
profile in DOCK8-deficient and AD patients (Figure 3C–I). Up-regulation of 3-hydroxyanthranilic acid
was observed in the DOCK8-deficient cohort compared with Ctrl and AD, while aspartic acid was
up-regulated in DOCK8-deficient cohort compared with Ctrl and hypotaurine was down-regulated in
DOCK8 deficiency compared with the AD.

The binary analyses between DOCK8 deficiency with and without various clinical complications
(asthma, bronchiectasis, molluscum contagiosum, sclerosing cholangitis, candidiasis, warts, sinusitis,
or malignancy) failed to demonstrate a secondary role for these phenotypes on the overall DOCK8
deficiency-specific metabolites (Figure S1), which suggests that these metabolites are primarily
the result of the underlying genetic deficiency, rather than occurring as a result of secondary
medical complications.

The hypotaurine–taurine metabolism pathway starts with cystamine production via cystine
decarboxylation, which is then reduced to cysteamine followed by oxidation to hypotaurine (by the
enzyme cysteamine dioxygenase). Hypotaurine is finally oxidized to the final product taurine by
hypotaurine dehydrogenase, which is then excreted out of the body or used within. While very little is
known about the physiological role of hypotaurine, taurine is known to have diverse cellular functions
including neurotransmission, retinal photoreceptor differentiation (through the taurine upregulated
gene 1 (TUG1), a non-coding RNA that modulates the expression of photoreceptor-specific genes in
the retina [27], osmoregulation, calcium modulation, and suppression of inflammation, as well as
normal mitochondrial respiratory chain function [28]. Within the central nervous system CNS, taurine
exhibits an age-dependent gradient expression and has its own synthesizing enzymes, receptors,
and transporters [29]. Taurine has also been implicated as a tumor marker in many different cancer
types [30–33]. The exact mechanisms regulating taurine levels in tumors have not been established,
but may involve either regulation of its synthesis from hypotaurine and/or regulation of its uptake from
the extracellular environment, mediated by the taurine transporter SLC6A6. Holopainen et al. (1982)
demonstrated the rapid uptake of hypotaurine into neuroblastoma cells, suggesting that hypotaurine
may have a function in the regulation of neuronal activity [34]. Other studies suggested a role for
hypotaurine as an antioxidant and protective agent under physiological conditions [35,36]. Peng et al.
(2016) also showed that under hypoxic signaling, hypotaurine behaves as an oncometabolite promoting
tumor progression [37]. The observation of under expression of hypotaurine in the DOCK8-deficient
patients suggests a potential loss of its antioxidant and protective effects.

3-Hydroxyanthranillic acid (3-HAA), a tryptophan catabolism molecule produced through
the kynurenine pathway, suppresses antitumor immunity in human malignancy [38], has immune
regulatory properties as it can inhibit Th1 and Th2 cells, increases the percentage of regulatory
T-cells, and regulates leukocyte infiltration and plaque formation [39]. It is found in the human
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epidermis, where it participates in multiple enzymatic reactions [40,41]. Also, 3-HAA appears to play
an essential role in the pathogenesis of several inflammatory, infectious, and degenerative diseases [42].
The increased tryptophan catabolism, concerning infections during the disease, may lead to increased
levels of 3-HAA, as seen in our DOCK8-deficient patients (Figure 4D).

Perturbations in amino acid metabolism had also been observed in some cancers as well as
neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s diseases [43–45]. Aspartic
acid is a major excitatory neurotransmitter, which was increased in some epileptic and stroke patients,
and decreased in patients with depression and brain atrophy. In contrast, guanosine is a nucleoside
that exerts important neuroprotective and neuromodulatory roles in the central nervous system, which
may be related to inhibition of the glutamatergic neurotransmission activity. Glycyl-phenylalanine,
a dipeptide produced by incomplete protein catabolism, consists of glycine and phenylalanine and is
known to play an essential role in cell signaling effects by influencing specific amino acid degradation
pathways [46]. It is transported intact by a cation-independent facilitative diffusion mechanism,
during which the dipeptide is hydrolyzed to its component amino acids [46]. Some dipeptides have
physiological or cell-signaling effects, although most are short-lived intermediates on their way to
specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet
been identified in human tissues or biofluids, and so it is classified as an ‘expected’ metabolite.

