
Disentangling the effect of host-genotype
and environment on the microbiome of the
coral Acropora tenuis
Bettina Glasl1,2,3, Caitlin E. Smith1,2,3, David G. Bourne1,2,3 and
Nicole S. Webster1,3,4

1 Australian Institute of Marine Science, Townsville, QLD, Australia
2 College of Science and Engineering, James Cook University, Townsville, QLD, Australia
3 AIMS@JCU, Townsville, QLD, Australia
4 Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia

ABSTRACT
Genotype-specific contributions to the environmental tolerance and disease
susceptibility of corals are widely accepted. Yet our understanding of how host
genotype influences the composition and stability of the coral microbiome subjected
to environmental fluctuations is limited. To gain insight into the community
dynamics and environmental stability of microbiomes associated with distinct coral
genotypes, we assessed the microbial community associated with Acropora tenuis
under single and cumulative pressure experiments. Experimental treatments
comprised either a single pulse of reduced salinity (minimum of 28 psu) or exposure
to the cumulative pressures of reduced salinity (minimum of 28 psu), elevated
seawater temperature (+2 �C), elevated pCO2 (900 ppm), and the presence
of macroalgae. Analysis of 16S rRNA gene amplicon sequence data revealed that
A. tenuis microbiomes were highly host-genotype specific and maintained high
compositional stability irrespective of experimental treatment. On average, 48% of
the A. tenuis microbiome was dominated by Endozoicomonas. Amplicon sequence
variants (ASVs) belonging to this genus were significantly different between
host individuals. Although no signs of stress were evident in the coral holobiont
and the vast majority of ASVs remained stable across treatments, a microbial
indicator approach identified 26 ASVs belonging to Vibrionaceae, Rhodobacteraceae,
Hahellaceae, Planctomycetes, Phylobacteriaceae, Flavobacteriaceae, and
Cryomorphaceae that were significantly enriched in corals exposed to single and
cumulative stressors. While several recent studies have highlighted the efficacy
of microbial indicators as sensitive markers for environmental disturbance,
the high host-genotype specificity of coral microbiomes may limit their utility
and we therefore recommend meticulous control of host-genotype effects in coral
microbiome research.

Subjects Marine Biology, Microbiology
Keywords Coral microbiome, Host-genotype specificity, Endozoicomonas, Microbial indicators

INTRODUCTION
Corals contain abundant and diverse communities of microorganisms that together form a
holobiont (Rohwer et al., 2002). The photoautotrophic dinoflagellate endosymbionts

How to cite this article Glasl B, Smith CE, Bourne DG, Webster NS. 2019. Disentangling the effect of host-genotype and environment on
the microbiome of the coral Acropora tenuis. PeerJ 7:e6377 DOI 10.7717/peerj.6377

Submitted 5 November 2018
Accepted 30 December 2018
Published 5 February 2019

Corresponding author
Bettina Glasl, b.glasl@aims.gov.au

Academic editor
Anastazia Banaszak

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.6377

Copyright
2019 Glasl et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.6377
mailto:b.�glasl@�aims.�gov.�au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6377
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


of the family Symbiodiniaceae are by far the best studied symbiotic partners of reef-
building corals. Symbiodiniaceae lineages vary between coral species (Smith, Ketchum &
Burt, 2017) and even between host genotypes of conspecific corals (Brener-Raffalli et al.,
2018). Fine-scale adaptations of the Symbiodiniaceae lineages can influence the
environmental sensitivity of their hosts (Baker, 2003), as some Symbiodiniaceae lineages
are more thermo-tolerant and hence infer higher bleaching tolerance to corals
(Rowan, 2004). Corals also harbor diverse communities of bacteria, archaea, and viruses
(Bourne, Morrow & Webster, 2016; Hernandez-Agreda, Gates & Ainsworth, 2017;
Thurber et al., 2017). Excessive environmental stress resulting in coral bleaching, tissue
necrosis, and mortality, is often accompanied by a shift in the microbiome (Glasl, Herndl &
Frade, 2016; Zaneveld, McMinds & Thurber, 2017). While the importance of the
microbiome to coral fitness is well appreciated (Bourne, Morrow & Webster, 2016;
Grottoli et al., 2018; Peixoto et al., 2017; Ziegler et al., 2017), the microbiome’s potential to
expand the environmental tolerance of coral holobionts via microbial shuffling and
switching is far less understood (Webster & Reusch, 2017). Endozoicomonas, a bacterial
genus commonly associated with marine invertebrates, is considered a putative
symbiont of corals as it can occur at high abundance in aggregates within the tissue
(Neave et al., 2016b) and loss of Endozoicomonas is frequently seen in bleached or diseased
corals (Bayer et al., 2013; Glasl, Herndl & Frade, 2016). Pangenome analysis of
Endozoicomonas has revealed evidence for functional specificity between strains
(Neave et al., 2017), hence fine-scale changes in the composition or relative abundance
of different Endozoicomonas strains may contribute to variation in the environmental
tolerance and disease susceptibility of conspecific corals.

