

COASTS AND ESTUARIES

EDITED BY ERIC WOLANSKI JOHN W. DAY MICHAEL ELLIOTT RAMESH RAMACHANDRAN

Coasts and Estuaries

The Future

This page intentionally left blank

Coasts and Estuaries The Future

Edited by Eric Wolanski John W. Day Michael Elliott Ramesh Ramachandran

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2019 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-814003-1

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Candice Janco Acquisition Editor: Louisa Hutchins Editorial Project Manager: Lindsay Lawrence Production Project Manager: Omer Mukthar Cover Designer: Matthew Limbert

Typeset by SPi Global, India

Dedication

We dedicate this book to our grandchildren: Oliver, Grace, and Harry Wolanski; Olly, Dylan, and Mycah Elliott; and Daisy and Sunny Day; and to Ramachandran's children Gowtham and Niveda Ramesh; we hope that they will enjoy healthy estuaries and coastal waters by 2050 and beyond and we hope that these will remain healthy to entrust to their children. This page intentionally left blank

Contents

Contributors	xix
About the Editors	xxiii
Preface: Why This Book?	XXV

1. A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond?

Michael Elliott, John W. Day, Ramesh Ramachandran, Eric Wolanski

	,	
1	Introduction	1
2	Setting the Scene: The DAPSI(W)R(M)	
	Framework	2
3	Current Status of Estuarine and Coastal	
	Ecosystems	4
	3.1 Estuaries	4
	3.2 Deltas	7
	3.3 Wetlands, Lagoons, and Catchments	9
	3.4 Enclosed, Semienclosed, and Open	
	Coasts	11
	3.5 Coral Reefs	12
4	Quantifying Changes: The Need to	
	Accommodate Moving Baselines	13
5	Changes to Stressors: The Input of	
	Physical, Chemical, and Biological	
	Pollutants and the Extraction of	
	Biological Resources	13
	5.1 Dredging	13
	5.2 Legacy Pollution	13
	5.3 Invasive Species	15
6	Additional Future Threats and Challenges	16
	6.1 Increasing Globalization and Human	
	Population Growth	16
	6.2 Climate Change	17
7	Tools and Approaches for the	
	Management of New Changes	17
	7.1 Monitoring to Inform Management	17
	7.2 Environmental Impact Modeling to	
	Guide Management	19
	7.3 Community Involvement and Culture	19

7.4 National Planning	19
7.5 International Water Governance	20
7.6 Coastal Cities	20
7.7 Examples of Arguably the Earth's	
Last Pristine Catchment to Estuarine	
Ecosystems	20
8 Changes to Stressors: Responses to	
Increasing Coastal Populations, Their	
Environment, and Infrastructure	22
9 Sustainable Solutions	23
10 Conclusions	25
References	26

Section A Estuaries

2.	An Assessment of Saltwater Intrusion in the Changjiang (Yangtze) River Estuary, China			
	Μ	laoti	an Li, Zhongyuan Chen	
	1	Intr	oduction	31
		1.1	Water Transfer Projects	31
		1.2	Three Gorges Dam: Changing	
			Hydrology at Seasonal Scales	33
		1.3	Sea Level Rise	33
	2	Dat	a Sources and Observation	34
		2.1	Discharge Variations	34
			Salinity Variations	34
			Water Diversion	36
		2.4	Tide Level	37
	3	Dis	cussions	39
		3.1	Freshwater Sources—Dry Season	
			Shortage	39
		3.2	Salinity Distribution in Relation to	
			Freshwater Availability	39
		3.3	Water Diversion—Present and Future	
			Case	39
		3.4	Sea Level Rise—Equivalent to	
			Increase in Salinity and Decrease in	
			Discharge	40
	4	Fut	ure Scenarios	40

	5 The Way Forward Acknowledgment References	41 42 42
3.	Río De La Plata: A Neotropical Estuarine System	
	Javier García-Alonso, Diego Lercari, Omar Defeo	
	1 General Introduction	45
	1.1 Geographical and Morphological	
	Features	45
	1.2 Biodiversity	46
	1.3 Management	47
	2 Major Anthropogenic Driving Forces	
	at RDLP	48
	2.1 Food Supply	48
	2.2 Marine Traffic	50
	3 Minor Drivers: Industry, Urbanization,	
	and Tourism	52
	4 The Future of the RdlP Estuary	53
	References	54
4.	Estuaries and Coastal Zones in the Northern Persian Gulf (Iran)	
	Moslem Sharifinia, Moslem Daliri, Ehsan Kamrani	
	1 Geology and Geomorphology of the Persian Gulf	57

	Persian Gulf	57
2	Climatic Conditions and Recent Changes	57
3	Hydrology and Circulation in the	
	Persian Gulf	57
4	Biodiversity of the Iranian Coastal Waters	
	of the Persian Gulf	60
	4.1 Coral Reefs	60
	4.2 Mangrove Forests	61
	4.3 Phytoplankton Community	61
	4.4 Macrobenthic Community	62
5	Anthropogenic Stresses in the Northern	
	Persian Gulf	63
	5.1 Oil Pollution	63
	5.2 Fisheries and Overfishing	63
6	The Future Changes to the	
	Persian Gulf	63
	6.1 Increasing Urban Populations	64
	6.2 An Unstable Political Situation	64
	6.3 Fisheries and Fish Species	
	Conservation	65
	6.4 Impacts of Climate Change on the	
	Persian Gulf Ecosystem	65
R	eferences	65

5. Protecting Water Quality in Urban Estuaries: Australian Case Studies

Ryan J.K. Dunn, Nathan J. Waltham, Jianyin Huang, Peter R. Teasdale, Brian A. King

1 Introduction	69
2 Case Study Examples	72
2.1 Port Jackson	72
2.2 Gold Coast Broadwater (Southern	
Moreton Bay)	77
2.3 Ross River Estuary	80
3 Considerations and Summary	82
References	

6.	Management of Megafauna
	in Estuaries and Coastal
	Waters: Moreton Bay as a
	Case Study

Janet M. Lanyon

1 Introduction	87
2 Moreton Bay: A Megafauna Case Study	87
3 Moreton Bay—Physical Characteristics	89
4 Moreton Bay Megafauna	89
4.1 Sea Turtles	89
4.2 Dugongs	90
4.3 Whales and Dolphins	91
4.4 Humpback Whales	92
4.5 Southern Right Whales	92
4.6 Dolphins	93
5 Protective Measures for Moreton Bay	
Megafauna	94
5.1 Protective Legislation	94
5.2 Management of Water Quality	94
5.3 Monitoring Population Size	
and Trends	95
5.4 Health Assessment of Wildlife	96
6 The Future	96
References	97

7. Peel-Harvey Estuary, Western Australia

Valesini, F.J., Hallett, C.S., Hipsey, M.R., Kilminster, K.L., Huang, P., Hennig, K.

