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Abstract 

Bioeroding sponges are a unique group of coral reef sponges. They transform dissolved 

nutrients into particulate nutrients via active filter feeding whilst also eroding the coral reef 

framework that they inhabit. Despite their ecological importance, we know little about their 

distribution or abundance, especially along the inshore Great Barrier Reef (GBR). In addition, 

bioeroding sponges are often considered to be thermally tolerant, even though their thermal 

thresholds are unknown. Bioeroding sponges also occur in high abundance in polluted or 

eutrophic habitats, but it is unclear whether these conditions directly benefit sponges through 

accelerated growth or improved condition or benefit bioeroding sponges indirectly via negative 

effects on corals. To address these knowledge gaps, this thesis investigated whether bioeroding 

sponges and their photosynthetic symbionts can tolerate changing environmental conditions on 

coral reefs. Research focused on Cliona orientalis as it is a conspicuous bioeroding sponge on the 

GBR. Field surveys were used to measure the abundance of C. orientalis on the inshore GBR and 

laboratory experiments were performed to investigate the response of C. orientalis to ocean 

warming and nutrient enrichment. 

Decreasing coral cover on the GBR may provide opportunities for rapid growth and 

expansion of other taxa. The bioeroding sponges Cliona spp. may increase in abundance after 

coral bleaching, damage, and mortality as they withstand elevated temperatures without 

bleaching. In Chapter 2, I analysed benthic surveys of the inshore GBR (2005–2014) which 

revealed that the percent cover of C. orientalis has not increased in the past decade, as would be 

expected if the sponge benefited from coral bleaching or mortality. I found that the proportion of 
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fine particles in benthic sediments was negatively associated with the presence-absence and the 

percent cover of this sponge, indicating that C. orientalis requires wave-exposed habitats where 

fine sediments are absent. The fastest increases in C. orientalis cover coincided with the lowest 

macroalgal cover and chlorophyll a concentration, highlighting the importance of macroalgal 

competition and local environmental conditions for this sponge. Given the observed distribution 

and habitat preferences of C. orientalis, bioeroding sponges likely represent site-specific rather 

than regional threats to corals and reef accretion.  

Coral reefs face many stressors associated with global climate change, including increasing 

sea surface temperature and ocean acidification. In Chapters 3 and 4, I exposed C. orientalis to 

temperature increments increasing from 23 to 32 °C to define the thermal tolerance threshold of 

the sponge and its associated microbiome. At 32 °C, or 3 °C above the maximum monthly mean 

(MMM) temperature, sponges bleached and the photosynthetic capacity of Symbiodinium was 

compromised, consistent with sympatric corals. Cliona orientalis demonstrated little capacity to 

recover from thermal stress, remaining bleached with reduced Symbiodinium density and energy 

reserves after one month at reduced temperature. While C. orientalis can withstand current 

temperature extremes (<3 °C above MMM) under laboratory and natural conditions, this species 

would not survive ocean temperatures projected for 2100 without acclimatisation or adaptation 

(≥3 °C above MMM). In Chapter 4, I demonstrated that bleaching of C. orientalis is preceded by a 

change in its microbial community, which is not restored after the thermal stress is removed. In 

Chapter 5, I investigated the effects of dissolved inorganic nutrients and light intensity on the 

growth and condition of five common Great Barrier Reef sponges, including C. orientalis, to test 

whether C. orientalis responds differently than other sponge species. Dissolved nutrients up to 7 
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µM total DIN did not significantly affect the growth, condition, or chlorophyll content of any 

sponge species after 10 weeks of exposure. Light (80 vs 160 µmol quanta m-2 s-1) did not affect 

four of the five sponge species, but higher irradiance resulted in higher organic content and 

chlorophyll levels in C. orientalis.  

Hence, as ocean temperatures increase above local thermal thresholds, C. orientalis will 

have a negligible impact on reef erosion, and nutrient enrichment is unlikely to alter these effects. 
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Chapter 1. Introduction 

Coral reefs are in decline across the world. On the Great Barrier Reef (GBR), coral cover 

decreased by 50% just from 1985 to 2012 (De'ath et al. 2012), and decreased further following 

widespread coral bleaching in 2016-2017 (Hughes, Kerry, et al. 2017). In the Caribbean, coral 

cover is currently 20% of what it was in the 1970s (Gardner et al. 2003). By itself, the loss of coral 

fails to capture the extent of reef ecosystem degradation, as carnivores, herbivores, filter feeders, 

and seagrasses are all declining (Pandolfi et al. 2003) coincident with coral loss. As corals decline, 

understanding how other taxa respond to changing environmental conditions will provide a 

glimpse of what reef communities may look like in the future (Graham et al. 2014, Hughes, 

Barnes, et al. 2017). 

Coral reefs are threatened by multiple anthropogenic stressors (Hughes, Barnes, et al. 

2017), although much of the recent decline has been attributed to ocean warming (Hoegh-

Guldberg 1999, Hughes, Kerry, et al. 2017). Warming is caused by carbon dioxide emissions 

produced from burning fossil fuels (IPCC 2014). For corals, ocean warming disrupts the 

mutualism with their endosymbiotic dinoflagellate Symbiodinium, termed coral bleaching (Baird 

et al. 2009). Severe coral bleaching events occurred in 2016 and 2017, with bleaching particularly 

intense in the northern and central GBR which experienced up to 83% coral mortality (Hughes et 

al. 2016). Ocean warming also has the potential to affect non-coral invertebrates that rely on 

Symbiodinium for their energy requirements, including anemones, clams, foraminifera, 

octocorals, and sponges (McClanahan et al. 2008, Hill et al. 2016), although less is known about 

bleaching in these taxa.  

While the outlook for corals is bleak, sponges potentially tolerate changing environmental 
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conditions, including ocean warming, ocean acidification, and nutrient enrichment, better than 

reef-building corals (Bell et al. 2013). Sponges are multicellular animals found in all aquatic 

habitats where they filter dissolved and particulate material out of the water and play an integral 

role in nutrient cycling (Bell 2008, de Goeij et al. 2013, Rix et al. 2018). Sponges may be resistant 

to ocean warming since few species associate with Symbiodinium (Hill et al. 2011) and those with 

Symbiodinium appear to tolerate exposure to elevated temperature (Vicente 1990, Schönberg & 

Ortiz 2008). In addition to warming, oceans are becoming more acidic as the excess carbon 

dioxide reacts with seawater, releasing protons through a series of equilibrium reactions 

(Guinotte & Fabry 2008). However, sponge growth (Bell et al. 2017), respiration, and survival are 

unlikely to be affected by ocean acidification(Bennett et al. 2016). Sponges may also benefit from 

nutrient enrichment of coastal reefs, which lead to increased concentrations of food as organic 

matter available for nutrition (Dinsdale & Rohwer 2010, Pawlik et al. 2016). 

While all sponges may tolerate ocean warming and nutrient enrichment, bioeroding 

sponges in particular may benefit from changing environmental conditions (Schönberg, Fang, & 

Carballo 2017), and this could tip the balance from accretion to erosion on future reefs (Kennedy 

et al. 2013, Perry et al. 2014). This thesis investigates whether bioeroding sponges benefit from 

warming and nutrient-enriched oceans. The primary objectives are to determine whether the 

abundance of bioeroding sponges is increasing on the GBR, to assess whether bioeroding sponges 

have high thermal tolerance, and to evaluate whether bioeroding sponges benefit from elevated 

dissolved nutrients more than other sponge species.  
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Figure 1-1. Three bioeroding sponge species with Symbiodinium. A) Cliona varians forma 
varians (Florida, USA). B) Cliona varians forma incrustans (Quintana Roo, Mexico). C) Cliona 
orientalis (Queensland, Australia). D) Cliona tumula (Florida, USA). E) Cliona orientalis 
(Queensland, Australia). 

1.1. Bioeroding sponges 

Bioerosion is the erosion of substrata by biological agents and is performed by many 

species of invertebrates and vertebrates in reef ecosystems (Perry & Harborne 2016). Bioeroding 

sponges erode coral skeleton through physical processes that break apart calcium carbonate and 

chemical processes that dissolve it (Fang et al. 2013, de Bakker et al. 2018). Specialized etching 

cells facilitate sponge erosion by extending pseudopodia into the substratum and secreting 
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enzymes (Pomponi 1979, Glynn 1997), thereby reducing the pH and saturation state of calcium 

carbonate and weakening the substrate beneath the sponge (Schönberg 2002). The molecular 

agent of chemical erosion has yet to be determined (Schönberg 2008). 

Only a few sponge species erode the reef substratum, most of which belong to the families 

Clionaidae and Spirastrellidae and the genera Cervicornia, Cliona, Pione, Diplastrella, and 

Spirastrella (Schönberg, Fang, & Carballo 2017). In particular, Cliona species are conspicuous 

bioeroders in many ecosystems, including tropical coral reefs (Holmes et al. 2000, Rützler 2002, 

Nava et al. 2014), temperate oyster beds (Duckworth & Peterson 2013), and coastal caves 

(Mariani et al. 2000). Cliona spp. are of specific interest on the GBR, as they tolerate elevated 

temperatures and have increased in cover at one location (Schönberg & Ortiz 2008, Schönberg et 

al. 2008). In addition to eroding calcium carbonate, bioeroding sponges are the only group of 

sponges that associate with the dinoflagellate Symbiodinium (Hill 1996, Weisz et al. 2010, Achlatis 

et al. 2018). Carbon translocation from Symbiodinium to Cliona varians provides autotrophic 

energy for the sponge (Weisz et al. 2010, Achlatis et al. 2018), in the same way that Symbiodinium 

fuels coral growth (Muscatine et al. 1984). Thus, Symbiodinium photosynthates likely represent a 

major component of the energy budget of bioeroding sponges (Fang et al. 2014). The 

Symbiodinium in Cliona are most closely related to Symbiodinium found in Foraminifera (clade 

G), rather than the Symbiodinium of Cnidarians ((clades A-D); Schönberg & Loh 2005, Hill et al. 

2011). Cliona species associate with distinct Symbiodinium species, as Cliona orientalis harbors 

Symbiodinium endoclionum, while Cliona varians associates with Symbiodinium spongiolum 

(Appendix B: Ramsby, Hill, et al. 2017). 

This thesis will focus primarily on C. orientalis which has been a focal point of sponge 

bioerosion research (Schönberg 2002, 2006, Holmes et al. 2009) and a model for how sponge 
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erosion will be affected by ocean warming and acidification (Schönberg et al. 2008, Wisshak et al. 

2013, Fang et al. 2013, 2014, Achlatis et al. 2017). 

1.2. Monitoring bioeroding sponges 

As space is limiting on coral reefs, declining coral cover could allow for increases in the 

abundance of other taxa, such as algae and sponges (Ward-Paige et al. 2005, Hughes et al. 2010, 

Bell et al. 2013). While trends in coral and algal cover have been extensively documented (Bruno 

et al. 2009), very few reef surveys monitor sponges, likely because sponge species can be difficult 

to identify and are often cryptic (Berman et al. 2013, Schönberg 2015, Bell et al. 2017).  

Encrusting sponge populations can proliferate following disturbance, highlighting their 

importance for monitoring efforts. In an extreme example, following massive coral bleaching, the 

abundance of the encrusting sponge Chondrilla caribensis (not bioeroding) increased until it 

comprised virtually all of the living cover on the reef (Aronson et al. 2012). Multiple reports also 

describe increases in encrusting bioeroding sponges following coral mortality (Cortés et al. 1984, 

Rützler 2002, Lopez-Victoria & Zea 2005, Carballo et al. 2013). These observations raise two 

important points: i) bioeroding sponges appear to respond quickly to changes in the benthic 

community and ii) bioeroding sponges appear to be relatively resilient to stress compared to 

other reef taxa. Given the decline in coral cover on the GBR and changing community 

composition (De'ath et al. 2012, Hughes et al. 2018), further understanding and monitoring of 

bioeroding sponges is clearly warranted. 

Abundance data for bioeroding sponges on the GBR is sparse. For bioeroding sponges 

that occupy the surface of the reef substratum, like Cliona orientalis, their abundance is accurately 

quantified via percent cover. Surveys at Orpheus Island indicate that Cliona spp. cover increased 
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from 10 to 15% between 1997 and 2004, which encompasses two coral bleaching events 

(Schönberg & Ortiz 2008). Unfortunately, little is known about C. orientalis cover elsewhere on 

the GBR. Increased cover of Cliona spp. has also been reported on the Mexican Pacific Coast 

(Nava et al. 2014) and in Belize (Rützler 2002). In other areas however, little change has occurred 

in Cliona spp. (Ruzicka et al. 2010, Bautista Guerrero et al. 2013). Articles entitled “…Cliona 

vermifera: a threat to Pacific coral reefs?” and “Boring sponges, an increasing threat for coral reefs 

affected by bleaching events” emphasize that dramatic changes are occurring in the abundance of 

bioeroding sponges (Carballo et al. 2013, Bautista Guerrero et al. 2013), but the extent of the 

threat within the GBR and elsewhere is still largely unknown. 

Sponge distributions can also be influenced by depth, sedimentation, and light (Wulff 

2012). Total sponge abundance typically increases with depth (Wilkinson & Evans 1989, 

Wilkinson & Cheshire 1989), but this is generally driven by increases in upright or massive 

sponge species rather than encrusting morphologies, like Cliona spp. (Roberts & Davis 1996). In 

contrast, the abundance of encrusting sponges has been shown to decrease with depth (Zea 1993, 

Roberts & Davis 1996). However, it is challenging to untangle the effects of environmental 

variables that co-vary with depth, including distance from shore, light, water movement, and 

organic matter (Wilkinson & Cheshire 1989). In particular, light can limit the maximum depth of 

sponges with photosynthetic symbionts (Cheshire & Wilkinson 1991, Cheshire et al. 1997). Since 

C. orientalis depends upon Symbiodinium photosynthesis, light likely contributes to the shallow 

distribution of C. orientalis (Schönberg 2001). Moreover, bioeroding sponges require suitable 

calcium carbonate substratum, which may also be correlated with biotic or abiotic gradients 

(Schönberg 2015). 
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Biotic factors can also influence the distribution of sponges, including competition and 

predation (Wulff 2012). Sponges can be strong competitors, but macroalgae can outcompete 

sponges for space on coral reef (Cebrian & Uriz 2006, Wulff 2006). In addition, predation can 

also exclude sponges from reef or seagrass habitats (Hill 1998, Ruzicka & Gleason 2009). Thus, 

the abundance and distribution of sponges are influenced by a combination of biotic and abiotic 

factors. 

1.3. Thermal tolerance of bioeroding sponges 

Oceans have warmed by 0.6 °C in the last 100 years (IPCC 2014), with significant adverse 

consequences for coral reefs (Pandolfi et al. 2011). Most evidence suggests that corals cannot 

increase thermal tolerance by acclimation to warmer conditions (Middlebrook et al. 2012, 

Howells et al. 2013, Rodolfo-Metalpa et al. 2014, Silverstein et al. 2015), leading to bleak 

projections regarding the future of coral-dominated reefs under current climate scenarios 

(Pandolfi et al. 2011). In contrast, bioeroding sponges may benefit from climate change by 

growing faster (Fang et al. 2013), eroding faster (Stubler et al. 2014), or becoming stronger 

competitors. 

Laboratory studies have investigated the effects of elevated temperature on bioeroding 

sponges (Schönberg et al. 2008, Duckworth & Peterson 2013, Fang et al. 2013, Achlatis et al. 

2017), with the available evidence suggesting that Cliona spp. can tolerate ocean warming. In one 

study, four months of exposure to elevated temperature (+5 °C) did not induce mortality or affect 

the growth of the temperate sponge Cliona celata (Duckworth & Peterson 2013). In addition, the 

rates of bioerosion by C. celata and C. orientalis were not affected by exposure to elevated 

temperature (Duckworth & Peterson 2013, Wisshak et al. 2013). Field observations also suggest 
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bioeroding sponges may be tolerant of elevated temperature, as Cliona aprica and C. varians were 

unaffected by a thermal stress event in 1990 that induced coral bleaching (Vicente 1990). 

Furthermore, Cliona spp. can increase in abundance following coral mortality post bleaching 

(Rützler 2002, Lopez-Victoria & Zea 2005, Carballo et al. 2013). If bioeroding sponges are more 

tolerant of ocean warming than scleractinian corals, sponge bioerosion should increase in the 

future (Perry et al. 2014). Importantly however, the thermal limits and bleaching thresholds of 

bioeroding sponges are unknown, in part due to the use of factorial experimental designs to study 

interactive effects (Fang et al. 2013, 2014, Achlatis et al. 2017) rather than functional responses to 

identify threshold temperatures. As these sponges contribute to reef erosion, understanding the 

functional response of bioeroding sponges to temperature will enhance our understanding of reef 

communities and reef growth in the future. 

Elevated temperature can impair Symbiodinium photosynthesis, which can precede coral 

bleaching (Warner et al. 1999). It has been suggested that the Symbiodinium of C. orientalis, S. 

endoclionum (Ramsby, Hill, et al. 2017), may be resistant to thermal stress as it maintains higher 

yields during heat and light stress than Symbiodinium from Acropora palifera (Schönberg et al. 

2008). In another study, net photosynthetic production of oxygen by Symbiodinium in C. 

orientalis increased under moderate warming and acidification, suggesting that it is thermally-

tolerant, but photosynthesis decreased under more extreme conditions (Fang et al. 2014). 

However, C. orientalis can bleach like corals, which may limit its ability to tolerate future climate 

conditions (Fang et al. 2014, Achlatis et al. 2017). Thus, the response of C. orientalis to ocean 

warming will also depend on the response of its Symbiodinium, yet the amount of thermal stress 

required to impair either partner is largely unknown. 
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In addition to Symbiodinium, C. orientalis hosts a diverse bacterial community that may 

be affected by elevated sea temperatures (Pineda et al. 2016). Sponges associate with a diverse 

group of microorganisms that can perform an array of metabolic functions and are linked to 

sponge health(Webster & Thomas 2016). Many sponge species experience a rapid shift in the 

composition and function of their microbial communities during thermal stress (Simister, Taylor, 

Tsai, Fan, et al. 2012, Fan et al. 2013), which can lead to disease, necrosis, and mortality (Webster 

& Taylor 2012, Fan et al. 2013). Hence, understanding the effects of warming on the microbiome 

of C. orientalis is requisite for a complete understanding the response of this sponge to climate 

change. 

1.4. Nutrient enrichment and bioeroding sponges 

Bioeroding sponges can be abundant on degraded or polluted reefs (Rose & Risk 1985, 

Holmes et al. 2000, Nava et al. 2014), which is a concern for much of the inshore GBR as 

pollution pressure increases (Brodie et al. 2012). Runoff from agricultural lands carries inorganic 

fertilizer and organic material to the inshore GBR (Fabricius 2005). Flood plumes reach inshore 

reefs during the wet season, reducing salinities and carrying inorganic nutrients and organic 

matter which reduce water quality and light (Brodie et al. 2011). Currently, the waters of the 

inshore GBR contain over 5 times more nitrogen and phosphorus than before Western settlement 

(Kroon et al. 2012), which can produce algal blooms and lead to coral disease (Fabricius 2005). 

However, while these conditions are unfavourable for corals, they may benefit sponges and other 

filter-feeding organisms (Smith et al. 1981, Fabricius 2005, Uthicke et al. 2014). For example, 

nutrient enrichment leads to increased food availability for sponges, which can metabolize 

dissolved nutrients via microbial symbioses or directly consume microalgae and plankton (Fiore, 

Baker, & Lesser 2013a, Mueller et al. 2014). 
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In other regions, bioeroding sponges occurred in higher abundance in areas with high 

nutrient levels (Rose & Risk 1985, Holmes et al. 2000, Nava et al. 2014). For example, Cliona spp. 

colonies were larger and more abundant at sites with high nutrient levels in the Florida Keys, 

USA (Ward-Paige et al. 2005). In addition to abundance, elevated nutrient levels may affect the 

physiology of bioeroding sponges, as C. orientalis eroded calcium carbonate faster in nutrient-

rich reefs, although the study did not manipulate nutrient levels directly (Holmes et al. 2009). 

Despite many claims that nutrient-rich water benefit bioeroding sponges (Rose & Risk 1985, 

Holmes et al. 2000, Nava et al. 2014), direct experimental evidence that bioeroding sponges 

benefit from these conditions is lacking. 

1.5. Thesis overview 

The aim of this thesis is to determine the impact of ocean warming and nutrient 

enrichment on bioeroding sponges, with a focus on the bioeroding sponge Cliona orientalis. 

Chapter 2 describes the abundance of C. orientalis across the inshore GBR and identifies the 

environmental factors that limit its distribution. In addition, locations with increasing C. 

orientalis abundance are identified and discussed in the context of nutrient enrichment and 

competition with macroalgae. Chapter 3 defines the functional response to temperature for C. 

orientalis, including the threshold and physiological effects of sponge bleaching. The bleaching 

threshold is discussed in the context of the thermal sensitivity of sympatric corals with 

implications for future reef erosion. Chapter 4 expands upon Chapter 3 by investigating how 

warming and sponge bleaching affect the microbiome of C. orientalis. Destabilisation of the 

microbiome may contribute to bleaching and the breakdown of the symbiosis between C. 

orientalis and Symbiodinium. In addition, abundant microbial taxa are identified that may play 

important roles within the C. orientalis holobiont. Chapter 5 takes a broader approach and 
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investigates whether the growth or condition of GBR sponges, including C. orientalis, are affected 

by nutrient enrichment or changes in irradiance. Investigating how C. orientalis responds to 

ocean warming and nutrient enrichment furthers our understanding of how bioeroding sponges 

will affect erosion on future reefs. 





 

 



 

 

Chapter 2. A decadal analysis of bioeroding sponge cover on the 
inshore Great Barrier Reef 

2.1. Abstract 

Decreasing coral cover on the Great Barrier Reef (GBR) may provide opportunities for 

rapid growth�and expansion of other taxa. The bioeroding sponges Cliona spp. are strong 

competitors for space and may take advantage of coral bleaching, damage, and mortality. Benthic 

surveys of the inshore GBR (2005–2014) revealed that the percent cover of the most abundant 

bioeroding sponge species, Cliona orientalis, has not increased. However, considerable variation 

in C. orientalis cover, and change in�cover over time, was evident between survey locations. We 

assessed whether biotic or environmental characteristics were associated with variation in C. 

orientalis distribution and abundance. The proportion of fine particles in the sediments was 

negatively associated with the presence-absence and the percent cover of C. orientalis, indicating 

that the sponge requires exposed habitat. The�cover of corals and other sponges explained little 

variation in C. orientalis cover or distribution. The fastest increases in C. orientalis cover 

coincided with the lowest macroalgal cover and chlorophyll a concentration, highlighting the 

importance of macroalgal competition and local environmental conditions for this bioeroding 

sponge. Given the observed distribution and habitat preferences of C. orientalis, bioeroding 

sponges likely represent site-specific – rather than regional – threats to corals and reef accretion.  

2.2. Introduction 

Loss of coral cover has led to dire predictions for the future of coral reef ecosystems 

(Pandolfi et al. 2011, Kennedy et al. 2013, Spillman 2014), including the Great Barrier Reef (GBR) 

(De'ath et al. 2012). A number of processes compromise coral health and the broader health of 
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coral reefs, including increased sea surface temperatures, ocean acidification, pollution, cyclones, 

and crown of thorns starfish outbreaks (Dubinsky & Stambler 2010, De'ath et al. 2012). All of 

these stressors are predicted to intensify over coming decades, potentially shifting the coral reef 

benthic community from coral-dominated systems to those dominated by less-sensitive species 

(Hughes et al. 2010, Bell et al. 2013). Some community changes have already been documented 

on coral reefs, including changes along acidification gradients at CO2 seeps (Fabricius et al. 2011) 

and the octocoral and sponge dominance of shallow habitat of the Florida Keys, USA (Ruzicka et 

al. 2013, Loh et al. 2015). 

Changes to reef communities may reduce reef accretion, the balance of calcification and 

consolidation with erosional processes (Glynn 1997). Increased abundance of eroding organisms 

(bioeroders) or decreased abundance of calcifying organisms already suggest that some reefs are 

eroding rather than growing (Perry et al. 2013, 2014). Bioeroding sponges break down coral 

skeleton and other calcium carbonate structures, oyster shells, and cave walls. The sponges grow 

several mm to several cm into the coral skeleton and some species can quickly overgrow adjacent 

live coral tissue (Schönberg 2003). While sponges erode calcium carbonate at fast rates 

(Neumann 1966, Rützler 1975, Acker & Risk 1985), bioeroding sponges are patchily-distributed, 

which currently limits their impact on regional carbonate budgets (Perry et al. 2014, Enochs et al. 

2015). 

In some locations, bioeroding sponges (mostly Cliona spp.) have recently increased in 

abundance (Rützler 2002, Ward-Paige et al. 2005, Schönberg & Ortiz 2008, Kelmo et al. 2013). 

While these reports are largely restricted to single reefs, the rates of increase are notable: Cliona 

caribbaea cover doubled between 1979 and 1998 at one location in Belize (Rützler 2002) and 

Cliona spp. abundance doubled between 1996 and 2001 in the Florida Keys, USA (Ward-Paige et 
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al. 2005). In addition, the abundance of Cliona orientalis more than doubled between 1998 and 

2004 at one location in Queensland, Australia (Schönberg & Ortiz 2008). These changes gave rise 

to the hypothesis that the abundance of bioeroding sponges has increased over time, but the 

geographic extent and rate of these increases are largely unknown.  

Several physiological and ecological hypotheses have been proposed to explain the 

observed increases in abundance of bioeroding sponges. Cliona is thought to be a robust sponge 

taxon that is tolerant of disturbances and changing environmental conditions (Vicente 1990, 

Schönberg et al. 2008, Fang et al. 2013, Stubler et al. 2014) as well as benefitting from the poor 

water quality that can adversely affect corals (Holmes 2000, Ward-Paige et al. 2005). Based on the 

success of Cliona spp. in similar habitats, the inshore GBR was expected to be optimal habitat for 

bioeroding sponges where site-specific increases in cover may represent regional trends 

(Schönberg & Ortiz 2008). However, poor water quality is also associated with low light 

conditions that may negatively impact growth of photo-symbiotic bioeroding sponges such as C. 

orientalis and C. varians (Hill 1996, Schönberg 2006). 

Increases in the abundance of bioeroding sponges will have implications for coral reefs in 

addition to the erosion of substratum (Rützler 2002). Bioeroding sponges weaken reef substrata, 

produce carbonate sediments (Hutchings 1986, Glynn 1997, Carballo et al. 2017), and are strong 

competitors against live corals (Schönberg & Wilkinson 2001, Rützler 2002, Lopez-Victoria & Zea 

2004, Márquez & Zea 2006, Chaves-Fonnegra & Zea 2007, González-Rivero et al. 2012, Halperin 

et al. 2015), particularly following coral bleaching events (Carballo et al. 2013). However, the 

growth of Cliona spp. can be limited by macroalgae (Cebrian 2010, González-Rivero et al. 2012), 

suggesting that the composition of the reef community may influence the success of Cliona.  
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Given that sponge erosion is expected to accelerate as oceans become more acidic (Fang et 

al. 2013, Wisshak et al. 2014, Enochs et al. 2015, Stubler et al. 2015), there is a clear need to 

monitor bioeroding sponge populations (Schönberg 2015, Murphy et al. 2016). The most 

conspicuous bioeroding sponge on the GBR is Cliona orientalis but percent cover has only been 

reported for a single GBR site (Schönberg 2001, Schönberg & Ortiz 2008, Schönberg 2015). Here, 

we quantified the abundance and trajectory of C. orientalis cover on the inshore GBR over a 10-

year period (2005-2014) to resolve whether environmental conditions are drivers of change in 

sponge abundance. Our sampling covers a wide geographic area to assess whether previous 

reports of increasing Cliona abundance represent a GBR-wide trend or site-specific responses 

(Schönberg & Ortiz 2008). 