A fundamental question in microbiome research is whether host intrinsic factors
(e.g., genetics) or the environment are the main drivers of microbiome composition and
stability (Spor, Koren & Ley, 2011; Wullaert, Lamkanfi & McCoy, 2018). The influence
of host genetics and environmental factors on the community composition of a
microbiome varies between host species and even between host compartments.
For example, the rizhosphere microbiome of the perennial plant Boechera stricta are
predominantly shaped by environmental factors, however, its leaf associated microbial
community is largely controlled by host genetic factors (Wagner et al., 2016).
Host-genotype specific factors also shape the gut microbiome of Drosophila melanogaster,
a model system for animal-microbe interactions, and further mediate its nutritional
phenotype (Chaston et al., 2016). While many coral microbiome studies have focused on
the effect of environmental stress (e.g., elevated temperature, increased macroalgae
abundance, anthropogenic pollution, and declining water quality (Garren et al., 2009;
Vega Thurber et al., 2009; Zaneveld et al., 2016; Zhang et al., 2015)); the combined
influence of host-genotype and environment on the microbial community composition
remains largely unknown. This is a critical knowledge gap as microbiome-by-host
genotype-by-environment interactions may have important implications for the
resistance of corals to stress and disease. Considering the recent declines in coral
reefs (De’ath et al., 2012; Hoegh-Guldberg et al., 2007; Hughes et al., 2017) and the key role
microorganisms play in maintaining host health (Bourne, Morrow & Webster, 2016),
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disentangling the effect of environment and host-genotype on a coral’s microbiota is of
utmost importance.

This study investigated the effect of host genotype-by-environment interactions on the
microbiome of Acropora tenuis. The compositional variability of the A. tenuismicrobiome
associated with distinct host genotypes (individual coral colonies) was assessed with
high taxonomic resolution based on amplicon sequence variants (ASV). The stability of the
microbiome was further investigated by exposing corals to acute salinity fluctuations
(ranging from 35 to 28 psu) under current (sea surface temperature of 27.5 �C and pCO2

of 400 ppm) and future (sea surface temperature of 29.5 �C, pCO2 of 900 ppm, and
macroalgae) projected reef conditions. Stress treatments were designed to simulate
environmental conditions that A. tenuis can experience in their natural environment.
Both stress treatments (single and cumulative stress) consisted of a non-lethal low salinity
pulse, mimicking freshwater influx into the reef as occurs after large rainfall events,
often linked to cyclones that cross the Eastern Australian coastline and result in large
riverine flows into the nearshore and mid-shelf reef areas of the Great Barrier Reef (Jones &
Berkelmans, 2014; VanWoesik, DeVantier & Glazebrook, 1995).

MATERIALS AND METHODS
Coral colony collection and experimental design
Nine A. tenuis colonies were collected from Davies Reef (Great Barrier Reef, Australia) in
March 2017 and transported to the National Sea Simulator at the Australian Institute
of Marine Science (Townsville, QLD, Australia). Corals were fragmented into coral
nubbins, glued onto aragonite plugs and kept at control temperature (27.5 �C) and light
(150 mol photons m-2 s-1) conditions in indoor flow-through aquaria for 3 weeks to
allow healing. Corals were collected under the permit G12/35236.1 granted by the Great
Barrier Reef Marine Park Authority to the Australian Institute of Marine Science.

