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Abstract

We described the geographic distribution of 82 haemosporidian lineages (Plasmodium,

Haemoproteus, and Leucocytozoon) in the cattle egret sampled in five countries in central-

western and southern Africa. Seventy-three lineages have not previously been reported.

We determined the prevalence of three haemosporidians in the samples. We investigated

the influence of the internal environment of the host and environmental variables on the

Plasmodium diversity and whether environmental variables may explain spatial variations in

the prevalence of Plasmodium. We screened DNA from 509 blood samples from nestlings

in 15 African colonies for infection by sequencing the cytochrome b gene of parasites. The

molecular phylogenetic analysis was performed using Bayesian methods and including

sequences from the MalAvi and GeneBank databases. We found 62 new Plasmodium line-

ages in a clade with MYCAME02, which is a lineage described in waterbirds and recently

identified in birds of prey as Plasmodium paranucleophilum. Two Haemoproteus lineages

identified in cattle egret formed a distinct group with Haemoproteus catharti and MYCAMH1

(Haemoproteus spp.). Seven Leucocytozoon lineages found in the cattle egret clustered

with Leucocytozoon californicus. We found different Plasmodium diversities among the col-

onies sampled, demonstrating that the internal environment of the host is not the primary

determinant of diversity. A linear mixed-effects multivariate model showed that precipitation

was positively associated with Plasmodium diversity when controlling for the effects of tem-

perature, colony composition (mixed and non-mixed species) and country. Moreover, a

generalized mixed model showed that temperature was positively associated with the prev-

alence of Plasmodium when controlling for precipitation, elevation and country. We
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conclude that the cattle egret is a good model for future haemosporidian studies, as we

found a significant number of new lineages in this host, which occupies regions with different

climate characteristics where environmental variables exert an influence on the diversity

and prevalence of Plasmodium.

Introduction

Despite advances in studies on the genetic diversity, ecology and evolutionary biology of avian

haemosporidians in recent years, factors driving the spatial variations of such parasites remain

poorly understood. The spatial distribution of the diversity and prevalence of haemosporidians

has been investigated using different hypotheses addressing a local or regional scale over a

short or long period of time. Environmental hypotheses seek to explain the distribution of hae-

mosporidian diversity and prevalence as a consequence of features of the external abiotic envi-

ronment, such as climatic variables and altitude [1–3]. On the other hand, host hypotheses

seek to explain the distribution and prevalence of haemosporidians based on host-related fac-

tors, such as composition of the host community, dispersal patterns [4, 5] and age of the host

[6]. In fact, parasite distribution is simultaneously influenced by environmental, host and para-

site-specific factors as well as vector abundance across multiple spatial and temporal scales [7,

8]. Detailed analyses of the biogeographic patterns of individual parasite assemblages on differ-

ent spatial scales are important to understanding which environmental variables exert the

greatest influence.

Several environmental factors have been identified as being directly involved in the inci-

dence and transmission of avian blood parasites. Temperature was considered an important

factor favouring the diversity and prevalence of Plasmodium spp. in a study involving 37 popu-

lations of the Iberian blackcap (Sylvia atricapilla) [9]. Sehgal et al. [10] showed that, among

ecological variables, temperature was the strongest positive predictor of the prevalence of Plas-
modium in the olive sunbird (Cyanomitra olivacea) sampled at 28 sites in central and western

Africa. Rainfall has also been described as one of factors contributing to haemosporidian infec-

tion in wetlands in South Africa. Okanga et al. [11] demonstrated a significant correlation with

rainfall two months prior to the sampling months and mosquito prevalence patterns across the

landscape also demonstrated a close relationship to rainfall patterns. As Sehgal [3] points out,

both temperature and rainfall exert a greater influence on vectors than bird hosts, since insects

are ectothermic. Moreover, altitude has been associated with the occurrence of different genera

and distribution patterns, with a predominance of Leucocytozoon at higher altitudes [2].

