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Abstract: Eiao Island (39.2 km2, 577 m elevation), situated at the northern extent of the 

Marquesas Archipelago, features rocky and steep coastlines with few sheltered embayments 

that allow easy access to the sea and marine resources. We report the first evidence of 

prehistoric fishing practices from Eiao Island based on three inland sites (possibly dating from 

the 14th to 17th centuries), and explore variation in fish exploitation (NISP = 1021; MNI = 157). 

All previous archaeological fishing records from the archipelago are from coastal sites, with 

inland Eiao Island assemblages offering comparative data on site location and taxonomic 

composition. The Eiao Island fish bone assemblages are dominated by piscivorous taxa, 

specifically grouper (Serranidae). Few tuna, mackerel and bonito (Scombridae) remains were 

recovered from the Eiao Island assemblages, compared to reports from Ua Pou, Tahuata and 

Ua Huka. New family-level taxonomic records added for the archipelago include: bonefish 

(Albulidae), requiem sharks (Carcharhinidae), butterflyfish (Chaetodontidae), flagtail 

(Kuhliidae), damselfish (Pomacentridae) and rabbitfish (Siganidae). These results further 

contribute to our understanding of prehistoric Marquesan fishing practices and allow 

elucidation of subsistence in coastal vs. inland settings, variability in taxonomic composition 

between islands of the archipelago, and importantly inform on human-environment interactions 

in East Polynesia. 

Keywords: prehistoric marine subsistence, ichthyoarchaeology, Eiao Island, Marquesas 

Islands, Polynesia  
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Introduction  

Archaeologists studying prehistoric fishing practices across the world have contributed time-

series data that track species richness and abundance, which are critical to understanding long 

term human-environment interactions (e.g., Allen 2017; Barrett et al. 2011; Campbell & Butler 

2010; Erlandson et al. 2009; Fitzpatrick & Donaldson 2007; Giovas et al. 2016; McKechnie et 

al. 2014; Ono & Intoh 2011; Reitz 2014; Rieth & Morrison 2017; Speller et al. 2012; Van Neer 

& Ervynck 2010; Weisler & Green 2013). During the last several decades there have been 

significant advances in prehistoric fishing studies in the Pacific, with increasing 

methodological rigor (excavation practices, recovery techniques and analysis), and through 

incorporating theoretical frameworks such as historical ecology and human behavioural 

ecology (Lambrides & Weisler 2016). These advancements have enhanced our understanding 

of marine resource sustainability, ecosystem resilience, resource depression and foraging 

efficiency. In this paper we provide the first account of prehistoric fishing on Eiao Island, which 

furthers our understanding of East Polynesian marine fisheries through the analysis of 

assemblages from an isolated high volcanic island at the extreme north of the Marquesas 

Archipelago. 

Insightful for the time, Suggs (1961:13) stated that the well-watered eastern and southern coasts 

of the Marquesas Islands were more favourable for habitation. Aswani and Allen (2009) noted 

a correlation between the location of early sites in the archipelago and coral reef cover (Conte 

& Molle 2014; Davidson et al. 1999; Rolett 1998; Sinoto 1970; Suggs 1961). Early insights 

into Marquesan fishing were derived from archaeological material culture studies; a transition 

from diverse fishhook kits to a predominance of small jabbing hooks in later prehistory was 

attributed to environmentally driven adaptation (Sinoto 1966, 1970; Sinoto & Kellum 1965; 

Skjølsvold 1972; Suggs 1961). However, utilising material culture studies and fish bone 

analyses from Ua Huka and Hiva Oa, Dye (1990) argued that the decline in the Marquesan 

fishing industry through prehistory, as demonstrated by a shift from offshore to inshore 

resource exploitation, a reduction in rotating hooks and bonito lures, and corresponding 

increase in mollusc and pig exploitation, could also be attributed to social factors, such as the 

rise of a class system and restricted access to certain resources (see also Davidson et al. 1999).  

We analysed fish bone from three prehistoric sites from Eiao presenting the first archaeological 

fishing records from inland sites for the archipelago and situate these assemblages within the 

context of regional trends in prehistoric Marquesan fishing practices. 
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Environmental and archaeological background  

The Marquesan environment  

Forming between 5.5 and 0.4 Ma, the eight main islands and several islets and seamounts of 

the Marquesas Archipelago trend south-east to north-west for 350 km in a roughly linear 

alignment (Figure 1). Although many island groups in the eastern Pacific are time-progressive 

archipelagos, a clear correlation between the timing of volcanism and distance to a presumed 

hotspot remains unclear for the Marquesas Islands (Crough & Jarrard 1981; McNutt et al. 

1989). The largest and most fertile islands of the Marquesas are Nuku Hiva (339 km2
, 1224 m 

highest elevation) and Hiva Oa (320 km2, 1213 m elevation) both of which have rugged and 

steep coastlines but, importantly, have a few deep embayments with sheltered reefs and 

adjacent coastal flats—favoured locales for early colonisation sites (Aswani & Allen 2009; 

Suggs 1961:13). Situated at the northern extent of the archipelago the 13 km long crescent-

shaped Eiao Island (39.2 km2, 577 m elevation) represents the remnant of a caldera wall of a 

larger volcano (25 km in diameter), which underwent catastrophic collapse (Liotard et al. 

1986). The coastline is rocky and steep with only a few small sheltered embayments, mostly 

on the north and west coasts, where access to the sea is easier (Figure 2). Surface rocks are 

predominately alkali-rich basalts, which were commonly used to fashion adzes and flake tools; 

in fact, Eiao has one of the most extensive stone adze quarry complexes in East Polynesia 

(Weisler et al. 2016a). 

Precipitation throughout the archipelago is highly variable with frequent droughts, but 

windward (north and east) sides of islands receive more rainfall that is influenced by the 

Humboldt Current (also known as the Peru-Chile current system) which flows north along the 

Chilean coast, then towards the equator (Kämpf & Chapman 2016: Figure 5.3). El Niño ENSO 

events influence the periodicity of droughts, while La Niña episodes evidence colder waters 

and strengthened upwelling (Kämpf & Chapman 2016:169). This latter condition may be a 

contributing factor to the relatively high abundance of tuna in many Marquesan middens (see 

discussion below). 

The Marquesas Islands is a unique region in terms of its marine and terrestrial biodiversity 

(Galzin et al. 2016). A recent biological survey of Marquesan shore fishes increased the known 

species from 415 to 495, with the number of endemic species increasing 2.1% (13.7 % of all 

species) making the Marquesas the third highest for endemism after the isolated Hawaiian 

Islands and Easter Island (Rapa Nui) in the extreme margins of Polynesia (Delrieu-Trottin et 
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al. 2015). Sea surface temperatures are variable (26-30ºC) in the Marquesas despite proximity 

to the equator (Randall & Earle 2000). Even though species richness is low across the 

archipelago, fish biomass is high, with communities dominated by piscivores and planktivores, 

unlike the more common carnivore and herbivore fish communities associated with the South 

Pacific (Planes et al. 2016). The strong upwelling of nutrient-rich waters in the region 

contributes to higher than average abundances of pelagic taxa; specifically, tuna longline 

catches are often double those recorded for other French Polynesian archipelagos (Taquet et 

al. 2016). Often associated with embayments, the few Marquesan coral reefs are relatively 

undeveloped when compared to other French Polynesian archipelagos (Planes et al. 2016). 