1	Overview	103
2	The Peel-Harvey System	103
3	Historical Socio-Ecological	
	Developments	105
4	Estuary Responses Over Recent	
	Decades	107
	4.1 Hydrology and Water Quality	107
	4.2 Sediment Condition	109

	4.3	Submerged and Fringing Vegetation	110
	4.4	Benthic Macroinvertebrates	110
	4.5	Fish	111
5	Cur	rent Socio-Ecological	
	Cha	racteristics	111
	5.1	Catchment Land Use	111
	5.2	Estuary Condition	112
	5.3	Socioeconomic System	112
	5.4	Management and Science	113
6	Loo	king Forward	114
	6.1	Population Growth	114
	6.2	Climate and Hydrology Predictions	114
	6.3	Ecological Responses	116
	6.4	Strategies to Mitigate Impacts of a	
		Drying Trend	116
7	Cor	ncluding Remarks	117
A	Acknowledgments		117
R	efere	ences	118

Section B **Deltas**

8. Arctic Deltas and Estuaries: A Canadian Perspective

Donald L. Forbes

1	Intr	oduction	123
	1.1	Sediment Balance and Delta	
		Stability	124
	1.2	Arctic Estuaries	125
2	Env	ironmental Forcing	125
	2.1	Crustal Motion	125
	2.2	Ice in Arctic Deltas	127
3	Arc	tic Estuaries and Deltas	132
	3.1	Fjords	132
	3.2	Proglacial Deltas in Fjords	133
	3.3	Incised Terraced Deltas on Low-Relief	
		Coasts	135
	3.4	Breached-Lake Estuaries of the Arctic	
		Coastal Plain	135
	3.5	Small Transgressive Deltas	137
	3.6	Large Transgressive Deltas	138
4	Dis	cussion	141
	4.1	Arctic Tidewater Ice Fronts and Ice	
		Shelves	141
	4.2	Arctic Deltas	141
	4.3	Sediment Supply	141
	4.4	Vulnerability to Environmental	
		Change	142
5	Cor	nclusions	142
Acknowledgments 1			143
References 14			143

9. Delta Winners and Losers in the Anthropocene

John W. Day, Ramesh Ramachandran, Liviu Giosan, James Syvitski, G. Paul Kemp

	-		
	1	Introduction	149
		A Framework for Understanding	
		the Development, Functioning, and	
		Sustainability of Deltas and the Role	
		of Energetic Forcing Events in the	
		Functioning of Deltas	149
	3	Perspectives on Delta Sustainability	150
			150
		Resource Scarcity on Deltas	151
	5	Classification of Delta Types in	151
	5	Relationship to Sustainability	151
	6	Delta Winners and Losers—	151
	0	Sustainability of Individual Deltas	153
	7	Sustainability of Individual Deltas	154
		Asian Deltas	154
	0		154
			154
		0	
		8.3 Ganges8.4 Other Indian Deltas	156
			156
		8.5 Mahanadi	156
		8.6 Godavari-Krishna	157
		8.7 Cauvery	157
	•	8.8 Indus	157
	9	European and African Deltas	157
		9.1 Mediterranean Deltas	157
		9.2 The Nile	158
		9.3 Senegal and Pangani Deltas	158
		9.4 Danube	159
		9.5 Rhine-Meuse-Scheldt	159
	10	American Deltas	159
		10.1 Mississippi Delta	159
		10.2 Usumacinta-Grijalva Delta	160
		10.3 Rio de la Plata and the	
		Parana Delta	160
		10.4 Mackenzie Delta	160
	11	Ranking Sustainability	161
	12	Conclusions	161
		knowledgments	162
	Ret	ferences	162
10.	Pre Di Gr	ississippi Delta Restoration and otection: Shifting Baselines, minishing Resilience, and rowing Nonsustainability	
	Joh	nn W. Day, Craig Colten, G. Paul Kemp	

1 Introduction	167
2 Development of the Delta	167

		erioration of the Delta	170
4		bal Change Constraints on Coastal	4 = 4
_		ection and Restoration	171
		stal Protection and Restoration	172
6		stal Protection and Restoration in a	
		nate-Challenged, Energy-Scarce Future	173
	6.1		174
		Hurricane Surge and Waves	174
		The Mississippi River	175
	6.4	Flooding Due to Extremely	
		Heavy Rainfall	176
	6.5	A Truly Sustainable New Orleans	176
7	Μοι	ving Forward on Coastal Protection	176
	7.1	Managed Retreat	177
	7.2	Delta Restoration	178
	7.3	River Diversions—Crevasses,	
		Large Diversions, Reactivated	
		Distributaries	178
	7.4	Marsh Creation	178
	7.5	Abandonment of Lower Delta	179
	7.6	The Atchafalaya River Delta Region—	
		An Underused Resource	179
	7.7	The Chenier Plain—Potential for	
		Sustainable Management	180
	7.8	Coastal Forested Wetlands—A	
		Vanishing Resource	180
	7.9	Wasted Freshwater Resources	181
	7.10	Restoration of Basin Inputs	181
8		ting Baselines and Diminishing	
		lience	181
9		nprehensive Planning—The	
0		ortance of Global Change	182
А		wledgments	182
	0		182
			102

11. Integrated Management of the Ganges Delta, India

Ramesh Ramachandran, Ahana Lakshmi, Swati Mohan Sappal, Bonthu S.R., Mary Divya Suganya, D. Ganguly, R.S. Robin, R. Purvaja

1	Intr	oduction	187
	1.1	The Ganges and the GBM Delta	187
	1.2	Challenges in the Ganges Delta	189
2	Ups	tream Effects	189
	2.1	Water Flows	189
	2.2	Sediment Transport	191
	2.3	Impacts of Changes in Water and	
		Sediment Transport Regimes on the	
		Ganges Delta	191
3	Coa	stal Effects	192
	3.1	Floods and Inundation	192

3.2 SLR and Delta Subsidence	193
3.3 Coastal Erosion	193
3.4 Impacts of Coastal Effects on the	
Ganges Delta	193
3.5 Anthropogenic Challenges	195
3.6 Integrated Management of the Ganges	
delta	201
4 Conclusions	
Annex 1	
Facts and Figures and Pollution Status	
Along the Coast of West Bengal	
with Particular Reference to the	
Ganges Delta	204
Harmful Algal Blooms	207
References	209

12. The Indus Delta—Catchment, River, Coast, and People

Samina Kidwai, Waqar Ahmed, Syed Mohsin Tabrez, Jing Zhang, Liviu Giosan, Peter Clift, Asif Inam

1	Origin of the River	213
2	Geomorphology and Hydrology	213
	2.1 Catchment, Fluvial, Estuary/Delta,	
	Coastal Offshore	213
	2.2 Water and Sediment Discharge	
	Downstream	214
3	Upstream, Large, Manmade Structures	214
	3.1 Political Geography	214
	3.2 Indus Treaty—British Raj and	
	Independence	218
	3.3 Transboundary Water Issues	219
	3.4 Distribution—Vested Interests and	
	Resolving Internal Conflict	219
4	Catchment Areas	220
	4.1 Agrogeography	220
	4.2 Agrarian Economy and Dependence	
	on the River	221
	4.3 Brackish Lakes—Issues and Solutions	221
5	River Indus Delta Ecosystem	221
6	In the Last 50 Years	224
7	The Delta Faces Climate Change	
	(Variability in Arabian Sea Monsoon)	224
8	Saving the Delta and Its People	226
9	Fishers and Fishery From the Delta	227
10	Dependence on the River	228
11	What to Save First? What Will Work—	
	Political Will or Management	
	Strategy?	229
12	Stakeholders-Coming Together	229
References		229