2.3. Methods 

2.3.1. Benthic surveys 

Benthic cover was surveyed at 35 locations on the inshore GBR between 2005 and 2014 as 

part of the Inshore Water Quality and Coral Reef Monitoring program at the Australian Institute 

of Marine Science (Thompson et al. 2016). Briefly, at each location, two sites and two depths (2 

and 5 m) were surveyed using five, fixed, 20 m transects. Every 0.5 m along each transect, 

photographs were taken of the benthos, which were used to determine presence-absence, percent 

cover, and change in percent cover. Survey data were pooled across sites and depths to relate to 

environmental variables measured at each location. 

Percent cover was measured from digital photographs of the benthos. Five markers were 

overlaid onto each photograph and percent cover was calculated as the proportion of points 

occupied by each taxon. Percent cover of C. orientalis (encrusting ß form), other sponges, 
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scleractinian corals, octocorals, and macroalgae was calculated for each of the four within-

location survey sites. The influence of other benthic taxa on C. orientalis cover was explored using 

biplots of cover at each within-location site.  

Trends in cover were analysed for each within-location site where C. orientalis was 

detected in at least three survey years. Trends were estimated for each location separately as the 

locations were surveyed at different frequencies over the course of the study. Change in percent 

cover was estimated for each within-location site using linear regression. Thus, change in percent 

cover represents the average of the within-location sites (1-4) where C. orientalis was detected. 

Analysis of presence-absence of C. orientalis at each location followed the same criterion as 

change in percent cover, whereby C. orientalis was considered present if it occurred in at least 

three survey years at any of the sites. 

2.3.2. Environmental variables 

Survey data were related to environmental variables collected at the location scale (not 

sites or transects). Water quality was assessed using satellite-derived data from the eReefs Marine 

Water Quality Dashboard (http://ereefs.org.au/ereefs), including chlorophyll a concentration, 

coloured dissolved organic matter, and non-algal particulates (1 km resolution). The data nearest 

each survey location were analysed for each survey year. Sediment was collected from the 5 m 

survey sites and the proportion of fine particles, carbon content, and nitrogen content in the 

sediment were measured as described in (Thompson et al. 2016), with average values compared 

to C. orientalis cover. Fine particles in the sediments were defined as all particles smaller than 63 

µm and expressed as a proportion of the total sediment (Cooper et al. 2007). 
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2.3.3. Data analysis 

Exploratory plots were prepared to identify correlations amongst the environmental 

predictors and to compare the effects of different benthic taxa on C. orientalis cover. Note that 

only fine sediment, chlorophyll a, and total C in sediment were included in the model, as other 

environmental variables were strongly correlated with either the proportion of fine sediments or 

chlorophyll a (all r>0.7). Uncorrelated environmental variables were used to predict the presence-

absence of C. orientalis (generalized linear model (GLM) with binomial errors and logit link), the 

percent cover of C. orientalis (GLM with negative binomial errors and log link), and changes in C. 

orientalis cover per year (linear model). Latitude was used to account for the spatial relationships 

among locations. Model fit was evaluated by plotting residual and fitted values. For generalized 

linear models, model fit was also evaluated using the chi-square probability of the residual 

deviance and residual degrees of freedom and by comparing observed and simulated residuals 

from each model. 

Three models were used to assess whether other taxa, the environment, or geography 

explained patterns in C. orientalis distribution. Models were compared using AIC and R2 values. 

For the GLM, R2 was calculated as the deviance ratio of models with and without predictors. The 

most parsimonious model was identified as the model that maximized explanatory power with 

the fewest predictors. 

Analyses were conducted in R statistical software (R core team). The map in Figure 6 was 

produced using R statistical software and the packages, “ggplot2” (Wickham), “mapdata” (Becker 

et al.), and “oz” (Venables & Hornik) packages. 

2.4. Results and Discussion 
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C. orientalis was present in at least three survey years at 16 of the 35 inshore GBR 

locations. Where present, C. orientalis occupied as much surface substratum (0.73% ± 0.97 SD) as 

all other sponges combined (0.56% ± 1.11 SD). Havannah Island had the highest average cover at 

3.6% (Figure 2-1A), although C. orientalis cover reached as high as 5% at Fitzroy Island and High 

Island (Figure 2-2). C. orientalis percent cover was lower than previously reported from Orpheus 

Island (>6%)(Schönberg & Ortiz 2008), possibly due to a greater area surveyed or the untargeted 

design in the current study. When absences are included (i.e., zero cover), the average percent 

cover of C. orientalis on the inshore GBR was 0.14% (±0.51 SD), which is comparable to the 

average cover of C. delitrix in the Florida Keys, USA (~0.1%) (Ruzicka et al. 2010) and southeast 

Florida (~0.08%)(Gilliam 2010), but lower than C. delitrix cover in Colombia (~2%)47. Additional 

studies have assessed the abundance of bioeroding sponges (Holmes 2000, Carballo et al. 2013, 

Bautista Guerrero et al. 2013, Nava et al. 2014), although it is challenging to reliably compare 

these measures of abundance with percent cover. 
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Figure 2-1. (A) Average percent cover of Cliona orientalis at the 16 sites used to measure 
changes over time. (B) Changes in C. orientalis cover per year. Changes in percent cover were 
estimated using linear regression and represent the average of 1–4 trends at each location. 
Dashed vertical lines indicate means and the solid vertical line indicates a value of zero. 
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C. orientalis occurred less frequently at locations with high accumulation of fine 

sediments. The model predicted a 50% probability of C. orientalis occurrence at 17% fine 

sediments, suggesting that even moderate accumulation of silt and clay sized particles prevents 

the establishment of C. orientalis (Figure 2-3A); further evidenced by the low percent cover of C. 

orientalis at sites with large accumulations of fine sediments (Figure 2-3B). The amount of fine 

sediments distinguishes exposed and sheltered locations, as waves and currents resuspend fine 

particles and prevent accumulation (Wolanski et al. 2005). Both suspended and deposited 

sediments can influence the composition of sponge communities (Knapp et al. 2013). Suspended 

and deposited sediments have negative effects on sponges (Bell et al. 2015), including reduced 

reproductive output (Whalan et al. 2007) and increased respiration (Bannister et al. 2012). The 

deposition of fine sediment may hinder filter-feeding or reduce the light available for 

Figure 2-2. Trends in Cliona orientalis cover from 16 locations between 2005 and 2014. C. 
orientalis was found at 1–4 of the sites at each location. Linear regressions were fit to each site. 
Lines indicate the linear fits for each site and grey shading represents the standard error of the 
fit. 
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photosynthesis (Fabricius 2005). The negative correlations observed between fine sediments and 

the distribution and abundance of C. orientalis suggest that sediments have negative physiological 

effects on C. orientalis, although these effects have not been demonstrated experimentally. 

As coral cover declines on the GBR (De'ath et al. 2012), changes in the cover of bioeroding 

taxa may dictate future reef growth (Kennedy et al. 2013, Perry et al. 2014, Enochs et al. 2015). In 

this study, the average change in C. orientalis percent cover was 0.03% yr-1 (± 0.08 SD). Cover 

Figure 2-3. (A) Cliona orientalis was more likely to occur at sites with the lowest proportion 
of fine sediments (z = −2.5, P = 0.01; Wald test). The line represents the probability of 
occurrence using a binomial generalized linear model and shading represents the 95% 
confidence interval. The dashed line indicates the proportion of ne sediments (17%) with a 
50% predicted probability of C. orientalis occurrence. Points represent presence- absence and 
the average fine sediment proportion for each location. (B) C. orientalis cover significantly 
decreased as a function of the proportion of fine particles in the sediment (z = −4.9, p < 0.01; 
Wald test). The line represents the predicted cover from a negative binomial generalized 
linear model and shading represents the 95% confidence interval. Points represent average 
cover and fine sediment proportion for each location. 
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increased at 10 out of 16 locations (Figure 2-1B), although only one trend was statistically 

significant (0.2% yr-1 at Fitzroy Island (East); t=2.8, p<0.05). C. orientalis cover exhibited non-

linear patterns at some sites, possibly due to disturbances such as cyclones or outbreaks of crown 

of thorns starfish (Thompson et al. 2016), which altered community composition and potentially 

increased the detectability of C. orientalis. The rate of change in C. orientalis cover was similar to 

the rate of change in sponge cover at the same locations (0.03% yr-1 ±0.10 SD), but slower than 

the changes in other benthic groups (Figure 2-4). These time series indicate that cover of C. 

orientalis and other sponges has remained largely stable over the past decade on the inshore GBR 

despite changes to the reef community, such as a decline in octocoral cover (Figure 2-4). 
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Few studies have reported the rate of change in percent cover of bioeroding sponges. 

Therefore, we estimated rates of change in cover of other Cliona spp. to provide context for the 

rates of change in C. orientalis cover measured in this study. The fastest estimated rate of change 

was for C. orientalis cover from 1998 to 2004 at Orpheus Island on the GBR (~0.9% yr-

1)(Schönberg & Ortiz 2008). Slower rates of increase were reported from the Caribbean, where C. 

caribbaea cover increased ~0.14% yr-1 from 1979 to 1998 in Belize (Rützler 2002), bioeroding 

sponge cover increased ~0.05 % yr-1 from 2005 to 2009 in southwest Florida (Makowski & Keyes 

2011) and C. delitrix cover changed <0.01% yr-1 from 2003 to 2009 in southeast Florida (Gilliam 

2010). In contrast, C. delitrix cover decreased (-0.03% yr-1) in the Florida Keys (Ruzicka et al. 

2010). The rate of change reported here (0.03% yr-1 for C. orientalis) is relatively low in the 

context of these estimates, but also encompassed a comparatively large number of survey 

locations. It is worth noting that many of the observations of increased cover of bioeroding 

Figure 2-4. Changes in Cliona orientalis and sponge cover were near-zero, despite changes in 
other benthic groups. Points represent the average change in cover for the 16 locations where 
C. orientalis was present and error bars represent the 95% confidence interval. 
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sponges were initiated prior to 2001(Rützler 2002, Ward-Paige et al. 2005, Schönberg & Ortiz 

2008) and that subsequent studies have not observed increased cover (Gilliam 2010, Ruzicka et al. 

2010, Makowski & Keyes 2011, Carballo et al. 2013). 

Changes in C. orientalis cover are best explained by the abundance of macroalgae (Figure 

2-5, Table 2-1). Increases in C. orientalis cover occurred at locations with low macroalgal cover 

(t=-3.0, P=0.01). However, these locations also had low average chlorophyll a concentration in 

the water (Figure 2-5), which also significantly affected the change in C. orientalis cover (t=-2.4, 

P=0.03). Therefore, the fastest increases in C. orientalis cover occurred at locations with a 

combination of low macroalgal cover and low chlorophyll concentrations, which were clustered 

near Cairns (Figure 2-6). When analysed together, neither macroalgal cover nor chlorophyll 

concentration was significantly associated with change in C. orientalis cover (P>0.05), likely due 

to the positive correlation between macroalgal cover and chlorophyll concentration (r=0.56). 

While macroalgal cover explained 39% of the variation in change in C. orientalis cover (Table 2-

1), macroalgal cover (or chlorophyll a) did not predict the distribution or abundance of C. 

orientalis (Table 2-1, Figure 2-7).  

These results suggest that macroalgae outcompete bioeroding sponges for space: all but 

one of the locations with increased C. orientalis cover had less than 10% macroalgal cover and all 

had less than 0.45 µg/L chlorophyll a (Figure 2-5), a water quality threshold that separates reefs 

with low and high macroalgal abundance (De'ath & Fabricius 2010). Previous work observed that 

macroalgal cover was negatively correlated with C. orientalis cover (Cebrian 2010) and 

macroalgae have also been reported to outcompete C. tenuis for substratum in the Caribbean 

(González-Rivero et al. 2012). In addition, several studies have observed that large colonies of 

bioeroding sponges occur where macroalgal cover is low (Lopez-Victoria & Zea 2005, González-
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Rivero et al. 2012). By extension, controls on macroalgal growth, such as fish and urchin 

herbivory (Cebrian 2010) as well as dissolved nutrient levels (De'ath & Fabricius 2010), may 

indirectly affect the growth of bioeroding sponges.  

 

Figure 2-5. Change in Cliona orientalis cover was highest at locations with low chlorophyll 
concentration and low macroalgal cover. Points represent average macroalgal cover and 
chlorophyll a concentrations for each location and the colour indicates the direction of 
change in C. orientalis cover. 
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Figure 2-6. The spatial distribution of changes in Cliona orientalis cover on the inshore GBR. 
Circles represent locations where change over time was measured and an * represent locations 
where C. orientalis was absent (not detected in at least 3 survey years). Blue circles indicate 
increases in cover; white circles indicate zero change in cover; and red circles indicate 
decreases in cover. 
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Figure 2-8. Relative chlorophyll (open circles) and fine sediment (closed circles) as a function of 
latitude. Chlorophyll was similar across latitudes, but sediment values were highest at 
intermediate latitudes.  

  

Figure 2-7. The relationship between C. orientalis cover and the cover of other taxa is similar 
for algae, scleractinian corals, soft corals, and other sponges. Points represent the average 
cover for all survey sites (within each location) where C. orientalis is present. 
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The gradual increases in C. orientalis cover observed at multiple locations suggest that 

broader ecological changes may be responsible for increases in C. orientalis cover. Water quality 

is declining across the inshore GBR, driven by inputs of terrestrial nutrients that are delivered 

during seasonal flood events (Brodie et al. 2011, Schaffelke et al. 2012). Dissolved nutrient levels 

increase during floods (Brodie et al. 2011), which can lead to phytoplankton blooms and higher 

concentrations of organic material in the water (Furnas et al. 2005), which is a primary food for 

some Cliona species (Mueller et al. 2014). Nutrient levels likely increased over the survey period, 

as river flows were high, particularly during the middle of the study (Thompson et al. 2016, 

Fabricius et al. 2016). At locations with high nutrient levels, additional nutrients would have 

benefited the already high macroalgal cover (De'ath & Fabricius 2010). However, at locations with 

low nutrient levels and little cover of macroalgae, additional nutrients may have contributed to 

increases in C. orientalis cover (Figure 2-5). Thus, increases in C. orientalis cover may reflect 

additional nutrient loads entering the GBR lagoon, but are restricted to locations where nutrient 

concentrations are insufficient to support high macroalgal cover. 



2. Bioeroding sponge cover 

19 

Table 2-1. Environmental variables are stronger predictors of Cliona orientalis distribution and 
abundance than biotic variables. The table contains a comparison of models with two categories 
of predictors, representing the hypotheses that the C. orientalis response was influenced by the 
percent cover of other taxa or environmental conditions. The table includes the C. orientalis 
response variable; the category, number and description of predictors; the proportion of deviance 
explained by the predictors (R2); and the Aikaike Information criterion score (AIC). An * 
indicates predictors which were statistically significant and statistics are reported in figure 
legends. The most parsimonious models, in terms of R2 and AIC, are highlighted bold. 

Response Predictors R2 AIC ∆AIC 
Category n Description    

Presence-
absence 

Environmental 3 Chlorophyll a, fine 
sediment*, total carbon in 
sediment 

0.29 39.5 3.4 

  1 Chlorophyll a 0.01 47.8 11.7 
  1 Total carbon in sediment 0.12 43.1 10.0 
  1 Fine sediment* 0.28 36.1 0 
 Biotic 4 Coral, macroalgae, sponge, 

and abiotic percent cover 
0.11 44.2 7.9 

 Geography 1 Latitude 0 52.1 16.0 
Percent cover Environmental 3 Chlorophyll a, fine 

sediment*, total carbon in 
sediment 

0.40 260.0 36.0 

  1 Fine sediment* 0.38 256.8 32.8 
  1 Total carbon in sediment* 0.19 266.6 42.6 
  1 Chlorophyll a 0 275.7 51.7 
 Biotic 4 Coral, macroalgae, sponge, 

and abiotic percent cover 
0.10 224.0 0 

 Geography 1 Latitude 0.05 272.9 48.9 
Change in 
percent cover 

Environmental 3 Chlorophyll a, fine 
sediment, total carbon in 
sediment 

0.33 -32.6 5.4 

  1 Chlorophyll a* 0.30 -35.9 2.1 
  1 Total carbon in sediment 0.12 -32.3 5.7 
  1 Fine sediment 0.03 -30.7 7.3 
 Biotic 4 Coral, macroalgae*, sponge, 

and abiotic percent cover 
0.42 -33.0 5.0 

  1 Coral 0.01 -30.4 7.6 
  1 Macroalgae* 0.39 -38.0 0 
  1 Sponge 0.05 -31.0 7.0 
  1 Abiotic 0.11 -32.1 5.9 
 Geography 1 Latitude 0.10 -31.8 6.2 
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While the response of C. orientalis to high nutrient levels has not been investigated 

experimentally, several other Cliona species exhibit positive associations with elevated nutrients, 

including C. delitrix and C. vastifica (Rose & Risk 1985, Holmes 2000, Ward-Paige et al. 2005). 

However, not all Cliona species respond the same way, as several exhibited either positive or 

negative responses to a chlorophyll a gradient in Mexico (Nava et al. 2014). On the GBR, 

observation of higher abundance of bioeroding sponges on inshore versus offshore reefs suggests 

that bioeroding sponges benefit from high nutrient conditions (Sammarco & Risk 1990). The 

correlations reported here suggest that C. orientalis is affected by local environmental conditions, 

specifically fine sediments, dissolved nutrients (chlorophyll a), and macroalgal cover, but 

experimental evidence of how these conditions affect Cliona species is lacking. 

Factors other than fine sediments, macroalgal cover, and chlorophyll a explained little 

variation in the cover or distribution of C. orientalis. The cover by other taxa (corals, sponges, 

macroalgae) did not influence the distribution or abundance of C. orientalis (Table 2-1; Figure 2-

7), suggesting that competition with these groups does not exclude C. orientalis from its habitat 

(Preciado & Maldonado 2005). Total carbon in the sediment explained some variation in C. 

orientalis abundance, but the effect was not significant in a model that included both total carbon 

and fine sediments (Table 2-1). Latitude explained little variation in C. orientalis abundance or 

distribution (Table 2-1) or in the environmental predictors (Figure 2-8). Importantly however, 

processes affecting C. orientalis at small spatial scales were not accounted for. For example, whilst 

the presence-absence of C. orientalis varied between nearby locations (i.e., kilometres; Figure 2-

6), presence-absence also varied within locations (i.e., 250 m). Much of the unexplained variation 

in the distribution and cover of C. orientalis may be due to small-scale factors, such as the 

availability of hard substratum (Schönberg 2001). 
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Here, we present a large-scale monitoring effort to assess temporal changes in the 

abundance of the bioeroding sponge Cliona orientalis on the inshore GBR. Whilst Cliona 

abundance increased at 11 of 16 locations, increases in macroalgal cover and decreases in 

scleractinian and octocoral cover all outpaced changes in Cliona abundance. Low deposition of 

fine sediments was strongly associated with both the presence and abundance of C. orientalis, 

suggesting that the sponge requires exposed habitat. Increased cover of C. orientalis was only 

observed where mean chlorophyll a concentration was less than 0.45 µg/L and macroalgal cover 

was low, suggesting that C. orientalis can only increase in habitats where macroalgae are nutrient-

limited. Experimental work that identifies the limiting environmental conditions (light, 

suspended sediment, nutrients) for C. orientalis is clearly warranted. Given the clumped 

distribution and strong association with local environmental conditions (e.g., sediment, 

macroalgae), bioeroding sponges such as C. orientalis likely represent site-specific – rather than 

regional – threats to coral health and reef accretion on the GBR. 
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Chapter 3. Defining the thermal tolerance of the bioeroding 
sponge Cliona orientalis 

3.1. Abstract 

Coral reefs face many stressors associated with global climate change, including increasing 

sea surface temperature and ocean acidification. Excavating sponges, such as Cliona spp., are 

expected to break down reef substrata more quickly as seawater becomes more acidic. However, 

increased bioerosion requires that Cliona spp. maintains physiological performance and health 

under continuing ocean warming. In this study, we exposed C. orientalis to temperature 

increments increasing from 23 to 32 °C. At 32 °C, or 3 °C above the maximum monthly mean 

(MMM) temperature, sponges bleached and the photosynthetic capacity of Symbiodinium was 

compromised, consistent with sympatric corals. Cliona orientalis demonstrated little capacity to 

recover from thermal stress, remaining bleached with reduced Symbiodinium density and energy 

reserves after one month at reduced temperature. In comparison, C. orientalis was not observed 

to bleach during the 2017 coral bleaching event on the Great Barrier Reef, when temperatures did 

not reach 32 °C threshold. While C. orientalis can withstand current temperature extremes (<3 °C 

above MMM) under laboratory and natural conditions, this species would not survive ocean 

temperatures projected for 2100 without acclimatisation or adaptation (≥3 °C above MMM). 

Hence, as ocean temperatures increase above local thermal thresholds, C. orientalis will have a 

negligible impact on reef erosion. 

3.2. Introduction 

Increasing global temperatures are requiring organisms to acclimate to greater thermal 

extremes, migrate, or suffer reduced fitness and, potentially, local extirpation. The earth’s climate 
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is already estimated to be 0.85°C warmer than it was in 1880, which is affecting both terrestrial 

and marine ecosystems (IPCC 2014). Much of the thermal energy (~60%) associated with 

warming has been absorbed by the oceans, resulting in melting sea ice, rising sea levels (IPCC 

2014), and record temperatures in tropical waters (Heron et al. 2016, Hughes, Kerry, et al. 2017). 

Ocean warming has already resulted in extensive coral mortality (Doney et al. 2012, Hughes, 

Kerry, et al. 2017), as evidenced in 2015/2016, when extreme temperatures led to consecutive 

mass coral bleaching events around the world (Heron et al. 2016, Hughes, Kerry, et al. 2017). 

Corals contain photosynthetic dinoflagellates (genus Symbiodinium) that provides them 

with organic carbon (Yellowlees et al. 2008). However, the symbiosis is thermally sensitive and 

exposure to elevated temperature disrupts Symbiodinium photosynthesis (Warner et al. 1999) and 

causes coral bleaching (Baird & Marshall 2002, McClanahan et al. 2008). Some coral species and 

Symbiodinium ‘types’ are more thermally tolerant than others (Abrego et al. 2008, Grottoli et al. 

2014, Díaz-Almeyda et al. 2017), but even tolerant genotypes can be overwhelmed by severe 

temperature stress (Hughes, Kerry, et al. 2017). Nonetheless, in some cases, previous exposure to 

high temperature or association with tolerant Symbiodinium can lead to greater thermal tolerance 

of the coral symbiosis (Berkelmans & van Oppen 2006, Abrego et al. 2008, Palumbi et al. 2014, 

Grottoli et al. 2014), or accelerate recovery following bleaching (Grottoli et al. 2014, Silverstein et 

al. 2015, Bay et al. 2016). 

In comparison to reef-building corals, sponges are thought to be relatively tolerant of 

increasing sea surface temperatures (Przeslawski et al. 2008, Bell et al. 2013). In particular, some 

bioeroding sponges can tolerate temperatures that induce bleaching in sympatric corals (Cortés et 

al. 1984, Vicente 1990, Rützler 2002, Schönberg & Ortiz 2008, Carballo et al. 2013). Bioeroding 
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sponges, principally the genus Cliona, are important members of coral reef communities as they 

erode the limestone substratum by reducing the pH at the sponge:substratum interface (Hatch 

1980), dissolving the substratum, and extracting microscopic ‘chips’ of calcium carbonate 

(Rützler & Rieger 1973, Zundelevich et al. 2007). Like corals, many bioeroding sponge species 

form symbioses with photosynthetic Symbiodinium and photosynthesis enhances their growth 

and bioerosion (Hill 1996, Schönberg 2006, Weisz et al. 2010). However, while dependence on 

Symbiodinium may increase the thermal sensitivity of Cliona, little is known about how these 

sponges will tolerate predicted incremental temperature increases or whether they can recover 

from extreme thermal stress (Fang et al. 2014, Achlatis et al. 2017). 

Experimental research combining elevated temperature and reduced pH has shown that 

sponge bioerosion rates will likely increase under conditions of ocean acidification (Wisshak et al. 

2012, Duckworth & Peterson 2013, Wisshak et al. 2013, Fang et al. 2013, Enochs et al. 2015). 

However, warming can have negative effects on bioeroding sponges, including bleaching or 

necrosis; and it is likely that these negative effects will override all other environmental factors 

(Wisshak et al. 2013, Fang et al. 2014, Achlatis et al. 2017). For instance, under temperature and 

pH conditions predicted for 2100, the bioeroding sponge Cliona orientalis bleaches, and the 

associated reduction in photosynthetic productivity results in a negative energy budget for the 

sponge despite accelerated rates of erosion (Fang et al. 2013, 2014). Warming was subsequently 

identified as the primary stressor inducing bleaching in a bioeroding sponge (Achlatis et al. 2017). 

However, temperature tolerance appears to vary among bioeroding sponge species as bleaching 

or mortality was not observed in all studies (Duckworth & Peterson 2013, Stubler et al. 2015). 

Therefore, the net effect of climate change on bioeroding sponges, and on their erosion rates, 

appears to be species-specific. 
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Identifying thermal thresholds under near-future warming requires measurement of 

performance across a broad range of incremental temperature changes. This incremental 

approach enables a holistic understanding of temperature effects by allowing quantification of the 

optimal temperature for peak physiological performance, along with derivation of sub-lethal and 

lethal temperature thresholds (Pörtner 2001, Angilletta 2009). A similar approach has been 

applied to corals to quantify adaptation to local thermal regimes (Rodolfo-Metalpa et al. 2014), 

and to determine how coral respiration and photosynthesis varies with temperature (Coles & 

Jokiel 1977). Here, we experimentally assessed the ability of C. orientalis to tolerate incrementally 

increasing sea surface temperatures between 23-32°C, which represents the annual temperature 

range for the studied sponges (22-30°C), and warmer temperatures predicted for 2100 (31, 

32°C)(IPCC 2014). In addition, we monitored recovery from temperature stress to evaluate the 

impact of thermal exposure on sponge survival. Photosynthetic performance of Symbiodinium 

and energy reserves of the sponge were quantified to identify temperature optima and define 

thermal thresholds. To contextualize the laboratory experiment, we assessed bleaching severity 

for C. orientalis during the 2017 mass coral bleaching event.  