The experimental design consisted of three treatment conditions: (1) control, (2) single
stress, and (3) cumulative stress treatment (Fig. 1). Nubbins of all nine A. tenuis genotypes
(A–I) were exposed to all three treatment conditions to explore microbiome variation
according to host genotype. Each experimental aquarium (three aquaria per treatment)
held nubbins of three A. tenuis genotypes (four nubbins per genotype, total of 12 nubbins
per aquarium). Coral nubbins were acclimated to experimental aquaria for 3 weeks
during which corals in the cumulative stress treatment were gradually ramped to 29.5 �C
and 900 ppm pCO2 over a period of 12 days. Corals in the control and single stressor
treatments were kept at stable temperature (27.5 �C) and ambient (400 ppm) pCO2

conditions throughout the experiment.
Salinity was ramped down over 3 h to a minimum of 28 psu and oscillated between

28 and 30 psu in a 6 h rhythm to simulate natural fluctuations occurring on reefs
(tidal influences). Temperature and pCO2 adjusted freshwater (0.2 mm filtered) was used
to lower salinities prior to supplying the low saline seawater to the aquaria tanks.
After 7 days of low salinity, the salinity was ramped up (3 h) to 35 psu. In the cumulative
stress treatment, corals were additionally exposed to elevated temperature (29.5 �C), pCO2
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(900 ppm), and macroalgae (Sargassum sp.), as predicted for the end of the 21st
century (IPCC, 2014).

Samples were collected regularly throughout the experiment (see Fig. 1), including 24 h
before the salinity pulse was induced (day 1) and at three time points (day 10, 14, and 19)
after the low-salinity stress exposure. All nubbins were processed as follows: effective
quantum yield was measured (pulse amplitude modulation (PAM) fluorometry),
photographed, inspected for visual signs of stress (tissue lesions, bleaching, and necrosis),
rinsed with 0.2 mm filter-sterilized seawater, snap frozen in liquid nitrogen and stored at
-80 �C until further processing.

Coral nubbins were defrosted on ice before tissue was removed with an airgun in 1� PBS
(pH = 7.4), homogenized for 1 min at 12.5 rpm with a hand-held tissue homogenizer
(Heidolph Silent Crusher M) and subsequently aliquoted for the quantification of
Symbiodiniaceae cell density, chlorophyll a, protein concentration, and DNA extraction for
amplicon-based sequencing of the 16S rRNA gene. Aliquots (500 ml) for Symbiodiniaceae
cell counts were fixed with formaldehyde (final concentration 1.5%) and stored in the
dark at room temperature. Aliquots for chlorophyll a, protein, and DNA extraction (1 ml
each) were centrifuged for 10 min at 16,000�g, the supernatant was discarded and the
remaining pellet was snap frozen in liquid nitrogen and stored at -80 �C until further
processing. Coral nubbin surface area was assessed by a single paraffin wax dipping for 2 s
followed by 5 min air-drying. The weight of each coral nubbin before and after dipping was
quantified and the surface area was calculated against a standard curve.

Physiology of Symbiodiniaceae and the coral holobiont
The effective quantum yield of the Symbiodiniaceae was measured using PAM
fluorometry. Corals were light adapted (5 h) before measuring the response of the
photosystem II effective quantum yield (DF/Fm′) with a Heinz WalzTM Imaging PAM as
previously described (Chakravarti, Beltran & Van Oppen, 2017). Coral nubbins were
exposed to a saturation pulse and the minimum and maximum fluorescence was
recorded and effective quantum yield was calculated (see Eq. S1).

Symbiodiniaceae cell densities were manually counted under a stereomicroscope
using formaldehyde fixed tissue samples (final c = 1.5%). Samples were briefly vortexed
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Figure 1 Conceptual overview of the experimental design. Acropora tenuis colonies (n = 9) were
fragmented and coral nubbins of each host genotype (A–I) were exposed to three different
treatment conditions (control, single stress, and cumulative stress) and sampled on a regular basis
throughout the experiment (day 1, 10, 14, and 19). Image credit: Bettina Glasl.