13. A Brief Overview of Ecological Degradation of the Nile Delta: What We Can Learn

Zhongyuan Chen

1 Introduction	
1.1 Human Impact on the River Basin:	
Reducing Sediment and Fresh Water,	
but Increasing Nutrients	233
1.2 Delta-Estuarine Responses	233
2 What We Can Learn?	
Acknowledgments	
References	

14. Status and Sustainability of Mediterranean Deltas: The Case of the Ebro, Rhône, and Po Deltas and Venice Lagoon

John W. Day, Carles Ibáñez, Didier Pont, Francesco Scarton

1 Introduction	237
2 The Ebro Delta	239
3 The Rhône Delta	241
4 The Po Delta and Venice Lagoon	243
5 Discussion	246
6 Summary and Conclusions	247
References	

Section C

Wetlands, Lagoons and Catchments

15. Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity

Angel Pérez-Ruzafa, Isabel M. Pérez-Ruzafa, Alice Newton, Concepción Marcos

1	Introduction	253
2	Coastal Lagoons: Definition and	
	Distribution	253
3	Lagoon Functioning and Environmental	
	Variability	255
4	Lagoon Biota and Ecology	256
5	The Lagoon Paradox	260
6	Influence of Coastal Lagoons on the	
	Adjacent Sea	261
7	Ecosystem Services Provided by Coastal	
	Lagoons: Actual Status and Perspectives	261

266
267
267
268
270
270

16. The Everglades: At the Forefront of Transition

Fred H. Sklar, John F. Meeder, Tiffany G. Troxler, Tom Dreschel, Steve E. Davis, Pablo L. Ruiz

1 Introduction	277
	277
2 The Geological Setting	278
3 The Eco-Hydrological	
Setting	281
4 The Eco-Economic Setting	284
5 Transition Awareness	286
Acknowledgments	288
References	288

17. Population Growth, Nutrient Enrichment, and Science-Based Policy in the Chesapeake Bay Watershed

Christopher F. D'Elia, Morris Bidjerano, Timothy B. Wheeler

1 Introduction	293
2 Description of the Watershed	
and Its Estuary	294
2.1 Environmental History Prior	
to 1950s	294
3 Nutrient Enrichment in the	
Chesapeake	295
3.1 The "Heinle" Report	297
3.2 Historical Trends in Nutrient	
Enrichment in the PR	297
4 The PR Case as a Driver of Chesapeake	
Bay Policy	302
5 The State of the Bay: What Was	
Accomplished Since 2020 Report	
Was Published, and What Is	
to be Expected in 2020 and	
Beyond?	304
References	308

18.	The Senegal and Pangani Rivers: Examples of Over-Used River Systems Within Water-Stressed Environments in Africa		6 Conclusion References	337 339
	Awa Niang, Peter Scheren, Salif Diop, Coura Kane, Cheikh Tidiane Koulibaly		Section D Enclosed, Semi-enclosed, and Ope	en
	1 Introduction	311	Coasts	
	2 The Senegal River Basin2.1 Site Description2.2 The Damming of the River as a	311 311	20. Baltic Sea: A Recovering Future From Decades of Eutrophication	
	Response to Environmental Degradation	314	Anna-Stiina Heiskanen, Erik Bonsdorff, Marko Joas	
	2.3 The Consequences: Changes in the Hydrological Regime and Morphology, Hyper-Salinization of		1 Introduction 1.1 Centennial of Changes in the	343
	Lands, Flooding, Changes in Fish Population	315	Baltic Sea 1.2 Changing Governance Structures 1.3 Changing Ecosystem of the	343 344
	2.4 Adaptation: How People Respond by Relocating and Developing Alternative Economic Activities	316	Baltic Sea 1.4 Holistic Framework for management	346
	3 The Pangani River Basin	317	of the Baltic Sea	347
	3.1 Site Description	317	2 Eutrophication	351
	3.2 Consequences: Environmental		2.1 Drivers of Eutrophication	351
	Degradation	317	2.2 Urbanization and Wastewaters	351
	3.3 Management Strategies	318	2.3 Industrial Wastewaters	351
	4 Conclusion	318	3 Food Production	352
	References	319	3.1 Agriculture3.2 Aquaculture	352 352
			4 Nutrient Loading Pressures	352
19	Damming the Mekong: Impacts in		5 Eutrophication Status	353

19. Damming the Mekong: Impacts in Vietnam and Solutions

Nguyen Huu Nhan, Nguyen Ba Cao

1	Intr	oduction	321
2	Hyd	lropower Dam Network in the	
	Mel	kong River Basin	321
3	The	Vietnamese Mekong Delta	324
4	Dar	n Impacts on the Mekong Delta in	
	Viet	nam	327
	4.1	The Impact on Water Resource in the	
		Flood Season	327
	4.2	The Impact on Water Resource in the	
		Dry Season	327
	4.3	Impact on Sediment Resources	329
	4.4	The Morphological Changes	331
	4.5	The Other Dam Impacts on	
		the VMD	332
5	The	Conceptual Solutions	334
	5.1	Constraints and Approaches	334
	5.2	The Nonengineering Solutions	335
	5.3	Some Engineering Solutions Inland of	
		the VMD	337

Conclusion	337
ferences	339

1.1 Centennial of Changes in the	
Baltic Sea	343
1.2 Changing Governance Structures	344
1.3 Changing Ecosystem of the	
Baltic Sea	346
1.4 Holistic Framework for management	
of the Baltic Sea	347
2 Eutrophication	351
2.1 Drivers of Eutrophication	351
2.2 Urbanization and Wastewaters	351
2.3 Industrial Wastewaters	351
3 Food Production	352
3.1 Agriculture	352
3.2 Aquaculture	352
4 Nutrient Loading Pressures	352
5 Eutrophication Status	353
6 Eutrophication Impact on Human	
Welfare	353
7 Responses to Counteract and Manage	
Eutrophication	354
8 Future Outlook in Eutrophication	
Development	355
9 New Innovations Toward Sustainable	
Baltic Sea Future	356
Acknowledgments	357
References	358

21. The Black Sea-The Past, Present, and Future Status

Abdulaziz Güneroğlu, Osman Samsun, Muzaffer Feyzioğlu, Mustafa Dihkan

1 Introduction	363
2 Geographic Setting and Coastal	
Geomorphology	364
3 Ecological State and Health of the Sea	366
4 Fisheries	370
5 Pollution (Marine Litter)	371

6 Recommendations and Conclusions	372
Acknowledgments	373
References	373

22. Ecosystem Functioning and Sustainable Management in Coastal Systems With High Freshwater Input in the Southern Gulf of Mexico and Yucatan Peninsula