3.3. Methods 

3.3.1. Laboratory experiment 

Thirteen Cliona orientalis (Thiele, 1900) sponges were collected at 2 - 4 m depth from 

Little Pioneer Bay on Orpheus Island, Queensland, Australia (18°37’40” S, 146°29’36” E) in June 

2015 (Marine Parks Permit G12/35236.1). Sponges were transported by road in 60 L plastic 

aquaria to the National Sea Simulator (SeaSim) at the Australian Institute of Marine Science in 

Townsville, Queensland, where they were maintained in outdoor flow-through aquaria at 

ambient temperature (23.0°C ± 0.1 SD). After seven days in aquaria, 3.5 cm-diameter cores 
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(n=151) were drilled from the 13 sponges. Each sponge produced between 4 and 24 cores, 

depending on the size of the sponge (median=9). Each core was labelled with the identity of the 

original sponge to control for genotype differences. Sixteen days after drilling, the cores from 

each sponge were haphazardly divided amongst nine indoor aquaria (50 L), resulting in 15-18 

cores per aquarium. Ten sponges were represented in every aquarium, but three sponges were 

not, as they were represented by fewer than nine cores (Table 3-1).  

Each aquarium was continuously supplied with 0.04 µm filtered seawater at 0.8 L/min. 

Water temperature was regulated by a SeaSim computer-controlled system to reach target 

temperatures; tanks were additionally buffered against temperature fluctuations using water 

jackets. LED lighting illuminated aquaria with 300 µmol quanta m-2 s-1 light for 11 h with an 

additional 1 h ramping period after dawn and before dusk. The irradiance level was less than the 

saturation irradiance (400 µmol quanta m-2 s-1) that was determined via rapid light curves. The 

irradiance level (300 µmol quanta m-2 s-1) is comparable to a cloudy day on the reef (302 µmol 

quanta m-2 s-1), but less than the average irradiance on a clear day (653 µmol quanta m-2 s-1) 

(calculated from Hoogenboom et al. 2011). In terms of the total irradiance, irradiance in the 

aquaria was 12 mol d-1 compared to 15 or 31 mol d-1 on a cloudy or sunny day on the reef, 

respectively (calculated from Hoogenboom et al. 2011). Cores were maintained at 23.2 ± 0.3°C 

(±SD) for 17 days, after which sponge photosynthesis and respiration were measured and tissue 

samples were taken (detailed below). The sponge cores were not fed and therefore their response 

may have differed from sponges on the reef. 

Table 3-1. The number of cores and original sponges sampled for oxygen flux and tissue contents 
at each timepoint. 

Time 
point 

Target 
temperature 

Heated 
 

Control 
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  Sponges Cores Sponges Cores 
17 23.0 9 9 6 6 

43 25.0 10 12 6 6 

56 27.0 9 12 6 6 

71 29.0 9 12 6 6 

84 30.0 8 12 6 6 

96 31.0 7 12 5 6 

108 32.0 8 16 4 5 

144 *30.0 8 16 4 6 

 

To measure changes in C. orientalis condition and performance as a function of 

temperature, two temperature treatments were established: three aquaria were maintained under 

their initial conditions at 23°C for the duration of the experiment (control) and six aquaria had 

the temperature increased every two weeks, first by 2°C increments (23 to 29°C) then by 1°C 

increments (30 to 32°C). Thus, the temperature targets were 23, 25, 27, 29, 30, 31, and 32°C. 

These span the average range of temperatures at the collection site: 22.4°C in July to 29.1°C in 

February, with a maximum monthly mean of 30.5°C between 2002 and 2010 (Source: Australian 

Institute of Marine Science; http://weather.aims.gov.au; 1.9 m depth). Each temperature 

increment was achieved via ramping by 0.5°C per day up to the target temperature followed by 10 

days of exposure to that temperature. The rate of temperature increase is similar to daily changes 

in mean temperature at the collection site (calculated from Hoogenboom et al. 2011). The 25°C 

temperature increment was extended from 14 to 24 days due to a logistical issue with the heating 

and cooling system. With this exception, temperatures were finely controlled throughout the 

experiment, typically within 0.1°C of the target temperature and with ~0.1°C s.d. among aquaria 

(Table 3-2). Exposure of sponges to these temperature increments occurred from July to 

November and coincided with the natural winter to summer temperature increase during the 

austral summer.  
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Table 3-2. Target and actual temperatures during the laboratory experiment. For each target 
temperature, tank temperatures were recorded every 5 minutes over 8 days (mean ± SD°C). # 
indicates where the SD was less than 0.05°C. °C above the maximum monthly mean (MMM) at 
Orpheus island (29.1+1.0°C) indicates the thermal anomaly above long-term summer 
temperatures which was used to calculate the accumulated degree heating weeks (DHW) as the 
product of the thermal exposure and the thermal duration (°C-weeks). 

Time 
point 

Target 
temperature 

Heated 
(n=6) 

Control 
(n=3) 

°C above  
MMM+1 

Accumulated 
DHW 

17 23.0 23.5 ± 0.1 23.4 ± 0.2 0 0 

43 25.0 25.2 ± 0.1 23.1 ± 0.1# 0 0 

56 27.0 27.0 ± 0.1 23.3 ± 0.1 0 0 

71 29.0 29.0 ± 0.2 23.0 ± 0.2 0 0 

84 30.0 30.0 ± 0.1 23.1 ± 0.1 0 0 

96 31.0 30.9 ± 0.1# 23.2 ± 0.1 0.8 1.3 

108 32.0 32.0 ± 0.1 23.1 ± 0.2 1.9 4.4 

144 *30.0 30.1 ± 0.1 23.1 ± 0.3 0 4.4 

 

To evaluate the potential for C. orientalis to recover from bleaching, cores exposed to 

32°C were returned to 30°C (by 0.25°C per day) and monitored for a further 28 days. Hereafter, 

‘*30°C’ is used to distinguish the recovery period at 30°C from the incremental increase to 30°C. 

To compare the thermal exposure in the laboratory to exposure under natural conditions, degree 

heating weeks (DHW) of thermal exposure were calculated for each temperature target above the 

29.1+1.0°C bleaching threshold for Orpheus Island. DHW was calculated as the product of the °C 

above 30.1°C and the duration of temperature ramping (2-4 days) and exposure to the target 

temperature (10 days). 30°C was chosen as the recovery temperature as it is below the bleaching 

threshold and represents a typical summer temperature at the collection site. 

For each temperature increment, photosynthetic measurements were taken on two days 

near the completion of each temperature exposure. Photochemical efficiency of all cores was 

measured at least twice during exposure to each increment, after one and eight days of exposure, 
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but photochemical efficiency was measured more frequently for the 23°C, 25°C, 31°C, and 32°C 

temperature increments. For other photosynthetic parameters and tissue contents, 2-3 cores were 

selected from each tank at each temperature increment, resulting in ~6 and ~12 samples for the 

control and heated treatments, respectively. Oxygen flux and sponge surface area were measured 

after nine days at each temperature increment (due to the time required to measure oxygen flux) 

except for *30°C, where measurements were taken after 28 days. After 10 days acclimation to each 

temperature increment (28 days at *30°C), sponges were frozen in liquid nitrogen for DNA 

extraction and measurement of tissue contents. 

 Photosynthesis and respiration 

Photochemical efficiency is an indicator of electron transport during photosynthesis 

(Baker 2008). For Symbiodinium, decreases in photochemical efficiency can precede bleaching 

and coincide with damage to photosystems (Warner et al. 2010). The photochemical efficiency of 

photosystem II was measured using a mini-PAM fluorometer (Walz, Effeltrich, Germany) using 

standard settings (MI=8; SI=6; SW=0.6; G=2; D=2). Clear tubing was used to maintain a constant 

distance between the PAM fibre optic cable and the sponge. Photochemical efficiency was 

measured at two timepoints: before the lights turned on (Fv/Fm; maximum efficiency) and after 

two hours of constant light exposure (∆F/Fm’; effective efficiency). Changes in these variables 

over the course of each temperature increment reflect the severity of the stress on the 

Symbiodinium. 

Oxygen flux is an integrative measure of respiration by the sponge (and symbionts) and 

photosynthesis by the Symbiodinium (Osinga et al. 2012). For sponges, stress can manifest in 

altered respiration, decreased photosynthesis, or a reduced ratio of photosynthesis to respiration 



3. Defining thermal tolerance 

30 

(Fang et al. 2014, Bennett et al. 2016, Achlatis et al. 2017). Oxygen flux was measured using an 

optical dissolved oxygen meter (Hach HQ30d; Hach, Colorado, USA). Sponge cores were sealed 

in a darkened chamber (500 mL) for one hour. Water within each chamber was mixed with a 

magnetic stir bar and the target temperature was maintained using an external water jacket. 

Respiration rates were calculated by the difference in oxygen concentration between the 

beginning and end of the incubations. After measurement of respiration, sponges were returned 

to the aquaria for one hour at 300 µmol quanta m-2 s-1 then sealed in a chamber at 400 µmol 

quanta m-2 s-1 to measure oxygen production. The photosynthetic rate was calculated using the 

change in oxygen concentration in the chamber over 40 minutes. Both respiration and 

photosynthetic rates were adjusted by the amount of oxygen flux in a chamber without a sponge 

core to account for oxygen flux by microorganisms in the water. The surface area of the selected 

cores was measured using the aluminium foil method (Marsh 1970), sponge tissue was removed 

(top 1 cm), the cores were frozen in liquid nitrogen and stored at -80°C. 

 Sponge condition (Symbiodinium, chlorophyll, protein, organic content) 

Invertebrates that harbour Symbiodinium can bleach by losing symbionts or their 

photosynthetic pigments (Fitt et al. 2001). Symbiodinium cells were extracted by incubating 

sponge tissue in 1M NaOH at 37°C for 1 h (Zamoum & Furla 2012). Cells were counted using 4 

replicate counts of 0.45 cm2 on a hemocytometer and standardised to the wet weight of sponge 

tissue. To quantify the photosynthetic pigments within C. orientalis tissues, chlorophylls were 

extracted in two consecutive extractions of 1 mL of ethanol (95%) to ensure complete extraction 

of pigments. During each extraction, the tissue was homogenized for 3 min in a bead beater, 

centrifuged for 5 min (10,000 g), after which the two extracts were pooled. Absorbance of the 

extract was measured at 630, 647, 664, and 750 nm using a Power Wave Microplate Scanning 
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Spectrophotometer (BIO-TEK Instruments Inc., Vermont, USA). The concentrations of 

chlorophylls a, b, and c were estimated using the equations of Ritchie (2008) and standardised to 

sponge wet weight. 

Protein content and tissue organic matter were measured as proxies for sponge condition 

as these parameters have been shown to decline in bleached corals (Fitt et al. 1993). Frozen 

sponges were weighed (wet weight), lyophilized, and weighed again (dry weight). Proteins were 

extracted from homogenized dried sponge in 2 mL of 0.125 M NaOH over 24 h at room 

temperature. Protein concentration was estimated using the Red660 Protein Assay with five 

concentrations of BSA protein standard and then standardised to the dry weight of the sponge 

tissue. Organic matter was measured using lyopholized sponge tissue (see Protein content). Dried 

sponge was combusted at 450°C for 16 h. Organic matter was estimated as the difference between 

the dry weight and the ash weight and standardised to the dry weight of the sponge. 

 Symbiodinium identity 

To determine whether the sponges switched Symbiodinium types during temperature 

stress, we identified the Symbiodinium associated with cores from 9 of the original sponge 

fragments as temperatures increased. In total, 35 cores were analysed including cores from the 

same genotype in each temperature increment. DNA was extracted from frozen sponge tissue 

(~0.2 g) using the Powerplant Pro DNA Isolation Kit (Mo Bio), including the beadbeating, 

RNAse, and proteinase K procedures as per the manufacturer’s instructions. DNA extracts were 

sent to the Australian Centre for Ecogenomics at the University of Queensland, Australia for 

sequencing. The ITS2 region of ribosomal rDNA was amplified using Symbiodinium-specific 

ITS2 primers (Pochon et al. 2001) and sequenced using Illumina MiSeq 250 bp chemistry. 
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Sequences were analysed in Mothur v.1.38.0 (Schloss et al. 2009). Paired reads were 

combined and screened for quality and chimeric sequences were identified using Uchime in 

Mothur. The remaining sequences were clustered into 97% similar operational taxonomic units 

(OTU). The dataset was reduced to 2000 sequences per sample and the relative abundance and 

prevalence were calculated for each OTU. Representative sequences were defined using the 

sequence with the smallest distance to all other sequences within the OTU. Sequences were 

compared against a curated database of ITS2 sequences including all clades of Symbiodinium 

using the BLAST algorithm (Arif et al. 2014). Blast results with bit scores less than 100 were 

discarded. 

3.3.2. Bleaching surveys 

Field surveys were conducted to assess the thermal tolerance of C. orientalis during a 

natural thermal bleaching event, and to contrast bleaching responses between C. orientalis and 

corals. In March 2017, video transects were filmed at six sites within the Palm Islands Group, 

three of which were at Orpheus Island where the experimental samples were collected. Survey 

sites were chosen as replicate exposed and protected locations, as well as to span the depth 

gradient over which Acropora cover is relatively high at Orpheus Island. At each site, two 

transects (50 m long and parallel to shore) were filmed at 0-4 m below the lowest astronomical 

tide. Cliona orientalis sponges and scleractinian coral colonies were manually counted along each 

video transect. Coral colonies were categorized as either branching or massive and we used a 

simple ‘bleached’ or ‘unbleached’ categorisation due to the absence of a reliable colour reference 

in the videos. White individuals, as well as individuals with fluorescent discolouration (e.g., blue 

or pink Acropora spp.) were considered bleached.  
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To compare the thermal exposure during the natural bleaching event to the laboratory 

experiment, daily mean and maximum temperatures at Orpheus Island (5.8 m depth) were 

downloaded from the Australian Institute of Marine Science (http://weather.aims.gov.au). 

3.3.3. Statistical analysis  

Photosynthesis and sponge condition data were analysed using linear mixed models with 

treatment, time point, and treatment * time point interaction as well as a random intercept to 

account for between-sponge differences using the R packages lme4 (Bates et al. 2015), lmerTest 

(Kuznetsova et al. 2016), and multcomp (Hothorn et al. 2008). Only the final photochemical 

efficiency was analysed statistically. Symbiodinium density was analysed with an additional 

random intercept to account for correlations between samples from the same aquarium. Boxplots 

and residual plots were used to assess whether the data met the assumptions of linear models. 

Samples with large deviations from fitted values (>1.5*interquartile range) were removed from 

the analysis. Some response variables were transformed using log (respiration, chl a:c, protein, 

organic matter) or odds ratios (Fv/Fm, ∆F/Fm’) to meet these assumptions. Planned contrasts 

were used to test whether heated sponges differed from control sponges at each time point, as 

well as whether changes occurred after the reduction in temperature following exposure to 32°C. 

Results from the planned contrasts are reported with z statistics and P values. P values were 

corrected using a single-step correction for multiple comparisons. 

For each benthic category in the bleaching surveys, individuals were pooled between 

replicate transects at each site. The proportion of bleached individuals was calculated out of the 

total number of individuals encountered at each site. For each category of taxa, the proportion of 

bleached individuals was calculated using proportion of bleached individuals relative to the total 
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number of colonies and then weighted according to the number of individuals at each site. 

 

Figure 3-1. (A) Sponge sampling and temperature treatments. Healthy and bleached Cliona 
orientalis cores. (B) A time-series of two cores from the control and heated treatments, 
respectively. Cores in the heated treatment visibly bleached at 32°C and had not recovered four 
weeks later at *30°C. (C) The top surface and pinacoderm of a bleached core at the end of the 
experiment. The pinacoderm of bleached cores (interior) remained healthy despite the absence of 
Symbiodinium for four weeks. 

3.4. Results 

3.4.1. Response to laboratory thermal exposure 

 Bleaching and Symbiodinium identity 

Cliona orientalis survived temperatures up to 31°C with no visual signs of bleaching and 

little evidence of compromised health, such as discolouration or tissue regression (Figure 3-1B). 
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However, at 32°C, more than 50% of the cores became visibly bleached within three to five days 

and this increased to 70% bleached after 8 days (Figure 3-1B). The condition of some cores also 

visibly deteriorated in the four weeks following bleaching, including the presence of algae at the 

margin of the cores (Figure 3-1C). The narrow bleaching threshold of 32°C identified for C. 

orientalis is 2.9°C above the maximum monthly mean at Orpheus Island. A low level of mortality 

occurred in both temperature treatments but was constrained to cores from a few specific sponge 

genotypes. 

Only a single Symbiodinium ITS2 type was associated with C. orientalis, regardless of 

temperature treatment or bleaching state. ITS2 sequences clustered into 61 OTUs at 97% 

sequence similarity, but only 21 of these matched the Symbiodinium database, and only 9 were 

confidently matched with bitscores greater than 100. Of the nine Symbiodinium OTUs, one OTU 

comprised 96% of the Symbiodinium sequences and was the most abundant OTU in every sponge 

core. The ITS2 sequence of the dominant OTU was identical to Symbiodinium clade G previously 

sequenced from C. orientalis (Genbank accession JQ247051) and which was recently described as 

Symbiodinium endoclionum (Ramsby, Hill, et al. 2017). One other OTU occurred in 97% of the 

cores and was also most similar to Symbiodinium clade G from C. orientalis, differing from the 

dominant ITS2 sequence by one insertion of eight nucleotide substitutions. The remaining 

Symbiodinium OTUs were most similar to Symbiodinium clades A, B, or C, however these OTUs 

comprised <1% of total sequences and occurred in <20% of the samples. 

 Photosynthesis and respiration 

Temperature effects were interpreted as significant temperature*treatment interactions 

which indicate the temperatures at which heated sponge cores responded differently than control 
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cores (Table 3-3). Photosynthesis was largely unaffected by temperatures up to and including 

31°C, but became inhibited at 32°C. Sponges at 27 and 29°C had higher effective (∆F/Fm’), but 

not maximum (Fv/Fm), photochemical efficiency than sponges maintained at 23°C (Figure 3-2; 

eff. 27°C: z=-4.5, p<0.01; eff. 29°C: z=-3.2, p=0.01). At 29 - 31°C, sponges had significantly lower 

maximum photochemical efficiencies than control sponges (p<0.01), but the differences were 

small, and C. orientalis maintained 93% of maximum photochemical efficiency of control sponges 

at 31°C. However, at 32°C, maximum and effective photochemical efficiencies were 52% and 50% 

of control sponges, respectively (Table 3-4). As with photochemical efficiency, the photosynthetic 

rate (gross oxygen production) did not differ from controls at temperatures up to and including 

31°C (Figure 3-3A; p>0.86) but was 43% lower than controls in sponges exposed to 32°C (Table 

3-4). 

In contrast to photosynthesis, the effect of thermal exposure on sponge respiration was 

greatest at 29°C, where heated sponges had 47% higher respiration rates than control sponges 

(Figure 3-3B; z=-3.4, p<0.01). At temperatures close to 29°C (27, 30, and 31°C), respiration was 

28-35% higher than controls, but these differences were not significant (0.09<p<0.29). For 

sponges at 32°C, respiration rates were similar to control sponges (Table 3-4). The ratio of gross 

photosynthesis to respiration (P/R) was affected at a similar temperature as the respiration rates 

(Figure 3-3C). Sponges at 29, 30, and 31°C had 79% of the sponge P/R of control sponges, 

coinciding with faster respiration rates (Figure 3-3B), but the difference was only statistically 

significant at 30°C (z=3.1, p=0.01). Sponges at 32°C had 37% of the P/R of control sponges (Table 

3-4), indicating a loss of productivity of the symbiosis.
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Table 3-3. Statistical results of the laboratory experiment. Parameters tested include maximum photochemical efficiency (Fv/Fm), and 
effective photochemical efficiency (∆F/Fm’), photosynthetic rate (P), respiration rate (R), the ratio P:R, Symbiodinium density (Symb.), 
chlorophyll a and c density (chl), protein content, and ash-free dry weight (AFDW). Units for each measure are provided in Figs 3-4. 
Data were analysed using a linear mixed model with four components: temperature treatment, temperature, treatment:temperature 
interaction, and a random intercept for the C. orientalis sponge. Symbiodinium density was analysed with an additional random 
intercept for each aquarium. Parameters that were significantly affected by the temperature exposure have a significant 
treatment:temperature interaction term. The table includes the transformation used (Trans.), whether any outlying observations were 
removed, and statistical estimates: sums of squares (SS), mean square (MS), denominator degrees of freedom (D. df), F ratio (F), and P 
value (p). 

   Treatment (num. df=1) Temperature (num. df=7) Treatment : Temperature (num. df=7) 
 Trans. Out. 

rem. SS MS D.df F p SS MS D. df F p SS MS D. df F p 

Photosynthesis                 
Fv/Fm p/(1-p) N 18.9 18.9 686.1 676.4 <0.01 35.5 5.1 679.0 181.9 <0.01 25.1 3.6 677.9 128.5 <0.01 

∆F/Fm’ p/(1-p) N 0.7 0.7 9.8 106.2 <0.01 23.1 3.3 674.0 106.2 <0.01 11.3 1.6 672.5 52.0 <0.01 

Gross P - N <0.1 <0.1 121.4 4.0 <0.01 0.3 <0.1 24.1 128.3 <0.01 <0.1 <0.1 7.6 124.7 <0.01 

R - Y <0.1 <0.1 121.0 18.9 <0.01 <0.1 <0.1 128.8 14.9 <0.01 <0.1 <0.1 125.0 3.0 0.01 

Gross P:R - Y 14.3 14.3 119.9 41.3 <0.01 25.3 3.6 10.5 126.2 <0.01 12.9 1.8 5.3 122.8 <0.01 

Sponge condition                 
Symb. - N 18944 18944 125.2 8.5 <0.01 173824 24823 129.7 11.1 <0.01 89443 12778 127.4 5.7 <0.01 

Chl a - N 25624 25624 123.2 19.6 <0.01 121098 17300 13.2 128.4 

 

<0.01 94888 13556 10.4 13556 <0.01 

Chl c - N 990 990 123.1 20.3 <0.01 7072 1010 20.8 128.1 <0.01 4372 624.6 12.8 125.2 <0.01 

Chl a:c Log Y <0.1 <0.1 123.3 0.4 0.52 0.8 0.1 5.3 128.6 <0.01 0.1 <0.1 0.8 126.1 0.59 

Protein Log N 0.8 0.8 120.5 10.4 <0.01 4.0 0.6 7.9 130.2 <0.01 2.3 0.3 4.6 124.8 <0.01 

AFDW Log Y 0.3 0.3 122.1 14.3 <0.01 0.7 0.1 5.8 129.2 <0.01 0.7 0.1 5.5 125.0 <0.01 
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Table 3-4. Results of post-hoc comparisons. To compare the sensitivity of different parameters, 
the table includes the lowest temperature increment with a significant difference between heated 
and control sponges. While post-hoc tests were used to test for differences after each temperature 
increase, detailed results are presented from 3 post-hoc tests that indicate 1) whether cores heated 
to 32°C differed from control cores, 2) whether cores heated to 32°C differed from cores returned 
to *30°C (i.e., recovery), and 3) whether cores reduced to *30°C differed from controls (i.e., 
recovery). For each test, the table indicates the direction of the difference between groups, the z 
value, and p value. p values were corrected for multiple comparisons using a single-step 
correction. - indicates where there was no difference between treatments. Parameter 
abbreviations are listed with Table 3. 

  Exposure  Recovery 
   32°C: Heated vs Ctrl.  Heated: *30 vs 32°C *30°C: Heated vs Ctrl. 

 
 Min. 

sig. 
temp 

 
z p 

  
z p 

 
z p 

Photosynthesis             
Fv/Fm  29 C>32 27.8 <0.01  *30>32 11.3 <0.01 C>H 14.2 <0.01 

∆F/Fm’  32 C>32 15.8 <0.01  *30>32 12.2 <0.01 C>H 5.4 <0.01 

Gross P  32 C>32 7.8 <0.01  *30>32 -5.6 <0.01 C>H 3.7 <0.01 

R  - - -0.8 0.99  *30>32 -4.8 <0.01 - 1.2 0.89 

Gross P:R  30 C>32 6.1 <0.01  *30>32 5.8 <0.01 C>H 3.2 <0.01 

Sponge condition          
Symb.  32 C>32 4.3 <0.01  - 1.9 0.42 C>H 5.3 <0.01 

Chl a  32 C>32 3.7 <0.01  32>*30 12.8 0.33 C>H 8.6 <0.01 

Chl c  32 C>32 3.9 <0.01  32>*30 3.33 <0.01 C>H 9.5 0.01 

Chl a:c  - - - -  - - - - - - 

Protein  32 C>32 3.0 0.03  32>*30 3.2 0.01 C>H 4.8 <0.01 

AFDW  32 C>32 2.8 0.05  32>*30 4.3 <0.01 C>H 6.6 <0.01 
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Figure 3-2. Photochemical efficiency of Symbiodinium within C. orientalis. Effective (A) and 
maximum (B) photochemical efficiencies are shown for control cores measured at 23°C (grey 
open circles and lines) and heated cores at elevated temperature (black triangles and lines). Panels 
separate the temperature of the heated treatment. Points represent means and error bars indicate 
one s.d.. 
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Figure 3-3. Oxygen flux rates for net photosynthesis (A), respiration (B), and the ratio of gross 
photosynthesis to respiration (C) for C. orientalis between 23 and 32°C. Control cores (grey open 
circles and lines) were all measured at 23°C, while heated cores (triangles and lines) were sampled 
at the temperature indicated in the legend. The shading of the heated treatment intensifies as the 
temperature increases. *30 indicates samples that were exposed to 32°C and then returned to 
30°C for four weeks following bleaching. Points represent means and error bars indicate one 
standard error. Asterisks indicate temperature increments where sponges in control and heated 
treatments had significantly different responses. 
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 Sponge condition 

Temperatures less than 32°C did not significantly affect the condition of C. orientalis and 

the density of Symbiodinium, chlorophylls a and c2, protein, and organic matter were similar to 

control sponges (Figure 3-4; p>0.20). At 32°C, the bleached sponges contained 25% of the 

Symbiodinium, 35% of chlorophyll a, and 42% of chlorophyll c2 of the control sponges (Table 3-

4). Moreover, sponges at 32°C contained 83% of the organic matter and 66% of the protein found 

in control sponges (Table 3-4), signifying reduced condition of the sponge. Notably, control 

sponges did not exhibit reductions in Symbiodinium, chlorophylls, protein, or organic matter 

over the course of the experiment, suggesting that the sponges had adequate nutrition even 

though they were not fed (Figure 3-4). 

While the a:c2 ratio decreased over the course of the experiment (Table 3-4, Temperature), 

it was not strongly affected by temperature, as heated sponges were 91-107% that of control 

sponges throughout the experiment and differences between treatments were not significant 

(Table 3-4, Treatment:Temperature).  
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Figure 3-4. Tissue contents of Symbiodinium (A), chlorophyll a (B), ash-free dry weight (C; 
AFDW), and protein content (D) for C. orientalis between 23 and 32°C. Controls (grey open 
circles and lines) were all sampled at 23°C while heated cores (triangles) were sampled at the 
temperature indicated in the legend. *30 indicates samples that were exposed to 32°C, bleached, 
and were returned to 30°C for four weeks. Points represent means and error bars indicate 
standard error. Asterisks indicate temperature increments where cores in control and heated 
treatments had significantly different responses. 
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the sponges had not recovered from their bleached state, indicating prolonged holobiont 

disruption (Figure 3-4). 