Diminished coral cover has been attributed to the upwelling of cold nutrient-enriched waters 

from the Humboldt Current (Suggs 1961:13), but this also increases primary productivity in 

the region. The upwelling of cold, low salinity and nutrient-rich waters from the Humboldt 

Current also has important implications for the marine fishery as colder water temperatures 

restrict coral formation and reef development (typical of the Marquesas), yet support a 

relatively high biomass of zooplankton and small pelagic fish (jack mackerel, anchovies and 

sardines) which attract tuna and larger carnivores (Martinez & Maamaatuaiahutapu 2004; 

Wolff et al. 2003). 

Previous studies of Marquesan archaeological fish remains  

When compared to other Pacific archaeological fish bone assemblages (e.g., Allen et al. 2001; 

Fitzpatrick et al. 2011; Ono & Clark 2012; Weisler & Green 2013; Weisler et al. 2016b), higher 

abundances of scombrids and other piscivorous taxa have been reported at Marquesan sites 

(Allen 2017: Figure 47.2). Ua Huka Island was a primary focus of the early Marquesan fishing 

literature, particularly the Hane Dune site (e.g., Davidson et al. 1999; Dye 1990; Kirch 1973; 

Sweeney et al. 1993), and the debate surrounding a shift from primarily marine to terrestrial 

resource exploitation through time.  

Kirch (1973) analysed fish bone assemblages from Ua Huka recovered in the 1960s by Sinoto 

and Kellum and, while sample size was small (total bones identified = 183) and identification 

protocols have greatly improved since then, serranids and lutjanids were prominent within the 

assemblage. Although dentaries and premaxillae of these taxa are relatively easy to identify, a 

re-analysis using modern analytical techniques would undoubtedly increase species richness 

(see for example, Weisler et al. 2016b: Table 4). Additionally, Kirch’s (1973:36-39) analysis 

of mollusc shell, bone remains (pig, bird, turtle and fish), urchin and crustaceans suggested a 
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shift in focus from marine to terrestrial resources through time, which was argued to be more 

economically viable. More comprehensive analyses of fish bone assemblages housed in the 

B.P. Bishop Museum were conducted by Dye (1990), including assemblages from the Hane 

Dune site, Hanatakua, and Hanapete‘o Cave—the latter two sites located on Hiva Oa. The early 

layers of the Hane Dune and Hanatakua sites indicated that pelagic taxa were equally as 

abundant as inshore and bottom dwelling taxa, which suggests that a wide range of marine 

habitats were being exploited (Dye 1990:75). Yet, when compared to the late assemblages—

from Hanapete‘o Cave and the late layers of the Hane Dune site—a higher proportion of the 

identified fish bones represented inshore and bottom dwelling taxa. Dye (1990) broadly 

suggested that driven by social factors, a decline in offshore fishing occurred through time in 

the Marquesas, and an increased reliance on molluscs and pigs was reflected archaeologically. 

These trends were disputed by Sweeney et al. (1993) from a reanalysis of Dye’s (1990) datasets 

(see also Anderson et al. 1994), which indicated that subsistence change did not occur, and that 

temporal trends outlined by Dye (1990) were a result of spatial and functional variability 

between sites (but see Dye 1996).  

Fish assemblages from the Hane Dune site were most recently analysed by Fraser (1998:81-

92) and Davidson et al. (1999). Scombrid remains accounted for ~26% of total MNI, but a high 

proportion of the assemblage could have been captured with trolling lures as well as by angling. 

Increased abundance of scombrids compared to previous analyses of the site (Dye 1990; Kirch 

1973) was due to the inclusion of more elements for identification, such as vertebrae (Fraser 

1998:87). Overall, the limited evidence for the exploitation of inshore taxa could be explained 

by the absence of extensive reef flats and lagoon waters, leading to the exploitation of the more 

productive reef edge. A decline in scombrids was reported over time, with a corresponding 

increase in inshore resource exploitation (Davidson et al. 1999). These trends have been 

attributed to cultural factors, but as the timing of this decline is not accurately known, these 

trends cannot be further evaluated. In the last several years, Conte and Molle (2014) have re-

excavated the Hane Dune site to establish a more precise chronological sequence. Settlement 

was reported from ~950 cal BP to ~400 cal BP, but as the new excavations were only conducted 

in Area B (Conte & Molle 2014), and given that fish bone from both Area A and B was analysed 

by Davidson et al. (1999: Table 5), these new dates are difficult to correlate with the original 

excavations and the observed trends in scombrid abundance.  

Similar declines in pelagic taxa/scombrids have been noted elsewhere in the Marquesas Islands. 

At Te Anapua, Ua Pou Scombridae was the top ranked taxon by MNI and accounted for 25% 
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of the total assemblage, which was also dominated by piscivorous taxa. A decline in scombrids 

and corresponding increase in serranids and holocentrids was reported through time, but no 

obvious alterations in capture methods were identified (Fraser 1998:92-101; Leach et al. 1997). 

Additionally, the dating of the site is problematic, as an anomalously early date of ~2100 ± 95 

BP was reported for basal deposits (calibrated dates were not provided). However, the latter 

date of 770 ± 50 BP (Ottino 1992) is more consistent with archipelago-wide settlement models 

(Allen & McAlister 2013). Finally, at Hanamiai on Tahuata Island, excavations by Rolett 

(1998) reported site occupation from ~925 cal BP. Declines in exploitation of pelagic and 

offshore deep-sea fish species (e.g., scombrids, large/medium bodied serranids and lutjanids, 

etc.) and corresponding increases in fish remains represented by inshore dwelling species were 

noted through time (see also Dye 1990), so too were increases in fish taxa commonly captured 

by spearing, netting and poisoning. While sample size is small (total bones identified = 497), 

the assemblage was dominated by piscivorous taxa, similar to other Marquesan sites.  

The multidisciplinary project established in 2003 by Allen and colleagues focused on Anaho 

Bay, Nuku Hiva to assess long term human-environment interactions. Subsequent excavation 

and analysis has also been completed at the Hakaea Beach site and Hatiheu Valley (Allen 2004; 

Allen & Addison 2002; Allen & McAlister 2010, 2013; Allen et al. 2005; Aswani & Allen 

2009). Archaeological fish bone assemblages from Anaho Bay are dominated by scarids, 

lutjanids, serranids and carangids (Allen 2004; Aswani & Allen 2009). However, Anaho Bay 

has a well-developed coral reef, which likely accounts for the higher occurrence of scarid 

remains compared to other Marquesan sites.  

The temporal changes in fishing practices noted by earlier researchers, particularly declines in 

offshore fishing and the exploitation of scombrids, cannot be addressed using the Eiao fish 

bone assemblages as, based on the limited dating using unidentified wood charcoal, it is 

possible that many of the cultural deposits  are contemporaneous (see below). However, these 

assemblages are the first archaeological fish bone reported from Eiao and contribute the initial 

account of fish exploitation inferred from inland sites in the Marquesas, thus enhancing a 

review of archipelago-wide trends in prehistoric fishing subsistence practices. 