There are relatively few examples of single-species studies focusing on spatial patterns in

the occurrence of haemosporidians [9, 12–15]. This approach enables comparing the effects of

environmental factors on the prevalence and diversity of haemosporidians. However, this

method is limited by the distribution of the host species and it is therefore necessary to choose

a widespread cosmopolitan bird that occupies different landscapes. Following this logic, we

undertook a spatially extensive analysis of haemosporidians in African populations of the cattle

egret (Bubulcus ibis, Ardeidae). This gregarious egret normally breeds in colonies with other

ardeid species near bodies of water [16], which favours the transmission of these parasites,

since water availability is critical to the development of vector larvae [5]. Cattle egret nestlings

are only partially covered with down upon hatching and chicks are not fully feathered until

reaching 13 to 21 days of age [17], making them vulnerable to haemosporidian infection via

mosquitoes and other biting flies that breed on or near water. The remarkably high diversity of

Haemosporidians in African cattle egret populations
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avian malaria parasites and, consequently, the even higher number of potential parasite–host

species interactions may modulate infection, especially the prepatent period and parasitemia

dynamics [18]. Parasites can be detected in cattle egret nestlings aged two to four weeks, which

likely reflects a very short prepatent period as a consequence of particular haemosporidian lin-

eages infecting these birds. An experimental study has demonstrated that P. ashfordi and P.

relictum lineages differ substantially in several life-history traits, especially the prepatent period

and parasitemia dynamics [18]. Parasites can be detected in cattle egret nestlings aged two to

four weeks, probably infected through transmission by vectors from adult to nestling (parent

to offspring) or nestlings to nestlings in the nest or surrounding area in the colony.

In this study, we screened for three genera of haemosporidians (Plasmodium, Haemopro-
teus and Leucocytozoon) in cattle egret nestlings from 15 breeding colonies in central-western

and southern Africa. Lineages of Plasmodium, Haemoproteus and Leucocytozoon were identi-

fied through a phylogenetic analysis that included previously described lineages. We deter-

mined the prevalence of three haemosporidians in the regions sampled. Although all three

genera of parasites were detected, only Plasmodium was widely distributed, which enabled us

to test the following hypotheses regarding its diversity and prevalence: H1 (host-diversity

hypothesis)–the internal environment of the host is the primary determinant of Plasmodium
diversity and, it is expected to find no variation in the composition of lineages found in cattle

egret populations from different locations; H2 (environment-diversity hypothesis)–the exter-

nal environment is the primary driving force of Plasmodium diversity in the cattle egret due to

the likely impact of temperature, precipitation, beyond the effect of the colony composition

(mixed and non-mixed species) on diversity. In this case, we expect Plasmodium diversity to

be greater in regions with higher temperatures and greater precipitation as well as in mixed

colonies, which are all factors that favour the transmission and interchange of parasites and,

consequently, diversity; H3 (environment-prevalence hypothesis)–to test whether the varia-

tion in the prevalence of Plasmodium is explained by environmental effects, we suppose that

the external environment influences the quantity of individuals that are infected and, in this

case, we expect greater prevalence rates in regions with higher temperatures, lower elevation

and greater precipitation, since these factors favour Plasmodium transmission.

Material and methods

Ethics statement

This study was conducted in strict accordance with African laws for research on wild birds in

each country. All blood samples were collected with legal permission: Senegal (Ministere de

LÉnvironnement et la Protection de la Nature, Direction des Eaux, Forets et Chasses, Numbers

01898, and 00064, Direction des Parcs Nationaux Number 00001274), Guinea-Bissau (Minis-

terio da Agricultura e Desenvolvimento Rural, 12/10/2011), Ghana (012174, 06/10/2011), and

South Africa (Cape Nature AAA007 00010–0035, 07/11/2006). In Nigeria, it is not necessary

to obtain a permit to collect and export blood samples from “least concern species”, as the cat-

tle egret is classified. All methods related to capturing, handling, banding the birds and blood

collection complied with internationally standardised sampling techniques [19].

Study species and sampling

The subspecies Bubulcus ibis ibis originally occurred in central-eastern Africa [20], southern

Europe, the Middle East, and parts of Asia [21–23]. It has historically dispersed with rapid

growth and colonisation, expanding from its native range in Africa [22]. This subspecies cur-

rently occupies the entire African continent, with the exception of desert areas [24, 25].

Haemosporidians in African cattle egret populations
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Blood samples were collected from cattle egret nestlings (N = 509) at 15 breeding colonies

in five countries in central-western and southern Africa: Senegal, Guinea-Bissau, Nigeria,

Ghana and South Africa (S1 Table). Blood was collected (0.1 ml) from the right jugular or

ulnar vein in the wing, using a syringe previously washed with anticoagulant (0.3% EDTA).