 Photosynthesis and respiration  

C. orientalis recovered some photosynthetic capacity when returned to *30°C, with 

photochemical efficiencies, photosynthetic rates, and P/R being higher than when sponges were 

at 32°C (Figure 3-3, Table 3-4). However, this response was likely due to other photosynthetic 

colonisers as Symbiodinium densities remained low in sponges at *30°C (Figure 3-3). Regardless, 

recovery of photosynthesis was incomplete, as photochemical efficiencies, photosynthetic rates, 

and P/R remained lower than control sponges (Figure 3-3, Table 3-4). The respiration rates of 

sponges returned to *30°C were higher than the sponges at 32°C, but not significantly different 

from controls (Figure 3-3, Table 3-4). 

 Sponge condition 

Tissue contents indicated that the condition of the 32°C sponges continued to deteriorate 

after they were returned to *30°C (Figure 3-4, Table 3-4). Chlorophyll content, organic matter, 

and protein content were lower in sponges at *30°C than at 32°C, but Symbiodinium density was 

not significantly different (Table 3-4). In addition, all measured tissue contents remained lower in 

sponges returned to *30°C than control sponges (Figure 3-4, Table 3-4).  

3.4.3. Field bleaching surveys 

A total of 133 C. orientalis sponges, 1891 branching corals, and 1068 massive corals were 

counted among the six survey sites. No bleached C. orientalis sponges were observed in any of the 

video transects. In contrast, 83% (±6.0 SD) of branched coral colonies and 51% (±3.2 SD) of 

massive coral colonies were bleached (Figure 3-5B). 
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Figure 3-5. The temperature (A) and bleaching severity (B) during a natural bleaching event in 
the Palm Islands, Great Barrier Reef, Australia in February-March 2017. The daily mean (solid 
black line) and maximum (dotted line) temperature for the twelve weeks preceding the surveys 
are shown. The horizontal grey line indicated the local coral bleaching threshold (30.1°C) and the 
vertical grey bar denotes the survey period. 
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Temperatures did not reach 32°C during the 2017 bleaching event at Orpheus Island 

(Figure 3-5A). During the two weeks preceding the surveys, daily mean temperatures averaged 

29.8°C at 5.8 m depth (Source: Australian Institute of Marine Science; http://data.aims.gov.au) 

and, during the 12 weeks preceding the surveys, the cumulative thermal exposure summed to 1 

degree heating week (weeks above 30.1°C). In comparison, the laboratory experiment indicated 

that C. orientalis bleached at 32°C after accumulating 2.5 degree heating weeks (3 days at 32°C; 

Table 3-1). 

3.5. Discussion 

Bioeroding sponges are generally thought to be tolerant of environmental stressors, 

including elevated temperature, ocean acidification, and eutrophication, raising concerns about 

increased reef erosion under future projected climate scenarios (Wulff 2016, Schönberg, Fang, 

Carreiro-Silva, et al. 2017). Here, we show that incremental increases in ocean temperature up to 

30°C have negligible effects on C. orientalis, but C. orientalis bleaches when exposed to 32°C, and 

exhibits little potential for recovery. At the collection site, 32°C represents an increase of 3°C 

above the maximum monthly mean temperature and corresponds to the increase expected under 

very high greenhouse gas emissions by 2100, but could represent the mean temperature as soon as 

2078 (RCP 8.5) (IPCC 2014), suggesting that C. orientalis could bleach regularly by the end of this 

century. The results of this study do not support the hypothesis that bioeroding sponges 

(particularly those species with photosynthetic symbionts) will play a larger role in structuring 

future reefs. 

Temperature exposure in the laboratory revealed a narrow thermal threshold for C. 

orientalis, with sponges appearing visibly healthy after 10 days at 31°C, but bleaching after only 3 
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days at 32°C. This narrow threshold is similar to several sympatric coral species that bleached 

following 1°C temperature increases between 31 and 33°C (Berkelmans & Willis 1999). In 

thermally sensitive corals, bleaching coincides with reduced condition and growth (McClanahan 

et al. 2008) and C. orientalis exhibited similar negative responses, including a 75% reduction in 

Symbiodinium density, 17% reduction in organic matter and 44% reduction in protein content of 

C. orientalis. Few bleached cores exhibited necrosis which had been previously reported in C. 

orientalis from Orpheus Island after exposure to only 2°C above MMM. The discrepancy between 

studies likely results from the faster temperature increases or acute exposures (3-72 h) used in 

previous research (Schönberg et al. 2008, Wisshak et al. 2013). The thermal threshold identified 

here is consistent with findings for C. orientalis in the southern GBR, which tolerates exposure to 

+2.0°C above MMM (27.3 °C)(MMM = 27.3 °C; Fang et al. 2013), but bleaches at +2.7°C 

(Achlatis et al. 2017), and dies at +3.5°C (Fang et al. 2013). Taken together, these experimental 

and field results suggest that C. orientalis can tolerate current ocean temperatures, but will have 

little capacity to cope with the warmer oceans projected for 2100. 

The primary cause of coral bleaching is exposure to extreme ocean temperature, although 

longer exposure to moderate increases in temperature can also induce bleaching (Berkelmans 

2002, Baker et al. 2008). Cumulative thermal exposure is a product of the amount and the 

duration of stress, which is incorporated into the degree heating weeks (DHW) index, which can 

be used to accurately predict bleaching (Hughes, Kerry, et al. 2017). In the laboratory, C. 

orientalis bleached in the laboratory after 2.5 degree heating weeks (DHW), similar to corals that 

bleach after 2 DHW under natural conditions (Hughes, Kerry, et al. 2017). Consistent with our 

field observations at Orpheus Island, there are few reports of C. orientalis bleaching under natural 

conditions. In most cases, other Cliona species (C. aprica, C. caribbaea, C. varians, and C. 
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vermifera) have tolerated periods of elevated temperature better than neighbouring corals (Cortés 

et al. 1984, Vicente 1990, Carballo et al. 2013), including exposures exceeding 31°C (Carballo et 

al. 2013) and even 33°C (Vicente 1990). In our surveys, C. orientalis did not bleach although 

temperatures did not exceed 31°C, which is below the 32°C thermal threshold identified during 

our experiment. A 32°C threshold is consistent with other Cliona-Symbiodinium symbioses, as C. 

varians was recently reported to bleach when mean temperatures exceeded 31°C for 10 days (Hill 

et al. 2016). The combination of a 32°C laboratory bleaching threshold with the lack of bleaching 

during the 2017 coral bleaching event suggests that current summer temperatures could lead to 

faster local erosion rates in the near future. 

Coral bleaching is often preceded by disruption of Symbiodinium photosynthesis (Warner 

et al. 1999, Smith et al. 2005) which leads to the production of toxic oxygen radicals, which must 

be neutralized to prevent damage to lipids, proteins and DNA (Baird et al. 2009). The 

mechanisms of bleaching in sponges may be similar, however, if damage to the photosystems was 

responsible for triggering bleaching in C. orientalis, the response must have been very rapid: 

when C. orientalis bleached, Symbiodinium still retained ~66% of Fv/Fm which had only declined 

for 3 days. After eight days of exposure to 32°C, the photosynthetic capacity of the symbiosis was 

diminished, coinciding with a loss of Symbiodinium and chlorophyll. Similar effects have 

previously been observed in bleached C. orientalis (but see Fang et al. 2013, Achlatis et al. 2017) 

and scleractinian corals, where a loss of Symbiodinium coincides with a loss of lipids, proteins, 

and organic matter (Fitt et al. 1993, Rodrigues & Grottoli 2007). In addition, bleaching can 

disrupt the bacterial symbioses in C. orientalis (B. Ramsby et al. Mol Ecol in press) and 

scleractinian corals (Bourne et al. 2016). 
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Prior to C. orientalis bleaching, there was some evidence that respiration rates increased 

(29-31°C) and that energy reserves were reduced (31°C), suggesting that the sponges expend 

resources to maintain their symbiosis at sub-bleaching temperatures. Respiration in C. orientalis 

was fastest at intermediate temperatures, likely contributing to the significant decline in the 

productivity of the symbiosis. Nevertheless, bleached C. orientalis had similar respiration rates to 

control sponges despite their reduced condition (Achlatis et al. 2017). The absence of an effect of 

bleaching (i.e., absence of Symbiodinium) on respiration rates highlights the need to separate 

measurement host and Symbiodinium respiration (Hawkins et al. 2016). Based on their low 

biomass relative to the biomass of the sponge tissue, it is likely that Symbiodinium makes a minor 

contribution to overall respiration, and other factors such as pumping or feeding rates may 

dictate energetic demand and respiration in thermally stressed sponges (Riisgård et al. 1993). 

The ability to persist in warming oceans will depend upon recovery of symbionts and 

energy reserves, before exposure to any subsequent bleaching-inducing temperatures (Rodrigues 

& Grottoli 2007). After C. orientalis bleached at 32°C, the sponges did not recover during four 

weeks at *30°C, with no recovery of the symbiosis or sponge condition. The only parameter that 

changed during recovery was photosynthesis, where the rates of oxygen production and 

photochemical efficiency were higher in sponges returned to *30°C than in sponges at 32°C. 

However, based on visual observations and the lack of recovery of Symbiodinium, relatively high 

photochemical efficiency was likely due to fouling by photosynthetic epibionts rather than a re-

establishment of the Symbiodinium population. In corals, recovery can take between 1.5 and 10 

months and some species do not recover within 12 months (Szmant & Gassman 1990, Fitt et al. 

1993, Grottoli et al. 2006, Rodrigues & Grottoli 2007, Grottoli et al. 2014). Our experiment 

indicated that C. orientalis did not recover Symbiodinium under aquarium conditions, but the 
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availability of Symbiodinium may have limited recovery. In other laboratory studies, C. orientalis 

have recovered Symbiodinium following irradiance-induced bleaching (Riesgo et al. 2014, Pineda 

et al. 2016), but further study is necessary to determine whether C. orientalis can regain 

symbionts following thermal bleaching under natural conditions. Observations in the Florida 

Keys, USA indicate that C. varians can recover from thermal bleaching (M. Hill pers. comm.), 

although some Symbiodinium likely remained within the sponge (Hill et al. 2016). 

Association with tolerant Symbiodinium, especially multiple types of Symbiodinium, can 

aid recovery from coral bleaching (Bay et al. 2016). Here, all C. orientalis cores harboured the 

same symbiont, S. endoclionum (Ramsby, Hill, et al. 2017), and exhibited little flexibility in their 

symbiotic association before or after bleaching. This may make C. orientalis more vulnerable to 

warming than reef taxa that can associate with multiple Symbiodinium clades (Berkelmans & van 

Oppen 2006, Abrego et al. 2008), as C. orientalis harbours S. endoclionum over a large geographic 

range (Ramsby, Hill, et al. 2017). Little is known about the genetic diversity or physiology of clade 

G Symbiodinium, which have only have been found in bioeroding sponges (Schönberg & Loh 

2005, Granados et al. 2008, Hill et al. 2011), foraminifera (Pochon et al. 2006), and one octocoral 

species (Bo et al. 2011). A physiological comparison of Clade G to other Symbiodinium has 

suggested that the Clade G from C. orientalis are more thermally tolerant than the clade C or D 

inhabiting scleractinian corals (Schönberg et al. 2008). However, here we have refined the thermal 

threshold, showing that while the clade G symbiont in C. orientalis can tolerate current summer 

temperatures (<32°C), photosynthesis is impaired at predicted future temperatures (≥32°C). 

Recent mass coral bleaching events are a clear indication that ocean warming is a primary 

threat to reef corals (Hughes, Kerry, et al. 2017) and accelerated bioerosion by Clionaid sponges 
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under ocean acidification would further compound the adverse outcomes of climate change. 

However, here we show that while the symbiosis between C. orientalis and its associated 

Symbiodinium tolerates current maximum sea surface temperatures, the partnership breaks down 

as sea surface temperatures reach 32°C. A relatively high tolerance of present day temperature 

extremes may benefit C. orientalis via coral mortality and increased substratum availability in the 

short term (Schönberg & Ortiz 2008, Chaves-Fonnegra et al. 2018), however bioeroding sponges 

with Symbiodinium will be severely affected by ocean temperatures expected by 2100. 
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Chapter 4. Elevated seawater temperature disrupts the 
microbiome of Cliona orientalis  

4.1. Abstract 

Bioeroding sponges break down calcium carbonate substratum, including coral skeleton, 

and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. 

However, elevated temperature can disrupt the functionally important microbial symbionts of 

some sponge species, often with adverse consequences for host health. Here, we provide the first 

detailed description of the microbial community of the bioeroding sponge Cliona orientalis and 

assess how the community responds to seawater temperatures incrementally increasing from 

23°C to 32°C. The microbiome, identified using 16S rRNA gene sequencing, was dominated by 

Alphaproteobacteria, including a single operational taxonomic unit (OTU; Rhodothalassium sp.) 

that represented 21% of all sequences. The “core” microbial community (taxa present in >80% of 

samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic 

nitrogen metabolism may be a key function of the C. orientalis holobiont. The C. orientalis 

microbiome was generally stable at temperatures up to 27°C; however, a community shift 

occurred at 29°C, including changes in the relative abundance and turnover of microbial OTUs. 

Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that 

induced sponge bleaching, indicating that changes in the microbiome may play a role in the 

destabilization of the C. orientalis holobiont. C. orientalis failed to regain Symbiodinium or 

restore its baseline microbial community following bleaching, suggesting that the sponge has 

limited ability to recover from extreme thermal exposure, at least under aquarium conditions.  

4.2. Introduction 
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Corals and sponges harbour abundant and diverse communities of microbial symbionts 

(Bourne & Webster 2013), often hosting thousands of distinct operational taxonomic units 

(OTUs) that span a broad range of bacterial and archaeal phyla (Blackall et al. 2015, Thomas et al. 

2016, Bourne et al. 2016). These microorganisms perform a range of functions that benefit their 

hosts, including photosynthesis (Venn et al. 2008) and nutrient cycling (carbon, nitrogen, sulphur 

and phosphate) (Webster & Thomas 2016, reviewed in Bourne et al. 2016). Many corals and some 

sponge species also form obligate symbiotic partnerships with Symbiodinium, a dinoflagellate 

which provides the host with essential photosynthates (Yellowlees et al. 2008). Symbiodinium also 

produces dimethylsulfoniopropionate, which can provide energy for other coral-associated 

microbes (Bourne et al. 2016). The loss of Symbiodinium during stress-induced bleaching reduces 

coral fitness (Szmant & Gassman 1990, Baird & Marshall 2002), and in the same way, shifts in 

prokaryotic symbionts are often associated with compromised coral or sponge health (Webster et 

al. 2008, Fan et al. 2013, Bay et al. 2016, Bourne et al. 2016). 

The bacterial communities of corals and sponges tend to be dominated by Proteobacteria, 

typically the classes Gammaproteobacteria and/or Alphaproteobacteria, although Actinobacteria 

and Cyanobacteria are also commonly reported symbionts (Blackall et al. 2015, Thomas et al. 

2016). While corals can harbour abundant Bacteroidetes and Deltaproteobacteria (Blackall et al. 

2015), sponge microbiomes often contain larger proportions of Acidobacteria, Chloroflexi, and 

Poribacteria than corals (Webster et al. 2012, Schmitt et al. 2012, Thomas et al. 2016). Some of 

this disparity in microbiome composition has been explained by the presence of Symbiodinium, 

whereby reef invertebrates hosting Symbiodinium tend to be dominated by Gammaproteobacteria 

and invertebrates without Symbiodinium have more abundant Alphaproteobacteria (Bourne et al. 

2013).  
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While Symbiodinium is the primary photosymbiont of many reef-building corals, most 

phototrophic sponge species form symbiotic partnerships with Cyanobacteria (Simister, Deines, 

et al. 2012). The bioeroding sponge family Clionaidae is a notable exception, with Symbiodinium 

reported to associate with at least 13 different Clionaid species (Rosell 1993, Zundelevich et al. 

2007, Granados et al. 2008, Hill et al. 2011, Friday et al. 2013), where they enhance the growth and 

erosion capacity of the sponge host (Hill 1996, Schönberg 2006). Clionaid sponges are important 

members of reef communities, as they break down calcium carbonate substratum, including coral 

skeleton (Rützler 2002). Bioeroding sponges associate almost exclusively with Clade G 

Symbiodinium (Schönberg & Loh 2005, but see Granados et al. 2008, Hill et al. 2011), which is 

only common within the Porifera and Foraminifera (Pochon et al. 2006), and is understudied 

relative to clades commonly found in corals (A-D) (LaJeunesse et al. 2003). Two species have 

been described within Clade G Symbiodinium, S. endoclionum from Cliona orientalis on the Great 

Barrier Reef (GBR) and S. spongiolum from Cliona varians in the Caribbean (Ramsby, Hill, et al. 

2017). The Clade G Symbiodinium from sponges is thought to be more thermally tolerant than 

the Symbiodinium symbionts of corals (Schönberg et al. 2008), which might explain why 

bioeroding sponges are generally less sensitive to elevated seawater temperatures than corals 

(Vicente 1990, Schönberg & Ortiz 2008, Carballo et al. 2013, Wulff 2016), although Cliona 

varians has been observed to bleach during thermal stress (Hill et al. 2016).  

For both corals and sponges, exposure to elevated temperature can cause the loss of 

specific bacterial and archaeal taxa and an increase in opportunistic microorganisms (Fan et al. 

2013, Sweet & Bulling 2017). Interestingly, in corals, the microbiome can shift prior to bleaching 

(Bourne et al. 2008, Lee et al. 2015), suggesting that a stable and/or specific bacterial community 

may be important for thermal tolerance. In addition, the response of the coral bacterial 
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community can differ depending on the identity of the associated Symbiodinium (Littman et al. 

2010). The sponge microbiome can also shift upon exposure to elevated temperature (Lemoine et 

al. 2007, López-Legentil et al. 2008, Webster et al. 2008). However, some sponge species are able 

to maintain stable communities regardless of temperature (Webster, Botté, et al. 2011, Strand et 

al. 2017), while others retain their symbionts until the very late stages of heat stress when the 

sponge itself exhibits necrosis (Webster et al. 2008, Luter et al. 2012, Simister, Taylor, Tsai, Fan, et 

al. 2012). Little is known about the microbial communities of bioeroding sponges and, in 

particular, the sensitivity of the microbiome to elevated sea surface temperatures. Previous 

investigations have provided a phylum-level overview of the microbial communities within 

Cliona species, including C. celata, C. delitrix, C. orientalis, and C. viridis (Blanquer et al. 2013, 

Rodrigues Soares 2015, Jeong et al. 2015, Pineda et al. 2016, Thomas et al. 2016), but have not 

presented detailed accounts of species-level community dynamics. Here, we first defined the 

‘common’ and ‘core’ microbial associates of C. orientalis before assessing how the microbiome 

responded to increasing temperatures between 23-32°C in order to ascertain how the C. orientalis 

holobiont may be impacted by ocean warming.  

4.3. Methods 

4.3.1. Experimental design 

Cliona orientalis sponges were collected from Little Pioneer Bay on Orpheus Island, 

Queensland, Australia (18°37'40" S, 146°29'36" E) in June 2015. Sponges (n=13) were transported 

to the National Sea Simulator at the Australian Institute of Marine Science in Townsville, 

Queensland, where they were maintained at 23 °C. The microbiome of C. orientalis has been 

shown to be stable following transfer to this aquarium system (Pineda et al. 2016). After seven 

days, 151 cores were extracted from the 13 sponges using a hole saw (3.5 cm diameter) and these 
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were allowed to heal for 16 days at which point the margin of exposed choanosome was no longer 

visible. Cores were labelled with the identity of the original donor sponge to track cores from the 

same individual. 

Cores from each sponge were distributed haphazardly amongst nine indoor aquaria (50 

L), resulting in 15-18 cores per aquarium. Each aquarium was continuously provided with filtered 

seawater (0.04 µm) at 0.8 L/min which was mixed within aquaria using a small pump. Light was 

provided using Aqua Illumination Sol LEDs (Iowa, USA; maximum: 300 µmol quanta m-2 s-1; 11 h 

photoperiod). Water temperature was controlled using a programmable logic controller 

(Siemens, Munich, Germany). The sponge cores were not fed and therefore their response may 

have differed from sponges on the reef. Cores were maintained at 23.2 ± 0.3 °C (SD) for 17 days, 

consistent with the ambient temperature at the time of collection and the minimum annual 

temperature at Orpheus Island. Then, one core from each sponge was sacrificed (i.e., 1-2 cores 

per tank): sponge tissue was removed with a sterile knife, frozen in liquid nitrogen, and stored at -

80 °C.  

After the acclimation period, two temperature treatments were established: a control 

treatment (3 aquaria) was maintained at 23 °C for the experimental duration and a heated 

treatment (6 aquaria), which increased by 2 °C increments (from 23 to 29 °C) and subsequently 

by 1 °C increments (from 30 to 32 °C) every 14 days. The rate of each temperature increase was 

0.5 °C per day, resulting in a 2-4 day period of warming followed by 10 days of acclimation at 

each temperature. However, after the first temperature increment (25 °C), conditions were 

maintained for an additional 10 days due to logistical issues with the heating system. Following 

exposure to 32 °C, seawater temperature was reduced by 0.25 °C per day to 30 °C at which point 
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the temperature was maintained for four weeks and cores were sampled to assess recovery from 

elevated temperature.  

In total, the temperature treatment lasted four months (July-November) and the 

temperature range approximated the winter to summer temperature change at the collection site: 

from a minimum of 22.4 °C in July to a maximum of 29.1 °C in February (source: 

http://weather.aims.gov.au). Thus, the 30, 31, and 32 °C temperature increments represented 

increases of 1, 2, and 3 °C above mean summer values, consistent with mean temperatures 

projected for 2100 (RCP 8.5; IPCC, 2014). 

After the first temperature increment, cores were sampled from each of the nine sponges 

regardless of temperature treatment, leading to different sample sizes between treatments (Table 

4-1). After subsequent temperature increments, 1-2 cores per tank were sampled and, where 

possible, cores from the same sponge were samples across both treatments. Cores from only 9 of 

the 13 sponges were used for DNA sequencing in order to maximize the number of cores per 

sponge and to minimize the effects of sampling different sponges. The final sample sizes (after 

DNA quality screening) are listed in the supplementary information (Table 4-1). 
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Table 4-1. Sample sizes for each temperature treatment and time point after DNA sequence 
analysis. 

Time point Heated temp. (°C) Control (n) Heated (n) 
17 23 1 8 

43 25 3 6 

56 27 5 5 

71 29 5 7 

84 30 4 7 

96 31 5 6 

108 32 4 7 

144 30 (recovery) 4 8 

 

4.3.2. DNA sequencing 

DNA was extracted from frozen sponge tissue (~0.2 g) using the Powerplant Pro DNA 

Isolation Kit (Mo Bio Laboratories, Carlsbad, CA) according to the manufacturer’s protocols, 

with additional bead-beating, RNAse, and proteinase K procedures. DNA samples were sent to 

the Australian Centre for Ecogenomics at the University of Queensland, Australia for sequencing. 

The V4 region of the 16S rRNA gene was amplified with primers 515f and 806r primers 

(Caporaso et al. 2012) using Illumina MiSeq 250 bp chemistry. Twenty-five PCR cycles were used 

during library preparation. 

4.3.3. Sequence analysis 

Sequence data was processed in Mothur 1.36 following the MiSeq standard operating 

procedure (Schloss et al. 2009). Briefly, demultiplexed paired-end reads were quality screened 

(max. ambiguous bases=0, max. homopolymers=8, 100<length<350), assembled, and sequences 

appearing only once within a sample were removed. The dataset was reduced to 8297 sequences 

per sample to account for differences in sampling depth. Identical sequences were combined into 

unique sequences, PCR chimeras were identified using Uchime (Edgar et al. 2011), and sequences 
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were classified taxonomically to the SILVA taxonomic reference file v.123 (Quast et al. 2013) 

using the needleman algorithm in Mothur. Sequences that matched chloroplast, mitochondrial, 

or eukaryote sequences, or that failed to match sequences in the SILVA database, were discarded. 

The remaining sequences were clustered into OTUs with 97% sequence similarity using the 

furthest neighbour algorithm and the Mothur function cluster.split. The sequence with the 

smallest maximum pairwise distance within each OTU was used for taxonomic assignment. 

Representative sequences for OTUs of interest (Rhodothalassium sp., Nitrosopumilus sp.) were 

blasted against the 16S sequences from 268 sponge species in the EMP-Porifera in order to 

determine their occurrence in other sponges and environmental samples (Moitinho-Silva et al. 

2017b). 

The bacterial community was analysed as two subsets according to the prevalence of 

OTUs amongst samples (Ainsworth et al. 2015). OTUs present in more than 10% of the samples 

in either temperature treatment (control: >3 samples; heated: >5 samples) were considered the 

‘common’ microbial community. OTUs that were present in ≥ 80% of the samples in either 

treatment (control: >24 samples; heated: >43 samples) were considered the ‘core’ component of 

the ‘common’ community. To minimize the effect of the temperature treatment on community 

membership, each community was defined within each treatment and then pooled to form the 

‘common’ and ‘core’ communities. Singleton OTU were excluded during this process. OTU 

subsetting was performed using the R package phyloseq (McMurdie & Holmes 2013).  

To investigate changes at a broad taxonomic level, the relative abundances of bacterial 

phyla and classes were compared by pooling samples within each treatment and calculating the 

relative number of DNA sequences belonging to each taxon. To investigate species-level changes, 
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community similarity of OTUs was investigated using nonmetric multidimensional scaling 

(NMDS) with Bray-Curtis and Jaccard distance metrics using the R package vegan (Oksanen et al. 

2017). Significant differences in the community composition between temperature treatments, 

time points, and treatment*time point interactions were tested using PERMANOVA on square 

root transformed distances using the adonis function in the R package vegan (Anderson 2001, 

Oksanen et al. 2017). Marginal sums of squares were used in all tests. Significant treatment*time 

point interactions were interpreted as an effect of warming on the microbial community. 

Permutations were constrained to account for correlations between cores from the same sponge 

and there was no significant difference in multivariate dispersion amongst cores from different 

sponges (pseudo-F7,77=2.1, P=0.09). Tank was not included as an independent variable as there 

were no significant differences in microbial communities among tanks (Table 4-2). Following 

significant treatment*time interactions, 14 PERMANOVA post-hoc comparisons were used to 

determine the temperature increment that induced microbial changes among samples in the 

heated treatment (e.g., 23 vs. 25 °C, 25 vs. 27 °C, etc.) for the ‘common’ and ‘core’ communities 

(Table 4-3). Post-hoc P-values were corrected using Benjamini Hochberg adjustment. 

To facilitate interpretation of the NMDS ordination, OTU network diagrams were 

constructed using Cytoscape 3.4.0 (Shannon et al. 2003). Three groups of OTUs were depicted: 1) 

OTUs from control samples at 23 °C, 2) OTUs from the heated treatment at 29-32 °C (pre-

bleaching), and 3) OTUs from bleached sponges exposed to 32 °C and then 30 °C. OTU 

abundance was averaged within each group and only abundances >0.1% were depicted. 