Eiao Island archaeology, the study sites and radiocarbon dating  

Compared to some of the other islands of the Marquesan Islands, archaeological research on 

Eiao has been limited to surface surveys, mostly restricted to residential architecture and to the 

major adze quarry complex. Linton (1925:106-107) completed the first archaeological survey 
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of Eiao recording several house platforms and adze workshops noting that broken adzes, 

rejects, and “chips” were located all along the plateau and the southern end of the island. Suggs 

(1961) visited the island briefly and collected a few basalt flakes (geochemically analysed by 

Weisler 1998: Table 1), while Candelot (1980) focused primarily on the surface architecture. 

Interested mostly in the adze quarry complex, Rolett (2001) recorded a stone-working area on 

the north of the island. In 1987, 2010, 2011 and 2013 Charleux surveyed the island and noted 

that habitation and adze working sites were predominantly numerous in the north half of the 

island, along the plateau. The highest site density appeared to be in the Hanataaitoki Valley 

with habitation, basalt extraction and reduction areas noted (Weisler et al. 2016a: Figure 1). 

Adze material and geological samples collected from Eiao by Charleux have been 

geochemically analysed (Charleux et al. 2014; Weisler et al. 2016a) and artefacts from Eiao 

have been recovered elsewhere within the archipelago (e.g., Allen & McAlister 2013; 

McAlister 2011; Rolett 1998) and throughout East Polynesia (Di Piazza and Pearthree 2001; 

McAlister et al. 2013; Weisler 2008: Figure 52.2, et al. 2016a, c) attesting to its importance. 

The dated contexts with Eiao stone artefacts document use of Eiao Island by the 13th to 14th 

centuries (Rolett 1998; Weisler 1998).  

During five field seasons between 1987 to 2013, Charleux identified what is likely the densest 

concentration of residential and fine-grain basalt quarry features on Eiao situated between 

~400-550 m elevation along the plateau at Hanataaitoki Valley, within grid square D6 (Figure 

1). Sites were recorded using the World Geodetic System (WGS) 1984 where 07M indicates 

the Pacific region. Several large pavements (paepae), one up to 72 m long, and five hiamoe or 

house sites, were situated near stone extraction and working areas. All residential sites are a 

combination of hiamoe and/or paepae. The plateau has fine-grain basalt resources which were 

undoubtedly the main attraction to this inland part of the island; however, access to the coast 

is challenging. The west coast is accessed along the difficult lower valley route and down short 

waterfall cliffs (2-2.5 km total distance). The south-east coast is slightly closer to the plateau 

habitations, but it is necessary to traverse the crest and then down the wall of the caldera and 

its 200-300 m cliffs. The least challenging route is to Vaituha Bay, a three to four hour walk, 

descending ~500 m in elevation. At initial settlement, the plateau was probably covered by an 

open canopy forest, while today hau (Hibiscus tiliaceus) often covers archaeological sites with 

only a few candlenut trees (Aleurites moluccana) and two coconut palms seen; Linton 

(1925:106) also noticed rosewood (mi‘o, Thespesia populnea) in the early 1920s. Other 

residential site complexes and site types have been identified across Eiao Island (Candelot 
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1980), and while Hanataaitoki Valley has been the focus of excavation given the important 

basalt resources in the area, continued excavation of the island, particularly coastal sites, will 

provide datasets useful for further considering island-wide trends.  

Charleux excavated nine features/sites, with excavation totalling 69 m2 (11.4 m3). We focus on 

three sites that produced 97 per cent of the total fish remains identified.  

Site MEI.D6.011.B.C1 and 2 (X: 07M0535337; Y: 9117006; Z: 443 m) 

A small, relatively well preserved hiamoe situated on the western eroded slope of the 

Hanataaitoki Valley (Figure 3a), the structure consists of a stone enclosure, 2 by 6 m, oriented 

roughly north-south, with half the length paved. The eastern face of this enclosed sleeping area 

has two courses of stones to compensate the slope. Excavation unit C1 revealed a small 

fireplace, a post hole and some fauna—the fish bone, numbering less than 10 bones, was not 

available for analysis. This unit was expanded 0.5 m to the south and designated unit C2, which 

revealed numerous fish bones and scales, mollusc shells, a few stone tool fragments, and two 

post holes—all to a maximum depth of ~70 cm below surface (Figure 3b).  

Site MEI.D6.011.E.C1 (X: 07M0535355; Y: 9116987; Z: 474 m) 

Located on the deforested red clayey eroded slopes of upper Hanataaitoki Valley, this site 

remnant consisted of four stones forming a right angle (Figure 3c). It originally was not selected 

for excavation but the discovery of two octopus lure sinkers and some rat bones eroding from 

intact cultural deposits suggested that excavation might be worthwhile. Excavation unit C1 

(Figure 3d), to 45 cm below surface, revealed abundant wood charcoal, a large number of fish 

and rat bones, mollusc shells, and dog bones (jaw fragments and teeth)—the first and only dog 

bones recovered from Eiao (Charleux in prep. a). Two octopus lure sinkers and 13 unfinished 

or broken stone adze preforms were also collected during the excavation.  

Site MEI.D6.036.G (X: 07M0535357; Y: 9117324; Z: 431m) 

This large paepae, >72 m long and 15 m wide (1080 m2), was built to reduce the natural slope 

from ~25 to 15-16 degrees. The downslope face consists of one to three courses of basalt 

boulders up to 1.5 m high, while the surface of the paepae is almost completely paved. (Figure 

4a). The paepae contains at least five structures (hiamoe) and basalt flakes are associated with 

all the features. Unit G was situated in an area free of pavement, about 3 m from the paepae 

facing. Excavation to sterile subsoil at 1.08 m below surface revealed combustion features and 
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mostly basalt flakes and adze blanks (Figure 4b). Aside from fish remains, bones included 

those of birds, pigs and rats. Other midden constituents and specifically rat bones and sea 

mammal bones will be reported elsewhere (Charleux in prep. a).  

Site MEI.D6.A.C1/C2 (X: 07M0535458; Y: 9117153 Z: 430 m, estimation) 

This site is located in the upper part of Hanataaitoki Valley, a flat zone with dense trees, roots, 

and fallen branches, where runoff leaves a deposit of fine red clay. This zone, Charleux named 

“the Red River”, is in the middle of thousands of square meters covered with medium to large 

flakes, worked basalt cores, broken stone tools, hammerstones, preforms of different types and 

a polishing stone. Some other paepae have been noted in the area but have not been studied to 

date. However, the area was densely occupied. The excavated structure is a typical hiamoe 

(Figure 4c). The first square metre unit C1 was excavated inside the unpaved area and revealed 

two pits with a thick accumulation of flakes (Figure 4d). The excavation was terminated at 1.03 

m below surface, in a yellow-reddish brown silty-clay deposit. Wood charcoal, fish, bird and 

rat bones were encountered as well as mollusc shells and pieces of coral. An ovoid 

hammerstone and an adze preform were also collected. A second square metre (unit C2), 

separated by 0.20 m baulk, was excavated revealing a pit with three water-rounded basalt 

boulders probably used to support a wooden post situated in the middle of the sleeping zone. 