Jorge A. Herrera-Silveira, Ana L. Lara-Domínguez, John W. Day, Alejandro Yáñez-Arancibia, Sara Morales Ojeda, Claudia Teutli Hernández, G. Paul Kemp

1	Intr	oduction	377
2	The	High River Discharge Zone and the	
	Grij	jalva-Usumacinta Delta	377
	2.1	Environmental Diagnosis	380
3	Lag	una De Terminos	380
	3.1	Habitat Diversity	382
	3.2	Water Quality and Biogeochemistry	382
	3.3	Consumers	383
	3.4	Human Impact and Management	383
4	Yuc	atan Groundwater Coastal Karstic	
		systems—Environmental Risk and	
	Mai	nagement Opportunities	384
	4.1	Aquatic Coastal Ecosystems in Karstic	
		Settings	384
	4.2	Main Features and Ecosystem	
		Characteristics	385
	4.3	Coastal Lagoons	385
	4.4	Nearshore Coastal Systems	389
	4.5	Land Use and Coastal Ecosystem Risk	
		of the Yucatan Peninsula	392
5	Mai	nagement Perspectives for the	
	Yuc	atan Peninsula and Southern	
	Gul	f of Mexico	393
R	efere	ences	394

Section E Restoration of Estuaries

23.	Restoration of Estuaries and Bays in Japan—What's Been Done So Far, and Future Perspectives
	Osamu Matsuda, Tetsuo Yanagi
	1 Introduction
	2 Restoration and Related Activities
	Performed to Date
	2.1 Shima City

401

403 403

2.2 Bizen City (Hinase Area)	405
2.3 Kagawa Prefecture	405
3 Future Perspective	406
3.1 Clean, Productive, and Prosperous	
Coastal Sea	407
3.2 Management Method	409
Acknowledgments	410
References	410

24. Challenges of Restoring Polluted Industrialized Muddy NW European Estuaries

R. Kirby

1 Introduction	413
2 Estuary Management	413
3 Future Sea-Level Impacts	414
4 Future Costs	416
5 Degraded Major Estuaries of NW Europe	
and Their Restoration	416
6 Generic Sediment Management	
Systems	421
6.1 Entrance Flow Optimization	
Structures	421
6.2 Trickle Auto-flushing Systems (TASs)	421
6.3 Passive Nautical Depth (PND)	421
6.4 Active Nautical Depth	422
7 Cleansing of Mud in Contaminated	
Industrialized Estuaries	423
8 Conclusions	423
Acknowledgments	425
References	425

25. Can Bivalve Habitat Restoration Improve Degraded Estuaries?

Ian Michael McLeod, Philine S.E. zu Ermgassen, Chris L. Gillies, Boze Hancock, Austin Humphries

1 Introduction: Bivalves—The Forgotten	
Habitat Builders	427
2 What Are Bivalve Habitats?	428
3 Ecosystem Services	429
4 Historic Extent and Fisheries	430
5 Global Decline of Bivalve Habitats	431
6 Restoration	431
6.1 Large Scale Restoration Works	433
6.2 Community Restoration	434
6.3 Restoration for Coastal	
Protection	436
6.4 Should Nonnative Bivalve Species Be	
Used for Restoration?	437

7 The Future of Bivalve Habitat Restoration	
7.1 Social, Economic, and Environmental	
Benefits	438
7.2 Global Expansion	438
7.3 Opportunities for Innovation	438
8 Conclusion	440
References	

Section F Coral Reefs

26. Successful Management of Coral Reef-Watershed Networks

Robert H. Richmond, Yimnang Golbuu, Austin J. Shelton III

1	Intr	oduction: Importance of Land-Sea	
	Inte	eractions	445
2	Maj	or Contributors to Watershed	
	Dis	charges	446
3	Cor	ntents of Watershed Discharges	446
	3.1	Freshwater	446
	3.2	Sediment	447
	3.3	Toxicants	447
	3.4	Nutrients	448
	3.5	Pharmaceuticals	448
	3.6	The Sum of Stressors and	
		Implications for Interventions	
		on Land	448
4	The	Key Role of Coastal Oceanography	448
5	Cas	e Histories	449
	5.1	Maunalua Bay, Hawaii	449
	5.2	La Sa Fu'a Watershed in Humåtak,	
		Guam	449
6	Ren	nediation Measures	452
	6.1	Humåtak Project	452
		Community Engagement	452
	6.3	Watershed Restoration Efforts and Its	
		Effectiveness	453
7	Cor	ntinuing Efforts	453
	7.1	Palau: Ngerikiil Bay	454
	7.2	Enipein Watershed, Pohnpei	455
8	AS	nthesis: Success and Failures of	
		erent Approaches	456
9	Maj	or Socioeconomic-Cultural Lessons	
		rned	456
10	The	Future: Climate Change Issues	457
11	Eva	luation of Mitigation: Metrics of	
	Suc	cess	457
12	Cor	nclusions	457
Ref	ferer	ices	458

27. Challenges and Opportunities in the Management of Coral Islands of Lakshadweep, India

Purvaja, R., Yogeswari, S., Debasis, T., Hariharan, G., Raghuraman, R., Muruganandam, R., Ramesh Ramachandran

1 Introduction	461
1.1 India's Lakshadweep Islands	461
2 SWOT Analysis	462
3 Challenges	463
4 Interventions and Opportunities	469
5 Integrated Island Management Plan	470
5.1 Freshwater Requirement	470
5.2 Sewage	470
5.3 Solid Waste Management	471
5.4 Island Shoreline Protection	473
5.5 Conservation of Corals	473
6 Conclusions	475
Acknowledgements	475
References	475

28. The Future of the Great Barrier Reef: The Water Quality Imperative

Brodie, J., Grech, A., Pressey, B., Day, J., Dale, A.P., Morrison, T., Wenger, A.

1 Introduction—The State of the Great	
Barrier Reef	477
2 Terrestrial Pollution and Sources	479
3 Stressors and the Impacts	480
3.1 Fine Sediment	480
3.2 Nutrients	481
3.3 Pesticides	483
3.4 Other Pollutants	483
3.5 Risk Summary	483
4 The Current Water Quality Management	
Response and Progress	484
4.1 Governance	484
4.2 Ports and Shipping	484
4.3 Pollutant Loads Reduction	485
4.4 Crown-of-Thorns Starfish	
Management	487
4.5 Tree Clearing	487
5 The Future Based on Current	
Management Regime	488
6 What Would Success Look Like?	488
7 What Could Be Done to Improve	
Governance and Management?	490
8 A Way Forward	491
Acknowledgment	492
References	492

Section G Over-Arching Topics

29. Estuarine Ecohydrology Modeling: What Works and Within What Limits?

Eric Wolanski

1	Introduction: The Need for Models	503
2	Models of Physical Processes	505
	2.1 Water Circulation Models	505
	2.2 Sediment Dynamics Models	505
3	Models of Nutrient Sequestration by Fine	
	Sediment	508
4	Estuarine Ecohydrology Models	508
	4.1 Introduction	508
	4.2 The LOICZ Model	509
	4.3 NPZ Estuarine Ecosystem Models	510
	4.4 The UNESCO Estuarine Ecohydrology	
	Model	511
	4.5 The Ecopath Model	512
	4.6 Harmful Algae Blooms Models	514
	4.7 Hypoxia Models	516
5	A Synthesis	516
Re	eferences	518