Microbial community characteristics, including richness, turnover, and mean rank shift, 

were compared between treatments and temperatures using the R package codyn (Hallett et al. 
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2015). Richness was calculated as the number of OTUs per sample. Turnover was calculated as 

the proportion of OTUs gained or lost between sampling points (i.e., total turnover). Mean rank 

shift also reflects stability of the microbial community and was calculated as the average change in 

rank abundance of OTUs. Significant differences in richness were tested using a linear mixed 

model for treatment* time point with a random intercept that accounted for correlations between 

cores from the same sponge using the R package lme4 (Bates et al. 2015). 

To define the phylogenetic position of the primary bacterial symbiont, sequences (800-

1400 bp) of the genus Rhodothalassium were downloaded from SILVA (https://www.arb-silva.de) 

and NCBI databases (https://blast.ncbi.nlm.nih.gov). Reference sequences were aligned with the 

representative sequence (252 bp) of the dominant microbial OTU derived from C. orientalis using 

the SILVA Incremental Aligner v1.2.11 (Pruesse et al. 2012). The alignment was used to build a 

neighbour-joining phylogenetic tree (Jukes-Cantor) in Geneious 9.1.8 (Kearse et al. 2012). 

Support for phylogenetic nodes was calculated using 500 bootstrap replicates. 

Table 4-2. Test for similarities among Cliona orientalis cores from the same tank or from the 
same sponge. PERMANOVA results for differences in the ‘common’ microbial community 
between sponge cores from different tanks and between cores from different sponge genotypes 
(i.e., individuals). No significant differences were found between cores from different tanks, but 
there were significant differences between cores originating from different sponge genotypes. As a 
result, ‘sponge’ individual was included in the statistical analysis of microbial communities and 
richness. The table includes the degrees of freedom (Df), sums of squares (SS), mean squares 
(MS), pseudo-F ratio, proportion of variance explained (R2), and P-value (P) from 
PERMANOVA with 999 permutations. 

 

 

Table 4-3. Post-hoc PERMANOVA comparisons to determine the effect of each temperature 
increment on the heated samples. Differences between communities were summarized using 
square-root transformed Bray-Curtis distances. Due to the few samples present within each 
comparison, the random permutations were not restricted to cores from the same sponge. The 

 Df SS MS Pseudo-F R2 P 
Tank 8 2.1 0.3 1.0 0.09 0.59 

Sponge 9 4.6 0.5 2.2 0.20 ≤0.01 

Residuals 84 22.7     
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table includes the two elevated temperature increments for each comparison, the degrees of 
freedom (Df), sums of squares (SS), mean squares (MS), pseudo-F ratio (F), proportion of 
variance explained (R2), and Benjamini Hochberg adjusted P-values for 14 comparisons (P). P-
values less than 0.05 are indicated in bold. 

  Common  Core 
Comparison  Df SS MS F R2 P  SS MS F R2 P 
23°C vs 25°C Temp. 1 0.2 0.2 0.8 0.06 0.70  0.1 0.1 1.1 0.08 0.44 

 Resid. 12 2.9 0.2     0.8 0.1    

25°C vs 27°C Temp. 1 0.5 0.5 1.8 0.17 0.12  0.6 0.6 5.8 0.39 0.01 
 Resid. 9 2.5 0.3     0.9 0.1    
27°C vs 29°C Temp. 1 0.6 0.6 2.3 0.18 0.01  0.5 0.5 4.6 0.31 0.01 
 Resid. 10 2.7 0.3     1.1 0.1    

29°C vs 30°C Temp. 1 0.4 0.4 1.6 0.12 0.13  0.1 0.1 1.2 0.09 0.44 

 Resid. 12 2.8 0.2     1.1 0.1    

30°C vs 31°C Temp. 1 0.3 0.3 1.3 0.10 0.33  0.1 0.1 0.7 0.06 0.63 

 Resid. 11 2.6 0.2     1.1 0.1    

31°C vs 32°C Temp. 1 0.2 0.2 1.0 0.08 0.44  0.1 0.1 1.1 0.09 0.44 

 Resid. 11 2.4 0.2     0.9 0.1    

32°C vs 30°C Temp. 1 0.6 0.6 2.6 0.17 0.02  0.4 0.4 2.7 0.17 0.11 

 Resid. 13 3.2 0.2     1.8 0.1    

 

4.4. Results 

The sponge C. orientalis was largely unaffected by increasing temperature up to 32 °C, at 

which point the symbiosis with Symbiodinium became disrupted and the sponge tissue appeared 

white (Fang et al. 2013). Bleached sponges were allowed to recover at 30 °C for four weeks but did 

not regain their brown pigmentation. Notably, control sponges did not exhibit reductions in 

Symbiodinium, chlorophylls, protein, or organic matter over the course of the experiment, 

suggesting that the sponges had adequate nutrition even though they were not fed (Figure 3-4). 

4.4.1. Sequence processing 

A total of 1.9 million sequences passed quality filtering, with an average of 22,184 reads 

per sample (±12,632 SD). The single most abundant OTU accounting for 21% of the total 
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sequences (Figure 4-1). The ‘common’ microbial community consisted of 3198 OTUs that 

represented 89% of the total sequences. The ‘core’ community consisted of only 45 OTUs that 

represented 31% of the total sequences. OTUs that occurred in less than 10% of samples generally 
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Figure 4-1. (A) OTUs are plotted according to their relative abundance amongst all sequences 
(x-axis) and their occurrence amongst all samples (y-axis). The ‘core’ subset of the ‘common’ 
community is indicated with filled circles. (B) Rank abundance of the 15 most abundant OTUs 
(1. Rhodothalassium sp., Alphaproteobacteria; 2. Unclassified Deltaproteobacteria; 3. 
Unclassified Bacteria; 4. Unclassified Alphaproteobacteria; 5. Unclassified Alphaproteobacteria; 
6. Rivularia sp., Cyanobacteria; 7. Unclassified Deltaproteobacteria; 8. Unclassified 
Gammaproteobacteria; 9. Unclassified Deltaproteobacteria; 10. Unclassified 
Alphaproteobacteria; 11. Unclassified Chloroflexi; 12. Unclassified Bacteria; 13. Pir4 lineage, 
Planctomycetes; 14. Unclassified Cyanobacteria; 15. Unclassified Alphaproteobacteria). White 
bars are ‘common’ OTUs and dark bars represent ‘core’ OTUs. Abundance and ranks were 
calculated using all sequences. 
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represented less than 0.1% of total sequences and were excluded from further analyses. 

4.4.2. Composition of the microbial community 

The ‘common’ C. orientalis microbiome was dominated by Proteobacteria, specifically the 

classes Alphaproteobacteria (42%), Deltaproteobacteria (8%) and Gammaproteobacteria (5%) 

(Figure 4-2A). Other abundant phyla included Cyanobacteria (7%) and Bacteroidetes (2%) 

(Figure 4-2Figure 4-2A). Alphaproteobacteria and Planctomycetes were the most OTU-rich taxa, 

together comprising nearly 50% of all OTUs (Figure 4-2Figure 4-2B).  

 

 ‘Core’ OTUs included Bacteria and Archaea spanning 13 different phyla or candidate 

phyla (Figure 4-2Figure 4-2A). Consistent with the ‘common’ community, the ‘core’ was 

Figure 4-2. (A) Relative abundance of microbial phyla and Proteobacteria classes. Bar height 
indicates the relative abundance of each taxa and the black portion indicates the relative 
abundance of the ‘core’ subset within that phylum. (B) Proportion of all OTUs belonging to each 
phylum or Proteobacteria class. 
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dominated by OTUs within the Alphaproteobacteria and Planctomycetes (Figure 4-2A, Table 4-4). 

However, the ‘core’ microbiome contained lower abundance of Deltaproteobacteria and lacked 

the Actinobacteria, Bacteroidetes, and Cyanobacteria present in the ‘common’ community (Figure 

4-2A). Several rare phyla/classes, including the Betaproteobacteria, TM6, and the 

Thaumarchaeota, had low abundances in both the ‘common’ and ‘core’ communities (Figure 4-

2A). Three ‘core’ OTUs belonged to the Thaumarchaeota and all were most similar to the 

candidate genus Nitrosopumilus. The most abundant ‘core’ Nitrosopumilus OTU was similar to 

four OTUs in the EMP-Porifera dataset, which occurred in 108 sponge species (mean rel. 

abundance 2.5%), seawater (0.9%), and sediment (0.4%) from the EMP-Porifera dataset.  

Table 4-4. The taxonomy of the 24 ‘Core’ OTU that were identified to genus level. + symbols 
indicate genera that met the ‘core’ definition (occur in ≥80% of samples) in both temperature 
treatments. n indicates the number of OTUs identified for each genus. 

Domain Phylum Class Order Family Genus  n 
Archaea Thaumarchaeota Marine Group I Unknown Unknown Nitrosopumilus + 3 

Bacteria Chlamydiae Chlamydiae Chlamydiales Simkaniaceae Simkania  1 

 Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae Blastopirellula 
Bythopirellula 

Pir4 lineage 

Planctomyces 

Rhodopirellula 

+ 

+ 

+ 

 

+ 

4 

2 

4 

3 

1 

 

 Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Filomicrobium  1 

   Rhodobacterales Rhodobacteraceae Labrenzia 

Rhodothalassium 

+ 

+ 

1 

1 

   Rhodobacterales Rhodospirillaceae Magnetospira  1 

  Betaproteobacteria Methylophilales Methylophilaceae OM43 clade  1 

  Gammaproteobacteria Oceanospirillales Oceanospirillaceae Pseudospirillum  1 

 

While C. orientalis hosted a wide diversity of microorganisms, a single OTU dominated 

the microbial community, comprising 21% of the total sequences and occurring in 97% of the 

sponges (Figure 4-1B). This dominant OTU was most closely related to the genus 
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Rhodothalassium, in particular Rhodothalassium sequences retrieved from corals and sponges, 

with highest sequence similarity to a Rhodothalassium from the scleractinian coral Orbicella 

faveolata (Figure 4-3). This Rhodothalassium OTU was an identical match to an OTU within the 

EMP-Porifera database which was primarily derived from C. orientalis (<0.1% rel. abundance 

across the 267 other sponge species) and was not observed in biofilm, sediment, or seawater 

samples. The C. orientalis samples in the EMP-Porifera database were collected 10 km from the 

site of collection for sponges in this study. 
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4.4.3. Response to elevated temperature 

Having established the reference microbiome of C. orientalis, we assessed how it was 

impacted by elevated temperature. At the phylum level, both the ‘common’ and ‘core’ 

components of the community showed little variability with increasing temperature until the 

samples failed to recover from bleaching at 32 °C and a marked increase in Cyanobacteria was 

observed in the ‘common’ community (Figure 4-4A and Figure 4-4B). A gradual decrease in 

Alphaproteobacteria also occurred in both temperature treatments over the course of the 

experiment (Figure 4-4A). In contrast, at the OTU-level, the ‘common’ community underwent 

significant changes in response to the temperature treatment, both in terms of relative abundance 

 

 
Figure 4-3. Neighbour-joining phylogenetic tree from analysis of 252 bp of the 16s rRNA gene 
from the dominant Cliona orientalis OTU, Rhodothalassium sp. Branch tips are labelled with 
the Rhodothalassium source and NCBI accession number (except for the outgroup K. 
aquimaris). Rhodothalassium from C. orientalis is in bold and indicated with an asterisk. The 
numbers at nodes are percentages of bootstrap support using 500 resampled datasets and the 
scale bar represents 0.03 substitutions per nucleotide position. The C. orientalis OTU is 
positioned within a clade of Rhodothalassium from corals that is distinct from the 
Rhodothalassium isolated from other sponges and environmental samples. 
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(Figure 4-4A; PERMANOVA; Table 4-5: treatment*time) and presence-absence (PERMANOVA; 

Table 4-5: treatment*time). In particular, the communities of samples exposed to 29 °C and above 

were different to the communities in control samples (Figure 4-4C and Figure 4-4D). However, 

there was no significant difference in the relative abundance of OTUs between treatments at any 

time point (Table 4-7), perhaps due to differences in sample size between treatments. 

Comparisons within the heated treatment indicated that two significant microbial shifts occurred: 

i) when the seawater temperature increased from 27 to 29 °C and ii) when samples that had 

bleached at 32 °C were maintained at 30 °C (Table 4-3). These shifts distinguished C. orientalis 

samples that associated with significantly different ‘common’ OTU communities (Table 4-6). In 

part, these differences were driven by a lower abundance of Alphaproteobacteria (unclass.) and 

Bacteroidetes (unclass.) OTUs in 29-32 °C samples and novel Cyanobacteria (Rivularia sp., 

unclass.) and Verrucomicrobia (Roseibacillus sp.) OTUs that occurred in samples post-bleaching 

(Figure 4-4C). Within the ‘core’ community, 29-32 °C samples were associated with a higher 

relative abundance of an Thaumarchaeota (Nitrosopumilus sp.) OTU and bleached samples at 30 

°C were associated with a higher abundance of OTUs affiliated to Planctomycetes (Planctomyces 

sp.) and Alphaproteobacteria (Labrenzia sp.; Figure 4-4D). 

Consistent with the ‘common’ microbial OTUs, ‘core’ OTUs were also impacted by 

exposure to elevated temperature. Changes in the relative abundance of OTUs led to significantly 

different ‘core’ communities in heated compared with control sponges (Figure 4-4D; 

PERMANOVA; Table 4-5: treatment*time), although differences were less clear than for the 

larger community (Figure 4-4C). Presence-absence in the ‘core’ OTU community was not 

affected by exposure to elevated temperature, unlike the ‘common’ community (PERMANOVA; 

Table 4-5: treatment*time). However, changes in the relative abundance of ‘core’ OTUs was 
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detected after temperature increases to 27°C and 29°C, but not at higher temperatures (Table 4-

3). Heated samples at 23 and 25°C had significantly different ‘core’ OTU composition than heated 

samples at 27 °C, but the 27°C samples were similar to those at higher temperatures (Table 4-6). 

However, at any time point, there was no significant difference in the relative abundance of ‘core’ 

OTUs between treatments (Table 4-7). 

Table 4-5. PERMANOVA results for main effects of heating treatment, time point, and the 
treatment * time point interaction. Two PERMANOVA were conducted on the ‘Common’ and 
‘Core’ communities according to the relative abundance (Bray-Curtis distance) or presence-
absence of OTUs (Jaccard distance). The table includes the degrees of freedom (Df), marginal 
sums of squares (SS), mean squares (MS), pseudo-F ratio (F), proportion of variance explained 
(R2), and P-values (P). P-values less than 0.05 are indicated in bold. 

 Common  Core 
Factor Df SS MS F R2 P  SS MS F R2 P 
Rel. abundance              
Treatment 1 0.5 0.5 2.4 0.02 <0.01  0.3 0.3 2.4 0.02 0.06 

Time point 7 3.1 0.4 2.1 0.14 <0.01  1.5 0.2 2.1 0.14 <0.01 

Individual 8 3.6 0.5 2.1 0.16 0.20  1.1 0.1 1.3 0.10 0.62 

Treat.*Time 7 2.4 0.3 1.6 0.10 <0.01  1.7 0.2 2.4 0.16 <0.01 

Residual 61 13.1 0.2  0.58   6.4 0.1  0.58  

             
Pres.-absence             
Treatment 1 0.9 0.9 2.9 0.03 <0.01  0.7 0.7 8.5 0.08 <0.01 

Time point 7 4.0 0.6 1.8 0.13 <0.01  1.7 0.2 2.9 0.19 <0.01 

Individual 8 3.5 0.4 1.4 0.12 0.15  0.8 0.1 1.2 0.09 0.645 

Treat.*Time 7 2.6 0.4 1.2 0.09 <0.01  0.5 0.1 0.9 0.06 0.572 

Residual 61 18.9 0.31  0.63   4.9 0.1  0.58  
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Figure 4-4. The proportion of microbial phyla or Proteobacteria classes represented by (A) 
‘common’ and (B) ‘core’ OTUs under different temperature treatments. Proportions were 
calculated by pooling samples within each time point and treatment combination. Time as well as 
the temperature of the heated treatment are indicated on the x-axis. Non-metric 
multidimensional scaling of samples in each time point and treatment combination based on 
relative abundance within the (C) ‘common’ (stress=0.17) and (D) ‘core’ (stress=0.18) 
communities. Black circles indicate samples from the control treatment and red triangles indicate 
samples from the heated treatment. The colour of the triangle represents the temperature of the 
heated treatment. For all panels, the control treatment was sampled at 23 °C. 
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Table 4-6. Post-hoc PERMANOVA comparisons to compare samples across the thermal 
thresholds identified in Table 4-3. Differences between communities were summarized using 
square-root transformed Bray-Curtis distances. Due to the few samples present within each 
comparison, the random permutations were not restricted to cores from the same sponge. The 
table includes the temperature for each comparison, the degrees of freedom (Df), sums of squares 
(SS), mean squares (MS), pseudo-F ratio (F), proportion of variance explained (R2), and 
Benjamini Hochberg adjusted P-values for 14 comparisons (P). Corrected P-values less than 0.05 
are indicated in bold. 

Comparison    Df SS MS F R2 P 
Common community          
23-27°C vs. 29-32°C  1 0.5 0.5 2.1 0.04 0.05 

   Resid. 53 12.8 0.2  0.96  

29-32°C vs. 30°C Rec.  1 1.0 1.0 4.0 0.07 0.03 

   Resid. 51 13.0 0.3  0.93  

          

30°C Rec. vs. 23-27°C  1 1.0 1.0 3.8 0.10 0.03 

   Resid. 34 8.8 0.3  0.90  

          
Core community          
23-25°C vs. 27°C  1 0.7 0.7 8.7 0.29 0.03 

   Resid. 21 1.7 0.1  0.71  

27°C vs. 29-32, 30°C Rec.  1 0.3 0.3 1.9 0.04 0.07 

   Resid. 43 5.9 0.1  0.96  

29-32, 30°C Rec. vs. 23-25°C  1 0.1 0.1 1.4 0.03 0.08 

   Resid. 51 5.1 0.1  0.97  
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Despite several ‘core’ OTUs being maintained in both heated and bleached sponges, the 

heating treatment affected ‘core’ OTU prevalence (Figure 4-5). Control samples and samples 

heated to 29-32 °C shared more OTUs than either treatment did with the bleached samples at the 

end of the experiment (Figure 4-5). Bleached samples had a larger diversity of Cyanobacteria 

OTUs (unclass. family I and II, Rivularia sp., Phormidium sp.) and higher abundance of one 

Cyanobacteria OTU (family I unclass.) than control samples. In addition, bleached samples had a 

larger diversity of Planctomycetes OTUs (family Planctomycetaceae) and fewer 
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Figure 4-5. Cytoscape network of the 196 OTUs with highest relative abundance in the 
‘common’ community (present in > 10% of samples in either treatment and > 0.1% abundance) 
from the controls, 29-32 °C (pre-bleaching) or 32 °C (bleaching) treatments. Some OTUs are 
restricted to specific treatments whereas others are shared between treatment groups. ‘Core’ 
OTUs (present in > 80% of samples in either treatment) are indicated using bold circle margins. 
Node colours represent the OTU phylum or Proteobacteria class and the edge intensity indicates 
OTU abundance. INSET: Network of the 45 ‘core’ OTUs and their prevalence in sponges from 
either control or heated temperature treatments. Taxonomic information for ‘core’ OTUs can be 
found in Table 4-4. The most abundant OTU, Rhodothalassium sp., is indicated with an R. 
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Alphaproteobacteria OTUs than control or 29-32 °C samples (Figure 4-5). Only 16 OTUs were 

present in sponges from all three groups, including the dominant OTU Rhodothalassium (Figure 

4-5). Two ‘core’ Thaumarchaeota OTUs, closely related to the candidate genus Nitrosopumilus, 

were present (>0.1% abundance) in either the control or 29-32 °C heated samples, but were 

absent (<0.1% abundance) from the bleached samples at the end of the experiment (Figure 4-5). 
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Figure 4-6. Dynamics within the ‘common’ and ‘core’ components of the microbial community. 
(A) Richness (number of OTU per sample), (B) OTU turnover (proportion of OTU gained or 
lost) and (C) mean change in OTU rank abundance (rank shift) are shown for each community. 
Black lines and circles indicate the control treatment (all 23 °C). Red lines and triangles indicate 
the heated treatment. The colour indicates the temperature of the heated treatment. Error bars in 
(A) represent standard error. 
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Within the ‘core’ community, the majority of OTUs only met the ‘core’ definition within control 

samples (Figure 4-5 inset), likely contributing to the significant differences in the ‘core’ 

community observed in heated sponges. Nine ‘core’ OTUs met the ‘core’ definition in both 

temperature treatments, including the dominant OTU Rhodothalassium and the Thaumarchaeota 

candidate genus Nitrosopumilus (Figure 4-5 inset; Table 1). Only three OTUs, including two 

Plancytomycetes (Pir4 lineage, one unclass.) and one TM6 OTU (unclass.), met the ‘core’ 

definition within sponges at elevated temperature but not in control samples (Figure 4-5 inset).  

Diversity metrics were used to summarize the effect of elevated temperature on the C. 

orientalis microbiome (Cleland et al. 2013, Hallett et al. 2016). Diversity metrics varied greatly 

between the ‘common’ and ‘core’ components of the community (Figure 4-6). In the ‘common’ 

community, increasing seawater temperature did not significantly affect the number of OTUs per 

sponge (ANOVA treatment*time: F7, 64.0=1.4, P=0.22), despite consistently greater OTU richness 

in sponges exposed to sub-bleaching temperatures (27-31 °C) and lower richness in bleached 

samples (Figure 4-6A). Analysis of OTU turnover in the ‘common’ community indicated that 

sponges sampled at different time points shared ~50% of ‘common’ OTUs regardless of 

temperature treatment (Figure 4-6B). While richness and turnover stabilized at intermediate 

temperatures, the ‘common’ community was not static, and changes to OTU rank abundance 

(rank shift) were highest in sponges exposed to intermediate temperatures (Figure 4-6). Rank 

shift decreased in sponges exposed to 31 °C and 32 °C, indicating fewer changes in the structure 

of the ‘common’ component of the community. However, rank shift increased in bleached 

sponges at the end of the experiment, revealing a second restructuring of the microbial 

community as sponges failed to recover from bleaching (Figure 4-6C). The ‘core’ component of 

the microbiome exhibited different patterns in diversity metrics than the larger ‘common’ 
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community. In general, ‘core’ OTU richness was significantly lower in the heated treatment 

(ANOVA treatment: F7, 63.0=12.3, P<0.01), although this difference did not vary as heated samples 

were exposed to increasingly higher temperature (Figure 4-6A; ANOVA treatment*time: F7, 

62.2=0.7, P=0.63). In addition, exposure to elevated temperature did not trigger large changes in 

the turnover or rank abundance of ‘core’ OTUs (Figure 4-6B and Figure 4-6C). 
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Table 4-7. Post-hoc PERMANOVA comparisons to determine the effect of the heating treatment 
at each time point (i.e., heated temperature). Differences between communities were summarized 
using square-root transformed Bray-Curtis distances. Due to the few samples present within each 
comparison, the random permutations were not restricted to cores from the same sponge. The 
table includes the temperature for each comparison, the degrees of freedom (Df), sums of squares 
(SS), mean squares (MS), pseudo-F ratio (F), proportion of variance explained (R2), and 
Benjamini Hochberg adjusted P-values for 14 comparisons (P). 

  Common  Core 
Temp.  Df SS MS F R2 P  SS MS F R2 P 
25°C Treat. 1 0.2 0.2 0.8 0.10 0.78  <0.1 <0.1 0.4 0.05 0.81 

 Resid. 7 1.5 0.2  0.90   0.29 <0.1  0.95  

27°C Treat. 1 0.7 0.7 2.9 0.26 0.10  0.7 0.7 6.0 0.43 0.10 

 Resid. 8 1.9 0.2  0.74   1 0.1  0.57  

29°C Treat. 1 0.3 0.3 1.4 0.12 0.36  0.3 0.3 1.4 0.12 0.52 

 Resid. 10 2.2 0.2  0.88   2.2 0.2  0.88  

30°C Treat. 1 0.3 0.3 1.1 0.11 0.44  0.3 0.3 1.1 0.11 0.54 

 Resid. 9 2.5 0.3  0.89   2.5 0.3  0.89  

31°C Treat. 1 0.2 0.2 1.2 0.12 0.34  0.2 0.2 1.2 0.12 0.36 

 Resid. 9 1.8 0.2  0.88   1.8 0.2  0.88  

32°C Treat. 1 0.5 0.5 2.1 0.19 0.09  0.5 0.5 2.1 0.19 0.08 

 Resid. 9 2.2 0.2  0.81   2.2 0.2  0.81  

30°C Treat. 1 0.4 0.4 1.4 0.12 0.35  0.4 0.4 1.4 0.12 0.55 

 Resid. 10 2.9 0.3  0.88   2.9 0.3  0.88  

 

4.5. Discussion 

4.5.1. Composition of the microbial community 

The ‘common’ and ‘core’ components of the C. orientalis microbial community were 

dominated by Alphaproteobacteria, but also included abundant Planctomycetes, 
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Deltaproteobacteria, and Gammaproteobacteria, consistent with previous findings for this species 

(Pineda et al. 2016). Unlike C. orientalis, many sponge species associate with Cyanobacteria rather 

than Symbiodinium and these species tend to be dominated by groups other than 

Alphaproteobacteria (Luter et al. 2014, Burgsdorf et al. 2015, Thomas et al. 2016), such as 

Gammaproteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria (Thomas et al. 2016). 

Within the sponge family Clionaidae, the C. orientalis microbiome is most similar to that of 

Cliona viridis, which also associates with Symbiodinium, and is dominated by 

Alphaproteobacteria (Blanquer et al. 2013, Thomas et al. 2016). Several other Cliona species 

associate with Symbiodinium, but the composition of their microbiomes has not yet been 

described. The Cliona species that lack Symbiodinium do not contain high proportions of 

Alphaproteobacteria and are instead dominated by Firmicutes (Rodrigues Soares 2015), 

Betaproteobacteria (Jeong et al. 2015), Gammaproteobacteria (Thomas et al. 2016), or unclassified 

bacteria (Thomas et al. 2016).  

Nearly one-quarter of all 16S rRNA genes from C. orientalis belonged to a single OTU, 

with highest similarity to Rhodothalassium sp. (Alphaproteobacteria). The taxonomic assignment 

of Rhodothalassium is uncertain, but the genus may represent a novel order of 

Alphaproteobacteria (Venkata Ramana et al. 2013). Rhodothalassium found in soils perform a 

range of important metabolic functions, including photosynthesis (Drews 1981), sulphur 

oxidation (Xia et al. 2015), and nitrogen fixation (Madigan et al. 1984). Interestingly, 

Rhodothalassium salexigans only fixes nitrogen (sensu nitrogenase production) when glutamate, a 

molecule involved in nitrogen recycling within Symbiodinium-coral associations (Yellowlees et al. 

2008), is available (Madigan et al. 1984). Analysis of the global EMP-Porifera dataset showed that 

while this OTU is prevalent in C. orientalis (from the central Great Barrier Reef), it is extremely 
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rare among other sponge species and is not found in the surrounding environment. The 

abundance and stability of the Rhodothalassium OTU seen here therefore suggests an intimate 

partnership with C. orientalis, although further genomic and transcriptomic work is required to 

confirm the functional basis of any symbiotic interaction. 