Full-size DOI: 10.7717/peerj.6377/fig-1

Glasl et al. (2019), PeerJ, DOI 10.7717/peerj.6377 4/18

http://dx.doi.org/10.7717/peerj.6377/supp-1
http://dx.doi.org/10.7717/peerj.6377/fig-1
http://dx.doi.org/10.7717/peerj.6377
https://peerj.com/


and 9 ml of each sample was added to either side of two haemocytometers and the density
of symbiont cells was quantitatively normalized to the tissue blastate and aliquot volume,
and standardized to the nubbin’s surface area.

Chlorophyll a was extracted and concentrations were measured using a
spectrophotometric assay. Tissue pellets were defrosted on ice, centrifuged at 16,000�g for
10 min at 4 �C, and remaining supernatant was discarded. Pellets were re-suspended
in 1 ml of 100% acetone and incubated in the dark for 24 h at 4 �C after which they were
centrifuged at 16,000�g for 10 min and supernatant (200 ml) was pipetted into a 96-well
plate in triplicate. Absorbance at 630 and 663 nm was measured using a BioTekTM

microplate reader and chlorophyll a concentration was calculated (see Eq. S1),
quantitatively normalized to the tissue blastate and aliquot volume, and standardized to
the nubbin’s surface area.

Total protein concentration was quantified using a PierceTM BCA Protein Assay Kit
(Thermo Scientific, Waltham, MA, USA) following the manufacturer’s instruction.
Absorbance was measured in triplicate for each sample at 562 nm in a BioTekTM Plate
reader. Standard curves were calculated using a bovine serum albumin (BSA) solution,
creating a working range between 20 and 2,000 mg ml-1 and total protein was calculated
against the BSA standard curve, quantitatively normalized to the tissue blastate and aliquot
volume, and standardized to the surface area of each individual nubbin.

DNA extraction, 16S rRNA gene sequencing and analysis
DNA of all coral samples was extracted using the DNeasy PowerBiofilm Kit (QIAGEN,
Venlo, Netherlands) following the manufacturer’s instructions. Blank extractions were
included to control for kit contamination. Coral DNA extracts were stored at -80 �C
until shipment on dry ice to Ramaciotti Centre (University of New SouthWales, Australia)
for sequencing. The V1–V3 region of the 16S rRNA gene was amplified using primers
27F (5′-AGAGTTTGATCMTGGCTCAG-3′; Lane, 1991) and 519R (5′-GWATTA
CCGCGGCKGCTG-3′; Turner et al., 1999) and libraries were prepared with the Illumina
TruSeq protocol, followed by Illumina MiSeq 2 � 300 bp sequencing (see Table S1).

Demultiplexed paired end reads were analyzed in QIIME2 (Version 2017.9.0;
https://qiime2.org) as previously described by Glasl et al. (2018). In brief, forward and
reverse reads were truncated at their 3′ end at the 296 and 252 sequencing positions,
respectively. Samples were checked for chimeras and grouped into features based on 100%
sequence similarity, from here on referred to as ASV, using DADA2 (Callahan et al., 2016).
Multiple de novo sequence alignments of the representative sequences were
performed using MAFFT (Katoh et al., 2002). Non-conserved and highly gapped columns
from the alignment were removed using default settings of the mask option in QIIME2.
Unrooted and rooted trees were generated for phylogenetic diversity analysis using FastTree.
For taxonomic assignment, a Naïve-Bayes classifier was trained on the SILVA v123 99%
operational taxonomic units, where reference sequences only included the V1–V2 regions
(27F/519R primer pair) of the 16S rRNA genes. The trained classifier was applied to the
representative sequences to assign taxonomy. A total of 11,063,364 reads were retrieved from
100 sequenced samples and clustered into 4,624 ASVs (Table 1). Chloroplast and
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Mitochondria derived sequence reads and singletons were removed from the dataset and
the feature table was rarefied to an even sequencing depth of 3,506 sequencing reads,
leading to the exclusion of four samples. Demultiplexed sequences and metadata are
available from the NCBI Sequence Read Archives under accession number PRJNA492377.