Wood charcoal (including Pandanus sp.), fish and bird bones were identified.  

Five other sites will not be discussed in detail here as they produced a combined total of only 

29 fish bones. Sites D6.029.F2 and D6.031.C2/C5 are basalt flake accumulations; 

D6.035.C2/C4 and D6.040.C2/D2 house sites (hiamoe) and D6.077.D a fireplace. 

Radiocarbon dating 

Four accelerator mass spectrometer (AMS) dates were obtained from combustion features near 

the basal cultural deposits of all excavated features/sites that contained substantial amounts of 

fish bone (Charleux in prep. b). Samples were selected by Charleux and submitted to the Centre 

de Datation par le Radiocarbone (Lyon, France) and the Radiocarbon Dating Laboratory, 

University of Waikato, New Zealand. Unfortunately, the wood charcoal was not identified in 

order to select appropriate short-lived species for dating, so some or all of the dates may be 

older than the actual target date (Dean 1978:228). Since coconut, candlenut (Aleurites 

moluccana) and rosewood (Thespesia populnea) grow on the plateau where the study sites are 

located and these taxa are considered “long-lived” (>75 years; Allen and Hubert 2014: Table 
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1), their use as fuel would add significant years to the dates. Additionally, only the basal 

deposits were dated from cultural layers that were 45 to ~100 cm thick, so we don’t know the 

duration of occupation of each site. Consequently, it is possible that some cultural deposits are 

contemporaneous across the sites. The AMS dates are presented in Table 1. Both labs note that 

the δ13C was measured on prepared graphite using the AMS spectrometer. The radiocarbon 

dates were therefore corrected for isotopic fractionation. The AMS-measured δ13C value can 

differ from the δ13C of the original material and it was therefore not reported. Conventional 

ages were calibrated using Calib 7.1 (Stuiver et al. 2017). There is a spread of 300 years 

between the median dates of the three sites (AD1350 to 1654) and, for reasons above, we did 

not examine changes in the fish bone assemblages over time and consider all assemblages 

possibly dating to between the 14th and 17th centuries.  

Methods 

Field and laboratory methods  

Excavated bone was recovered using 1.6 mm mesh screens. All sediments were dry screened 

as the inland location of the archaeological sites was a difficult hike and far from the sea shore 

where water screening could have been completed. All the bone was shipped to The University 

of Queensland Pacific Archaeology Laboratory where the fish was separated for taxonomic 

identification and all other bone returned. Unfortunately, during transport to The University of 

Queensland, additional bone fragmentation occurred, which was evident from the fresh bone 

surfaces. NISP (of identified fish bone) and total bone counts (including identified and 

unidentified fish bone) may have been affected by this post-excavation fragmentation, although 

attempts were made to exclude fresh breaks from these counts. Rather than using a preselected 

range of elements for identification to lowest taxonomic level, all fish bone elements were 

attempted for identification to ensure that element selection would not impact richness and 

evenness (see Lambrides & Weisler 2015a:57; Weisler 2001, for a description of the 

comparative collection). Genus and species taxonomic identifications were cautiously 

assigned, as despite lower fish biodiversity than other regions of the tropical Pacific, endemism 

is high across the Marquesas Islands and our fish reference collection lacked these unique, 

endemic taxa (Delrieu-Trottin et al. 2015; Randall & Earle 2000). Taxonomic abundance was 

quantified using NISP and MNI values. Fish bone assemblages were aggregated by site prior 

to MNI calculations for examining assemblage differences between sites, but not within sites 

as there were few dated contexts in which to chart changing richness and evenness of taxa over 
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time. Consequently, we can document prehistoric fishing adaptations on Eiao— possibly 

dating from the 14th to 17th centuries —and provide comments on the taxonomic composition 

represented by inland sites.  

Regarding issues of quantification using NISP and/or MNI, we argue that for any given taxon 

there is a need to consider not only the number of identifiable elements, but the relationship 

between the number of elements that can be identified and the number of each element in an 

individual specimen—this varies across taxa. For example, Diodontidae (Porcupinefish) 

possess ~200-300 dermal spines that often preserve well and are easy to identify to family. 

Consequently, it can be overrepresented relative to other taxa (e.g., Sweeney et al. 1993; 

Weisler et al. 2016b), especially if NISP is the only measure of quantification. MNI can be 

problematic due to issues of aggregation (e.g., Grayson 1984), but given that MNI was 

calculated at the site level for the Eiao assemblages (i.e., all layers from each site were 

aggregated prior to MNI calculation), this is not an issue in this study. MNI calculations, as 

used in this study, are considered a conservative estimate of relative taxonomic abundance. As 

measures of quantification NISP and MNI have well-known limitations, the use of either 

measure will need to be justified on a case-by-case basis, rather than advocating a universal 

approach, which implies that a single method is appropriate for all assemblages and research 

questions (Lambrides & Weisler 2016). 

Statistical analyses  

Fish remains from eight archaeological sites in the Hanataaitoki Valley were analysed, but only 

three of these sites (D6.011.B.C2 and D6.011.E.C1 represent two architectural features at one 

site, D6.A.C1/C2 and D6.036.G) provided sufficient sample size to determine inter-site 

assemblage differences and to infer potential variation in fishing practices; the other sites, 

which yielded a total NISP of 28, will only be briefly considered. These sites are located ~2-

2.5 km inland and access to the ocean is difficult due to the topography of Eiao. The total 

excavated area was 16 m2—considering only sites that contained fish bone remains and 

discussed in the previous section—yet fish bone was sparsely distributed resulting in a 

concentration index of 485 bones per m3 (Table 2) for all sites. 

All statistical analyses were completed using NISP and MNI values. Here we utilise five 

measures of taxonomic heterogeneity: NTAXA, Shannon-Weiner index of diversity (H′) and 

Shannon’s evenness (E), Fisher's α, Simpson's index of diversity (1-D) to test for differences 

in taxonomic richness, diversity and evenness within and between sites. All measures of 
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taxonomic heterogeneity were calculated using mutually exclusive taxa (or non-overlapping 

taxa), specifically all NISP and MNI values were collapsed into mutually exclusive categories 

to prevent inflation of NTAXA or to artificially increase differences between sites. Mean 

trophic level (MTL) was estimated to detect alterations in the feeding guilds represented by 

captured taxa. All statistical analyses were completed using Past, version 3.11 (Hammer et al. 

2001). 