30. Hypersalinity: Global Distribution, Causes, and Present and Future Effects on the Biota of Estuaries and Lagoons

James R. Tweedley, Sabine R. Dittmann, Alan K. Whitfield, Kim Withers, Steeg D. Hoeksema, Ian C. Potter

1	Intro	oduction	523
2	Met	a-analysis of Hypersaline Estuaries,	
	Lage	oons and Coastal Embayments	524
3	Lag	una Madre	525
	3.1	Morphology and Physicochemical	
		Environment	525
	3.2	Anthropogenic Influences and	
		Hypersalinity	528
	3.3	Effects of Hypersalinity on the Biota	529
	3.4	The Future With Climate Change	529
4	Lake	e St Lucia	530
	4.1	Morphology and Physicochemical	
		Environment	530
	4.2	Anthropogenic Influences and	
		Hypersalinity	530
	4.3	Effects of Hypersalinity on the Biota	532
	4.4	The Future With Climate Change	533
5	Coo	prong	533

5.1 Morphology and Physicochemical	
Environment	533
5.2 Anthropogenic Influences and	
Hypersalinity	535
5.3 Effects of Hypersalinity on the Biota	536
5.4 The Future With Climate Change	537
6 Stokes, Hamersley and Culham Inlets	537
6.1 Morphology and Physicochemical	
Environment	537
6.2 Anthropogenic Influences and	
Hypersalinity	537
6.3 Effects of Hypersalinity on the Biota	539
6.4 The Future With Climate Change	540
7 Summary	541
Acknowledgments	541
References	541

31. Alien Species Invasion: Case Study of the Black Sea

Nickolai Shalovenkov

1 Introduction	547
2 Alien Species Invasion of the Black Sea	547
2.1 Phytoplankton Alien Species	547
2.2 Zooplankton Alien Species	550
2.3 Zoobenthos Alien Species	552
2.4 Fish Alien Species	552
3 Gradients of Temperature and Salinity as	
Ecological Barriers	555
4 Large-Scale Currents and Alien	
Species	557
5 Trends of Invasion of Alien Species	558
6 Invasive Corridors of the Black Sea Basin	560
6.1 The Atlantic and Indo-Pacific	
Corridors	560
6.2 Ponto-Caspian Corridor	561
7 Invasions of Alien Species in the Black	
Sea—The Future	561
References	562

32. Coastal Fisheries: The Past, Present, and Possible Futures

Maria-Lourdes D. Palomares, Daniel Pauly

1 Introduction	569
2 Coastal Fisheries as a Key Component of	
Global Fisheries	569
3 Regional and Temporal Difference in	
Coastal Fisheries	571
4 Large-Scale Industrial Versus Small-Scale	
Artisanal and Recreational Fisheries	572

5 A Neglected Sector: Subsistence Fisheries	572
6 "Fishing Down" and Other Ecosystem	
Impacts of Coastal Fisheries	573
7 Coastal Fisheries and Climate Change	574
8 The Governance of Coastal Fisheries	575
Acknowledgments	
References	

33. Temperate Estuaries: Their Ecology Under Future Environmental Changes

Ducrotoy J.-P., Michael Elliott, Cutts N.D., Franco A., Little S., Mazik K., Wilkinson M.

1	Introduction	577	
2	The Response of Estuarine Ecological		
	Components to Climate Change	578	
	2.1 Phytoplankton Primary Production	578	
	2.2 Zooplankton	580	
	2.3 Macroalgae and Microphytobenthos	580	
	2.4 Angiosperms	582	
	2.5 Benthic Invertebrates	583	
	2.6 Fish	585	
	2.7 Birds	587	
3	Final Discussion and Conclusions	589	
R	References 5		

34. Plastic Pollution in the Coastal Environment: Current Challenges and Future Solutions

K. Critchell, A. Bauer-Civiello, C. Benham, K. Berry, L. Eagle, M. Hamann, K. Hussey, T. Ridgway

1	Plastic Pollution in the Marine	
	Environment: An Emerging Contaminant	
	of Global Concern	595
2	Sources and Methods of Dispersal of	
	Microplastic Pollution in the Coastal	
	and Marine Environment	596
3	Loss of Virgin Microplastics During	
	Manufacture or Transport	596
4	Microplastics From Households-Fibers	
	and Microbeads	596
5	Breakdown of Large Plastics	596
6	Microplastic Pollution in the Coastal	
	and Marine Environment	598
	6.1 Dispersal and Accumulation Patterns	599
7	Governance Challenges and Current	
	Approaches	599
8	A Circular Economy Approach for	
	Marine Plastic Pollution	600

	8.1 Waste Management and Marine Plastic	600
	8.2 Reducing Plastic Pollution in the	
	Oceans	604
9	Reducing Marine Plastic Pollution: Case	
	Studies	604
10	Case Study 1: Banning Microbeads in	
	Personal Care and Cleaning Products	604
11	Case Study 2: EPR	605
12	Behavioral Change—Littering and	
	Plastic Pollution	605
13	Conclusion	606
Ref	erences	607

35. Changing Hydrology: A UK Perspective

Peter E. Robins, Matt J. Lewis

1 Introduction	611
2 Sensitivity of UK Estuaries to River Flows	612
3 Past Trends and Future Projections for	
Hydrology	613
4 Potential Impacts to Estuaries From	
Changing Hydrology	614
4.1 Flooding and Inundation	614
4.2 Water Quality	615
4.3 Habitats	615
5 Summary	615
References	616

Section H Management of Change

36. Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population

John W. Day, John M. Rybczyk

1 Introduction	621
2 Global Climate Change: Past Trends,	
Future Predictions, and System Impacts	622
2.1 Temperature	622
2.2 Sea-Level Rise	622
3 Coastal Wetland Response to	
Temperature and Accelerated SLR	624
4 The Impacts of Changes in Freshwater	
Input on Coastal Ecosystems	625
5 Tropical Cyclones	626
6 Extreme Weather Events	627

7	Energy Scarcity and Coastal Adaptation	
	and Restoration	627
8	Coastal Environmental Degradation as a	
	Societal Energy Sink	630
	8.1 Population	630
	8.2 Ranking Coastal Sustainability	631
	8.3 Sea-Level Rise	631
	8.4 Changes in Freshwater Input	631
	8.5 Tropical Cyclones	632
	8.6 Below Sea-Level Coastal Areas	632
	8.7 Arid and Semiarid Areas	632
	8.8 Arctic Coastal Systems	632
9	Ecological Engineering and	
	Ecohydrology—System Functioning as	
	a Basis for Sustainable Management of	
	Coastal Systems	633
	9.1 Ocean Acidification	633
	9.2 Human Activity and Coastal	
	Management	633
10	Conclusions: Ecosystem Goods and	
	Services and Cost of Energy	634
Ref	ferences	634