2-aminooactanoic acid is shown to be perturbed in human colorectal cancers [47]. The differential
expression of aspartate and 3-hydroxyanthranilic acids observed in our DOCK8-deficient patients is
supported by recently reported data [48,49]. Taken together, these findings call for further analysis of
the perturbed amino acid pathways for additional insight into its significance.

4. Material and Methods

4.1. Chemicals

The LC-MS grade reagents, including water, acetonitrile (ACN), methanol, and formic acid, were
purchased from Fisher Scientific (Ottawa, Canada) and 13C dansyl-chloride was available from the
University of Alberta (http://mcid.chem.ualberta.ca).

4.2. Characteristics of the Study Population

Through the allergy/immunology clinics at King Faisal Specialist Hospital and Research Center
(KFSHRC), children and adults with a genetically confirmed diagnosis of hereditary DOCK8-deficient
and AD patients meeting the Hanifin and Rajka clinical criteria [50]. Healthy controls (adults) who
visited the clinic for routine clinical care and those who were free of eczema, asthma, allergies,
and infections were consented and recruited to participate in this study. Patients who received bone
marrow transplantation, were enrolled in another clinical study, were unwilling to provide informed
consent, or whose sample amount was not sufficient were excluded from the study. A baseline
questionnaire including clinical symptoms, allergies, and family history was collected. This study was
approved by the Research Ethics Committee, at the Office of Research Affairs of King Faisal Specialist
Hospital and Research Center. (KFSH&RC) (RAC No. 2160 015).

4.3. LC-MS

In this CIL LC-MS metabolomics workflow (Figure 5), each sample was labeled by 12C
dansyl-chloride (DnsCl), while a pooled sample was generated by mixing all individual samples,
and then labelling by 13C DnsCl [14]. The 13C-labeled pooled sample served as a reference for all
the 12C-labeled individual samples. Each sample was normalized before LC-MS analysis. LC-UV
quantitation was performed to determine the total concentration of dansyl-labeled metabolites.
Each 12C-labeled sample was mixed with the same molar amount of 13C-labeled pooled sample and
injected into LC-MS. All labeled metabolites were identified as peak pairs on mass spectra, and the
peak area ratios were used for quantitative metabolomic analysis.

http://mcid.chem.ualberta.ca
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The serum samples were analyzed using a Thermo Fisher Scientific Dionex Ultimate 3000 UHPLC
System (Sunnyvale, CA, USA) linked to a Bruker Maxis II quadrupole, time-of-flight (Q-TOF) mass
spectrometer (Bruker, Billerica, UK). The LC column was an Agilent reversed-phase Eclipse plus C18
column (2.1 mm × 10 cm, 1.8 µm particle size, 95 Å pore size), while the mobile phase A was 0.1% (v/v)
formic acid in 5% (v/v) ACN, and solvent B was 0.1% (v/v) formic acid in acetonitrile. The LC gradient
was as follows: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min,
99% B, with a flow rate of 0.18 mL/min. The MS conditions were as follows: polarity, positive; dry
temperature, 230 ◦C; dry gas, 8 L/min; capillary voltage, 4500 V; nebulizer, 1.0 bar; endplate offset,
500V; spectra rate, 1.0 Hz.

4.4. Data Collection, Processing, and Analysis

The LC-MS spectra were first converted to CSV files by Bruker Daltonics Data Analysis 4.3
Software, UK and peak pairs were extracted from CSV files by IsoMS. Meanwhile, the redundant pairs
(e.g., those of Na+, NH3+ adduct ions, and dimers) were filtered out [51]. All data generated from
multiple runs were aligned together based on the peak’s accurate mass and retention time.

The missing values in the aligned file were filled by Zerofill software [52]. A univariate analysis
(volcano plot) was performed for each binary comparison to identify significantly differentially
expressed metabolites. Here, we used a criterion of fold-change of greater than 1.5 or less than 0.67
with q-value (false discovery rate) less than 0.05. The q-value is calculated by R script based on p-value
from a t-test. In the volcano plot, the x-axis represents the fold change (FC) between two comparison
groups, and the y-axis represents the p-value. The principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) plots were performed using Iso MS Pro. (NovaMT Inc.) The
metabolites were positively identified by searching against DnsID Library (www.mycompoundid.org)
using retention time and accurate mass [53]. Putative identification was performed by searching
accurate mass against MyCompoundID library, which contains 8021 known human metabolites and
375,809 predicted metabolites (www.mycompoundid.org) [54]. Analysis of variance (ANOVA) using

www.mycompoundid.org
www.mycompoundid.org
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post-hoc Tukey’s method of analysis, with multiplicity-adjusted p-values, for each comparison, was
executed for the statistical analysis among the three groups. This method was chosen not only because
of the unequal group sizes among the experimental and the control groups, but also because it reduces
the probability of making a type 1 error and supports testing of pairwise differences. Further analysis
was performed on GraphPad Prism (version 6.0, Graph Pad software, LA Jolla, CA).