NTAXA allows an assessment of taxonomic richness for each site assemblage. We 

acknowledge that our study sites possibly date to between the 14th and 17th centuries, but 

separating the assemblages by site provided a means to examine inter-site variability. The 

relative representation of fish taxa was determined using Shannon-Weiner index of diversity 

(H′) and Shannon’s evenness (E). Higher H’ values indicate greater species diversity and 

richness. Assemblages dominated by a single taxon are indicated by E values close to 0, 

compared to those that are rich and even and are closer to 1 (Lyman 2008). Fisher’s α was 

calculated to provide an assessment of diversity that is independent of sample size, unlike 

NTAXA and Shannon’s indices (Faith 2013; Hayek & Buzas 2010). Simpson's index of 

diversity (1-D) was used to assess dominance; values range between 0 and 1, and low values 

suggest an assemblage dominated by a single taxon (Magurran 2004). As demonstrated by 

Faith & Du (2017), assemblage richness can also influence measures of evenness; Simpson’s 

index was found to be the most useful given that it is insensitive to changes in richness and 

sample size, efficient at detecting minor changes in evenness (even for assemblages with small 

sample size), but its discriminatory power is reduced when assemblages are move even. 

Finally, MTL for each site was estimated using MNI in accordance with the formula utilised 

by Reitz (2004:70). Trophic level data were obtained from FishBase (Froese & Pauly 2016). 

For higher level taxonomic identifications (i.e., family and genus), trophic levels were 

calculated based on the modern geographic range of genera and species according to checklists 

of Marquesan fish species (Delrieu-Trottin et al. 2015; Froese & Pauly 2016; Randall & Earle 

2000). Archaeologists have widely used this index to provide local, time-series records of 

trophic level change through time (e.g., Carder & Crock 2012; Erlandson et al. 2009; Morrison 

& Addison 2009; Quitmyer & Reitz 2006; Wake et al. 2013). Here we use MTL only to assess 

the feeding guilds that have been targeted prehistorically. 

Results 
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Table 3 provides the quantification of fish remains from all sites in this analysis. A total of 

5440 fish bones, weighing 756.0 g were recovered from sites D6.011.B.C2 (n = 1272), 

D6.011.E.C1 (n = 1813), D6.A.C1/C2 (n = 1029) and D6.036.G (n = 1326). Across all sites, 

1021 (NISP) specimens were identified to taxon, comprising 157 (MNI) individuals. Overall, 

~19% of all fish bones were identified to family, genus or species even though the assemblage 

was highly fragmented. Of the 1021 fish bones identified to taxon less than two per cent had 

evidence of root etching (i.e., etching or channels left on bone by root action; see also Lyman 

1994), or other digestive processes. All reported cases were vertebrae and characterised as 

deformed after Butler and Schroeder (1998:960). Approximately 16% (NISP = 164) of the total 

identified assemblage was burnt, however, all but three bones were recovered from site 

D6.036.G, where ~12% of fish bone was reported as burnt. Table 4 provides a summary of the 

elements that were identified to taxon for all sites. New family-level taxonomic records for the 

archipelago added by this study include: Albulidae, Carcharhinidae, Chaetodontidae, 

Kuhliidae, Pomacentridae and Siganidae.  

For each site, moderate to high evenness was reported, minor differences in richness between 

sites was noted, but no indication of taxonomic dominance (Table 5). Measures of taxonomic 

heterogeneity as determined by NISP and MNI track similar trends. The lower counts of 

dominance reported using MNI counts likely relate to the increased number of taxa represented 

by a single individual, which is particularly demonstrated by the Fisher’s ɑ values (significantly 

higher values reported for MNI). 

Fish feeding behaviour data indicates that per cent MNI contribution and per cent NISP 

contribution track similar trends—in terms of the relative contribution of herbivores, 

piscivores, and omnivores/benthic carnivores—between sites, which broadly indicates a 

dominance of piscivorous taxa (Figure 5a and b). This trend is more pronounced when NISP 

values are considered, but this is likely driven by differences in sample size between the two 

quantification measures. More specifically, MTL values for each site were as follows: 

D6.011.B.C2 (MTL = 3.34), D6.011.E.C1 (MTL = 3.48), D6.A.C1/C2 (MTL = 3.68) and 

D6.036.G (MTL = 3.29). Spearman’s rho (rs) indicates that sample size is not correlated with 

MTL (rs = -1.00, p = 0.08). Very few herbivorous taxa were identified from D6.A.C1/C2, relative 

to piscivorous taxa (e.g., scombrids and serranids). D6.036.G reported the highest relative 

abundance of herbivorous taxa (e.g., acanthurids and scarids). However, piscivorous taxa (e.g., 

serranids, lutjanids, carangids and scombrids) were the highest contributor to total MNI and 

NISP for all sites.  
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The other sites (D6.029.F2, D6.031.C2/C5, D6.035.C2/C4, D6.040.C2/D2 and D6.077.D) that 

yielded fish bone had small sample sizes (total NISP = 28) and taxonomic distribution was not 

considered to be distinct from D6.011.B.C2, D6.011.E.C1, D6.A.C1/C2 and D6.036.G, with 

the exception of a few unique taxa: Selar crumenophthalmus (D6.029.F2), Caranx sp. 

(D6.031.C2/C5) and Carcharhinus cf. melanopterus (D6.035.C2/C4).  

Discussion and conclusions 

Fishing on Eiao Island  

The four architectural features from three sites investigated here (D6.011.B.C2, D6.011.E.C1, 

D6.A.C1/C2 and D6.036.G) are situated several kilometres inland from the coast within the 

Hanataaitoki Valley and are all residential sites comprised of a combination of hiamoe and/or 

paepae. The faunal assemblages from these sites represent prehistoric fishing adaptations—

possibly dating to between the 14th and 17th centuries—from the only inland habitations now 

known from the Marquesas Islands. Serranids are consistently the highest rank family for each 

site. The archaeological fish bone assemblage is dominated by piscivorous taxa, which is likely 

a reflection of local marine habitat distribution, limited area of inshore reefs, and the fish 

capture strategies, suggesting a reliance on angling and the use of canoes to exploit offshore 

resources (e.g., Aswani & Allen 2009; Davidson et al. 1999; Leach et al. 1997).  

Across the archipelago a relationship between fish density and diversity has been noted, hence, 

areas with more taxonomic diversity are associated with higher abundances, but individual 

island size and the north-south configuration of the archipelago does not seem to influence 

biomass (Planes et al. 2016:272-275). At the island level, there is variation in the distribution 

of species as it relates to the location of suitable habitat proclivities, but taxonomic composition 

is similar across the archipelago (Delrieu-Trottin et al. 2015; Planes et al. 2016). Comparisons 

between the Eiao archaeological data and recent modern marine surveys, indicate that 

archaeological taxonomic composition largely tracks local species distributions and species 

availability; for instance, the high abundance of piscivore communities associated with the 

archipelago and Eiao today are reflected archaeologically (Planes et al. 2016). Furthermore, 

archaeological taxonomic composition reflects the distribution of local marine habitats, with 

evidence for the exploitation of a wide range of zones from inshore to more seaward zones. 