Statistical analysis
Statistical analysis was performed in R (R Development Core Team, 2008). Holobiont
health metadata were z-score standardized and variation between treatments and host
genotypes was evaluated using Analysis of Variance (ANOVA) and if applicable, variations
were further assessed with a Tukey post hoc test. Multivariate statistical approaches
including Multivariate Homogeneity of Group Dispersion (“vegan package”; Oksanen
et al., 2013), Permutation Multivariate Analysis of Variance (PERMANOVA, “vegan
package”; Oksanen et al., 2013), Non-metric multidimensional scaling (“phyloseq
package”; McMurdie & Holmes, 2013) and distance based Redundancy Analysis (db-RDA
“phyloseq package”;McMurdie &Holmes, 2013) were based on Bray–Curtis dissimilarities.
Mantel statistics based on Pearson’s product-moment correlation (mantel test, “vegan
package” (Oksanen et al., 2013) were used to evaluate whether sample-to-sample
dissimilarities in microbiome composition and physiological holobiont health parameters
(protein concentration, chlorophyll a concentration, Symbiodiniaceae cell densities, and
effective quantum yield) were correlated. Holobiont health parameters were z-score
standardized and dissimilarity matrices were based on Bray–Curtis dissimilarities.

Alpha diversity measures including richness and Shannon diversity for the
Endozoicomonas community were analyzed using the “phyloseq package” (McMurdie &
Holmes, 2013). Variation in the total relative abundance of all Endozoicomonas ASVs per
sample between treatments, over time and between host-genotypes was assessed
using ANOVAs with arcsine-square-root transformed relative abundance data.
The phylogenetic tree of the 11 most abundant Endozoicomonas ASVs was produced
with phyloseq (McMurdie & Holmes, 2013) using the Newick rooted tree generated in
QIIME2 (version 2017.9.0; https://qiime2.org).

Table 1 Sequencing and sample overview.

Host-genotype Total no.
of samples

No. of sequences Richnessa Evennessa Shannon
Indexa

A 12 54,352 (±18,259) 71 (±64) 0.63 (±0.05) 2.53 (±0.48)

B 12 31,702 (±19,058) 51 (±44) 0.66 (±0.14) 2.49 (±0.86)

C 12 26,421 (±26,065) 108 (±86) 0.73 (±0.11) 3.23 (±0.65)

D 12 59,543 (±28,560) 101 (±102) 0.64 (±0.07) 2.74 (±0.80)

E 12 27,348 (±24,386) 100 (±110) 0.69 (±0.10) 2.97 (±0.81)

F 12 36,097 (±21,293) 108 (±103) 0.73 (±0.08) 3.18 (±0.84)

G 4 55,460 (±35,822) 126 (±74) 0.75 (±0.07) 3.46 (±0.74)

H 12 44,101 (±19,488) 92 (±63) 0.65 (±0.14) 2.81 (±0.64)

I 12 51,998 (±23,968) 109 (±73) 0.63 (±0.08) 2.82 (±0.65)

Note:
a Diversity indices (average ± SD) for each host genotype are based on a non-rarefied ASV table from which chloroplast
and mitochondria derived reads were removed.
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Indicator value analysis (IndVal, “indispecies” package; De Cáceres & Legendre, 2009)
was used to identify ASVs significantly associated with treatment groups (control, single
stress, and cumulative stress) based on their occurrence and abundance distribution.
Day 1 samples were excluded from the IndVal analysis to restrict the dataset to ASVs
significantly associated with coral tissue after stress exposure (day 10, 14, and 19).

Graphs were created in R using ggplot2 (Wickham, 2009) and phyloseq packages
(McMurdie & Holmes, 2013). Alluvial diagram was generated in RAWGraph
(Mauri et al., 2017).