The receiver operating characteristic (ROC) curves were constructed using random forest method
MetaboAnalyst software version 3.0 (McGill University, Montreal, Canada) (http://www.metaboanalyst.
ca) for global analysis. The raw data were normalized, transformed, and scaled by a median, log,
and Pareto, respectively, to make sure all the data are visualized under Gaussian distribution.

5. Conclusions

DOCK8 deficiency appears to be associated with a distinctive metabolomics profile characterized
by significant differential overexpression of 3-HAA and aspartic acid, both of which have been
linked to oncogenesis coupled with underexpression of hypotaurine, guanosine, and the dipeptides
leucyl-phenylalanine and glycyl-phenylalanine, which together seem to contribute to some of the
immune and malignancy-related phenotypes observed in this disease. The complex nature of these
diseases suggests that no single biomarker will be sufficient to meet the clinical needs of such patients;
instead, a larger panel of biomarkers will ultimately be required. These findings may inform further
mechanistic analyses in these diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/274/s1,
Table S1: Summary of clinical scores (VAS and SCORAD) and laboratory findings in DOCK8 deficient and atopic
dermatitis cohorts, Table S2: Positively identified metabolites that have been significantly changed between the
DOCK8 deficient patients and healthy controls. q-value < 0.05, Table S3: Positively identified metabolites that have
been significantly changed between AD and Control, q-value < 0.05, Table S4: identified metabolites that have
been significantly changed between the DOCK8 deficient and AD patients. q-value < 0.05, Figure S1A: PLS-DA
loading plots based on binary comparisons in DOCK8-deficient patients with (+) and without (-) various clinical
phenotypes including (A) Asthma, (B) Bronchiectasis, (C) Molluscum contagiosum, (D) Sclerosing cholangitis,
Figure S1B: PLS-DA loading plots based on binary comparisons in DOCK8-deficient patients with (+) and without
(-) various clinical phenotypes including (E) Candidiasis, (F) Warts, (G) Sinusitis, (H) Malignancy.

Author Contributions: M.J. collected the samples, compiled the tables, conducted the experiments and drafted
the manuscript, X.G. and X.L. conducted the C.I.L. LCMS metabolomics experiment, R.A., B.A.-S., H.A.-M.
recruited patients and provided their clinical data and samples. M.D. participated in study design, data analysis
and manuscript revision. A.L.L. critically revised the manuscript. A.M.A.R. designed the study, supervised
experiments, data analysis and finalized the manuscript. All authors approved the final version of the manuscript.

Funding: A.L.L. received funding from the National Health and Medical Research Council Australia.

Acknowledgments: The authors would like to express their gratitude to Ali AL-Zahrani, Executive Director
of the Research Centre, King Faisal Specialist Hospital and Research Centre, to Brian Meyer, Chairman of the
Department of Genetics for the unconditional support, and to all the patients who contributed to this project.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Renner, E.D.; Puck, J.M.; Holland, S.M.; Schmitt, M.; Weiss, M.; Frosch, M.; Bergmann, M.; Davis, J.;
Belohradsky, B.H.; Grimbacher, B. Autosomal recessive hyperimmunoglobulin E syndrome: A distinct
disease entity. J. Pediatr. 2004, 144, 93–99. [CrossRef]

2. Engelhardt, K.R.; McGhee, S.; Winkler, S.; Sassi, A.; Woellner, C.; Lopez-Herrera, G.; Chen, A.; Kim, H.S.;
Lloret, M.G.; Schulze, I.; et al. Large deletions and point mutations involving the dedicator of cytokinesis 8
(DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 2009, 124, 1289–1302.
[CrossRef] [PubMed]

3. Zhang, Q.; Davis, J.C.; Lamborn, I.T.; Freeman, A.F.; Jing, H.; Favreau, A.J.; Matthews, H.F.; Davis, J.;
Turner, M.L.; Uzel, G.; et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl.
J. Med. 2009, 361, 2046–2055. [CrossRef] [PubMed]