Blood smears were taken from part of the samples collected in Senegal, Guinea-Bissau, Ghana

and South Africa, totalling 224 individuals (81 from Senegal, 55 from Guinea-Bissau, 38 from

Ghana, and 50 from South Africa). Four blood smears were prepared for each sample and

were examined for 10–15 min at low magnification (×400). Two hundred fields were then

studied at high magnification (×1000) using an Olympus Microscope CX31 (Olympus Corpo-

ration, Tokyo, Japan). Intensity of infection was estimated as a percentage by counting the

number of parasites per 10,000 erythrocytes [26]. Parasites were identified by microscopy

according to morphologic characteristics of blood stages [27]. We only examined blood smears

from birds diagnosed as infected by haemosporidians using the molecular method.

Molecular analyses

Total genomic DNA was extracted from blood samples using a phenol/chloroform/isoamyl

alcohol protocol [28, 29]. DNA samples were screened for the presence of haemosporidians

from three genera (Plasmodium, Haemoproteus and Leucocytozoon) with primers to amplify

the conserved regions of the cytochrome b (cyt-b) gene [29] using a nested PCR protocol.

After a screening PCR with HaemNF1 and HaemNR3 primers, the product was amplified in a

second PCR reaction including HaemNR2 and HaemNF primers to identify Plasmodium and

Haemoproteus and HaemL and HaemFL primers to identify Leucocytozoon. Two microlitres

of the cyt-b amplicon obtained in the second-round PCR reaction were used as the template

for the sequencing reaction. All negative reactions for haemosporidians were checked by

another round of PCR. All PCR and sequencing reactions were performed in an Eppendorf

Mastercycler Gradient thermal cycler (Eppendorf, Hamburg, Germany). The PCR products of

DNA from all infected egrets were purified prior to sequencing by incubating 8.0 μL of the

PCR product with 0.5 U of SAP enzyme (Shrimp Alkaline Phosphatase, USB) and 1 U of Exo I

(Exonuclease I, USB) for 60 min at 37˚C and 15 min at 80˚C. The sequencing reaction was per-

formed using 1 μL of Big-Dye (Applied Biosystems), 1 μL of purified DNA (50 ng/μL), 1 μL of

primer (HaemF or HaemR2), 3 μL of buffer (200 mM Tris HCl, pH 9.0, 5 mM MgCl2) and

4 μL of sterile water. Excess dye-terminators were removed by ethanol precipitation. The prod-

uct of the sequencing reaction was run in an ABI Prism 3730 or 3700 automatic sequencer

(Life Technologies, Applied Biosystems, Hamburg, Germany).

Phylogenetic analyses

The sequenced products of the cyt-b fragment (477 bp) from the haemosporidians were edited,

aligned and analysed. All sequences were checked visually and trimmed using Codon Code

Aligner software (CodonCode Corporation, Dedham, MA, USA). The sequences were aligned

with ClustalX2 default parameters [30]. The substitution model was chosen using the Akaike

information criterion [31] implemented in the MrModelTest 2.3 program [32]. The best-fit

model was selected as general time-reversible + proportion of invariable sites + gamma distrib-

uted rate across sites (GTR + I + G) [33].

Lineages with 1 bp difference were considered evolutionary independent lineages. Prior to

the phylogenetic reconstruction, we used the BLASTN tool to compare similarity among the

Plasmodium, Haemoproteus, and Leucocytozoon cyt-b sequences obtained from the B. ibis
samples and sequences of cyt-b lineages deposited in the MalAvi database [34] to determine

Haemosporidians in African cattle egret populations
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whether there were previously described lineages (assigned or not to a morphospecies) with

100% similarity to those found in B. ibis.
Plasmodium and Haemoproteus cyt-b sequences were then separated from the Leucocytozoon

sequences to perform two independent phylogenetic reconstructions among B. ibis lineages and

morphospecies lineages described in MalAvi database [34]. The reason for partitioning the phy-

logenetic reconstruction into two independent analyses (Plasmodium + Haemoproteus and Leu-
cocytozoon) was to enable better visualisation among the lineages from B. ibis described here

and the haemosporidian morphospecies related to the development of avian malaria and hae-

mosporidian-related parasites. In addition to the morphospecies described in MalAvi, we have

only included non-described Haemoproteus lineages related to the new clade of haemospori-

dians described by Yabsley et al. [35]. Bayesian inference was performed using MrBayes 3.2.0

[36] to reconstruct the two phylogenetic hypotheses and was run for ten million generations,

with trees sampled every 100 generations (the first 25,000 trees were discarded as ¨burn in¨). As

suggested in the specialised literature, we used Leucocytozoon toddi as the outgroup [37].