Reef associated species and those that live over a combination of reef, sand and rubble bottoms 

are present archaeologically, such as acanthurids, carangids, chaetodontids, cirrhitids, 

diodontids, labrids, kyphosids, lethrinids, lutjanids, pomacentrids, scarids, serranids and 
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siganids (Randall 2003), as well as taxa associated with bays and sheltered areas: holocentrids, 

labrids, mullids and serranids. Lutjanids and Naso sp. (unicornfish) are also associated with 

steep drop-offs (Mundy 2005; Myers 1999), characteristic of the Marquesan inshore waters. In 

terms of offshore resource exploitation, Carangoides orthogrammus (island trevally) are 

pelagic and most commonly associated with the oceanic rather than neritic zone (Mundy 2005; 

Randall 2003), and based on modern capture observations are commonly associated with 

trolling (Meyer et al. 2001). However, because Marquesan inshore environments are 

characterised by deep waters, the identification of this taxon is not necessarily indicative of 

offshore exploitation, as line fishing from the shore could account for its presence 

archaeologically. Indeed, one of the Marquesan field crew caught a ~1 m long Giant Trevally 

(Caranx ignobilis) from casting a hand line from the shoreline rocks. In contrast, Katsuwonus 

pelamis (skipjack tuna) is an oceanic taxon most often associated with offshore waters, and its 

archaeological identification may indicate offshore trolling (Lehodey 2001). Regardless, while 

octopus lure sinkers were recovered during excavation, no fishhooks or associated fishing gear 

were recovered, indicating there is no direct artefactual evidence for a reliance on angling, with 

the exception of taxonomic composition (e.g., Katsuwonus pelamis, Elagatis bipinnulata, 

serranids, lutjanids, etc.). However, given the deep inshore waters, access to marine resources 

would have either required a canoe or fishing from the shore using a line. It seems unlikely that 

all of the fish reported archaeologically were captured by angling from the shore, given the 

broad range of habitats that were likely exploited and the diverse range of fish species captured. 

Regional trends in Marquesan fishing 

Different methodologies have been used to analyse Pacific fish bone assemblages, which has 

hindered syntheses, so we utilised ‘ubiquity’ to measure the occurrence of individual taxa 

across all assemblages to facilitate regional comparisons (Table 6; see, for example Weisler 

and Green 2013: Figure 3). Ubiquity measures the presence or absence of a taxon and for the 

Marquesan assemblages we calculated the ubiquity of 31 fish families and one subclass 

(Elasmobranchii) identified for all previous studies. Table 7 provides the rank-order of the four 

most frequently identified fish families calculated by NISP and/or MNI as reported in the 

Marquesan fishing literature. Diodontidae was excluded as individual fish have more than 200 

dermal spines that preserve well and are readily identified to family, which can inflate NISP 

values relative to other families. The findings from Eiao Island are consistent with other 

published Marquesan fish bone assemblages. There is a dominance of piscivores taxa (e.g., 

serranids and lutjanids), as described by Aswani and Allen (2009), which likely relates to the 
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lack of coral reef habitat more commonly associated with the tropical Pacific, and higher 

abundances of scarids, acanthurids, holocentrids and labrids (Weisler & Green 2013: Figure 

3). Lutjanidae, Scaridae and Serranidae are the most ubiquitous families identified for the 

archipelago, but these families are easily identified due to highly diagnostic cranial elements. 

Elasmobranchii, Acanthuridae, Balistidae, Diodontidae, Holocentridae and Labridae were 

identified in all but one early study by Kirch (1973). It is apparent that while fish species 

richness across the archipelago is far lower than regions in the western Pacific Ocean (Froese 

& Pauly 2016), the archaeological assemblages are still rich, which is likely a reflection of the 

high biomass for each species (Planes et al. 2016). Serranids and scombrids are the most highly 

ranked families across most Marquesan fish bone assemblages. The high abundance of pelagic 

taxa, especially tuna, has been attributed to the strong upwelling of nutrient-rich waters in the 

region (Taquet et al. 2016).  

Given these suitable conditions, and the limited variation in taxonomic composition along the 

north-south gradient of the archipelago, the variation in scombrid abundance across Marquesan 

sites is of particular interest. Only a few tuna, specifically skipjack, were identified from all 

analysed Eiao sites, and in terms of family level identifications (total MNI = 6), MNI is 

considerably lower than scombrid counts reported from other Marquesan sites. At both the 

Hane Dune site (Ua Huka) and Te Anapua (Ua Pou) scombrid remains accounted for ~25% of 

total MNI (Davidson et al. 1999; Fraser 1998; Leach et al. 1997). This variation may be 

explained by site function and possibly proximity to the shore (Hane is a major coastal village 

and Te Anapua a rockshelter difficult to access except by the sea), whereas the architectural 

sites on Eiao are situated several kilometres inland from the ocean. Coastal sites on Eiao will 

need to be investigated before this variation in scombrid abundance can be fully assessed. 

All cranial and postcranial elements were considered for taxonomic identification when 

analysing the Eiao Island assemblages, and a comprehensive reference collection, with the 

exception of Marquesan endemics, was used to facilitate identifications. New family-level 

taxonomic records for the region added by this study and based on the literature assessed in 

Tables 6 and 7, include: Albulidae, Carcharhinidae, Chaetodontidae, Kuhliidae, Pomacentridae 

and Siganidae. Bonefish (Albulidae) are widely distributed across the Pacific, but are not well 

represented in Polynesian fish bone assemblages (Allen 2014), with remains recovered from 

only a few sites (e.g., Allen 2002; Allen 2017; Weisler 1993, 2002). It is likely this disconnect 

between bonefish availability and archaeological presence relates to identification bias. 
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Weisler (1993, 2002) used otoliths to identify Bonefish and here identifications were made 

using vertebrae, elements that are not routinely used for identifying Pacific fish. 

The major contributions of this study have been the identification of new taxonomic records 

for the region as well as perspectives on Marquesan fishing practices related to inland sites, as 

all other archaeological fishing records from the archipelago are from coastal locales. However, 

there is a need to increase sample size and target coastal sites on Eiao for excavation to allow 

comparison with the inland sites reported here. The lower levels of all archaeological features 

were dated with unidentified wood charcoal and there is a spread of 300 years between the 

median dates of the three sites (AD1350 to 1654). Since the uppermost and latest cultural 

deposits were not dated, there is the potential for overlap in occupation across all sites, hence, 

temporal changes in fishing was not considered. We have demonstrated that using a 

comprehensive fish bone reference collection and considering all elements for taxonomic 

identification can add new identifications to the archipelago-wide inventory and therefore 

improve our understanding of prehistoric fishing. Our study has documented overall agreement 

between the Eiao Island archaeological fish bone assemblages and the unique nature of the 

nearshore marine environment that is species rich in piscivorous taxa and abundant, thus adding 

another chapter to the variability of prehistoric fishing in the Marquesas Islands and its place 

within East Polynesia. 
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Table 1. Accelerator mass spectrometer (AMS) results for Eiao Island habitation sites. 
 