4. Cote, J.F.; Motoyama, A.B.; Bush, J.A.; Vuori, K. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding
domain is necessary for DOCK180 signalling. Nat. Cell Biol. 2005, 7, 797–807. [CrossRef] [PubMed]

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
http://www.mdpi.com/2218-1989/9/11/274/s1
http://dx.doi.org/10.1016/S0022-3476(03)00449-9
http://dx.doi.org/10.1016/j.jaci.2009.10.038
http://www.ncbi.nlm.nih.gov/pubmed/20004785
http://dx.doi.org/10.1056/NEJMoa0905506
http://www.ncbi.nlm.nih.gov/pubmed/19776401
http://dx.doi.org/10.1038/ncb1280
http://www.ncbi.nlm.nih.gov/pubmed/16025104


Metabolites 2019, 9, 274 12 of 14

5. Su, H.C. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 515–520.
[CrossRef] [PubMed]

6. Boos, A.C.; Hagl, B.; Schlesinger, A.; Halm, B.E.; Ballenberger, N.; Pinarci, M.; Heinz, V.; Kreilinger, D.;
Spielberger, B.D.; Schimke-Marques, L.F.; et al. Atopic dermatitis, STAT3-and DOCK8-hyper-IgE syndromes
differ in IgE-based sensitization pattern. Allergy 2014, 69, 943–953. [CrossRef] [PubMed]

7. Zhang, Q.; Su, H.C. Hyperimmunoglobulin E syndromes in pediatrics. Curr. Opin. Pediatr. 2011, 23, 653–658.
[CrossRef] [PubMed]

8. Wollenberg, A.; Rawer, H.C.; Schauber, J. Innate immunity in atopic dermatitis. Clin. Rev. Allergy Immunol.
2011, 41, 272–281. [CrossRef] [PubMed]

9. Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev.
2007, 26, 51–78. [CrossRef] [PubMed]

10. Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine.
Mass Spectrom. Rev. 2019, 38, 221–238. [CrossRef] [PubMed]

11. Park, Y.H.; Fitzpatrick, A.M.; Medriano, C.A.; Jones, D.P. High-resolution metabolomics to identify urine
biomarkers in corticosteroid-resistant asthmatic children. J. Allergy Clin. Immunol. 2017, 139, 1518–1524.
[CrossRef] [PubMed]

12. Jacob, M.; Malkawi, A.; Albast, N.; Al Bougha, S.; Lopata, A.; Dasouki, M.; Rahman, A.M.A. A targeted
metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal. Chim. Acta 2018, 1025,
141–153. [CrossRef] [PubMed]

13. Malkawi, A.K.; Masood, A.; Shinwari, Z.; Jacob, M.; Benabdelkamel, H.; Matic, G.; Almuhanna, F.; Dasouki, M.;
Alaiya, A.A.; Rahman, A.M.A. Proteomic Analysis of Morphologically Changed Tissues after Prolonged
Dexamethasone Treatment. Int. J. Mol. Sci. 2019, 20, 3122. [CrossRef] [PubMed]

14. Guo, K.; Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass
spectrometry for absolute and relative quantification of the metabolome. Anal. Chem. 2009, 81, 3919–3932.
[CrossRef] [PubMed]

15. Han, W.; Li, L. Chemical Isotope Labeling LC-MS for Human Blood Metabolome Analysis. Methods Mol.
Biol. 2018, 1730, 213–225. [PubMed]

16. Jacob, M.; Bin Khalaf, D.; Alhissi, S.; Arnout, R.; Alsaud, B.; Al-Mousa, H.; Lopata, A.L.; Alazami, A.M.;
Dasouki, M.; Abdel Rahman, A.M. Quantitative profiling of cytokines and chemokines in DOCK8 deficient
and Atopic dermatitis patients. Allergy 2018, 74, 370–379. [CrossRef] [PubMed]

17. Darst, B.F.; Koscik, R.L.; Hogan, K.J.; Johnson, S.C.; Engelman, C.D. Longitudinal plasma metabolomics of
aging and sex. Aging 2019, 11, 1262–1282. [CrossRef] [PubMed]

18. Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Romisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.;
et al. Human serum metabolic profiles are age dependent. Aging Cell 2012, 11, 960–967. [CrossRef] [PubMed]

19. Mittelstrass, K.; Ried, J.S.; Yu, Z.; Krumsiek, J.; Gieger, C.; Prehn, C.; Roemisch-Margl, W.; Polonikov, A.;
Peters, A.; Theis, F.J.; et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet.
2011, 7, e1002215. [CrossRef] [PubMed]