Since nucleotide differences among most Plasmodium lineages found in B. ibis were very

small, we considered that using a haplotype network method would be more effective than a

phylogenetic tree-based approach to recover and depict relationships among Plasmodium line-

ages. We used the median-joining network approach to infer the haplotypes relationship using

Network Software v.5.0.0.1[38].

Statistical analyses

Lineages of haemosporidians are defined by different sequences of DNA and diversity can be

evaluated based on nucleotide diversity, which is defined as the average number of nucleotide

differences per site between two DNA sequences in all possible pairs in the sample population.

Nucleotide diversity based on Plasmodium spp. lineages was determined for each colony popu-

lation using the DNAsp program, version 5 [39]. An ANOVA model was used to test differen-

tiation among the nucleotide diversity values, with variances given by the estimates provided

by the DnaSP program, version 5 [39].

The prevalence of Haemoproteus, Leucocytozoon and Plasmodium was calculated for each

cattle egret colony. Prevalence rates of Plasmodium determined in the colonies were compared

using the chi-squared test.

Two environmental variables (average temperature and precipitation during the sampling

month) were compiled using the WorldClim 1.4 at a 30-second resolution (http://www.

worldclim.org) for geographic coordinates relative to the breeding colonies. To evaluate the

joint effect of environmental variables on diversity, we employed a linear mixed-effects model

using temperature, precipitation and type of colony (mixed species colonies versus single spe-

cies colonies) as fixed effects and country as a random effect [40]

A generalized linear mixed-effects model with a binomial family and logit link was used to

understand the relationship between prevalence and environmental variables [40]. We used

temperature, precipitation, and elevation as fixed effects and country as a random effect. All

analyses were performed using the R programme [41]. Plots were made using the tidyverse

package (https://www.tidyverse.org). All the other analyses were performed using base R func-

tions as well as the lme4 package [42].

Results

To validate the identification of haemosporidians, we performed a morphological analysis of

224 blood smears in parallel with the positive molecular diagnosis using DNA. Sixty-four cases

of Plasmodium infection were confirmed in the cattle egret smears (28 from Senegal, 16 from

Haemosporidians in African cattle egret populations
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Guinea-Bissau, 11 from Ghana, and nine from South Africa). In this positive group, eight

blood smears were found with trophozoites similar to Plasmodium paranucleophilum, but the

confirmation of this species as involved in the infection was not possible due to the low level of

parasitaemia detected in the nestlings. As expected, we found submicroscopic infection (sam-

ples that were positive by PCR, but negative on smears). With positive smears, parasitemia was

low and it was therefore not possible to observe the different forms of the parasites for the con-

firmation of the species of Plasmodium involved in the infection. Infections by the genus Leu-
cocytozoon were found mainly in Nigeria, but no smears were made in this location and these

infections were only detected using the molecular approach.

Diversity of lineages

Among the 509 blood samples tested (Fig 1A) using the molecular approach, 130 were positive

for infection by Plasmodium spp., 35 were positive for infection by Leucocytozoon spp., and

seven were positive for infection by Haemoproteus spp. Four samples of infected birds (two

from Guinea-Bissau and two from Ghana) exhibited mixed infections with two different line-

ages of Plasmodium, which were detected by double peaks in the chromatograms. The first

phylogenetic analysis involved cyt-b sequences from Plasmodium and Haemoproteus obtained

from each infected cattle egret (N = 178), revealing two Haemoproteus and 73 Plasmodium lin-

eages (Fig 1B, 1C and 1D).

The cyt-b phylogenetic tree representing the relationships among Plasmodium and Haemo-
proteus lineages had four highly supported clades (1, 2, 3 and 4) (Fig 1B). All Plasmodium
clades (1, 2 and 3) were well-supported branches and were inserted in the major Plasmodium
division. Clade 1 (Fig 1B) joined the BULIBP13 lineage identified in Ghana and Guinea-Bissau

to the cosmopolitan Plasmodium elongatum lineage GRW06, which was previously found in

the cattle egret in Spain [43] and the Great Blue heron (Ardea herodias) [44]. Clade 2 (Fig 1B

and 1C) included the BULIBP3 to BULIP12 lineages, the most prevalent of which was the

BULIBP5 lineage, from which nine lineages derive. Clade 2 joined the cattle egret lineages with

the GALLUS01 Plasmodium lineage previously identified in Gallus gallus (Galliforme, Phasia-

nidae) and other species of the Galliformes and Passeriformes orders [45–47]. Clade 3 (Fig 1B

and 1D) is the largest and the most derived clade, with a central BULIBP15 lineage, from

which 61 lineages derive (24 from Senegal, 14 from Guinea-Bissau, 10 from Ghana, eight from