37. Human-Nature Relations in Flux: Two Decades of Research in Coastal and Ocean Management

Bernhard Glaeser

1	Preamble: Aim and Overview	641
2	Human-Nature Relations: Why COM?	641
3	Stakeholder Identification and Conflict	
	Resolution: The Example of Sweden	642
4	National Coastal and Ocean Strategies:	
	The Example of Germany	644
5	Natural Calamities and Coastal	
	Hazards	646
	5.1 The Example of the 2004 Tsunami in	
	South-East Asia	646
	5.2 The Example of the 2005 Hurricane	
	Katrina in New Orleans, USA	648
6	Climate Change: The Example of	
	Indonesia	650
7	Coastal and Ocean Typologies: An	
	Analytical Instrument and Planning Tool	653
8	Summary and Conclusion	657
R	eferences	657

38. Megacities and the Coast: Global Context and Scope for Transformation

Sophie Blackburn, Mark Pelling, César Marques

1 Introduction	661
2 Locating Coastal Megacities	661
3 Challenges in Defining Coastal Megacities	663
4 Risk, Vulnerability, and Resilience in	
Coastal Megacities	664
4.1 Drivers of Risk in Coastal Megacities	664
4.2 Possibilities for Resilience and	
Transformation	665
5 Conclusions: Urban Transitions, Urban	
Futures	667
Acknowledgments	668
References	668

39. Arctic Coastal Systems: Evaluating the DAPSI(W)R(M) Framework

Amy Lauren Lovecraft, Chanda L. Meek

1 Introduction	671
1.1 The Rapidly Changing Arctic	671
1.2 Arctic Ecosystem Services	672
2 The Arctic Coastal Margin and Its	
Social-Ecological System	674
2.1 Arctic Coastal Ecological Systems	675
2.2 Social Systems Among Arctic	
Coastlines	676
2.3 The Significance of Arctic Coasts for	
Subsistence Livelihoods	677
3 The Complexity of Ecosystem Management	678
3.1 Applying the DAPSI(W)R(M)	
Framework to Arctic Coasts	679
3.2 Measures and the Advent of the Arctic	
Council	682
4 The Possible Futures of Arctic Coastal	
Environmental Management	682
4.1 Managing Change or Changing	
Management?	682
5 Conclusion	683
References	684

Index

This page intentionally left blank

Contributors

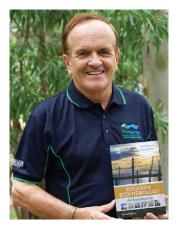
Numbers in parentheses indicate the pages on which the authors' contributions begin.

- Waqar Ahmed (213), National Institute of Oceanography, Karachi, Pakistan
- A. Bauer-Civiello (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- **C. Benham** (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- **K. Berry** (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- **Morris Bidjerano** (293), School of Public Policy and Administration, Walden University, Greenville, SC, United States
- **Sophie Blackburn** (661), Department of Geography, King's College London, London, United Kingdom
- Erik Bonsdorff (343), Åbo Akademi University, Turku, Finland
- J. Brodie (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Nguyen Ba Cao (321), Vietnam Academy of Water Resources, Hanoi, Vietnam
- **Zhongyuan Chen** (31, 233), State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China
- **Peter Clift** (213), Louisiana State University, Baton Rouge, LA, United States
- **Craig Colten** (167), Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA, United States
- K. Critchell (595), College of Science and Engineering, James Cook University, Townsville; Marine Spatial Ecology Lab, University of Queensland, Brisbane, QLD, Australia
- **N.D. Cutts** (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom

- **Christopher F. D'Elia** (293), College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
- **A.P. Dale** (477), The Cairns Institute, James Cook University, Cairns, QLD, Australia
- **Moslem Daliri** (57), Department of Fisheries, Faculty of Marine and Atmospheric Sciences and Technologies, University of Hormozgan, Bandar Abbas, Iran
- **Steve E. Davis** (277), Everglades Foundation, Palmetto Bay, FL, United States
- John W. Day (1, 149, 167, 237, 377, 621), Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
- J. Day (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- **T. Debasis** (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- **Omar Defeo** (45), UNDECIMAR, Faculty of Sciences, University of the Republic, Montevideo, Uruguay, Montevideo, Uruguay
- **Mustafa Dihkan** (363), Department of Geomatics, Faculty of Engineering, Karadeniz Technical University, Çamburnu, Trabzon
- Salif Diop (311), Cheikh Anta Diop University, Dakar-Fann, Senegal
- Sabine R. Dittmann (523), College of Science & Engineering, Flinders University, Adelaide, SA, Australia
- **Tom Dreschel** (277), Everglades Systems Assessment Section, South Florida Water Management District, West Palm Beach, FL, United States
- **J.-P. Ducrotoy** (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
- Ryan J.K. Dunn (69), Ocean Science & Technology, RPS, Gold Coast, QLD, Australia

- L. Eagle (595), College of Business, Law and Governance, James Cook University, Townsville, QLD, Australia
- **Michael Elliott** (1, 577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
- **Muzaffer Feyzioğlu** (363), Department of Marine Science and Technology, Faculty of Marine Sciences, Karadeniz Technical University, Çamburnu, Trabzon
- **Donald L. Forbes** (123), Geological Survey of Canada, Natural Resources Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada; Department of Geography, Memorial University of Newfoundland, St. John's, NL; Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada
- **A. Franco** (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
- **D. Ganguly** (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Javier García-Alonso (45), Departament of Ecology, CURE, University of the Republic, Maldonado, Uruguay
- Chris L. Gillies (427), The Nature Conservancy, Carlton, VIC; James Cook University, Townsville, QLD, Australia
- Liviu Giosan (149, 213), Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Bernhard Glaeser (641), Freie Universität; German Society for Human Ecology (DGH), Berlin, Germany
- **Yimnang Golbuu** (445), Palau International Coral Reef Center, Koror, Palau
- A. Grech (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Abdulaziz Güneroğlu (363), Department of Marine Ecology, Faculty of Marine Sciences, Karadeniz Technical University, Çamburnu, Trabzon
- **C.S. Hallett** (103), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- **M. Hamann** (595), College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- **Boze Hancock** (427), The Nature Conservancy, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
- **G. Hariharan** (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Anna-Stiina Heiskanen (343), Finnish Environment Institute, Helsinki, Finland