Provenance Lab ID Material 
Conventional 14C 
age ± 1σ (BP) δ13C (‰) cal AD (2σ range) Median 

% 
Probability 

D6.011.B.C1/level VI/60cmbs Lyon-11428 Unid wood 645 ± 30 NR AD1282-1327; 1342-1395 1351 44.2;55.8  

D6.011.E.C1/level VI/42cmbs Lyon-11419 Unid wood 650 ± 30 NR AD1280-1325; 1343-1394 1350 45.6 54.4 

D6.036.G/level XIII/86-92cmbs Lyon-11423 Unid wood 250 ± 30 NR 
AD1522-1575; 1626-1679 
AD1764-1800; 1939-1950 1654 

15.3; 59.6; 
21.9 3.3 

D6.A.C1/level VI/65cmbs Wk-40390 Unid wood 356 ± 20 NR AD1458-1525; 1556-1632 1539 50.1; 49.9 

 
Provenance: D6 is the Eiao Island 1 km square grid designation, 011 is the site number, E is the feature number, and C1 is the excavation square. 
Lab ID: Lyon is the Centre de datation par le Radiocarbone (Lyon, France) and Wk is the Radiocarbon Dating Laboratory, University of Waikato, New Zealand 
Both labs do not report (NR) δ13C for AMS dates (see text for discussion) 
Conventional ages calibrated using CALIB 7.1 (Stuiver et al. 2017) 
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Table 2. Concentration indices (CI) for each site mentioned in text. 
 

Site  
Total fish 
bone counts 

Excavated 
volume (m3) CI (bones/m3) 

D6.011.B.C2 1272 1.8 707 

D6.011.E.C1 1813 0.8 2266 

D6.A.C1/C2 1029 1.8 572 

D6.036.G  1326 0.9 1473 

D6.029.F2 27 0.3 90 

D6.031.C2/C5  9 1.4 6 

D6.035.C2/C4  11 1.9 6 

D6.040.C2/D2 20 1.5 13 

D6.077.D 22 1 22 

All sites 5529 11.4 485 
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Table 3. Quantification of fish remains from sites D6.011.B.C2, D6.011.E.C1, D6.A.C1/C2 and D6.036.G.  
 

  Feeding 
Behaviour  

D6.011.B.C2  D6.011.E.C1  D6.A.C1/C2  D6.036.G  Total 
Taxon NISP MNI  NISP MNI  NISP MNI  NISP MNI  NISP MNI 
Actinopterygii (unid. fish to 
element) 

N/A 55   
 

14   
 

10   
 

20   
 

99   

Elasmobranchii P                1 1  1 1 
Selachii P 4 1  1 1  11 2  21 1  37 5 
Carcharhinidae                
   Carcharhinus cf. amblyrhynchos P                2 1  2 1 
Acanthuridae H 13 3  3 1  2 1  20 4  38 9 
   Acanthurus spp. H 3 1            6 1  9 2 
   Ctenochaetus spp. H 1 1  1 1       1 1  3 3 
   Naso spp. H 1 1  2 1  1 1       4 3 
Albulidae O/BC                2 1  2 1 
Balistidae O/BC 5 1  2 1       5 1  12 3 
Carangidae P 1 1                 1 1 
   Carangoides orthogrammus  P           1 1       1 1 
   Elagatis bipinnulata P                4 1  4 1 
Chaetodontidae O/BC                1 1  1 1 
Cirrhitidae O/BC 25 3  5 1  12 2  8 1  50 7 
Diodontidae                
   Diodon cf. hystrix O/BC                5 1  5 1 
Holocentridae O/BC           1 1  2 1  3 2 
   Myripristis spp. O/BC 8 1  6 2  1 1  1 1  16 5 
   Sargocentron spp. O/BC 1 1       1 1       2 2 
Kuhliidae                
   Kuhlia cf. petiti  O/BC 1 1       1 1       2 2 
Kyphosidae                
   Kyphosus sp. H      1 1            1 1 
Labridae O/BC 2 1  1 1  1 1  5 1  9 4 
Lethrinidae O/BC 3 2  12 2  15 2  2 1  32 7 
   Lethrinus spp. O/BC 14 1  31 3  20 3  5 2  70 9 
   Monotaxis grandoculis  O/BC 1 1                 1 1 
Lutjanidae P 1 1  1 1  3 1  12 1  17 4 
   Lutjanus spp. P 5 1  1 1  10 2  21 3  37 7 
Mullidae O/BC      1 1  1 1       2 2 
   Mulloidichthys sp. O/BC      2 1            2 1 
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   Parupeneus sp. O/BC      1 1            1 1 
Muraenidae P 2 1            5 1  7 2 
Polynemidae O/BC 9 2            8 1  17 3 
Pomacentridae O/BC 5 2       4 1  5 2  14 5 
Scaridae H 2 1  22 2  6 1  11 5  41 9 
   Calotomus cf. carolinus  H 1 1            1 1  2 2 
   Scarus spp. H 4 1  9 2  2 1  4 1  19 5 
Scombridae  P 1 1  23 3  2 1  1 1  27 6 
   Katsuwonus pelamis P      42 2  9 2       51 4 
Serranidae P 167 8  64 7  96 8  148 7  475 30 
Siganidae                
   Siganus cf. argenteus  H 1 1  1 1       1 1  3 3 
Total Identified (excl. unidentified 
fish to element) 

 
281 40 

 
232 37 

 
200 35 

 
308 45 

 
1021 157 

Total bones  1272    1813    1029    1326        
Total weight (g)  164.0    180.0    168.3    243.7        
% identified  22.1    12.8    19.4    23.2        
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Table 4. Fish bone elements identified from sites D6.011.B.C2, D6.011.E.C1, D6.A.C1/C2 and D6.036.G.  
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S
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T
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antepenultimate vert.         2          1   1 7  11 
articular         2  3    5 4    1 3 2 17  37 
atlas    1  1         1       1 11  15 
basypterygium    1  1     1    3      3  6  15 
caudal vert.    19  2 6  5  2 1  1 21 7  4 6 5 13 56 78 2 228 
caudal tang    1                     1 
ceratohyal 3 1 10 14 
cleithrum 3 1 2 1 1 12 20 
coracoid 3 3 
dentary           4   1 4 7   2   1 31  50 
dermal spine          5               5 
ectopterygoid                1       17  18 
epibranchial                     2    2 
epihyal               1        6  7 
first anal spine    7                     7 
first dorsal spine    6                     6 
frontal         1                1 
hyomandibular    2  1   2      1 1     2  6  15 
interopercle                       6  6 
lower pharyngeal 
grinding plate              3       6    9 
maxilla         2      4 3   1 1   21  32 
opercle    3     3  1    3 3 1    6 3 9  32 
palatine         4      8     4 3  7  26 
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parasphenoid                       2  2 
penultimate vert.                   1    3  4 
posttemporal         1      1 1       8  11 
precaudal vert.    4 2   1 5  1 1  1 14 4 1 3 2 2 4 3 39  87 
premaxilla         1    1  8 6 2    3  28  49 
preopercle    2       4    2 2     1  21  32 
proatlas vert.      2         1     1 2  8  14 
quadrate      1   2      7 2     2 1 27  42 
scale      1                   1 
scapula    1  2   1  1    3 2   1  1 1 7  20 
subopercle         2              6  8 
supracleithrum    1     3  1    1 1     2  22  31 
thoracic vert.    3     6  3   2 9 7   3  1 7 51  92 
tooth (lower jaw)  1                       1 
tooth (upper jaw) 2 2 
ultimate vert. 1 1 1 1 2 1 1 8 
unknown vert. type 1 36                       37 
upper pharyngeal 
grinding plate              1       7    8 
urohyal               3 1       4  8 
vomer                       4  4 
Number of elements 1 2 1 14 1 9 1 1 19 1 10 2 1 6 23 18 4 2 8 6 18 11 30 2 1021 
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Table 5. Measures of taxonomic heterogeneity: NTAXA, Shannon-Weiner index of diversity (H′) and Shannon’s 
evenness (E), Simpson's index of diversity (1-D) and Fisher's α. 
 