Nigeria, and five from South Africa). The BULIBP15 lineage corresponds to the MYCAME02

lineage described in the wood stork [48] and recently identified as Plasmodium paranucleophi-
lum in birds of prey [49]. The BULIBH1 and BULIBH2 lineages belong to Clade 4, the branch

topology of which in the tree (Fig 1B) represents a well-supported group of the Haemoproteus
group, distinct from the Parahaemoproteus group. Clade 4 included the cattle egret lineages,

the MYCAMH1 lineage described in the wood stork [48], and Haemoproteus catharti, which

has recently been characterised in New World vultures [35]. The group of seven Leucocytozoon
lineages were identified in a distinct phylogenetic tree (S1 Fig) using Plasmodium juxtanu-
cleare as the outgroup. Seven Leucocytozoon lineages joined in a clade with Leucocytozoon cali-
fornicus described in the American kestrel (Falco sparverius sparverius) using molecular and

microscopic approaches [50]. Among the 82 lineages described, the BULIBH1, BULIBP5,

BULIBP13, BULIBP15, BULIBP42, and BULIBL77 lineages are classified as generalists, since

they have been found in other avian genera and families (S2 Table).

Diversity by geographic location

Nucleotide diversity of Plasmodium lineages varied across colonies, and this variance was

small in most of the sites sampled (Fig 2). Moreover, the statistical test demonstrated

Haemosporidians in African cattle egret populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0212425 February 22, 2019 6 / 16

https://doi.org/10.1371/journal.pone.0212425


significantly different nucleotide diversities among locations (p-value < 0.001). The paired test

showed that diversity levels are not associated with geographic location.

A linear mixed-effects multivariate model showed that only precipitation was positively

associated with Plasmodium diversity when controlling for the effects of temperature, colony

composition (mixed and non-mixed species) and country (Table 1). The p-value for testing

whether the variance of the random effect factor (country) is zero was close to 1, which indi-

cates that geographical location is not associated with diversity.

Prevalence by geographic location

The geographic distribution of the prevalence of haemosporidians differed among three hae-

moparasite genera and colonies (p< 0.001) (Table 2 and Fig 3). Plasmodium dominated infec-

tions in moist/humid regions and lowlands areas. The presence of Haemoproteus was low in

all regions sampled and Leucocytozoon was found mainly, but not exclusively at higher alti-

tudes (p< 0.001) (Table 2). The statistical pairwise test showed that some of the colonies have

significantly different Plasmodium prevalence values, but the levels were not clearly associated

by geographic location.

The generalized mixed model (Table 3) showed that the odds ratio between prevalence and

temperature is 0.1681 (p< 0.001), meaning that the odds that a colony is infected increased by

18.31% with each degree centigrade increase in temperature. According to this multivariate

model, altitude and precipitation were not associated with prevalence. Moreover, the p-value

Fig 1. Location of sampling sites in Africa and phylogenetic identification of haemosporidian lineages. A) Map of Africa with sites where blood was

sampled from cattle egret nestlings. B) Phylogenetic tree defined by Bayesian method showing lineages identified in this study and lineages from literature and

database. C) Haplotype network corresponding to Plasmodium spp. lineages from BULIBP3 to BULIP12 from clade 2. D) Haplotype network showing genetic

relationships among Plasmodium spp. lineages from BULIBP14 to BULIBP75 from clade 3.

https://doi.org/10.1371/journal.pone.0212425.g001
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for testing whether the variance of the random effect factor (country) is zero was 0.667, which

indicates that geographical location is not associated with prevalence.

Discussion

We described 82 haemosporidian lineages using the mitochondrial cyt-b gene: 73 lineages of

Plasmodium, seven of Leucocytozoon, and two of Haemoproteus. These data surpass the largest

number of lineages previously described in the MalAvi database for a single species (66 line-

ages in Parus major from the order Passeriformes). The present results mainly contribute to

Fig 2. Spatial distribution of Plasmodium spp., nucleotide diversity, and relationships with environmental variables. Nucleotide diversity and variances of

fifteen cattle egret colonies from five countries in central-western and southern regions of Africa.

https://doi.org/10.1371/journal.pone.0212425.g002

Table 1. Parameter estimates from a linear mixed-effects model for evaluating the effects of environmental variables. The effect of emperature, precipitation and col-

ony composition (mixed-species or species-specific) were evaluated on Plasmodium diversity (nucleotide diversity).