Using prevalence rather than abundance to examine the C. orientalis microbiome 

facilitated identification of additional taxa likely to perform important symbiotic functions 

(Ainsworth et al. 2015, Thomas et al. 2016, Hernandez-Agreda et al. 2016, Astudillo-García et al. 

2017). Multiple members of the ‘core’ community matched microbial taxa involved in nitrogen 

metabolism and may play a role in nitrogen cycling within the C. orientalis holobiont. In addition 

to the dominant OTU being highly similar to nitrogen fixing Rhodothalassium, the ‘core’ 

community contained three OTUs affiliated with the candidate genus Nitrosopumilus (Archaea), 

which is known to oxidize ammonia (Gaidos et al. 2010) and is involved in nitrogen cycling 

within the sponge Cymbastela concentrica (Moitinho-Silva et al. 2017) and possibly Xestospongia 

muta (Morrow et al. 2016). Moreover, the ‘core’ community contained 17 Planctomycetes OTUs 

(38% of ‘core’ OTU), a group that contributes to nitrogen cycling in other sponges (Mohamed et 

al. 2010). The presence of these taxa in the ‘core’ C. orientalis microbiome suggests that nitrogen 

metabolism is a key function of the C. orientalis microbiome, although detailed genomic and 

experimental isotope work would be required to validate and quantify the role of symbionts in 

holobiont nitrogen cycling. In addition, broader geographic sampling would confirm the ubiquity 

of these ‘core’ OTUs. 

4.5.2. Response to elevated temperature 

In general, both the ‘common’ and ‘core’ components of the C. orientalis microbiome 
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were stable upon exposure to temperatures up to 27 °C, however changes to the relative and rank 

abundance of microbial OTUs occurred at temperatures of 29 °C and above. Overall, a large 

number of ‘core’ OTUs were less prevalent in sponges at elevated temperatures, although the 

functional implications of this community shift remain to be determined. While the most 

abundant Rhodothalassium OTU and one ‘core’ Nitrosopumilus OTU were apparently unaffected 

by elevated temperatures, a second ‘core’ Nitrosopumilus OTU occurred in higher abundance in 

sponges at 29-32 °C than in control sponges, perhaps due to a greater availability of ammonia in 

the stressed holobionts. The maintenance of these ‘core’ members of the microbiome suggests 

that the different components of nitrogen metabolism (nitrogen fixation, ammonia oxidation) 

may continue after bleaching, as has been shown in the giant barrel sponge Xestospongia muta 

(López-Legentil et al. 2010).  

Notably, the significant shift in the microbial community occurred at a lower temperature 

than the 32 °C threshold that induced sponge bleaching. Hence, it is possible that changes in the 

microbiome contribute to the destabilisation of the C. orientalis holobiont, ultimately resulting in 

the loss of Symbiodinium and sponge bleaching. The microbial community of corals has also 

previously been shown to shift at sub-lethal temperatures prior to visual signs of bleaching (Lee et 

al. 2015, reviewed in Bourne et al. 2016), but in some cases, the coral microbiome can be restored 

following the thermal event (Bourne et al. 2008). In contrast, C. orientalis failed to regain 

Symbiodinium or restore its baseline microbial community following bleaching, suggesting that it 

has limited ability to recover from exposure to temperatures above its thermal threshold 

However, the availability of Symbiodinium or microbial taxa might have been limited within the 

aquarium system, and future analyses should assess the potential for recovery under field 

conditions. 
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In many sponge species, microbial shifts at high temperatures coincide with declining 

host health (Lemoine et al. 2007, Webster et al. 2008, López-Legentil et al. 2010, Luter et al. 2012, 

Simister, Taylor, Tsai, Fan, et al. 2012, Fan et al. 2013), whereas other sponges are able to 

maintain stable microbial communities irrespective of seawater temperature (Webster, Botté, et 

al. 2011, Pita et al. 2013, Lesser et al. 2016, Strand et al. 2017). Microbial shifts can lead to 

dysbiosis, including reduced expression of genes related to nutrient transport, substrate 

utilisation, sugar metabolism and cellular integrity in the symbionts and increased expression of 

stress response genes in the sponge (Fan et al. 2013). Disruption to nutritional interdependence 

and molecular interactions between the host and symbionts was proposed to further destabilize 

the holobiont ultimately leading to the loss of the archetypal sponge symbionts and the necrotic 

sponge phenotype that becomes apparent in the latter stages of heat stress (Fan et al. 2013).  

 Exposure of C. orientalis to 32 °C led to sponge bleaching and the subsequent 

establishment of a community dominated by Cyanobacteria. Cyanobacteria were present within 

the ‘common’ community throughout the experiment and are frequent symbionts of sponges 

(Thacker & Freeman 2012). However, the increase in Cyanobacteria did not correspond to 

known sponge symbionts, such as Oscillatoria spongeliae or Synechococcus spongiarum (Erwin & 

Thacker 2007, Lemloh et al. 2009), but were instead driven largely by a tenfold increase in 

filamentous, heterocystous Cyanobacteria similar to the genus Rivularia. In another sponge 

species, Rivularia is associated with unhealthy tissues (Gao et al. 2014). Thus, the increase in 

filamentous Cyanobacteria is likely opportunistic, occurring in response to greater nutrient 

availability in bleached sponges or changes in the host surface chemistry, which may have 

facilitated cyanobacterial colonisation, as has been seen in other reef organisms (Webster, Soo, et 

al. 2011).  



4. Elevated temperature disrupts microbiome 

80 

Examining changes to the microbial community of C. orientalis across a range of 

temperatures enables prediction of how the bioeroding sponge might fare in future, warmer, 

oceans. At Orpheus Island, C. orientalis regularly experience temperatures up to 29-30 °C and 

hence the microbial changes observed at these temperatures therefore likely represent seasonal 

variation. Other sponge species exhibit minimal seasonal variability in their microbial associates 

(Erwin et al. 2015), although seasonal summer warming can increase the variability between 

individuals (Erwin et al. 2012). However, when exposed to temperatures above current summer 

averages, the microbial community of C. orientalis is disrupted, filamentous Cyanobacteria 

become dominant and the metabolic exchange between host and symbionts is likely to be 

disrupted (Fan et al. 2013). The thermal sensitivity of the microbiome suggests that ocean 

temperatures predicted to occur by 2100 will negatively impact the C. orientalis holobiont. 

The C. orientalis microbiome is dominated by a single Alphaproteobacteria OTU with 

high sequence similarity to Rhodothalassium sp. retrieved from other reef invertebrates. In 

addition, the ‘core’ microbiome comprises ammonia oxidising Thaumarchaeota (Nitrosopumilus 

sp.) and numerous Planctomycetes OTUs (family Planctomycetaceae), both of which are common 

features of sponge microbiomes. The taxonomic affiliation of these ‘core’ members of the 

microbiome indicate a potential role in nitrogen metabolism within the sponge, although further 

functional analysis is required to validate these pathways. For C. orientalis, the thermal threshold 

occurred at 32 °C, when the sponges irreversibly bleached. Importantly however, the microbiome 

showed evidence of destabilisation at sub-lethal temperatures (29 °C), suggesting that microbial 

shifts may play a role in the holobiont stress response. Given the importance of clionaid sponges 

to reef bio-erosion, understanding the role microbial symbionts play in holobiont resilience 

during ocean warming is imperative. This work has provided a valuable platform for future 
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research to explore the functional basis of microbial symbiosis in C. orientalis and assess how 

microbial shifts contribute to bleaching sensitivity.  
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Chapter 5. Dissolved inorganic nutrient enrichment does not 
affect sponge growth or condition  

5.1. Abstract 

Changing land use and an increasing human population have led to increased terrestrial 

runoff, delivering nutrients, pesticides, and heavy metals into aquatic ecosystems. Elevated 

nutrient levels can exacerbate coral disease and coral bleaching as well as stimulate algal growth, 

but the effects on other reef taxa are poorly understood. Here, we investigated the effects of 

dissolved inorganic nutrients and light intensity on the growth and condition of five common 

Great Barrier Reef sponges, including one heterotrophic species and four species with 

photosynthetic symbionts. Dissolved nutrients up to 7 µM total DIN did not significantly affect 

the growth, condition, or chlorophyll content of any sponge species after 10 weeks of exposure. 

Light (80 vs 160 µmol quanta m-2 s-1) did not affect four of the five sponge species, but higher 

irradiance resulted in higher organic content and chlorophyll levels in the bioeroding sponge 

Cliona orientalis, the only species that associates with the photosynthetic dinoflagellate 

Symbiodinium. Our findings indicate that sponges tolerate moderate increases in dissolved 

inorganic nutrients and that nutrient enrichment does not accelerate sponge growth or improve 

sponge condition. Only C. orientalis responded to higher irradiance, suggesting that sponge-

Symbiodinium associations may be more sensitive to environmental conditions than sponge-

Cyanobacteria associations. While elevated nutrient levels are exacerbating the decline of reef-

building corals, they appear to have negligible effects on reef sponges, providing further support 

for the environmental tolerance of this ecologically important phylum.  

5.2. Introduction 
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Intensified agricultural land use and modification of coastal landscapes has increased 

terrestrial runoff, carrying nutrients, sediments, and pollutants into the marine environment 

(Brodie et al. 2011, 2012, Waterhouse et al. 2012). For example, rivers now carry over five times 

more nutrients into the Great Barrier Reef (GBR) lagoon than before European settlement 

(Kroon et al. 2012). Seasonal floods cause acute runoff-related stresses (Schaffelke et al. 2012, 

Fabricius et al. 2016), but chronic nutrient enrichment (dissolved inorganic N and P) can also 

occur in nearshore locations with limited exposure to oligotrophic water (Smith et al. 1981, 

Goreau 1992). While rivers and streams represent point sources of nutrient pollution, plumes of 

sediments and nutrients can cover hundreds of km2 and increase turbidity for prolonged periods 

(Bainbridge et al. 2012, Fabricius et al. 2016). Increased levels of nutrients and sediments are not 

just problematic for GBR reefs, but for coral reefs around the world (Haas et al. 2016, Pawlik et al. 

2016).  

Terrestrial runoff contains dissolved and particulate nutrients that may be inorganic or 

organic. Each nutrient type has different lifetimes and impacts on coral reef ecosystems (Fabricius 

2005). In particular, dissolved inorganic nitrogen (DIN; ammonia, nitrite, and nitrate) forms a 

large component of the nitrogen pollution in the GBR lagoon (Brodie et al. 2012). However, DIN 

is rapidly taken up by phytoplankton, leading to phytoplankton blooms (Furnas et al. 2005, 

Bainbridge et al. 2012) which potentially contribute to outbreaks of crown of thorns starfish 

(Brodie et al. 2017, Pratchett et al. 2017). While coral reefs do occur in nutrient-rich habitats, the 

benthic community differs from that found in oligotrophic locations, including higher macroalgal 

cover and richness of heterotrophic taxa (De'ath & Fabricius 2010). Overall, DIN enrichment 

contributes to poor coral health (Wiedenmann et al. 2013), however, the effects of DIN on other 

reef taxa are less well known. 
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Sponges are highly efficient filter feeders and may benefit from DIN enrichment via 

increased dissolved or particulate carbon food sources (Bainbridge et al. 2012), or from enhanced 

nitrification activity by sponge-associated microbes (Southwell et al. 2008, Fiore et al. 2010, Fiore, 

Baker, & Lesser 2013b). Increased food availability is thought to be a primary driver of the high 

abundance of heterotrophic sponges on coastal reefs (Wilkinson & Cheshire 1989) and the 

greater abundance of heterotrophic sponges in the Caribbean relative to the Pacific (Pawlik et al. 

2016). The abundance of bioeroding sponges in particular, is strongly related to nutrient 

gradients (Rose & Risk 1985, Holmes 2000, Ward-Paige et al. 2005, Chaves-Fonnegra & Zea 2007, 

Nava et al. 2014). However, while enhanced heterotrophy or microbial metabolism could lead to 

accelerated growth or greater energy reserves if the products of microbial metabolism are 

translocated to the sponge host, studies to date suggest that nutrient enrichment does not directly 

benefit sponge growth (Roberts et al. 2006, Gochfeld et al. 2012, Easson et al. 2014), protein 

content (Gochfeld et al. 2012, but see Easson et al. 2014), or alter the microbial community 

composition (Simister, Taylor, Tsai, & Webster 2012, Luter et al. 2014). 

In resource exchange mutualisms, nutrient enrichment can remove nutrient limitation 

(e.g., nitrogen or phosphorus) of the phototroph to the detriment of the heterotroph (Kiers et al. 

2010, Shantz & Burkepile 2014, Shantz et al. 2016). DIN enrichment may have adverse 

consequences for phototrophic sponges if the symbiosis is destabilised by increasing symbiont 

density. For instance, one study suggested that DIN enrichment upset the symbiosis between 

Cyanobacteria and the sponge Aplysina cauliformis, as chlorophyll levels were found to increase 

while sponge protein levels decreased (Easson et al. 2014). However, other studies have suggested 

that chlorophyll levels in sponges hosting Cyanobacteria are unaffected by DIN enrichment 

(Roberts et al. 2006, Gochfeld et al. 2012). Thus, whether DIN enrichment destabilises the 
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symbiosis between sponges and Cyanobacteria is unclear and the effects of elevated DIN on 

sponges hosting Symbiodinium have not been investigated. 

Terrestrial runoff also contains sediments and particulate matter (Fabricius et al. 2016). At 

river mouths, large particles remain suspended in the water column thereby limiting the light 

reaching the benthos (Bainbridge et al. 2012). However, large particles settle out near the river 

mouth while flocs of small particles and nutrients travel further, triggering phytoplankton 

blooms, and limit irradiance on reefs farther from shore (Bainbridge et al. 2012). Reductions in 

irradiance can slow the growth of sponges with photosynthetic symbionts (Thacker 2005, Roberts 

et al. 2006, Erwin & Thacker 2008, Freeman & Thacker 2011) and can also reduce chlorophyll 

levels in some species (Pineda et al. 2016). The growth of bioeroding sponges, in particular, 

appears to be negatively affected by decreased irradiance (Hill 1996, Cebrian & Uriz 2006, 

Schönberg 2006, Pineda et al. 2016), likely due to their association with Symbiodinium (Weisz et 

al. 2010, Hill et al. 2011). Since reduced irradiance can cooccur with nutrient enrichment, it is 

difficult to discern independent effects of irradiance and nutrients during flood events. Moreover, 

the effects of light and nutrients may vary between sponge species due to their relative 

dependence on autotrophic production and heterotrophic feeding or their ability to switch 

between nutritional modes (Anthony & Fabricius 2000, Grottoli et al. 2006, Freeman et al. 2015). 

DIN enrichment is thought to benefit sponges indirectly, as the associated increase in 

dissolved or particulate C which results from N addition, increases the food available to sponges. 

In contrast, our understanding of how DIN directly affects sponges is limited and may vary 

between sponges with and without photosynthetic symbionts. To address this, we exposed 

heterotrophic and phototrophic sponge species to concentrations of dissolved nutrients 



5. DIN did not affect sponges 

87 

simulating flood plume conditions under two light levels and measured effects on sponge growth 

and energy reserves. 

5.3. Methods 

5.3.1. Sponge collection and acclimation 

In April 2017, whole sponges (Carteriospongia foliascens, Cliona orientalis, Cymbastella 

coralliophila, Ircinia ramosa, and Stylissa flabelliformis) were collected using SCUBA between 1 

and 9 m (Table 5-1). All species are known to associate with diverse populations of microbial 

symbionts with C. foliascens, C. coralliophila, and I. ramosa hosting Cyanobacteria; C. orientalis 

hosting Symbiodinium; and S. flabelliformis lacking photosymbionts (Wilkinson 1982, Pineda et 

al. 2016). All sponges were transported to the Australian Institute of Marine Science (Townsville, 

Queensland) and acclimated in outdoor aquaria at 27 °C. After 10 days, each sponge was cut into 

smaller explants (n = 4-11 dependent on the size of the donor sponge; Table 5-1) to provide 

sufficient experimental replication. The bioeroding C. orientalis and its underlying calcium 

carbonate substratum was cut into rectangular explants in order to measure growth: the sponge 

occupied one side of the explant and the top surface was clean substratum.  

All explants were labelled according to the donor sponge, allowed to heal for six weeks, 

and then allocated into 36 experimental aquaria (50 L). Explants from the same sponge were 

allocated into different treatments; most sponges were represented by one explant per treatment, 

but some sponges were represented by multiple explants per treatment, and a few sponges did not 

have enough explants for all treatments. As a result, each aquarium contained explants from 1-3 

sponges of each species and 8-11 total explants (Table 5-2). Tank temperature was maintained at 

26.9±0.1 (SD) °C using a computer-controlled SCADA system. Sponges were fed daily with a 1.5 
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x106 cells L-1 final concentration of cultured microalgae (Isochyrisis galbana, Nanochloropsis 

oceanica, Pavlova lutheri, Dunaliella sp.) and a diatom (Chaetocerous muelleri) ranging from 3 to 

10 µm in diameter.  

Table 5-1. Sampling location and counts of five sponge species at Orpheus Island (18° 35’ 27” S, 
146° 28' 47” E) and Rib Reef (18° 28' 54” S, 146° 52' 15” E) on the Great Barrier Reef. Each sponge 
was cut into explants for use in the experiment. 

Species Photosymbiont Location Depth (m) Sponges (n) Explants (n) 
Carteriospongia foliascens Cyanobacteria Orpheus Island 1 12 68 

Cliona orientalis Symbiodinium Orpheus Island 1 12 81 

Cymbastella coralliophila Cyanobacteria Orpheus Island 9 12 72 

Ircinia ramosa Cyanobacteria Rib Reef 9 12 70 

Stylissa flabelliformis NA Orpheus Island 9 10 61 
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Table 5-2. Sponges per tank and treatment for Carteriospongia foliascens (C. fol.), Cliona 
orientalis (C. ori.), Cymbastella coralliophila (C. cor.), Ircinia ramosa (I. ram.), Stylissa 
flabelliformis (S. fla.). Total indicates the sum of sponges per species for each treatment.  

Nutrients Light Tank C. fol. C. ori. C. cor. I. ram. S. fla. 
Control 80 Total 12 16 13 12 10 
  5 2 3 3 2 1 
  6 2 3 2 2 1 
  17 2 4 2 2 2 
  23 2 2 2 2 2 
  27 2 2 2 2 2 
  36 2 2 2 2 2 
 160 Total 12 14 12 12 10 
  2 3 2 2 2 2 
  8 1 3 2 2 2 
  14 2 2 2 2 2 
  25 2 2 2 2 1 
  30 2 2 2 2 2 
  32 2 3 2 2 1 
Medium 80 Total 12 14 12 12 10 
  4 2 3 2 2 2 
  9 2 3 2 2 1 
  11 2 2 2 2 2 
  28 2 2 2 2 2 
  29 2 2 2 2 1 
  31 2 2 2 2 2 
 160 Total 12 12 11 12 9 
  10 2 2 1 2 1 
  18 2 2 2 2 1 
  19 2 2 2 2 2 
  21 2 2 2 2 2 
  33 2 2 2 2 2 
  34 2 2 2 2 1 
High 80 Total 12 13 13 12 9 
  3 2 2 3 2 1 
  7 2 2 2 2 2 
  13 2 2 2 2 2 
  15 2 3 2 2 1 
  16 2 2 2 2 1 
  20 2 2 2 2 2 
 160 Total 12 14 11 11 10 
  1 2 2 1 2 2 
  12 2 2 2 2 2 
  22 2 4 2 2 1 
  24 2 2 2 1 1 
  26 2 2 2 2 2 
  35 2 2 2 2 2 

 

5.3.2. Nutrient and light treatments 

Nutrient treatments were designed to enrich seawater DIN to concentrations experienced 
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on inshore reefs during flood events, from 1 to 10 µM (Devlin et al. 2011). Two dissolved nutrient 

treatments were established, representing medium and high levels of nutrient enrichment, while a 

third treatment contained no nutrient amendment (control). Additions of 14.9 or 29.8 g of 

soluble fertilizer (Yates Thrive; New South Wales, AUS) were added to 60 L reservoirs of filtered 

seawater (0.04 µM) to achieve the medium and high treatment levels, respectively. Doses were 

pumped from the reservoirs at 0.01 L/min into filtered seawater entering the experimental 

aquaria at 0.8 L/min. Nutrient reservoirs were depleted every 3-4 days so were replaced twice 

weekly. 

To distinguish effects of nutrient enrichment from effects of irradiance reduction, the 

three nutrient treatments were fully-crossed with two light conditions (80 and 160 µmol quanta 

m-2 s-1), resulting in six treatments that were each replicated in six aquaria. Light was provided by 

Aquaillumination Sol LED lamps (C2 Development; Iowa, USA). Sponges were exposed to 

treatment conditions for 10 weeks. 

5.3.3. Nutrient sampling 

Dissolved and particulate nutrients were sampled weekly in both the dosing reservoirs and 

in the aquaria. Due to pump failure on several occasions, dosing reservoirs were empty on the day 

of sampling and water samples from these time points have thus been omitted from the analysis, 

leaving 9 measurements for the control and medium treatments and 5 measurements for the high 

treatment. Samples for particulate organic C (POC) and particulate N (PN) were filtered onto 

pre-combusted Whatman glass fibre filters (250 mL), acidified using hydrochloric acid, and 

analysed on a Shimadzu TOC-V analyser with a Total Nitrogen unit. Particulate values were 

compared to marine sediment standards. For dissolved nutrients, seawater samples (10 mL) were 



5. DIN did not affect sponges 

91 

taken from each dosing reservoir and aquarium and filtered using 0.45 µm Sartorius Minisart 

Cellulose Acetate filters (Göttingen, Germany). Samples for dissolved organic C (DOC) and 

dissolved N (DN) were acidified with hydrochloric acid and measured on a Shimadzu TOC-L 

analyser. Duplicate samples for dissolved inorganic nitrogen (NH3, NO2+3) and phosphate (PO4) 

were measured on a Seal AA3 segmented flow analyser and referenced against OSIL standards 

and in-house reference samples. Samples for POC, PN, DIN, and PO4 were kept frozen at -20°C 

until measurement while samples for DOC and DN were kept at 4°C. 

5.3.4. Sponge growth 

To determine the effect of nutrients on growth, sponge volume (to the nearest ±0.5 mL) 

and surface area (to the nearest ±0.1 mm2) were measured at the beginning and end of the 

experiment (10 week interval). Sponge volume was assessed using a standard water displacement 

technique (Wilkinson & Vacelet 1979) for all species except the bioeroding C. orientalis. Sponge 

growth was estimated as the difference in sponge volume over the course of the experiment as a 

percentage of the initial volume. Sponges were briefly exposed to air during volume 

measurement. Due to its encrusting morphology, growth of C. orientalis was measured using 

change in surface area over the course of the experiment. Area was calculated from photographs 

of the top surface in ImageJ software (Abramoff et al. 2014). C. orientalis growth was calculated as 

the change in surface area relative to the initial area. For all species, sample sizes were ≥9 in each 

treatment (Table 5-3). 
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Table 5-3. Sample sizes for all sponge species and treatments. Sponges indicates the number of 
individual sponges used to create the explants. The counts for each treatment indicate the 
number of sponge explants. 

   80 µmol quanta m-2 s-1  160 µmol quanta m-2 s-1 
 Sponges (n)  Control Medium High  Control Medium High 
Growth rate          
C. coralliophilia 12  11 11 13  12 10 10 
C. foliascens 12  11 11 12  10 11 11 
C. orientalis 12  15 13 13  12 9 12 
I. ramosa 12  11 12 12  12 12 11 
S. flabelliformis 
 

10  10 10 9  10 9 10 

Organic matter          
C. coralliophilia 12  12 13 12  12 11 12 
C. foliascens 12  11 12 11  10 11 10 
C. orientalis 12  14 14 13  13 13 13 
I. ramosa 12  12 11 12  12 12 11 
S. flabelliformis 
 

10  10 10 9  10 9 10 

Chlorophyll a          
C. coralliophilia 12  12 13 12  12 12 12 
C. foliascens 12  10 12 11  11 11 12 
C. orientalis 12  13 14 13  15 12 13 
I. ramosa 12  12 11 12  12 12 11 

 

5.3.5. Sponge organic matter and chlorophyll 

Sponge organic matter was used as a proxy for sponge condition. Organic matter was 

measured at the end of the experiment by freeze-drying the sponge tissue, weighing the dried 

tissue, burning it at 450°C for 3 h, and weighing the remaining ash. Organic matter was calculated 

as the difference between the dry weight and ash weight as a proportion of the dry weight. For all 

species, sample sizes were ≥9 in each treatment (Table 5-3). 

Chlorophyll was used as a proxy for determining whether treatment affected 

photosymbiosis. At the end of the experiment, chlorophyll was extracted from frozen sponge 

tissue following homogenization in a bead beater with 1 mL of 95% ethanol. Pigments were 
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extracted twice from each sample, both extracts were pooled, and absorbance was recorded at 

630, 645, 660, and 750 nm using a Powerwave microplate reader (BIO-TEK Instruments Inc., 

Vermont USA). For all species, sample sizes were ≥10 in each treatment (Table 5-3). 

5.3.6. Statistical analyses 

Nutrient levels within dosing reservoirs were analysed using a linear mixed model with 

nutrient dose and time as predictors. Nutrient levels within sponge aquaria were analysed using 

linear mixed models with nutrient dose, light treatment, time, as well as nutrient:time and 

nutrient:light interactions as predictors and aquarium as a random effect to account for 

autocorrelations between measurements taken on the same tank. Where significant differences 

were detected among nutrient treatments or nutrient:light combinations, all pairs of treatments 

were compared using linear contrasts and P-values were corrected using a single step correction. 

Sponge responses were analysed using linear mixed models with nutrient treatment, light 

treatment, and a nutrient:light interaction as predictors. Tank and sponge were included as 

random effects to account for correlations within aquaria and among measurements on explants 

from the same donor genotype. Where significant differences were detected among nutrient 

treatments or nutrient:light combinations, all pairs of treatment levels were compared using 

linear contrasts and P-values were corrected using single-step correction. All models were verified 

to meet the assumptions of normality of residuals and heteroscedascity using histograms of the 

residuals and plots of fitted versus residual values. 

5.4. Results  

5.4.1. Nutrient and light conditions 

The medium and high dosing reservoirs contained higher dissolved organic carbon 
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(DOC), dissolved nitrogen (DN), and inorganic nutrients (total DIN, NH4, NO2+3, PO4) compared 

to the control reservoir (Table 5-4, Table 5-5, Table 5-8). However, only the medium nutrient 

reservoir had an altered ratio of DIN:PO4, with reduced DIN:PO4 compared to the control 

reservoir (Table 5-4, Table 5-5, Table 5-8). Concentrations of particulate carbon and nitrogen 

were consistent across all dosing reservoirs (Table 5-4, Table 5-5, Table 5-8). 

  



5. DIN did not affect sponges 

95 

Table 5-4. Particulate and dissolved nutrient levels within the dosing reservoirs. The table lists 
mean and standard deviation for each reservoir. 