20. Krumsiek, J.; Mittelstrass, K.; Do, K.T.; Stuckler, F.; Ried, J.; Adamski, J.; Peters, A.; Illig, T.; Kronenberg, F.;
Friedrich, N.; et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics
2015, 11, 1815–1833. [CrossRef] [PubMed]

21. Rist, M.J.; Roth, A.; Frommherz, L.; Weinert, C.H.; Kruger, R.; Merz, B.; Bunzel, D.; Mack, C.; Egert, B.;
Bub, A.; et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and
Nutrition (KarMeN) study. PLoS ONE 2017, 12, e0183228. [CrossRef] [PubMed]

22. Dunn, W.B.; Lin, W.; Broadhurst, D.; Begley, P.; Brown, M.; Zelena, E.; Vaughan, A.A.; Halsall, A.; Harding, N.;
Knowles, J.D.; et al. Molecular phenotyping of a UK population: Defining the human serum metabolome.
Metabolomics 2015, 11, 9–26. [CrossRef] [PubMed]

23. Aydin, S.E.; Kilic, S.S.; Aytekin, C.; Kumar, A.; Porras, O.; Kainulainen, L.; Kostyuchenko, L.; Genel, F.;
Kütükcüler, N.; Karaca, N.; et al. DOCK8 Deficiency: Clinical and Immunological Phenotype and Treatment
Options—A Review of 136 Patients. J. Clin. Immunol. 2015, 35, 189–198. [CrossRef] [PubMed]

24. Mizesko, M.C.; Banerjee, P.P.; Monaco-Shawver, L.; Mace, E.M.; Bernal, W.E.; Sawalle-Belohradsky, J.;
Belohradsky, B.H.; Heinz, V.; Freeman, A.F.; Sullivan, K.E.; et al. Defective actin accumulation impairs human
natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol.
2013, 131, 840–848. [CrossRef] [PubMed]

http://dx.doi.org/10.1097/ACI.0b013e32833fd718
http://www.ncbi.nlm.nih.gov/pubmed/20864884
http://dx.doi.org/10.1111/all.12416
http://www.ncbi.nlm.nih.gov/pubmed/24898675
http://dx.doi.org/10.1097/MOP.0b013e32834c7f65
http://www.ncbi.nlm.nih.gov/pubmed/21970826
http://dx.doi.org/10.1007/s12016-010-8227-x
http://www.ncbi.nlm.nih.gov/pubmed/21181301
http://dx.doi.org/10.1002/mas.20108
http://www.ncbi.nlm.nih.gov/pubmed/16921475
http://dx.doi.org/10.1002/mas.21548
http://www.ncbi.nlm.nih.gov/pubmed/29073341
http://dx.doi.org/10.1016/j.jaci.2016.08.018
http://www.ncbi.nlm.nih.gov/pubmed/27658760
http://dx.doi.org/10.1016/j.aca.2018.03.058
http://www.ncbi.nlm.nih.gov/pubmed/29801603
http://dx.doi.org/10.3390/ijms20133122
http://www.ncbi.nlm.nih.gov/pubmed/31247941
http://dx.doi.org/10.1021/ac900166a
http://www.ncbi.nlm.nih.gov/pubmed/19309105
http://www.ncbi.nlm.nih.gov/pubmed/29363075
http://dx.doi.org/10.1111/all.13610
http://www.ncbi.nlm.nih.gov/pubmed/30252138
http://dx.doi.org/10.18632/aging.101837
http://www.ncbi.nlm.nih.gov/pubmed/30799310
http://dx.doi.org/10.1111/j.1474-9726.2012.00865.x
http://www.ncbi.nlm.nih.gov/pubmed/22834969
http://dx.doi.org/10.1371/journal.pgen.1002215
http://www.ncbi.nlm.nih.gov/pubmed/21852955
http://dx.doi.org/10.1007/s11306-015-0829-0
http://www.ncbi.nlm.nih.gov/pubmed/26491425
http://dx.doi.org/10.1371/journal.pone.0183228
http://www.ncbi.nlm.nih.gov/pubmed/28813537
http://dx.doi.org/10.1007/s11306-014-0707-1
http://www.ncbi.nlm.nih.gov/pubmed/25598764
http://dx.doi.org/10.1007/s10875-014-0126-0
http://www.ncbi.nlm.nih.gov/pubmed/25627830
http://dx.doi.org/10.1016/j.jaci.2012.12.1568
http://www.ncbi.nlm.nih.gov/pubmed/23380217