Variable Estimate SE1 DF2 t value P > t

Intercept -0.01287 0.03469 10 -0.37107 0.71833

Colony composition3 -0.00548 0.01058 10 -0.51797 0.61575

Temperature 0.00027 0.00154 10 0.17383 0.86547

Precipitation 0.00003 0.00001 10 2.90967 0.01557

1SE: Standard error.
2DF: Degrees of freedom.
3Colony composition: mixed colonies (Zoo Dakar, Somone, Ilha de Bandim, Atanque, Ilha do Patrão, Korle Lagoon, Boschnemeer Golf, and Rondeley) and non-mixed

colonies (Thiés, Fobour Kasa, Falls, Fusa, Toro, Banson, and Paarl).

https://doi.org/10.1371/journal.pone.0212425.t001
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the Plasmodium repertoire (69 new lineages), with lower proportions of Haemoproteus (one

lineage) and Leucocytozoon (six lineages). The geographic distribution of the three genera is in

agreement with the pattern described for African regions [51]. The genus Leucocytozoon was

found almost exclusively at Nigerian sites, which are at higher altitudes: 23 infected birds were

from this area among the 29 infected by this parasite. This pattern is in agreement with that

described for the great tit (Parus major) in a study conducted at three altitudes in Switzerland,

which demonstrated the predominance of Plasmodium at low altitudes and Leucocytozoon at

high altitudes. Illera et al. [7] describe similar findings with 68 bird species in Iberian temper-

ate mountains.

Studies on haemosporidians involving a single host bird species have reported a lower num-

ber of lineages in comparison to those found in the cattle egret. A study on the house wren

(Troglodytes aedon) from the Andes and bordering lowlands revealed 23 distinct lineages [52],

while twenty new lineages of haemosporidians were described in a raven (Corvus corax) popu-

lation [15]. The order Ciconiiformes, which includes the cattle egret, had previously been

described as having only 33 avian malaria lineages [34].

It is interesting to note that the new cattle egret haemosporidian lineages described here

were united in clades of the phylogenetic tree with lineages that were recently characterised

morphologically in different families of birds. In monophyletic clade 3 (Fig 1B), 62 cattle egret

lineages were united with the wood stork lineage MYCAME02 [48] as well as Plasmodium
paranucleophilum isolated and morphologically characterised in six species of birds of prey

from the order Accipitriformes, Falconiformes and Strigiformes in Brazil [49]. The molecular

identification performed in the present study is the first report of P. paranucleophilum in

Africa, as this parasite has previously been reported only in South America [49]. The composi-

tion of clade 3 indicates that the P. paranucleophilum lineage similar to MYCAME02 has low

specificity toward bird hosts and infects hosts from four orders of birds. Clade 4 clustered the

Table 2. Prevalence of three genera of haemosporidians in fifteen cattle egret colonies in central-western and southern Africa and environmental variables at these

sites. Environmental variables were extracted from WorldClim 1.4 database (http://www.worldclim.org): average temperature during sampling month, precipitation dur-

ing sampling month and altitude of sampling sites.

Country Colony

(Population)

N

birds

P-Infected

birds

Plasmodium
Prevalence

H-Infected

birds

Haemoproteus
Prevalence

L-

Infected

birds

Leucocytozoon
Prevalence

Average

Temperature (˚C)

Precipitation

(d2)

Altitude

(mt)