 D6.011.B.C2  D6.011.E.C1  D6.A.C1/C2  D6.036.G  All Sites 
Index NISP MNI  NISP MNI  NISP MNI  NISP MNI  NISP MNI 
NTAXA 18 18  14 14  14 14  19 19  22 22 
1-D 0.63 0.90  0.79 0.89  0.72 0.89  0.74 0.91  0.75 0.91 
H' 1.64 2.60  1.81 2.41  1.76 2.41  1.96 2.63  2.01 2.67 
E 0.57 0.90  0.69 0.91  0.67 0.91  0.66 0.89  0.65 0.87 
Fisher's ɑ 4.29 12.59  3.28 8.20  3.43 8.65  4.48 12.4  3.96 7.00 
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Table 6. Fish taxa grouped by family identified from Marquesan archaeological sites. 
  

Taxon th
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Lutjanidae × × × × × × × × 100.0 
Scaridae × × × × × × × × 100.0 
Serranidae × × × × × × × × 100.0 
Elasmobranchii × × × ×  × × × 87.5 
Acanthuridae ×  × × × × × × 87.5 
Balistidae ×  × × × × × × 87.5 
Diodontidae ×  × × × × × × 87.5 
Holocentridae ×  × × × × × × 87.5 
Labridae × × ×  × × × × 87.5 
Carangidae ×  ×  × × × × 75.0 
Lethrinidae ×  ×  × × × × 75.0 
Mullidae ×  ×  × × × × 75.0 
Scombridae ×  ×  × × × × 75.0 
Muraenidae ×  ×  × ×  × 62.5 
Belonidae   ×  × ×  × 50.0 
Kyphosidae ×  ×   ×  × 50.0 
Ostraciidae    ×   ×  × 37.5 
Tetraodontidae      × × ×  37.5 
Aulostomidae       ×  × 25.0 
Cirrhitidae ×  ×      25.0 
Polynemidae ×  ×      25.0 
Nemipteridae       ×  × 25.0 
Sphyraenidae        × × 25.0 
Carcharhinidae*  ×        12.5 
Albulidae*  ×        12.5 
Anguillidae        × 12.5 
Chaetodontidae* ×        12.5 
Exocoetidae       ×  12.5 
Kuhliidae* ×        12.5 
Pomacentridae* ×        12.5 
Scorpaenidae      ×   12.5 
Siganidae* ×        12.5 
Total # families  23 5 19 8 15 21 16 21  
Total bones ID 1021 183 404 24 223 1430 497 1246  

 
*First archaeological record of these families in the archipelago  
Kirch (1973) Hane Dune site (MUH1) and Manihina Valley (MUH2), Ua Huka 
Dye (1990)1 Hane Dune site (MUH1), Ua Huka 
Dye (1990)2 Hanatakua site (MH-10), Hiva Oa  
Dye (1990)3 Hanapete‘o Cave site, Hiva Oa 
Leach et al. (1997) Te Anapua, Ua Pou 
Rolett (1998) Hanamiai, Tahuata  
Davidson et al. (1999) Hane Dune site (MUH1), Ua Huka 
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Table 7. Highest ranked fish families by reported NISP and/or MNI from Marquesan archaeological sites. 
Elasmobranchii and Diodontidae were excluded when MNI was not reported due to inflation of relative abundance 
when using NISP values. 
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Taxon NISP MNI NISP NISP NISP NISP MNI NISP NISP MNI NISP 
Acanthuridae  2  3 2   2    
Balistidae      2  4     
Belonidae        3    
Carangidae    2     3 3 4 
Holocentridae     2 3 3     
Labridae   3   4      
Lethrinidae 2 2          
Lutjanidae  3 2  2    4 4 2 
Polynemidae    4        
Scaridae 4 4 4  1 2     1 
Sphyraenidae        4    
Scombridae 3   4   1 1 1 1  
Serranidae 1 1 1 1 2 1 2  2 2 2 
% contribution 
of top 4 taxa 

70.3 58.0 61.2 46.5 29.2 43.0 58.4 42.7 71.5 61.2 NR 

# of all ID fish 
bones 

1021  183 404 24 223 1430 497 1246  105 

  
NR=not reported  
Kirch (1973) Hane Dune site (MUH1) and Manihina Valley (MUH2), Ua Huka 
Dye (1990)1 Hane Dune site (MUH1), Ua Huka 
Dye (1990)2 Hanatakua site (MH-10), Hiva Oa  
Dye (1990)3 Hanapete‘o Cave site, Hiva Oa 
Leach et al. (1997) Te Anapua, Ua Pou    
Rolett (1998) Hanamiai, Tahuata  
Davidson et al. (1999) Hane Dune site (MUH1), Ua Huka 
Burt (1999) in Aswani and Allen (2009) Anaho Bay, Nuku Hiva Island  
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Figure 1. Map of the Pacific, inset of the Marquesas, inset of Eiao Island with site locations. 
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Figure 2. Representative photos of the Eiao coastline which is mostly rocky and steep. (a) Bay below Hanataaitoki 

Valley seen from about 400 m above sea level and nearly 2 km from the excavated habitation sites reported here; 

(b) The southeast coast from the top of the crest. A small islet (motu), of fossil eolian deposits, extends from the 

shore in the middle of the photo; (c) Vaituha Bay, west coast, taken from the slopes. Silt erodes into the bay after 

rains and muddy water can last for days to weeks contributing to ciguatera in fish; (d) One of the north coast bays 

seen from a helicopter. (All photos by M. Charleux.) 

  



35 
 

Figure 3. One of the three sites that contributed most fish bone to this study. (a) Hiamoe site MEI.D6.011.B, view 

north, during excavation of unit C1; (b) South profile of unit C2 at site MEI.D6.011 showing stone-filled post 

mould in profile and circular pit feature. B; (c) Site MEI.D6.011.E, consisting of stone alignments and associated 

basalt flakes, before excavation in 2011; (d) South profile of unit C1 at site MEI.D6.011E. (All photos by M. 

Charleux.) 
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Figure 4. Two additional sites that contributed most fish bone to this study. (a) Stone-filled terrace (paepae) site 

MEI.D6.036 looking northeast; (b) Stratigraphy of the MEI.D6.036G excavation unit showing dense lithic 

material, combustion features with concentrated ash, and level XIV reddish-brown sterile subsoil exposed ~1 m 

below surface; (c) Site MEI.D6.A associated with dense concentrations of basalt flakes and adze blanks; (d) 

Stratigraphy at site MEI.D6.A, unit C1 showing ~0.5m thick layer of basalt flakes atop sterile yellow-brown 

subsoil. (All photos by M. Charleux.) 
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Figure 5. Fish feeding behaviour by site as calculated by 

(a) per cent MNI contribution, and (b) per cent NISP 

contribution.  

 

 

 