Metabolites 2019, 9, 274 13 of 14

25. Ham, H.; Guerrier, S.; Kim, J.; Schoon, R.A.; Anderson, E.L.; Hamann, M.J.; Lou, Z.; Billadeau, D.D. Dedicator
of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity.
J. Immunol. 2013, 190, 3661–3669. [CrossRef] [PubMed]

26. Han, W.; Sapkota, S.; Camicioli, R.; Dixon, R.A.; Li, L. Profiling novel metabolic biomarkers for Parkinson’s
disease using in-depth metabolomic analysis. Mov. Disord. 2017, 32, 1720–1728. [CrossRef] [PubMed]

27. Young, T.L.; Matsuda, T.; Cepko, C.L. The noncoding RNA taurine upregulated gene 1 is required for
differentiation of the murine retina. Curr. Biol. 2005, 15, 501–512. [CrossRef] [PubMed]

28. Schaffer, S.W.; Ito, T.; Azuma, J. Clinical significance of taurine. Amino Acids 2014, 46, 1–5. [CrossRef]
[PubMed]

29. Pasantes-Morales, H.; Hernandez-Benitez, R. Taurine and brain development: Trophic or cytoprotective
actions? Neurochem. Res. 2010, 35, 1939–1943. [CrossRef] [PubMed]

30. Nishiumi, S.; Kobayashi, T.; Ikeda, A.; Yoshie, T.; Kibi, M.; Izumi, Y.; Okuno, T.; Hayashi, N.; Kawano, S.;
Takenawa, T.; et al. A Novel Serum Metabolomics-Based Diagnostic Approach for Colorectal Cancer.
PLoS ONE 2012, 7, e40459. [CrossRef] [PubMed]

31. Kohe, S.; Brundler, M.A.; Jenkinson, H.; Parulekar, M.; Wilson, M.; Peet, A.C.; McConville, C.M.; Children’s, C.;
Leukaemia, G. Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups. Br. J.
Cancer 2015, 113, 1216–1224. [CrossRef] [PubMed]

32. Huang, S.; Chong, N.; Lewis, N.E.; Jia, W.; Xie, G.; Garmire, L.X. Novel personalized pathway-based
metabolomics models reveal key metabolic pathways for breast cancer diagnosis. Genome Med. 2016, 8, 34.
[CrossRef] [PubMed]

33. Kohe, S.E.; Bennett, C.D.; Gill, S.K.; Wilson, M.; McConville, C.; Peet, A.C. Metabolic profiling of the three
neural derived embryonal pediatric tumors retinoblastoma, neuroblastoma and medulloblastoma, identifies
distinct metabolic profiles. Oncotarget 2018, 9, 11336–11351. [CrossRef] [PubMed]

34. Holopainen, I.; Kontro, P.; Frey, H.J.; Oja, S.S. Taurine, hypotaurine, and GABA uptake by cultured
neuroblastoma cells. J. Neurosci. Res. 1983, 10, 83–92. [CrossRef] [PubMed]

35. Reich, A.; Heisig, M.; Phan, N.Q.; Taneda, K.; Takamori, K.; Takeuchi, S.; Furue, M.; Blome, C.; Augustin, M.;
Stander, S.; et al. Visual analogue scale: Evaluation of the instrument for the assessment of pruritus.
Acta Derm. Venereol. 2012, 92, 497–501. [CrossRef] [PubMed]

36. Alsum, Z.; Hawwari, A.; Alsmadi, O.; Al-Hissi, S.; Borrero, E.; Abu-Staiteh, A.; Khalak, H.G.; Wakil, S.;
Eldali, A.M.; Arnaout, R.; et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-
like deficient patients: Single center experience of twenty-five patients. J. Clin. Immunol. 2013, 33, 55–67.
[CrossRef] [PubMed]

37. Gao, P.; Yang, C.; Nesvick, C.L.; Feldman, M.J.; Sizdahkhani, S.; Liu, H.; Chu, H.; Yang, F.; Tang, L.;
Tian, J.; et al. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling.
Oncotarget 2016, 7, 15200–15214. [CrossRef] [PubMed]

38. Adams, S.; Braidy, N.; Bessede, A.; Brew, B.J.; Grant, R.; Teo, C.; Guillemin, G.J. The kynurenine pathway in
brain tumor pathogenesis. Cancer Res. 2012, 72, 5649–5657. [CrossRef] [PubMed]