Senegal Zoo Dakar 51 30 0.588 0 0.000 0 0.000 27.65 124.00 9.0

Senegal Somone 39 8 0.205 0 0.000 0 0.000 27.41 145.00 5.0

Senegal Thiés 41 16 0.390 0 0.000 0 0.000 27.77 145.00 70.0

Guinea-

Bissau

Bandim 53 11 0.208 2 0.038 1 0.019 26.37 358.00 22.0

Guinea-

Bissau

Atanque 37 24 0.649 0 0.000 0 0.000 26.38 324.00 11.0

Guinea-

Bissau

Ilha do Patrão 14 5 0.357 1 0.071 0 0.000 26.40 429.00 0.0

Ghana K. Lagoon 31 12 0.387 0 0.000 0 0.000 27.13 80.00 23.0

Ghana Bansom 34 5 0.147 0 0.000 0 0.000 25.56 211.00 103.0

Nigeria Fobour Kasa 30 2 0.067 0 0.000 5 0.167 20.63 247.00 1,228.0

Nigeria Kurra Falls 30 2 0.067 0 0.000 4 0.133 20.05 245.00 1,299.0

Nigeria Fusa 30 8 0.267 0 0.000 3 0.100 20.00 252.00 1,303.0

Nigeria Toro 30 1 0.033 1 0.033 11 0.367 22.05 244.00 937.0

South

Africa

Paarl 29 4 0.138 1 0.034 5 0.172 17.72 39.00 97.0

South

Africa

Boschenmeer 30 4 0.133 0 0.000 0 0.000 17.27 45.00 128.0

South

Africa

Rondevlei 30 2 0.067 1 0.033 0 0.000 18.70 18.00 5.0

https://doi.org/10.1371/journal.pone.0212425.t002
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two Haemoproteus lineages BULIBH1 and BULIBH2 with the MYCAMH1 lineage described

in the wood stork and morphologically identified as Haemoproteus catharti, which infects tur-

key vultures [35]. Clade 4 is clearly separated from all other Haemoproteus species and had a

position closer to Plasmodium species. The Leucocytozoon phylogenetic tree showed that cattle

egret lineages (BULIBL76 to BULIBL82) joined with the L. californicus lineage in a cluster that

is more closely related to leucocytozoid lineages found in owls (families Tytonidae and Strigi-

dae) and passerines (families Fringillidae and Emberizidae) [50].

Among the 82 lineages identified from three genera of haemosporidians, only six lineages

had the pattern of a generalist parasite (S2 Table). Based on Moens and Pérez-Tris [4], this low

number of generalists found in the cattle egret would be expected, since the host species is

abundant and specialist parasites have an advantage over generalist parasites because

Fig 3. Spatial distribution of prevalence and relationships with environmental variables. Prevalence of Plasmodium with approximate 95% confidence

intervals (computed using Gaussian approximation) in cattle egret colonies from five countries in central-western and southern Africa.

https://doi.org/10.1371/journal.pone.0212425.g003

Table 3. Parameter estimates from a generalized linear mixed-effects model evaluating the influence of environ-

mental variables. The effect of temperature, altitude and precipitation on Plasmodium prevalence was evaluated.

Variable Estimate SE1 z P > z

Intercept -4.35001 1.14892 -3.78618 0.00015

Temperature 0.16812 0.04618 3.64065 0.00027

Altitude -0.00055 0.00036 -1.51060 0.13089

Precipitation -0.06203 0.03469 -1.78811 0.07376

1SE: Standard error.

https://doi.org/10.1371/journal.pone.0212425.t003
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specialisation favours host monopolisation. The BULIBP5, BULIBP13, BULIBP15, BULIBP42

Plasmodium lineages occurred in the orders Accipitriformes, Ciconiiformes, Falconiformes

and Strigiformes; BULIBH1, which is a Haemoproteus lineage, was found in the Ciconiidae

and Cathartidae families, and BULIBL77, a Leucocytozoon lineage, was identified with the

CIAE02 lineage, previously found in several bird orders (S2 Table) as well as the little bittern

(Ixobrychus minutes, Ardeidae) [34].

Cattle egret has a wide distribution and underwent recent expansion on the African conti-

nent [53]. The haplotype network showed the most common haplotype in the central position,

associated with few mutational steps to haplotypes with small frequencies, which may indicate

a population expansion of Plasmodium along with the host species. There was no phylogenetic

structuring of lineages by geographic region (Fig 1B, 1C and 1D). This is a pattern that is in

line with connectivity among regions due to host movements, which leads to the homogenisa-

tion of parasites among regions. Most populations of the cattle egret are partially migratory,

making long-distance dispersive movements to seek food resources and as a response to sea-

sonal rainfall [54]. Hosts with wide distribution that are also migratory birds can encounter

more parasites and often harbour a greater diversity of parasites in comparison to hosts with

restricted distribution [55]. Thus, these migratory birds can spread pathogens, which can

infect both migratory and resident species (S2 Table).

Plasmodium diversity differed among the sampling sites, which is not in agreement with

the host hypotheses (H1 rejected) of spatial variation in parasite diversity and lends support to

the environment hypothesis (H2 accepted). The multivariate model revealed that the composi-

tion of colony (mixed species) has no effect on diversity of Plasmodium lineages [56]. On other

hand, the multivariate model (including temperature, precipitation and colony composition)

showed that precipitation exerts a significant and positive association to Plasmodium diversity

found among countries. The cattle egret chooses breeding and roosting sites near lakes and

rivers [20], which offer standing water for the reproduction of Culex mosquitoes (Plasmodium
vectors). Rainfall favours the multiplication of vectors in these water bodies, consequently con-

tributing to transmission among birds and the increase in the diversity of Plasmodium lineages

in the cattle egret population.