  Control  Medium  High 
 n Mean SD  Mean SD  Mean SD 
Particulate (µg/L)          
Organic C 5 258.6 126.6  589.8 796.8  379.9 236.4 

N 5 61.9 22.0  173.2 160.0  140.6 64.4 

Dissolved (mg/L)          

Organic C 3 1.1 0.1  30.4 1.3  58.1 2.7 

N 3 0.1 <0.1  65.8 2.7  128.1 4.4 

Dissolved inorg. (µmol)          
Total N 5 1.1 1.0  905.6 276.2  2098.4 95.1 

NH4 5 0.4 0.2  388.8 113.4  950.0 48.5 

NOx 5 0.7 0.8  516.8 166.1  1148.4 57.1 

PO4 5 0.1 0.1  317.7 91.7  681.6 41.4 

Total N : PO4 5 16.0 8.9  2.8 0.8  3.1 0.1 

 

Table 5-5. Results of linear models analysing nutrient levels within dosing reservoirs. The model 
included nutrient treatments and time. Degrees of freedom (num., denom.), F statistic, and P-
values are reported for each measured nutrient. P-values less than 0.05 are indicated in bold. 

 Linear model  Post-hoc tests 
 Nutrients  Time  C vs M M vs H C vs H 
 df F P  df F P  P P P 
Particulate            
Organic C 2,6 1.3 0.33  4, 6 9.5 0.01  - - - 

N 2,8 1.6 0.24  4, 8 1.4 0.31  - - - 

Dissolved            

Organic C 2,4 1464.5 <0.01  2, 4 3.4 0.14  <0.01 <0.01 <0.01 

N 2,4 2455.0 <0.01  2, 4 3.2 0.14  <0.01 <0.01 <0.01 

Dissolved inorg.            
Total DIN 2,14 464.7 <0.01  8, 14 1.4 0.26  <0.01 <0.01 <0.01 

NH4 2,14 335.0 <0.01  8, 14 1.4 0.29  <0.01 <0.01 <0.01 

NOx 2,14 432.7 <0.01  8, 14 1.6 0.21  <0.01 <0.01 <0.01 

PO4 2,14 118.9 <0.01  8, 14 1.0 0.50  <0.01 <0.01 <0.01 

Total DIN : PO4 2,14 432.7 <0.01  8, 14 1.6 0.21  0.02 0.91 0.08 

 

In the treatment aquaria, DN, DIN, and PO4 increased (but not DOC) relative to control 
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aquaria (Figure 5-1, Table 5-6, Table 5-7). Mean total DIN in the sponge aquaria was 1.45, 3.3, 

and 5.9 µM for the control, medium, and high treatments, respectively. Aquaria in the medium 

treatment contained significantly higher concentrations of all DIN compounds and PO4 

compared to control aquaria, but aquaria in the high treatment were not significantly different 

from controls in NO2+3 (Figure 5-1, Table 5-7). The ratio of DIN:PO4 decreased in treatment 

aquaria compared to control aquaria (Figure 5-1D). Importantly, the concentration of all 

nutrients varied over time and differences between treatments varied over the course of the 

experiment, particularly for DIN compounds (Figure 5-1, Table 5-7). 

 

Figure 5-1. Nutrient levels for (A) total dissolved inorganic nitrogen (DIN; NH4+NO3+NO2), (B) 
phosphate (PO4), (C) ratio of DIN:PO4, and (D) total dissolved nitrogen (DN). Circles represent 
control aquaria (white), medium dose aquaria (grey), and high dose aquaria (black). Left and 
right panels separate the 80 and 160 µmol quanta m-2 s-1, respectively. Error bars represent ±SD. 

Irradiance levels in the low and high light treatments were 79.5 (±5.4 SD) and 157.8 
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(±13.2 SD) µmol quanta m-2 s-1, respectively. The irradiance treatment had small, but significant, 

effects on nutrient levels within the sponge aquaria (Table 5-6, Table 5-7). The concentration of 

DN was slightly higher in the higher irradiance treatment, whereas most DIN compounds were 

slightly lower (Figure 5-1, Table 5-7). The concentration of NH4 depended on both the irradiance 

and nutrient treatments: in aquaria from the control and medium treatments, NH4 was similar 

between irradiance treatments (Table 5-7; control: z=-0.8, P=0.97; medium: z=-0.6, P=0.99) 

whereas in aquaria from the high treatment, NH4 was 33% higher at 80 versus 160 µmol quanta 

m-2 s-1 (z=-6.0, P≤0.01).  

Table 5-6. Summary of particulate and dissolved nutrients within the experimental aquaria. Table 
includes weekly means and SD. 

   Nutrient treatment 
   Control  Medium  High 
 Irradiance  n Mean SD  Mean SD  Mean SD 
Particulate (µg/L)            
Organic C 80 

160 
 3 

3 
30.4 
27.5 

8.2 
7.0 

 39.0 
36.6 

3.0 
4.5 

 31.3 
29.0 

2.5 
3.2 

N 80 
160 

 3 
3 

9.3 
8.1 

2.0 
2.1 

 10.1 
9.6 

0.8 
1.9 

 8.2 
6.6 

1.2 
0.4 

Dissolved (mg/L)            
Organic C 80 

160 
 6 

6 
1.1 
1.1 

0.1 
0.1 

 1.1 
1.1 

0.1 
0.1 

 1.3 
1.2 

0.1 
0.1 

N 80 
160 

 6 
6 

0.1 
0.1 

<0.1 
<0.1 

 0.2 
0.2 

<0.1 
<0.1 

 0.3 
0.2 

<0.1 
<0.1 

Dissolved inorg. (µmol)            
Total N 80 

160 
 6 

6 
1.6 
1.3 

0.1 
0.1 

 3.6 
3.1 

0.2 
0.1 

 6.1 
5.6 

0.2 
0.6 

NH4 80 
160 

 6 
6 

0.3 
0.2 

<0.1 
<0.1 

 0.6 
0.6 

0.1 
0.1 

 1.2 
0.9 

0.1 
0.1 

NO2+3 80 
160 

 6 
6 

1.3 
1.0 

0.1 
0.1 

 3.0 
2.6 

0.2 
0.1 

 4.9 
4.6 

0.2 
0.3 

PO4 80 
160 

 6 
6 

0.2 
0.2 

<0.1 
<0.1 

 0.6 
0.5 

<0.1 
<0.1 

 1.0 
0.9 

<0.1 
0.1 

Total N : PO4 80 
160 

 6 
6 

9.0 
7.8 

0.2 
0.6 

 6.5 
5.9 

0.4 
0.2 

 6.5 
6.3 

0.2 
0.5 
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Table 5-7. Results of linear mixed models analysing nutrient levels within the experimental aquaria. The model included nutrient 
treatments, light treatments, time, a nutrient*light interaction term, nutrient*time interaction term, and a random intercept for each 
tank. Degrees of freedom (num., denom.), F statistic, and P-values are reported for each measured nutrient. P-values ≤0.05 are 
indicated in bold. 

 Nutrients  Light  Time  Nut. * Light  Nut. * Time 
 df F P  df F P  df F P  df F P  df F P 
Particulate                    
Organic C 2,12 1.0 0.39  1,12 <0.1 0.84  3,45 2.6 0.06  2,12 0.2 0.81  6,45 0.3 0.94 

N 2,12 2.1 0.17  1,12 1.7 0.21  2,30 1.8 0.19  2,12 0.1 0.88  4,30 0.3 0.86 

Dissolved                    
Organic C 2,30 0.5 0.64  1,30 0.4 0.53  8,259 66.3 <0.01  2,30 0.3 0.77  16,259 0.6 0.91 

N 2,30 77.2 <0.01  1,30 0.5 0.48  1,233 0.2 0.62  2,30 0.5 0.60  2,233 5.2 0.01 
Dissolved inorg.                    
Total DIN 2,30 18.8 <0.01  1,30 10.5 <0.01  1,235 7.7 0.01  2,30 1.5 0.24  2,235 122.1 <0.01 

NH4 2,30 71.8 <0.01  1,30 1.3 0.27  1,235 6.5 0.01  2,30 17.2 <0.01  2,235 2.0 0.14 

NO2+3 2,30 5.3 0.01  1,30 10.6 <0.01  1,237 16.0 <0.01  2,30 1.1 0.35  2,237 146.1 <0.01 

PO4 2,30 297.8 <0.01  1,30 1.4 0.24  1,237 12.0 <0.01  2,30 1.3 0.28  2,237 0.2 0.79 

Total DIN : PO4 2,30 14.3 <0.01  1,30 22.0 <0.01  1,235 288.5 <0.01  2,30 2.9 0.07  2,235 3.2 0.04 
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Table 5-8. Post-hoc results from linear contrasts of nutrient doses. P-values were corrected using 
single-step correction. P-values less than 0.05 are indicated in bold. 

 Control vs. Med.  Med. vs. High  Control vs. High 
 Z P  Z P  Z P 
Particulate         
Organic C - -  - -  - - 
N - -  - -  - - 
Dissolved         
Organic C - -  - -  - - 
N 6.9 <0.01  -6.3 <0.01  12.3 <0.01 
Dissolved inorg.         
Total N 5.2 <0.01  1.3 0.37  4.9 <0.01 
NH4 - -  - -  - - 
NO2+3 3.2 <0.01  -1.1 0.48  1.1 0.53 
PO4 16.7 <0.01  11.1 <0.01  22.4 <0.01 

 

5.4.2. Sponge growth 

None of the sponge species exhibited significantly different growth rates in response to 

the nutrient treatments, light treatments, or any combination of nutrients and light (Figure 2-2A, 

Table 5-9). Over the course of the 10 week experiment, C. coralliophila increased in volume 

(11.5%±6.1 SD), while I. ramosa (-6.4±7.2%), C. foliascens (-25.9±10.9%), and S. flabelliformis (-

45.0±10.7%) decreased in volume. For C. coralliophila, this corresponded to a growth rate of 4.9% 

volume mo-1. Surface area growth of the encrusting sponge C. orientalis was similar amongst all 

treatments (Table 5-9), with an average increase of 11.1±6.7%, or 4.7% area mo-1. 

5.4.3. Sponge organic matter and chlorophyll 

No sponge species exhibited significantly different organic content (i.e. condition) in 

response to the nutrient treatments or combinations of nutrients and light (Figure 5-2B, Table 5-

9). However, organic content in C. orientalis was significantly affected by irradiance, with 7% 

more organic content at 160 versus 80 µmol m-2 s-1 (Table 5-9). I. ramosa had the highest organic 

content (73.8±7.8% SD), followed by S. flabelliformis (56.5±5.5%), C. coralliophila (41.2±7.9%), C. 
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foliascens (39.4±4.9%), and C. orientalis (5.1±0.1%; Figure 5-2B). 

 

Figure 5-2. (A) Sponge growth (% increase) and (B) organic matter (OM; % dry weight) under 
nutrient and light treatments. Circles represent sponges in control treatments (white), medium 
treatments (grey), and high treatments (black). Light treatments are indicated on the x-axis. Error 
bars indicate ±SD. Growth of C. orientalis is calculated via change in surface area while the 
growth of all other species is calculated via change in volume. 

Sponge chlorophyll content did not differ between nutrient treatments or combinations of 

nutrient and light for any sponge species (Figure 3, Table 5-9). However, chlorophyll levels in C. 

orientalis were significantly different between light treatments, with 35% more chlorophyll at 160 

versus 80 µmol quanta m-2 s-1 (Figure 3). I. ramosa had the highest chlorophyll µg g-1 wet weight 

(99.0±34.3 SD), followed by C. coralliophila (82.1±23.2), C. foliascens (68.8±20.7), and C. 

orientalis (57.2±10.7; Figure 3). 
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Figure 5-3. Sponge chlorophyll a content. Circles represent sponges from control treatments 
(white), medium treatments (grey), and high treatments (black). Light treatments are denoted on 
the x-axis. Error bars indicate ±SD. 
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Table 5-9. Results of linear mixed models for sponge growth, organic matter, and chlorophyll a 
content for each sponge species. The model included nutrient treatments, light treatments, time, a 
nutrient*light interaction term, and a random intercept for each sponge. Degrees of freedom 
(num., denom.), F statistic, and P-values are reported for each measured nutrient. P-values less 
than 0.05 are indicated in bold. 

 Nutrients  Light  Nutrients*Light 
 df F P  df F P  df F P 
Growth rate            
C. coralliophila 2, 61.0 2.3 0.11  1, 61.0 <0.1 0.77  2, 61.0 1.6 0.21 

C. foliascens 2, 30.3 0.8 0.47  1, 30.3 3.2 0.08  2, 30.3 0.4 0.70 

C. orientalis 2, 59.9 0.3 0.73  1, 61.0 <0.1 0.92  2, 59.4 1.0 0.37 

I. ramosa 2, 28.0 0.3 0.74  1, 28.0 0.8 0.37  2, 28.0 0.1 0.89 

S. flabelliformis 2, 28.0 0.3 0.74  1, 28.0 0.8 0.37  2, 28.0 0.1 0.89 

Organic matter            
C. coralliophila 2, 23.8 0.4 0.66  1, 26.8 1.9 0.18  2, 26.3 0.3 0.73 

C. foliascens 2, 21.7 0.6 0.56  1, 21.7 0.7 0.40  2, 22.0 0.7 0.48 

C. orientalis 2, 63.1 2.0 0.14  1, 63.1 5.0 0.03  2, 63.1 0.3 0.76 

I. ramosa 2, 22.4 0.8 0.48  2, 22.5 0.3 0.59  2, 22.4 0.4 0.68 

S. flabelliformis 2, 9.8 0.2 0.81  1, 9.9 0.9 0.36  2, 9.9 0.6 0.55 

Chlorophyll a            
C. coralliophila 2, 25.9 1.2 0.31  1, 27.2 2.8 0.10  2, 28.9 0.1 0.91 

C. foliascens 2, 24.6 0.6 0.57  1, 24.4 0.1 0.75  2, 24.5 0.5 0.62 

C. orientalis 2, 28.2 0.4 0.65  1, 28.2 4.8 0.04  2, 28.2 <0.1 0.99 

I. ramosa 2, 53.3 0.1 0.94  1, 53.3 0.1 0.73  2, 53.2 <0.1 0.95 
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5.5. Discussion 

Nutrient enrichment is generally thought to benefit filter feeders and bioeroders 

(Birkeland 1988, Glynn 1997), with positive correlations between nutrient levels and abundance 

and/or bioerosion reported for some species (Rose & Risk 1985, Sammarco & Risk 1990, Risk et 

al. 1995, Ward-Paige et al. 2005, Fabricius & De'ath 2008). Importantly, direct experimental 

evidence for the advantages provided by nutrient enrichment is lacking. Dissolved inorganic 

nitrogen (DIN) is an important component of runoff from agricultural or urban areas (Brodie et 

al. 2012) and previous research has shown that sponges exhibit either no response (Roberts et al. 

2006, Gochfeld et al. 2012) or decreased growth / condition (Koopmans & Wijffels 2008, Easson 

et al. 2014) following DIN enrichment. In this study, addition of DIN at levels experienced on the 

inshore GBR during flood plume events (Devlin & Schaffelke 2009, Devlin et al. 2011), caused no 

adverse effects on the health of 5 sponge species but neither did it accelerate growth or improve 

sponge condition. These findings were consistent across phototrophic and heterotrophic species.  

Sponges are fundamental to nutrient cycling on coral reefs due to their efficient filtration 

of seawater, including the consumption of dissolved and particulate organic matter (DOM and 

POM) and potentially the production of particulate organic matter (POM) (Richter et al. 2001, de 

Goeij et al. 2013, McMurray et al. 2018, Rix et al. 2018). Additional inorganic nutrients can 

increase the dissolved or particulate organic carbon (DOC or POC) pool in seawater, thereby 

increasing the potential food available for sponges (Maldonado et al. 2012). Numerous studies 

have demonstrated that sponges consume DOC and/or POC (reviewed in Maldonado et al. 2012, 

de Goeij et al. 2017) and POC levels have been shown to positively correlate with sponge growth 

in both the laboratory and in the field (Duckworth & Pomponi 2005, Koopmans & Wijffels 2008). 

However, in this study nutrient amendment did not result in increased sponge growth or 
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improved condition, and neither did DOC addition, although DOC was only significantly 

enriched in the nutrient reservoirs and not in the experimental aquaria. This distinction suggests 

that DOC was rapidly consumed by the sponges or plankton, although either scenario could have 

theoretically benefited the sponges by providing increased scope for growth. The scope for 

sponge growth in this study was limited by duration of the experiment and a longer experiment 

may have led to larger effects of nutrient addition. 

In resource exchange mutualisms, nutrient amendment can upset the nutritional 

exchange between heterotrophs and autotrophs (Shantz & Burkepile 2014, Shantz et al. 2016). 

More specifically, nutrient enrichment can remove the resource limitation of the phototrophic 

partner, who no longer requires the heterotroph to supply nutrients (Shantz et al. 2016). In this 

way, DIN enrichment leads to increased Symbiodinium density in corals which then increases the 

thermal instability of the symbiotic partnership (Wooldridge 2014). In this study, inorganic 

nutrient enrichment did not affect the density of chlorophyll a, a proxy for photosymbiont 

density, which is consistent with two previous reports (Roberts et al. 2006, Gochfeld et al. 2012), 

although nutrient enrichment has been reported to increase chlorophyll and decrease protein in 

A. cauliformis (Easson et al. 2014). Notably, where Cyanobacteria density has been measured 

directly, no effect of DIN enrichment was observed (Gochfeld et al. 2012, Easson et al. 2014), 

which supports that sponge symbioses are stable under nutrient enrichment. 

As nitrogen enrichment can increase microbial growth, nutrient balance can be as 

important to symbiosis as total nutrient load (Wiedenmann et al. 2013). In corals, high DIN:P 

ratios can have detrimental effects, with phosphorous limitation increasing the thermal sensitivity 

of the symbiotic partnership (Ezzat et al. 2016). In the current study, DIN:P was reduced, 
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potentially mitigating any negative effects on the sponge symbioses. However, it is notable that no 

change in symbiont density (sensu chlorophyll a) occurred at elevated DIN, suggesting that the 

sponge photosymbiont populations are unaffected by nutrient amendment. 

During a flood event, DIN enrichment may coincide with reduced irradiance due to 

particulate material, suspended fine particles, or nutrient-induced phytoplankton blooms 

reducing the incident light reaching the benthos (Bainbridge et al. 2012, Schaffelke et al. 2012). 

For all five sponge species, irradiance did not significantly affect sponge growth, although higher 

irradiance increased organic content and chlorophyll levels in C. orientalis, suggesting that the 

condition of this species is tightly coupled to the performance of its photosynthetic symbiont, 

Symbiodinium (Hill 1996, Schönberg 2006, Fang et al. 2014, Achlatis et al. 2017). This finding 

supports field experiments where bioeroding sponges grew and eroded faster under higher 

irradiance (Hill 1996, Schönberg 2006), fuelled by increased carbon translocation from the 

Symbiodinium (Weisz et al. 2010). Irradiance appears to play a role in the success of C. orientalis 

on the inshore GBR, as C. orientalis cover has increased at locations with relatively low turbidity 

(low chlorophyll a) and intermediate DIN levels (Ramsby, Hoogenboom, et al. 2017). Whilst 

most studies indicate that increased irradiance accelerates the growth of phototrophic sponges 

(Hill 1996, Thacker 2005, Roberts et al. 2006, Schönberg 2006, Freeman & Thacker 2011), some 

species are not affected (this study; Erwin & Thacker 2008), suggesting that sponge 

photosymbioses have species-specific responses to irradiance.  

Despite the potential for inorganic and organic nutrients to increase the scope for sponge 

growth, nutrient (DIN+P) and organic (DOC) enrichment had no effect on GBR sponges and 

their photosymbionts. The DIN exposure in this study was a similar magnitude as previous 
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studies (Simister, Taylor, Tsai, & Webster 2012, Gochfeld et al. 2012), but the sponges were 

exposed for more than twice as long in this study. Thus, if sponges are to benefit from coastal 

eutrophication, it is likely to be via particulate material rather than inorganic nutrient 

enrichment.  
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Chapter 6. Discussion 

6.1. Summary of findings 

Sponges are important members of marine communities, encompassing large amounts of 

biomass, filtering large volumes of water, and processing and recycling nutrients (Bell 2008). In 

particular, bioeroding sponges break down calcium carbonate substrata, thereby contributing to 

reef erosion and reducing reef accretion (Schönberg, Fang, & Carballo 2017). The performance of 

bioeroding sponges under future ocean conditions will directly affect scleractinian corals through 

competition (Stubler et al. 2014, Enochs et al. 2015, Chaves-Fonnegra et al. 2018), reef accretion 

(Murphy et al. 2016), and reef nutrient cycling (Mueller et al. 2014). This thesis includes 

experiments designed to test whether bioeroding sponges will benefit from changing ocean 

conditions, including ocean warming and coastal nutrient enrichment, thereby reducing reef 

accretion (Enochs et al. 2015). In this discussion, I integrate my main findings (Table 6-1), 

emphasize how they expand and strengthen our understanding of the ecology of bioeroding 

sponges as potential threats to future reefs, and conclude by highlighting directions for future 

research. 

Chapter 2 described the distribution of Cliona orientalis across the inshore GBR and 

identified sediment deposition and water clarity as primary drivers of its distribution and 

abundance, respectively. Chapter 3 defined a 32 °C thermal bleaching threshold for C. orientalis 

and measured the effect of bleaching on sponge energy reserves. Chapter 4 identified core 

microbial taxa, including an abundant Rhodothalassium sp., and demonstrated that the C. 

orientalis microbiome shifts prior to bleaching. Chapter 5 determined that dissolved inorganic 

nutrients do not affect the growth or health of C. orientalis or four other common reef sponge 
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species. Light treatments only affected C. orientalis, increasing energy reserves and chlorophyll 

content. Together, this thesis expands our understanding of how sponges will respond to 

changing environmental conditions and highlights that the bioeroding C. orientalis will not 

directly benefit from ocean warming or nutrient enrichment. 

Table 6-1. Summary of the effects of studied environmental cues on C. orientalis. 

Environmental cue Effect on C. orientalis Chapter 
Deposition of fine sediment Negative Restricts distribution 

Limits percent cover 

2 

Chlorophyll concentration Negative Associated with decreases in cover 2 

Macroalgal abundance Negative Associated with decreases in cover 2 

Temperature Negative Triggers bleaching  

Disrupts photosynthesis and microbial community 

Consumption of energy reserves 

3, 4 

Dissolved inorganic 
nutrients 

NA No effect on growth, chlorophyll, or energy reserves 5 

Irradiance Positive Increases chlorophyll content 

Increases energy reserves 

2, 5 

 

6.2. Effects of environmental change on bioeroding sponges 

Bioeroding sponges may be stress-tolerant ‘winners’ on changing reefs (Schönberg, Fang, 

& Carballo 2017), as their abundance has increased in some regions following coral bleaching 

events (Schönberg 2001, Schönberg & Ortiz 2008, Chaves-Fonnegra et al. 2018). However, 

Chapter 2 shows that any increases following bleaching have not translated to increased cover on 

the inshore GBR, similar to what has been reported from the Caribbean over a similar period 

(Gilliam 2010, Ruzicka et al. 2010, Marulanda-Gómez et al. 2017). Many of the reefs studied in 

Chapter 2 bleached prior to the survey period in 1998 and/or 2002 (Berkelmans et al. 2004), 

suggesting that C. orientalis did not proliferate following bleaching on the GBR and that reported 

increases in cover from individual locations (Ward-Paige et al. 2005, Schönberg & Ortiz 2008) 
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may be local and episodic rather than a wider long-term trend. Even though bioeroding sponge 

cover has not increased over the past decade on the GBR, C. orientalis may still be tolerant of 

warming that triggers coral bleaching (Schönberg et al. 2008). In several instances, bioeroding 

sponges did not bleach during coral bleaching events (Cortés et al. 1984, Vicente 1990), leading 

some researchers to define them as thermally tolerant. However, laboratory studies indicate that 

bioeroding sponges can bleach at similar temperatures to corals (Fang et al. 2013, Achlatis et al. 

2017). Chapter 3 defined the bleaching threshold for C. orientalis as +3 °C above the maximum 

monthly mean, which also corresponded with a significant shift in the associated microbial 

community (Chapter 4). These findings reveal that C. orientalis cannot tolerate substantially 

more stress than sympatric corals (Berkelmans & Willis 1999). That said, 1-2°C of warming may 

benefit C. orientalis in the short-term, as C. orientalis did not bleach during the 2017 bleaching 

event on the GBR when temperatures did not reach its bleaching threshold of 32 °C. Few studies 

have investigated the recovery capacity of bioeroding sponges, but Chapter 3 indicates that their 

ability to recover from bleaching is poor, at least under aquarium conditions. 

Therefore, C. orientalis is not a likely ‘winner’ under changing environmental conditions 

that threaten coral reefs. While the rate of sponge-mediated erosion will increase as oceans 

become more acidic (reviewed in Schönberg, Fang, & Carballo 2017), the severe physiological 

costs of ocean warming and bleaching on these sponges indicate that accelerated erosion is 

unlikely to be realised (Achlatis et al. 2017). If warming induces a decline in other bioeroders as 

well, reef growth may continue for a longer period than if bioerosion rates were maintained. 

Perhaps a decline in bioeroders would buy time to reduce greenhouse gas emissions, slow ocean 

warming, and prevent the collapse of coral reefs. However, as Caribbean reefs demonstrate, once 

coral cover declines to less than 10%, reef erosion will likely exceed reef accretion even if 
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bioeroders decline (Perry et al. 2013, 2014). Other species of bioeroding sponges, such as those 

without photosynthetic symbionts or those that reside entirely within the reef structure, may 

respond differently than C. orientalis, but little is known about these species. Understanding the 

response of other bioeroding taxa, in addition to sponges, to changing environmental conditions 

is critical to predicting future reef erosion. 

6.3. Future directions 

A number of research questions emerged from the work conducted in fulfilment of this 

PhD. While the temperature threshold for C. orientalis bleaching was clearly defined, it is 

important to test how other stressors, including ocean acidification, nutrient enrichment and 

light, interact with warming to alter the bleaching threshold. For example, organic enrichment 

can mitigate some effects of thermal stress on C. orientalis (Achlatis et al. 2017) and ocean 

acidification can dampen the effects of warming on other phototrophic sponges (Bennett et al. 

2016). Whether nutrient enrichment affects the bleaching tolerance of sponges is largely 

unknown (Achlatis et al. 2017), but nutrient enrichment can make corals more susceptible to 

bleaching (Wooldridge 2009). While several studies have investigated the combined effects of 

warming and acidification on bioeroding sponges (Wisshak et al. 2013, Fang et al. 2014, Stubler et 

al. 2015, Achlatis et al. 2017), it remains unclear whether ocean acidification alters the bleaching 

threshold.  

Despite their recognised critical importance to host health, the functional role of microbes 

within bioeroding sponges has not yet been investigated. Recent research suggested that the 

microbial community of C. orientalis does not participate in the assimilation of inorganic 

nutrients, with the Authors positing that the microbial community plays a minor role in the C. 
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orientalis holobiont (Achlatis et al. 2018). However, sponge-associated microorganisms are 

known to undertake a diverse array of functional roles in addition to carbon and nitrogen cycling, 

including essential vitamin synthesis, antimicrobial production, elimination of toxic wastes and 

sulfur metabolism (Webster & Thomas 2016, Hill & Sacristán-Soriano 2017). The microbial 

community of C. orientalis is overwhelmingly dominated by one symbiont, Rhodothalassium sp., 

yet its role in the sponge holobiont remains unknown. Whether the C. orientalis microbial 

community contributes to the erosion capacity of the sponge has also not been considered. 