- **K. Hennig** (103), Department of Water and Environmental Regulation, Perth, WA, Australia
- **Claudia Teutli Hernández** (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico
- Jorge A. Herrera-Silveira (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico
- **M.R. Hipsey** (103), Aquatic Ecodynamics, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Steeg D. Hoeksema (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch; Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Western Australia, Australia
- Jianyin Huang (69), Natural and Built Environments Research Centre, School of Natural and Built Environments; Future Industries Institute, University of South Australia, Adelaide, SA, Australia
- **P. Huang** (103), Aquatic Ecodynamics, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Austin Humphries (427), Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, United States
- **K. Hussey** (595), Centre for Policy Futures, Faculty of Humanities and Social Sciences, The University of Queensland, St Lucia, QLD, Australia
- **Carles Ibáñez** (237), Aquatic Ecosystems Program, IRTA, San Carles de la Rapita, Catalonia, Spain
- Asif Inam (213), National Institute of Oceanography, Karachi, Pakistan
- Marko Joas (343), Åbo Akademi University, Turku, Finland
- **Ehsan Kamrani** (57), Department of Fisheries, Faculty of Marine and Atmospheric Sciences and Technologies, University of Hormozgan, Bandar Abbas, Iran
- **Coura Kane** (311), Cheikh Anta Diop University, Dakar-Fann, Senegal
- **G. Paul Kemp** (149, 167, 377), Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
- Samina Kidwai (213), National Institute of Oceanography, Karachi, Pakistan
- **K.L. Kilminster** (103), Department of Water and Environmental Regulation, Perth, WA, Australia
- Brian A. King (69), Ocean Science & Technology, RPS, Gold Coast, QLD, Australia


- **R. Kirby** (413), Ravensrodd Consultants Ltd., Liverpool, United Kingdom
- **Cheikh Tidiane Koulibaly** (311), Cheikh Anta Diop University, Dakar-Fann, Senegal; University of Ibadan, Ibadan, Nigeria
- Ahana Lakshmi (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Janet M. Lanyon (87), School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
- Ana L. Lara-Domínguez (377), Institutue of Ecology, Veracruz, Mexico
- **Diego Lercari** (45), UNDECIMAR, Faculty of Sciences, University of the Republic, Montevideo, Uruguay, Montevideo, Uruguay
- Matt J. Lewis (611), School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, United Kingdom
- Maotian Li (31), State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, People's Republic of China; Institute of Eco-Chongming Shanghai, China
- **S. Little** (577), School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottinghamshire, United Kingdom
- **Amy Lauren Lovecraft** (671), Center for Arctic Policy Studies, University of Alaska Fairbanks, Fairbanks, AK, United States
- **Concepción Marcos** (253), Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Murcia, Spain
- **César Marques** (661), National School of Statistical Science—Brazilian Institute of Geography and Statistics (ENCE/IBGE), Rio de Janeiro, Brazil
- **Osamu Matsuda** (401), Graduate School of Biosphere Sciences, Hiroshima University, Higashihiroshima, Japan
- **K. Mazik** (577), Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
- John F. Meeder (277), Sea Level Solutions Center and Southeast Environmental Research Center, Florida International University, Miami, FL, United States
- Chanda L. Meek (671), Department of Political Science, University of Alaska Fairbanks, Fairbanks, AK, United States
- **Ian Michael McLeod** (427), TropWATER, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia.
- **T. Morrison** (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia

- **R. Muruganandam** (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Alice Newton (253), NILU-IMPACT, Kjeller, Norway; CIMA-Centre for Marine and Environmental Research, Gambelas Campus, University of Algarve, Faro, Portugal
- Nguyen Huu Nhan (321), Vietnam Academy of Water Resources, Hanoi, Vietnam
- Awa Niang (311), Cheikh Anta Diop University, Dakar-Fann, Senegal
- **Sara Morales Ojeda** (377), Center for Research and Advanced Studies of the National Polytechnic Institute, Merida Campus, Mexico
- Maria-Lourdes D. Palomares (569), Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- **Daniel Pauly** (569), Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Mark Pelling (661), Department of Geography, King's College London, London, United Kingdom
- Angel Pérez-Ruzafa (253), Department of Ecology and Hydrology, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Murcia, Spain
- Isabel M. Pérez-Ruzafa (253), Department of Plant Biology I, Complutense University of Madrid, Madrid, Spain
- **Didier Pont** (237), Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences, Vienna, Austria
- Ian C. Potter (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- **B. Pressey** (477), ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- **R. Purvaja** (187, 461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- **R. Raghuraman** (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Ramesh Ramachandran (1, 149, 187, 461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India

- Robert H. Richmond (445), Kewalo Marine Laboratory, University of Hawaii at Manoa, Honolulu, HI, United States
- **T. Ridgway** (595), Global Change Institute, The University of Queensland, St Lucia, QLD, Australia
- **R.S. Robin** (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Peter E. Robins (611), School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, United Kingdom
- **Pablo L. Ruiz** (277), South Florida Caribbean Network, National Park Service, Palmetto Bay, FL, United States
- John M. Rybczyk (621), Department of Environmental Science, Western Washington University, Bellingham, WA, United States
- Bonthu S.R. (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- **Osman Samsun** (363), Faculty of Fisheries, Sinop University, Sinop, Turkey
- Swati Mohan Sappal (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- Francesco Scarton (237), SELC Societá Cooperativa, Venezia, Italy
- **Peter Scheren** (311), WWF Regional Office for Africa, Nairobi, Kenya
- Nickolai Shalovenkov (547), The Centre for Ecological Studies, Russia
- Moslem Sharifinia (57), Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Gulf of Oman and Indian Ocean Research Center, Marine Biology Division, Chabahar, Iran
- Austin J. Shelton III (445), Center for Island Sustainability and Sea Grant Program, University of Guam, Mangilao, Guam
- **Fred H. Sklar** (277), Everglades Systems Assessment Section, South Florida Water Management District, West Palm Beach, FL, United States
- Mary Divya Suganya (187), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- James Syvitski (149), Community Surface Dynamics Modeling System, University of Colorado, Boulder, CO, United States

- Syed Mohsin Tabrez (213), National Institute of Oceanography, Karachi, Pakistan
- Peter R. Teasdale (69), Natural and Built Environments Research Centre, School of Natural and Built Environments; Future Industries Institute, University of South Australia, Adelaide, SA, Australia
- **Tiffany G. Troxler** (277), Sea Level Solutions Center and Southeast Environmental Research Center, Florida International University, Miami, FL, United States
- James R. Tweedley (523), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
- **F.J. Valesini** (103), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia
- Nathan J. Waltham (69), Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), Division of Tropical Environments and Societies, James Cook University, Douglas, QLD, Australia
- **A. Wenger** (477), School of Earth and Environmental Sciences, University of Queensland, St. Lucia, QLD, Australia
- **Timothy B. Wheeler** (293), Bay Journal, Seven Valleys, PA, United States
- Alan K. Whitfield (523), South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- **M. Wilkinson** (577), Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Kim Withers (523), Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
- Eric Wolanski (1, 503), TropWATER and College of Marine & Environmental Sciences, James Cook University and Australian Institute of Marine Science, Townsville, QLD, Australia
- **Tetsuo Yanagi** (401), International EMECS Center, Kobe, Japan
- Alejandro Yáñez-Arancibia (377), Institutue of Ecology, Veracruz, Mexico
- **S. Yogeswari** (461), National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, India
- **Jing Zhang** (213), State Key Laboratory in Estuarine and Coastal Research, Shanghai, China
- Philine S.E. zu Ermgassen (427), School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom

About the Editors

Professor Eric Wolanski

Eric Wolanski is an estuarine oceanographer and ecohydrologist at James Cook University and the Australian Institute of Marine Science. His research interests range from the oceanography of coral reefs, mangroves, and muddy estuaries to the interaction between physical and biological processes determining ecosystem health in tropical waters. He has over 400 scientific publications, including 12 books, and technical reports. Eric is a fellow of the Australian Academy of Technological Sciences and Engineering, the Institution of Engineers Australia (ret.), and l'Académie Royale des Sciences d'Outre-Mer. He was awarded a Doctorate Honoris Causa by the catholic University of Louvain, another Doctorate Honoris Causa by the University of Hull, a Queensland Information Technology and Telecommunications Award for Excellence, and a Lifetime Achievement Award by the Estuarine & Coastal Sciences Association. Eric is an Editor-in-Chief of Wetlands Ecology and Management, Treatise on Estuarine and Coastal Science, the Honorary Editor of Estuarine, Coastal and Shelf Science, and a member of the editorial board of four other journals. He is also a member of the Scientific and Policy Committee of Japan's EMECS (focusing on the Seto Inland Sea) and the European Union DANUBIUS-PP Scientific and Technical Advisory Board, which is a pan-European distributed research infrastructure dedicated to interdisciplinary studies of large river-sea systems throughout Europe.

Professor John Day

John Day is distinguished professor emeritus in the Department of Oceanography and Coastal Sciences at Louisiana State University. He has over 400 publications focusing on the ecology and management of coastal and wetland ecosystems, with emphasis on the Mississippi delta, as well as, among many, coastal ecosystems in Mexico and the impacts of climate change on wetlands in Venice Lagoon and in the Po, Rhone, and Ebro deltas in the Mediterranean. John is the coeditor of 14 books including *Estuarine Ecology, Ecological Modeling in Theory and Practice, The Ecology of the Barataria Basin, An Estuarine Profile, Ecology of Coastal Ecosystems in the Southern Mexico: The Terminos Lagoon Region, Ecosystem Based Management of the Gulf of Mexico, America's Most Sustainable Cities and Regions—Surviving the 21st Century Megatrends. John served as chair of the Science and Engineering Special Team on restoration of the Mississippi delta, on the Scientific Steering Committee of the Future Earth Coasts program, and a National Research Council panel on urban sustainability.*

Professor Michael Elliott

Professor Ramesh Ramachandran

Michael Elliott is the professor of Estuarine and Coastal Sciences at the University of Hull, United Kingdom. He is a marine biologist with a wide experience and interests and his teaching, research, advisory, and consultancy work includes estuarine and marine ecology, policy, governance, and management. Mike has published widely, coauthoring/ coediting 18 books/proceedings and >270 scientific publications. This includes coauthoring The Estuarine Ecosystem: Ecology, Threats and Management, Ecology of Marine Sediments: Science to Management, and Estuarine Ecohydrology: An Introduction' and as a volume editor and contributor to the Treatise on Estuarine & Coastal Science. He has advised on many environmental matters for academia, industry, government, and statutory bodies worldwide. Mike is a past-President of the international Estuarine & Coastal Sciences Association (ECSA) and is an Editor-in-Chief of the international journal Estuarine, Coastal & Shelf Science; he has been adjunct professor and held research positions at Murdoch University (Perth), Klaipeda University (Lithuania), the University of Palermo (Italy), and the South African Institute for Aquatic Biodiversity, Grahamstown. He was awarded Laureate of the Honorary Winberg Medal of the Russian Hydrobiological Academic Society in 2014.

Ramesh Ramachandran is director of the National Centre for Sustainable Coastal Management at the Ministry of Environment, Forest and Climate Change, Government of India. His expertise includes coastal/marine biogeochemistry, conservation of coastal/marine biodiversity, and Integrated Coastal Zone Management. He has over 135 research publications and over 100 technical reports. Among the several awards Professor Ramesh has received are the University Grants Commission UGC-Swami Pranavananda Saraswathi Award in Environmental Sciences and Ecology for the Year 2007 (awarded in February 2010). He was the chair of the Scientific Steering Committee of LOICZ (currently renamed as Future Earth Coasts), member of the Scientific Steering Committee of the Monsoon Asia Integrated Regional Study, chairman of the International Working Group on Coastal Systems on the Role of Science in International Waters Projects of UNEP-GEF, as well as being affiliated with the Bay of Bengal Large Marine Ecosystem Programme of the FAO. He is currently the chair of the Global Partnership in Nutrient Management (GPNM) of UNEP.

Preface: Why This Book?

Coastal ecosystems are at the nexus of the Anthropocene, with enormous environmental issues, and inhabited by nearly half of the human population. These coastal systems and the surrounding human societies form coastal social-ecological systems that increasingly face enormous environmental issues from multiple pressures, which threaten their ecological and economical sustainability. The pressures are derived from hazards which then become risks where they impact the society and where, in some cases, human responses exacerbate the risks. There is only one big idea in managing these systems— how to maintain and protect the natural ecological structure and functioning and yet at the same time allow them to deliver ecosystem services which produce societal goods and benefits. The pressures include basically all human activities within the river catchments such as changes to land use and hydrology in the river catchment, and directly on coastal ecosystems from land claim, coastal sand mining, harbor dredging, pollution and eutrophication, overexploitation such as overfishing and extraction of groundwater, gas and petroleum extraction. In addition, coastal zones are impacted by climate change— this is not just the 'usual' culprits of sea level rise, ocean acidification, and increased temperature but also, just as important, changes in the rainfall-runoff of the river catchments, stronger coastal storms, and the changes to species distributions, including the influx of invasive species.

The problems faced by half of the humanity worldwide living near coasts are truly a worldwide challenge as well as an opportunity for science to study commonality and differences and provide solutions. During the five decades of monitoring the degradation of estuaries and coastal waters in the 20th century, coastal scientists studied the problems and issues arising along the coasts worldwide. Now, in the 21st century, the scientists need to use their science to help find solutions to these problems through science-informed management and innovation. The issues to solve are complex because they involve large areas, many users, and sociopolitical-environmental mosaics.

This book provides a typology of the human interaction with estuaries and coastal waters worldwide as a comprehensive description of what works and what does not work for estuaries and coastal waters worldwide and what remediation measures are possible and likely to succeed within limits. This is the first time that such a worldwide approach to estuarine and coastal sustainability has been initiated.

Thus the book addresses these real-life issues in order to learn from each other, by having a series of chapters written by the leading local experts detailing case studies from estuaries and coastal waters worldwide in the full range of natural variability and human pressures. The study sites are located in all the continents, except for the Antarctic, and several oceanic islands. This is followed by a series of chapters written by scientific leaders worldwide synthesizing the problems and offering solutions for specific issues graded within the framework of the socioeconomic-environmental mosaic. These include coastal fisheries, climate change, biophysical limits and energy costs, coastal megacities, evolving human-nature interactions, remediation measures for a number of worldwide issues such as mud and metal legacy as well as plastic pollution, integrated coastal management, and international water conflicts affecting estuaries, deltas, and coastal waters.

We wish to thank Jaclyn Truesdell and Lindsay Lawrence at Elsevier for their help in producing this book.

Eric Wolanski John Day Michael Elliott Ramesh Ramachandran This page intentionally left blank