39. Platten, M.; Ho, P.P.; Youssef, S.; Fontoura, P.; Garren, H.; Hur, E.M.; Gupta, R.; Lee, L.Y.; Kidd, B.A.;
Robinson, W.H.; et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite.
Science 2005, 310, 850–855. [CrossRef] [PubMed]

40. Pae, H.O.; Oh, G.S.; Lee, B.S.; Rim, J.S.; Kim, Y.M.; Chung, H.T. 3-Hydroxyanthranilic acid, one of L-tryptophan
metabolites, inhibits monocyte chemoattractant protein-1 secretion and vascular cell adhesion molecule-1
expression via heme oxygenase-1 induction in human umbilical vein endothelial cells. Atherosclerosis
2006, 187, 274–284. [CrossRef] [PubMed]

41. Kim, Y.J.; Choi, M.J.; Bak, D.H.; Lee, B.C.; Ko, E.J.; Ahn, G.R.; Ahn, S.W.; Kim, M.J.; Na, J.; Kim, B.J. Topical
administration of EGF suppresses immune response and protects skin barrier in DNCB-induced atopic
dermatitis in NC/Nga mice. Sci. Rep. 2018, 8, 11895. [CrossRef] [PubMed]

42. Krause, D.; Suh, H.S.; Tarassishin, L.; Cui, Q.L.; Durafourt, B.A.; Choi, N.; Bauman, A.; Cosenza-Nashat, M.;
Antel, J.P.; Zhao, M.L.; et al. The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory
and neuroprotective roles during inflammation: Role of hemeoxygenase-1. Am. J. Pathol. 2011, 179, 1360–1372.
[CrossRef] [PubMed]

http://dx.doi.org/10.4049/jimmunol.1202792
http://www.ncbi.nlm.nih.gov/pubmed/23455509
http://dx.doi.org/10.1002/mds.27173
http://www.ncbi.nlm.nih.gov/pubmed/28880465
http://dx.doi.org/10.1016/j.cub.2005.02.027
http://www.ncbi.nlm.nih.gov/pubmed/15797018
http://dx.doi.org/10.1007/s00726-013-1632-8
http://www.ncbi.nlm.nih.gov/pubmed/24337931
http://dx.doi.org/10.1007/s11064-010-0262-8
http://www.ncbi.nlm.nih.gov/pubmed/20842422
http://dx.doi.org/10.1371/journal.pone.0040459
http://www.ncbi.nlm.nih.gov/pubmed/22792336
http://dx.doi.org/10.1038/bjc.2015.318
http://www.ncbi.nlm.nih.gov/pubmed/26348444
http://dx.doi.org/10.1186/s13073-016-0289-9
http://www.ncbi.nlm.nih.gov/pubmed/27036109
http://dx.doi.org/10.18632/oncotarget.24168
http://www.ncbi.nlm.nih.gov/pubmed/29541417
http://dx.doi.org/10.1002/jnr.490100110
http://www.ncbi.nlm.nih.gov/pubmed/6887282
http://dx.doi.org/10.2340/00015555-1265
http://www.ncbi.nlm.nih.gov/pubmed/22102095
http://dx.doi.org/10.1007/s10875-012-9769-x
http://www.ncbi.nlm.nih.gov/pubmed/22968740
http://dx.doi.org/10.18632/oncotarget.7710
http://www.ncbi.nlm.nih.gov/pubmed/26934654
http://dx.doi.org/10.1158/0008-5472.CAN-12-0549
http://www.ncbi.nlm.nih.gov/pubmed/23144293
http://dx.doi.org/10.1126/science.1117634
http://www.ncbi.nlm.nih.gov/pubmed/16272121
http://dx.doi.org/10.1016/j.atherosclerosis.2005.09.010
http://www.ncbi.nlm.nih.gov/pubmed/16246346
http://dx.doi.org/10.1038/s41598-018-30404-x
http://www.ncbi.nlm.nih.gov/pubmed/30093649
http://dx.doi.org/10.1016/j.ajpath.2011.05.048
http://www.ncbi.nlm.nih.gov/pubmed/21855684


Metabolites 2019, 9, 274 14 of 14

43. Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass
spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.
Metabolomics 2010, 6, 78–95. [CrossRef] [PubMed]

44. Fonteh, A.N.; Harrington, R.J.; Tsai, A.; Liao, P.; Harrington, M.G. Free amino acid and dipeptide changes in
the body fluids from Alzheimer’s disease subjects. Amino Acids 2007, 32, 213–224. [CrossRef] [PubMed]