RESULTS
Coral holobiont physiological response
Corals showed no visual signs of stress (change in pigmentation, bleaching, tissue necrosis,
and/or mortality) in any treatment. Chlorophyll a concentrations remained stable
between treatments (one-way ANOVA with sampling time point as blocking factor,
F(2/94) = 2.707, p = 0.072), however, effective quantum yield (DF/Fm′; one-way ANOVA
with sampling time point as blocking factor, F(2/94) = 15.52, p = 1.49 � 10-6),
symbiont cell densities (one-way ANOVA with sampling time point as blocking factor,
F(2/94) = 8.83, p = 3.06 � 10-4) and protein concentration (one-way ANOVA with
sampling time point as blocking factor, F(2/94) = 5.563, p = 5.21 � 10-3) varied
significantly between treatments within sampling time points (Fig. 2A). Coral nubbins in
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a (Chl a) concentration, protein concentration, effective quantum yield (DF/Fm′) and symbiont cell density (Symbiont density) of A. tenuis (A) over
time (day 1, 10, 14, and 19) and (B) between individual host-genotypes (A–I). Physiological parameters are z-score standardized and error bars
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the cumulative stress treatment contained significantly lower protein and symbiont
cell densities, while displaying significantly higher effective quantum yield compared to
nubbins in the control and single stressor treatments (Tukey post hoc test; Table S2).
Furthermore, effective quantum yield (one-way ANOVA, F(8/91) = 2.688, p = 0.0106),
symbiont cell densities (one-way ANOVA, F(8/91) = 4.334, p = 1.86� 10-4) and chlorophyll
a concentrations (one-way ANOVA, F(8/91) = 2.773, p = 8.64 � 10-3) varied significantly
between host genotypes (Fig. 2B). Protein concentration, however, was unaffected by
host genotype (one-way ANOVA, F(8/91) = 1.783, p = 0.0906) and hence was the only
holobiont health parameter solely affected by treatment.

Microbial community response
The microbiome of A. tenuis remained highly stable across treatments, with no
significant changes in the heterogeneity, also referred to as multivariate dispersion
(one-way ANOVA, F(2/93) = 1.2107, p = 0.3026; Fig. 3A), or in community composition
(PERMANOVA, p = 0.5156, 10,000 permutations; Fig. 3B). However, the microbiome
composition varied significantly between individual host genotypes (PERMANOVA,
p = 9.99 � 10-5, 10,000 permutations), but was unaffected by treatment, sampling time
point or tank effects when tested for each genotype individually (PERMANOVA
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with host-genotype as blocking factor, 10,000 permutations; Table S3). Similar results
were obtained using presence/absence data (Fig. S1). Host genotype was the only
significant factor, explaining 32.4% of the observed community variation (permutational
ANOVA for db-RDA based on 1,000 permutations, p = 9.99 � 10-4; Fig. S2). Treatment
and holobiont health parameters did not significantly contribute to the microbiome
variation (Table S4). Furthermore, no significant correlation between similarity matrices
based on microbiome composition and physiological holobiont health parameters was
observed (chlorophyll a, protein, effective quantum yield, and symbiont cell density;
Mantel statistic based on Pearson’s product-moment correlation r = -0.0238, p = 0.6243,
10,000 permutations).

Endozoicomonas assemblage
Endozoicomonas affiliated sequences comprised the majority of the A. tenuis microbiome,
representing 48% (±29%) of the community (based on proportion of reads) and
comprising 133 unique ASVs. One Endozoicomonas strain (ASV 11) was consistently
present (100% of all samples) and highly abundant (19% ± 12%) throughout the
experiment (Fig. 4). The A. tenuis microbiome also contained diverse bacteria affiliated
with phyla including Proteobacteria (30%), Actinobacteria (10%), Firmicutes (2.4%), and
Bacteroidetes (1.9%; Fig. 4).

The total relative abundance of Endozoicomonas was not affected by treatment
(two-way ANOVA, F(2/84) = 0.473, p = 0.625), sampling time point (two-way ANOVA,
F(3/84) = 0.588, p = 0.625) or the interaction of treatment-by-sampling time point
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Figure 4 The taxonomic composition of the Acropora tenuis microbiome. (A) The A. tenuis micro-
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(two-way ANOVA, F(6/84) = 0.696, p = 0.654). However, total relative Endozoicomonas
abundance varied significantly between host genotypes (one-way ANOVA, F(8/87) = 3.741,
p = 2.04 � 10-4) and remained stable between treatments when tested for each
genotype individually (within subject ANOVA, F(2/85) = 0.756, p = 0.473); Fig. 5A).