Defining the functional interactions between the different components of the C. orientalis 

holobiont will improve our understanding about the ecology and environmental tolerance of this 

species. 

More generally, future research should address whether organic enrichment (DOC or 

POC) benefits sponges. It’s hypothesized that DIN enrichment leads to DOC enrichment which 

facilitates sponge dominance on reefs (de Goeij et al. 2013, Pawlik et al. 2016). While numerous 

studies measure DOC and POC fluxes in sponges (reviewed in de Goeij et al. 2017), direct 

experimental evidence that additional DOC benefits sponges is lacking. In Chapter 5, DIN 

enrichment had no effect on the growth or condition of C. orientalis or other GBR sponges, and 

DOC also had no apparent effect, although additional experiments are needed to validate the 

ubiquity of this finding. 

6.4. Conclusions 

This thesis addressed several common hypotheses bioeroding sponges, including that 

bioeroding sponges are increasing in cover, have a high thermal tolerance, and benefit from 

nutrient pollution. These knowledge gaps led to supposition that bioeroding sponges are a threat 



6. Discussion 

112 

to coral reefs. However, this thesis demonstrates that the thermal sensitivity of bioeroding 

sponges will limit their contribution to future reef erosion and suggests that C. orientalis is 

unlikely to exploit reef decline or anthropogenic influence. Furthermore, the use of a multi-level 

ocean warming experiment provided key insights, such as the bleaching threshold and multiple 

microbial shifts, that would not have been detected using a factorial design. The results of this 

thesis can be incorporated into GBR carbonate budgets by predicting where sponge erosion 

occurs and where sponge erosion is likely to increase until future ocean warming compromises 

bioeroding sponges. 
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B.1. Abstract 

Dinoflagellates in the genus Symbiodinium associate with a broad array of metazoan and 

protistan hosts. Symbiodinium-based symbioses involving bioeroding sponge hosts have received 

less attention than those involving scleractinian hosts. Certain species of common Cliona harbor 

high densities of an ecologically restricted group of Symbiodinium, referred to as Clade G. The 

relationships of these unusual Clade G Symbiodinium with Foraminifera, sponges, and black coral 

(Antipatharia) are rarely studied. Nonetheless, analyses of genetic evidence indicate that Clade G 

likely comprises several distinct species. Here we use genetic data in combination with ecological 

and geographic evidence to formally describe Symbiodinium endoclionum sp. nov. obtained from 

the Pacific boring sponge Cliona orientalis and S. spongiolum sp. nov. from the congeneric 

western Atlantic sponge C. varians. These species appear to be part of an adaptive radiation of 

Clade G lineages specialized to the metazoan phyla Porifera and Cnidaria that began prior to the 

separation of the Pacific and Atlantic Oceans.  

Key words: Atlantic Ocean; Cliona; Pacific Ocean; Porifera, Symbiodinium, systematics.  

B.2. Introduction 

Dinoflagellates in the genus Symbiodinium are often symbiotic with cnidarians including 

hard corals, soft corals, and sea anemones (Baker, 2003). Less commonly recognized, they also 

form ecologically important symbioses in other hosts, including sponges, and giant clams, as well 

as single-celled foraminifera (Pochon et al., 2001, Schönberg & Loh, 2005, Granados et al., 2008). 

As mutualistic symbionts, Symbiodinium occur at high densities within these various hosts and 

provide them with metabolic energy via photosynthesis (Hill, 1996, Weisz et al., 2010), thus 
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fuelling important ecological processes such as coral calcification and sponge bioerosion. Despite 

the importance of these abundant micro-algae to coral reef ecosystems, most Symbiodinium lack 

formal taxonomic designations, which has both constrained and complicated our understanding 

of their physiology, ecology, and evolution (LaJeunesse et al., 2012). 

While it is problematic to differentiate Symbiodinium using morphological traits, the 

analyses of molecular genetics clearly identify a breadth of distantly and closely-related lineages. 

The genus is divided hierarchically into many subgroupings, or clades, that are separated by large 

nucleotide sequence differences among conserved genes (e.g. small and large subunit rDNA) 

(Rowan & Powers, 1992, Stern et al., 2010). Clades of Symbiodinium differ in their geographic 

distribution, ecological and regional abundance, and range of host associations (Pochon et al., 

2006). Moreover, each clade contains different numbers of biologically distinctive entities, or 

species, possessing different ecological niches (e.g., LaJeunesse et al., 2012, Parkinson et al., 2015). 

Presently, species of Symbiodinium are formally described based primarily on genetic evidence 

(phylogenetic and population genetic) supported by ecological, biogeographic, physiological, and 

morphological data (Sampayo et al., 2009, LaJeunesse et al., 2014, e.g., Lee et al., 2015, Wham et 

al., 2017). While ecologically common clades (e.g. Clades A, B, C, and D) contain described 

species (LaJeunesse, 2017), other clades have distinct entities that are candidates for species 

classification.  

Symbiodinium Clade G is an evolutionarily divergent and enigmatic group (Pochon et al., 

2001). In contrast to those Symbiodinium that are common to symbiotic cnidarians, Clade G 

appears restricted mostly to protistan and poriferan hosts, notably found in certain miliolid 

foraminifera, primarily in the genus Marginopora (Pochon et al., 2001), and in bioeroding 
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sponges of the family Clionaidae (Schönberg & Loh, 2005, Granados et al., 2008, Hill et al., 2011). 

Gene sequences diagnostic of Clade G have also been recovered from the water column and 

benthic substrates, including coral rubble and turtle grass blades (Granados-Cifuentes et al., 2015, 

Takabayashi et al., 2011, Yamashita et al., 2014). Rarely is this clade detected in Cnidaria, but one 

particular member appears to form stable symbioses with a species of black coral from the Indo-

West Pacific (Bo et al., 2011). Clade G has occasionally been observed with other cnidarians as 

co-dominant symbionts in some intertidal coral colonies (LaJeunesse et al., 2010), or at very low 

background densities (Van Oppen et al., 2005, Thomas et al., 2014, Ziegler et al., 2017).  

Certain sponge species in the family Clionaidae, comprising bioeroding sponges, are 

known to harbor high densities of Symbiodinium. As with symbiotic corals, photosynthesis by 

these resident Symbiodinium appear to enhance growth and bioerosion rates in these sponges 

through translocation of fixed carbon (Hill, 1996, Schönberg, 2006, Weisz et al., 2010). Cliona 

orientalis from the Indo-Pacific is ecologically abundant and rapidly bioerodes carbonate material 

including the skeletons of living corals. In contrast to many scleractinian corals, bioeroding 

sponges may benefit from anthropogenically driven global climate change. Cliona orientalis has 

been observed to increase in abundance after episodes of mass coral mortality from thermal stress 

(Schönberg & Oritz, 2009). This loss of live coral cover exposes new settlement areas where 

sponge larvae colonize and grow without competition. Moreover, increasing regional 

eutrophication and the rise of ocean pCO2 may accelerate sponge-mediated bioerosion (Holmes 

et al., 2000, Wisshak et al., 2012). Such observations indicate that the Clionaidae, especially those 

with Clade G Symbiodinium, may increase in abundance in response to anthropogenically driven 

global change, which may further facilitate coral reef erosion (Bennett et al., 2017).  



Appendix B: Genetic description of Symbiodinium 

 138 

Given the likelihood of the increasing abundance and ecological significance of 

bioeroding sponges and their negative effect on reef accretion, their symbioses with 

dinoflagellates should attract more research interests. Establishing a formal taxonomy for these 

sponge symbionts will help standardized the reporting of findings from future research projects. 

Therefore, we seek to formally classify and name species of Clade G Symbiodinium commonly 

associated with sponges within the genus Cliona. Recent genetic analysis of the Clade G 

symbionts obtained from sponges found that they are diverged from those harboured by 

Foraminifera (Schönberg & Loh, 2005, Hill et al., 2011). Moreover, preliminary genetic analyses 

have shown that Clade G in clionaids from the West Atlantic are distinguished genetically from 

closely-related Clade G counterparts in the Pacific Ocean (Hill et al., 2011); and are likely 

different species. Thus, as with most other recently described Symbiodinium spp. (e.g. LaJeunesse 

et al., 2012), we rely here on the concordance of several independent phylogenetic markers and 

known ecological and biogeographic attributes to classify two new species of Symbiodinium, the 

first species representing Clade G.  

B.3. Materials and Methods 

B3.1. Specimen collection 

Symbiotic species of clionaid bioeroding sponges were collected from the tropical Atlantic 

and the Western Pacific. Samples were collected so as not to include any live coral tissue. Cliona 

varians was collected from the Florida Keys and Belize (depths of 1-2 m). Cliona tumula was 

obtained only from the Florida Keys. In the Pacific, C. orientalis was collected from Little Pioneer 

Bay, Orpheus Island, Eastern Australia (< 3m depth) and Okinawa (7-15 m), Japan, in the 

northwest tropical Pacific Ocean. Tissues from the top 1 cm of the sponge surface were removed 
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and preserved either by freezing in liquid N2 and stored at -80˚C, preserved in 70% ethanol, or in 

high-salt, 20% DMSO buffer (Seutin et al., 1991) and stored at -20°C.  

B.3.2. Cell size measurements 

Preserved cells from host tissue homogenates were photographed under bright-field 

illumination at a magnification of 400× using an Olympus BX51 compound microscope 

(Olympus Corp., Tokyo, Japan) with a Jenoptik ProgRes CF Scan digital camera (Jenoptik, Jena, 

Germany). The lengths and widths for at least 50 cells per sample were calculated with the 

program ImageJ (Abramoff et al., 2004). 

B3.3. DNA extraction, PCR amplification, sequencing, and phylogenetic analysis 

Whole tissue DNA extractions were performed as described by LaJeunesse et al. (2003), 

consisting of a 2 min bead-beating step (0.4-0.6 mm glass beads) and a modified and abreviated 

DNA wizard extraction protocol (Promega). Nuclear large-subunit ribosomal DNA (LSU), 

chloroplast large-subunit (cp23S), mitochondrial cytochrome b (cob) gene, and the partial coding 

and entire non-coding region of the psbA (psbAncr) were amplified and sequenced to delimit 

species (LaJeunesse et al., 2012). Conditions for amplifying the LSU are provided in (Zardoya et 

al., 1995); and conditions for amplifying cp23S and cob are provided by Zhang et al. (2000) and 

Zhang et al. (2005), respectively; primers and conditions for psbAncr are specified in LaJeunesse 

and Thornhill (2011). 

To amplify DNA, reactions were performed in 25 µL volumes containing 2.5 µL of 2.5 

mM dNTPs, 2.5 µL of 25 mM MgCl2, 2.5 µL standard Taq Buffer (New England Biolabs, Ipswich, 

MA, USA), 0.13 µL of 5 U • µL-1 Taq DNA Polymerase (New England Biolabs), 1 µL of each 

forward and reverse primer at 10 µM, and 1 µL of 5–100 ng DNA template. Products were 
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cleaned with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) and directly sequenced on an 

Applied Biosciences sequencer (Applied Biosciences, Foster City, CA, USA) at the Pennsylvania 

State University Genomics Core Facility. Sequence electropherograms were each examined 

manually and nucleotide sequences aligned by eye. Raw sequences and alignments for each gene 

can be found in dryad. 

Phylogenetic analyses were performed on aligned data sets in PAUP* v.4.0d151 (Swofford, 

2014) under maximum parsimony with indels in rDNA included as a 5th character state. 

Bootstrap support was calculated based upon 1000 replicates. Bayesian posterior probabilities 

were calculated with the software MrBayes v.3.2.3 (Ronquist et al., 2012), using the optimal 

nucleotide substitution model for each gene based on corrected Akaike Information Criterion as 

calculated with the software ModelTest v.3.7 (Posada & Crandall, 1998).  

B.4. Results 

B.4.1. Phylogenetic delineation of recently divergent lineages 

Distinct lineages of Clade G Symbiodinium were identified from Pacific and Atlantic 

clionaid sponges, respectively. Sequence data from chloroplast psbAncr, cp23S, mitochondrial cob 

and nuclear LSU rDNA indicate that there are several closely-related species lineages within 

Clade G. Genealogies produced from genetic markers, including nuclear (LSU), mitochondrial 

(cob), and chloroplast genomes (cp23S), differentiated a Pacific and Atlantic lineage of 

Symbiodinium Clade G by few, albeit fixed, sequence differences (Figures 1 and 2). Large 

sequence differences separating these lineages were found in the plastid psbA (Figure B-3). 

Moreover, there was no indication of recombination among sequence variants (alleles) in samples 

analysed from each ocean basin. Collectively, these genetic data and patterns are used here to 
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unambiguously resolve two new Symbiodinium species.  

B.4.2. Morphology 

Micrographs taken using light microscopy show no differences in symbiont cell 

morphology between samples obtained from Pacific and Atlantic clionaid sponges (Figs 4A and 

4B). Furthermore, measurements of cell sizes did not differentiate these lineages (Figures B-4C). 

B.4.3. Taxonomic descriptions 

B.4.3.1 Symbiodinium endoclionum, sp. nov. Ramsby & LaJeunesse 

Diagnosis: Coccoid cells ranged in mean size from 8.0 to 9.2 µm at maximum diameter 

(Figures B-4c). The combined nucleotide sequences of cp23S (GenBank Accessions: MF322792, 

MF322793), nuclear ribosomal and LSU (MF322789, MF322790), mitochondrial cob 

(MF322795), and psbA–psbAncr are diagnostic of this species.  

Holotype designation: The type specimen was obtained in July 2015 from Orpheus Island, 

Australia (18˚35’41.01” S; 146˚29’10.83” E) and deposited in the US Algal Collection of the 

National Herbarium, Smithsonian Institution, Washington, DC, United States of America; and 

assigned the catalog number: US Alg. Coll. #223179. 
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Figure B-1. Phylogeny based on nuclear LSU rDNA comparisons showing the diversity and 
evolutionary relationships between Clade G Symbiodinium relative to other clades containing 
formally described species. Clade G bifurcates into distinct lineages that exhibit specificity to 
either metazoan or foraminiferan hosts. Small sequence differences in LSU separate several 
ecologically and geographically distinct entities associated with particular metazoan hosts, 
including bioeroding sponges and some cnidarians. Bootstrap values based on 1000 replicates 
support Clade G as monophyletic as well as each of its subclades. 

  



Appendix B: Genetic description of Symbiodinium 

 143 

 

Figure B-2. Genetic partitioning of Clade G lineages from specimens collected in the Pacific and 
Atlantic Oceans (A). Gene phylogenies of Clade G Symbiodinium based on partial sequences of 
LSU rDNA (~ 610 b.p.), chloroplast cp23S (~ 600 b.p.), and mitochondrial cob (~ 900 b.p.). (B) 
Small, albeit fixed, differences based on a concatenated DNA phylogeny identifies host-specific 
and, in some cases, geographically widespread lineages from the Pacific and Atlantic Oceans. Two 
of these are described here as Symbiodinium enodclionum sp. nov. from the Pacific Ocean and S. 
spongiolum sp. nov. from the Atlantic Ocean. Bootstrap values are based on 1000 iterations. 
Light-coloured symbols of different shapes identify collection locations from the Pacific (C) and 
dark symbols identify locations from the Greater Caribbean/Atlantic (D). The cross symbol (†) 
identifies the cp23S sequence from the Symbodinium in Madracis asanoi obtained from a depth 
of 75 meters in Palau. The asterisk indicates the non-synonymous mutation found in genotypes 
of S. spongiolum from the tropical Atlantic. 
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Figure B-3. Phylogeny of Clade G Symbiodinium associated with Cliona spp. using high-
resolution psbAncr sequences (~1000 bases). The sequence haplotypes corresponding to the new 
species Symbiodinium endoclionum and S. spongiolum are specified. Symbols placed at end of 
each terminal branch correspond to locations indicated on the maps shown in Figures 2C and D. 
Bootstrap values based on 1000 iterations and Bayesian posterior probabilities are indicated for 
each internal branch. 
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Type locality: Orpheus Island, Australia collected at a depth of 1-3 meters from the host 

sponge Cliona orientalis (Demospongiae: Porifera). 

Etymology: The Latin endo (inside) and cliona (bioeroding sponge) refers to the ecological 

specialization of S. spongiolum, which occurs in this host species of carbonate-excavating sponge. 

Other notes: Populations in Japan appear to be genetically distinct from populations in 

Australia based on rapidly evolving psbAncr (Figures B-3). However, both populations share the 

same sequences for conserved chloroplast, mitochondrial and nuclear rDNA genes.  
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Figure B-4. Light micrographs of Symbiodinium endoclionum (A) and S. spongiolum (B) taken at 
1000× (scale bar = 10 µm). (C) A comparison of mean cell dimensions (length and width) of 
coccoid cells obtained from independent samples of Symbiodinium endoclionum (light and grey 
colored circles) and S. spongiolum (dark colored squares). Error bars represent standard 
deviations calculated from measurements on ≥ 50 cells. 
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B.4.3.1. Symbiodinium spongiolum, sp. nov. Hill & LaJeunesse 

Diagnosis: Coccoid cells have a mean size of 8.6 µm at maximum diameter (Figures B-

4C). The combined nucleotide sequences of cp23S (GenBank Accession: MF322791), nuclear 

ribosomal LSU (MF322787, MF322788), mitochondrial cob (MF322794), and psbA–psbAncr are 

diagnostic of this species.  

Holotype designation: The type specimen was obtained in July 2015 from the Florida 

Keys, USA (24˚39’35.44” N; 81˚27’07.41” W) and deposited in the US Algal Collection of the 

National Herbarium, Smithsonian Institution, Washington, DC, United States of America; and 

assigned the catalogue number: US Alg. Coll. # 223180. 

Type locality: Key Largo, Florida, United State of America in the Greater Caribbean. The 

host specimen of Cliona varians was collected at a depth of 1 meter. 

Etymology: From the Latin spongia (sponge) and suffix –ulum (small one) for the host this 

species exhibits ecological (i.e. host) specialization. 
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Figure B-5. The zooxanthellate Pacific sponge Cliona orientalis harbor Symbiodinium 
endoclionum sp. nov. This photosymbiotic bioeroding sponge bores into calcium carbonate 
substrate and overgrows live coral colonies by eroding their skeletons. Examples include, (A) reef 
rock, (B) Porites spp. and (C) Phymastrea (=Montastraea) magnistellata. Photos courtesy of the 
AIMS Long Term Monitoring Program (panels A and C) and Michelle Jonker (Australian 
Institute for Marine Science; panel B). 



Appendix B: Genetic description of Symbiodinium 

 149 

B.5. Discussion 

B.5.1. Clade G species diversity 

The genus Symbiodinium as a whole is ecologically widespread. However, the prevalence 

and abundance of each designated clade of Symbiodinium differs widely from the overwhelmingly 

dominant Clade C to the extremely rare Clade I, which is known from only one study (Pochon & 

Gates, 2010). Clade G is perceived as ecologically uncommon and little is known about its species 

composition and their distributions. This is mainly because Clade G occurs in understudied host 

taxa (i.e. sponges, black corals, and foraminifera). Phylogenetically, Clade G is bifurcated into 

divergent lineages that exhibit disparate host affinities (Schönberg & Loh, 2005, Hill et al., 2011), 

which are clearly distinguished using LSU and cp23S sequences (Figures B1 and 2). One lineage 

associates primarily with large soritid foraminifera, especially in the genus Marginopora (Garcia-

Cuetos et al., 2005, Pochon et al., 2007), while the second group associates with the metazoan 

phyla, Porifera and Cnidaria (Figures B-2B), and thus each evolutionarily divergent lineage 

possess distinct ecological habits.  

Only certain species of clionaid sponge appear to require Symbiodinium for their survival 

and growth (Figure B-5; Hill, 1996). The Symbiodinium species described here appear to be 

ecologically specialized for living in symbiosis with specific species of clionaid sponge. Indeed, S. 

endoclionum has yet to be identified in hosts other than C. orientalis (Western Pacific) and S. 

spongiolum may only occur in C. varians (Caribbean). The Atlantic Cliona tumula also associates 

with Clade G, but that Symbiodinium sp. appears to be a different species from S. spongiolum 

(Figures B-3). Partner specificity from the point of view of the host vs. the symbiont can differ. 

For example, the Caribbean sponge, Cliona caribbaea can associate with either a Clade G or a 
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Clade A Symbiodinium (Granados et al., 2008). Thus, there is some flexibility with the kind of 

Symbiodinium a particular host sponge may associate. More exhaustive sampling is required to 

determine the full ecological breadth of S. endoclionum and S. spongiolum, but for now they 

appear to be highly host-specialized (Thornhill et al., 2014). 

 Clade G probably contains additional sponge-associated/specialized species, which are 

closely related to S. endoclionum and S. spongiolum, that require future classification and naming 

(Figs 2 and 3). For example, the Symbiodinium within C. orientalis from Heron Island, Australia, 

and C. tumula from the Florida Keys, USA, had divergent psbAncr sequences diagnostic of them 

being separate species (Figures B-3). This is further supported by small, but fixed, sequences 

differences in, for example, cp23S rDNA between S. spongiolum and the symbiont from C. tumula 

(Figures B-2B) (Hill et al. 2011). Furthermore, additional cp23S and ITS2 rDNA sequence data 

indicate that several other Clade G species appear ecologically specialized for cnidarians, 

including black corals (Antipatharia)(Bo et al., 2011) and deep-dwelling stony corals (Pacific 

Madracis asanoi; Figures B-2A). Finally, our understanding of the diversity in Clade G associated 

with Pacific Foraminifera is restricted to a small number of field surveys from essentially one 

geographic location (Guam)(Pochon et al., 2007). Thus the actual species diversity and 

prevalence of Glade G will remain under appreciated until further studies and characterizations 

are conducted. 

B.5.2. A fixed genetic difference probably corresponds to a physiological adaptation 
in populations of Symbiodinium spongiolum. 

Amino acid (aa) variability among cytochrome b sequences is highly conserved among 

Symbiodinium spp., especially in functional regions of this proton-motive transmembrane 

enzyme. For all known Symbiodinium analyzed to date, the amino acid at position 165 (colored 
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white in Figure B-6) encodes as a polar Cysteine, which possesses a non-charged residue. 

However, S. spongiolum from tropical regions in the Caribbean possess a Tyrosine, which 

possesses an aromatic residue. This change in amino acid would effect the protein’s 3-

dimensional conformational structure and influence the redox catalysis of the Qo reaction center 

(Howell, 1989). While this cytochrome b variant is not a fixed trait among members of S. 

spongiolum, the physiological implications of this mutation requires future comparative study. 

B.5.3. Stability of sponge-Symbiodinium associations 

Symbiodinium populations found in clionaids are perceived to resist thermal stressors that 

otherwise induce bleaching in corals. For example, Cliona varians forma varians is common in 

shallow tropical habitats with fluctuating temperatures and turbidity, which may explain the 

apparent tolerance of their symbiotic partnerships to thermal stress. Symbiotic sponges are 

sometimes found devoid of algae, but usually only when portions have been buried by sediment 

(Vicente, 1990). However, recent observations of mass bleaching involving clionaid sponges (Hill 

et al., 2016) indicate that our understanding of the stability of these associations is incomplete. 

Future investigations into the functional nature of sponge-dinoflagellate mutualism are 

warranted. To what extent do resident populations of S. endoclionum and S. spongiolum 

contribute to the metabolic demand of the host? Do these Symbiodinium have adaptations that 

make them tolerant of thermal stress, or does resistance to “bleaching” depend more on the 

sponge’s physiology?  
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Figure B-6. Nonsynonymous base substitution in the mitochondrial cob gene characterizes 
tropical populations of Symbiodinium spongiolum in the tropical western Atlantic Ocean. (A) 
Amino acid sequences (aa 151–180) in the functional region of the Qo reaction centre are highly 
conserved among divergent clades of Symbiodinium and related dinoflagellates (e.g., 
Pelagodinium beii). (B) Structural model of the Qo reaction centre of transmembrane cytochrome 
b showing the location of a nonsynonymous mutation (converting a polar Cysteine to an 
aromatic Tyrosine) unique to some populations of S. spongiolum (adapted from Howell 1989). 

B.5.4. Persistence of specific host-symbiont combinations over millions of years 

The divergence between Clade G and other clades is estimated to have occurred tens of 



Appendix B: Genetic description of Symbiodinium 

 153 

millions of years ago (Pochon et al., 2006). The genetic differences measured between Clade G 

and its next closest related lineages, Clades D or B, is similar to what is quantified between genera 

or families of dinoflagellates (Rowan & Powers, 1992). Because Symbiodinium endoclionum and 

S. spongiolum both associate with symbiotic clionaids from the Atlantic and Pacific Oceans, it is 

inferred that their common ancestor was also symbiotic with excavating sponges before the 

oceanographic and geological separation of these ocean basins. Niche conservation among most 

extant host-specialized Symbiodinium appears to last for many millions of years (Thornhill et al., 

2014) even though host-Symbiodinium partnerships change dramatically over very long spans of 

time (Rowan & Powers, 1991), probably in response to extreme changes in regional or global 

climates (LaJeunesse, 2005). 

Symbiodinium endoclionum and S. spongiolum both appear to be part of a recent adaptive 

radiation that produced multiple independent Clade G lineages specialized to Porifera and 

Cnidaria (Figures B-2). The phylogenetic and ecological concordance indicates that these lineages 

began diverging (i.e. speciating) before separation of the Atlantic and Pacific Oceans (Figures B-

3), probably during the Messinian of the Late Miocene Epoch (7.2–5.3 Ma) when global 

temperatures turned decisively colder (Zachos et al., 2001), and were accompanied by shifts in 

diversity and community assemblages in marine and terrestrial biota, observed in the fossil 

record (Cerling et al., 1993, Budd, 2000). The occasional finding of Clade G during broad surveys 

of host diversity and environmental samples suggest that many more, and possibly some free-

living species, from this group exist. Clearly, there are other sponge associated Clade G 

Symbiodinium (Figures B-3)(Hill et al., 2011) and several cnidarian-specific lineages that await 

formal classification and further ecological study (Bo et al., 2011).  
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There is mounting awareness that LSU (and ITS) rDNA may not always provide adequate 

phylogenetic resolution among closely related species of dinoflagellates (Siano et al., 2009, Wham 

et al., 2017). Little, or no sequence divergence in the LSU rDNA is common among many lineages 

of Symbiodinium, even those separated by the closure of the Central American Seaway (Figures 

B-2A). For example, S. tridacnidorum (ITS2 type A3) in the Pacific has an identical LSU to S. 

“fitti” (ITS2 type A3) in the Atlantic (Lee et al., 2015). Similarly, a single nucleotide substitution in 

LSU rDNA differentiates Symbiodinium endoclionum from S. spongiolum (Figures B-1). Thus, 

LSU is a marker that often requires millions of years of genetic isolation to evolve diagnostic 

sequence differences. While LSU rDNA evolves considerably faster than small sub-unit (SSU) 

rDNA, even faster-evolving markers have been recommended to better assess the phylogenetic 

relationships between dinoflagellate genera and species (Siano et al., 2009). By comparison, the 

large number of nucleotide differences between the chloroplast psbAncr from S. endoclionum from 

S. spongiolum better chronicles the millions of years that separate these lineages (Figures B-3).  
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