45. Goedert, J.J.; Sampson, J.N.; Moore, S.C.; Xiao, Q.; Xiong, X.; Hayes, R.B.; Ahn, J.; Shi, J.; Sinha, R. Fecal
metabolomics: Assay performance and association with colorectal cancer. Carcinogenesis 2014, 35, 2089–2096.
[CrossRef] [PubMed]

46. Reshkin, S.J.; Ahearn, G.A. Intestinal glycyl-L-phenylalanine and L-phenylalanine transport in a euryhaline
teleost. Am. J. Physiol. 1991, 260, R563–R569. [CrossRef] [PubMed]

47. Brown, D.G.; Rao, S.; Weir, T.L.; O’Malia, J.; Bazan, M.; Brown, R.J.; Ryan, E.P. Metabolomics and metabolic
pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016, 4, 11.
[CrossRef] [PubMed]

48. Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common
therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401.
[CrossRef] [PubMed]

49. Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.;
Molina, H.; Snuderl, M.; Lewis, C.A.; et al. Aspartate is a limiting metabolite for cancer cell proliferation
under hypoxia and in tumours. Nat. Cell Biol. 2018, 20, 775–781. [CrossRef] [PubMed]

50. Schultz Larsen, F.; Hanifin, J.M. Secular change in the occurrence of atopic dermatitis. Acta Derm. Venereol.
Suppl. 1992, 176, 7–12.

51. Zhou, R.; Tseng, C.L.; Huan, T.; Li, L. IsoMS: Automated processing of LC-MS data generated by a chemical
isotope labeling metabolomics platform. Anal. Chem. 2014, 86, 4675–4679. [CrossRef] [PubMed]

52. Huan, T.; Li, L. Counting missing values in a metabolite-intensity data set for measuring the analytical
performance of a metabolomics platform. Anal. Chem. 2015, 87, 1306–1313. [CrossRef] [PubMed]

53. Huan, T.; Wu, Y.; Tang, C.; Lin, G.; Li, L. DnsID in MyCompoundID for rapid identification of dansylated
amine- and phenol-containing metabolites in LC-MS-based metabolomics. Anal. Chem. 2015, 87, 9838–9845.
[CrossRef] [PubMed]

54. Li, L.; Li, R.; Zhou, J.; Zuniga, A.; Stanislaus, A.E.; Wu, Y.; Huan, T.; Zheng, J.; Shi, Y.; Wishart, D.S.; et al.
MyCompoundID: Using an evidence-based metabolome library for metabolite identification. Anal. Chem.
2013, 85, 3401–3408. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11306-009-0178-y
http://www.ncbi.nlm.nih.gov/pubmed/20300169
http://dx.doi.org/10.1007/s00726-006-0409-8
http://www.ncbi.nlm.nih.gov/pubmed/17031479
http://dx.doi.org/10.1093/carcin/bgu131
http://www.ncbi.nlm.nih.gov/pubmed/25037050
http://dx.doi.org/10.1152/ajpregu.1991.260.3.R563
http://www.ncbi.nlm.nih.gov/pubmed/2001005
http://dx.doi.org/10.1186/s40170-016-0151-y
http://www.ncbi.nlm.nih.gov/pubmed/27275383
http://dx.doi.org/10.1038/s41573-019-0016-5
http://www.ncbi.nlm.nih.gov/pubmed/30760888
http://dx.doi.org/10.1038/s41556-018-0118-z
http://www.ncbi.nlm.nih.gov/pubmed/29941933
http://dx.doi.org/10.1021/ac5009089
http://www.ncbi.nlm.nih.gov/pubmed/24766305
http://dx.doi.org/10.1021/ac5039994
http://www.ncbi.nlm.nih.gov/pubmed/25496403
http://dx.doi.org/10.1021/acs.analchem.5b02282
http://www.ncbi.nlm.nih.gov/pubmed/26327437
http://dx.doi.org/10.1021/ac400099b
http://www.ncbi.nlm.nih.gov/pubmed/23373753
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Clinical Characterizations in DOCK8-Deficient and AD Patients 
	Metabolomics Profiling 
	Biomarker Evaluation 

	Discussion 
	Material and Methods 
	Chemicals 
	Characteristics of the Study Population 
	LC-MS 
	Data Collection, Processing, and Analysis 

	Conclusions 
	References