High Plasmodium prevalence rates (0.033–0.649) were found in the samples evaluated and

demonstrate that cattle egrets may be infected early in life (two to four weeks), as Villar et al.

[48] reports for the wood stork. The BULIBP15 lineage is the most prevalent Plasmodium line-

age and was found in every colony sampled, except in the Boschenmeer Golf colony in South

Africa. The prevalence of Plasmodium differed among sampling sites (H3 supported). The

multivariate analysis showed that only temperature (among altitude, temperature and precipi-

tation) is associated to Plasmodium prevalence when the other covariates are taken into

account. The association between temperature and prevalence was expected. Temperature was

reported to be the most important predictor of Plasmodium prevalence in the olive sunbird

(Cyanomitra olivacea), which occupies several habitats in tropical Africa [10]. The lower prev-

alence rates found in cattle egret colonies located in South Africa is in agreement with what is

expected for a temperate climate, where more severe winters and lower annual temperatures

are common. Temperature fluctuation during the day has been described as an important

determinant in the transmission of malaria [57]: warmer temperatures reduce the vector

capacity of mosquitos [58], while lower temperatures limit the sporogonic development of P.

relictum in the vector Culex quinquefasciatus [59]. Thus, Plasmodium spp. transmission is

reduced at temperatures less than 13˚C and more than 30˚. As the daily fluctuations of temper-

ature in most of the sites were within this range during sampling, this effect does not explain

the results obtained. Cumming et al. [60] found the same effect of temperature on prevalence

studying the repertoire of haemosporidians in eight species of duck (Anatidae) from four
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genera sampled from different areas of southern Africa. The authors found a lower prevalence

rate of Plasmodium in the southernmost portion of the African continent (South Africa,

S34o01’) and a higher prevalence rate in the northern portion of the region (Zimbabwe,

S17o56’). Using samples from 12 bird species on an oceanic island (Tenerife, Canary Islands),

Padilla et al. [1] found highest prevalence of Plasmodium in the lowest and warmest habitats.

This finding is in agreement with the results of the present study, in which lower prevalence

rates of Plasmodium were found in colonies located more inland and at higher altitudes in

Ghana and Nigeria (Banson, Fobour Kasa, Kurra Falls, and Toro) as well as colonies located in

the temperate zone (Bonshnemeer Golf, Paarl, and Rondeley in South Africa).

Conclusions

We screened cattle egret populations located in the central-western and southern regions of

Africa to detect the presence/absence of haemosporidian infection and found 82 lineages of

three genera: Plasmodium, Haemoproteus and Leucocytozoon. The data on Plasmodium diver-

sity demonstrated that the distribution of this variable was influenced by precipitation. The

prevalence of genera differed among the fifteen locations where the hosts were sampled. More-

over, the prevalence of Plasmodium proved to be greatly influenced by temperature. The pres-

ent findings demonstrate the importance of single-host studies for understanding the spatial

variation of haemosporidians and validate the use of sedentary nestlings to determine the para-

site assemblages at each location. The cattle egret proved to be a good model for the investiga-

tion of distribution and prevalence of haemosporidians, since it is a host with widespread

occurrence, which enabled testing the influence of environmental variables.
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model the distribution of vector-borne parasites with different environmental preferences: climate is not

enough. Global Change Biology. 2013; 19: 3245–3253. https://doi.org/10.1111/gcb.12226 PMID:

23606561

10. Sehgal RNM, Buermann W, Harrigan RJ, Bonneaud C, Loiseau C, Chasar A, et al. Spatially explicit pre-

dictions of blood parasites in a widely distributed African rainforest bird. Proceedings of the Royal Soci-

ety B: Biological Sciences. 2011; 278: 1025–1033. https://doi.org/10.1098/rspb.2010.1720 PMID:

20880888

11. Okanga S, Cumming GS, Hockey PA. Avian malaria prevalence and mosquito abundance in the West-

ern Cape, South Africa. Malaria Journal. 2013; 12: 370. https://doi.org/10.1186/1475-2875-12-370

PMID: 24160170

12. Bensch S, Waldenström J, Jonzén N, Westerdahl H, Hansson B, Sejberg D, et al. Temporal dynamics

and diversity of avian malaria parasites in a single host species. Journal of Animal Ecology. 2007; 76:

112–122. https://doi.org/10.1111/j.1365-2656.2006.01176.x PMID: 17184359
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