The Endozoicomonas community composition also varied significantly between
host genotypes (PERMANOVA, p = 9.99 � 10-5, 10,000 permutations; Fig. 5), however,
was unaffected by treatment, sampling time point or tank (PERMANOVA with
host-genotype as blocking factor, 10,000 permutations; Table S5). Furthermore,
host-genotype significantly explained 26.4% of the observed compositional variability of
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the Endozoicomonas community (permutational ANOVA for db-RDA based on
1,000 permutations, p = 9.99 � 10-5; Fig. 5B).

Microbial indicators for environmental stress
Indicator value analysis was performed to assess if specific ASVs could be identified as
indicators for environmental stress treatments. Despite the vast majority of ASVs
(i.e., 4,598 ASVs) showing no response to experimental treatment, 26 ASVs were
significantly associated (p < 0.05) with one and/or two treatment groups (Fig. 6; Table S6).
The identified indicator ASVs belonged to the bacterial families Vibrionaceae,
Rhodobacteraceae, Hahellaceae (genus Endozoicomonas), Planctomycetes,
Phylobacteriaceae, Flavobacteriaceae, and Cryomorphaceae (Fig. 6).

DISCUSSION
Elucidating the effect of host genotype on microbiome composition and understanding
consequences of environmental change for holobiont stability is central to predicting the
influence of host genetics on the stress tolerance of corals. Here, we followed the
compositional stability of microbiomes associated with nine distinct A. tenuis genotypes
when exposed to control, single and cumulative stress treatments over time. The A. tenuis
microbiome varied significantly between coral genotypes, with host genotype being a
much stronger driver of microbiome variation than environment. Similar host-genotype
specificities have recently been described for sponge microbiomes (Glasl et al., 2018)
and are also frequently reported for plant, crustacean, and human microbiomes
(Balint et al., 2013; Macke et al., 2017; Spor, Koren & Ley, 2011). Traditional coral health
parameters targeting the coral algal symbiont (i.e., chlorophyll a concentrations, symbiont
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Figure 6 Microbial indicators significantly associated with one and/or two treatments. Indicators
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cell densities, effective quantum yield) were also significantly affected by host-genotype,
although no correlation between these parameters and the microbiome was observed.
This suggests that the A. tenuismicrobiome composition remains largely unaffected by the
performance and density of the algal symbiont, and that other host intrinsic factors
(e.g., genetics) and/or the environmental life-history of individual genotypes fine-tune the
microbiome composition.

Endozoicomonas form symbiotic partnerships with diverse marine invertebrates
(Neave et al., 2016a). In corals, Endozoicomonas occur as dense clusters within the coral
tissue and in some bacterial 16S rRNA gene profiling studies they can reach relative
abundances as high as 95% of retrieved sequences (Bayer et al., 2013; Neave et al., 2016a;
Pogoreutz et al., 2018). Loss of Endozoicomonas from the coral microbiome has been
correlated with negative health outcomes for the coral host, though their direct effects on
host fitness are unknown (Bourne et al., 2008; Glasl, Herndl & Frade, 2016; Ziegler et al.,
2016). In A. tenuis, we detected no significant change in the relative frequency, alpha
diversity, richness, and community composition of Endozoicomonas following exposure to
non-lethal environmental stress. These results are consistent with findings for Pocillopora
verrucosa, where Endozoicomonas remains the dominant symbiont even under
bleaching conditions (Pogoreutz et al., 2018). In our study, the Endozoicomonas
community generally exhibited high host-genotype specificity at the ASV level, though a
single Endozoicomonas strain (ASV 11) was consistently shared among all coral nubbins
and genotypes (including field control samples—data not shown). This ubiquitous
strain likely represents a stable and consistent member of the resident Endozoicomonas
community. A stable core is often described as a key feature of a symbiotic coral
microbiome (Ainsworth et al., 2015; Hernandez-Agreda, Gates & Ainsworth, 2017),
and despite being ubiquitously persistent between conspecific corals, the core
characteristically only comprises a few members of the whole microbiome
(Hernandez-Agreda et al., 2018).

While the Endozoicomonas community as a whole was not significantly affected by
environmental treatment, one Endozoicomonas ASV was identified as a significant
indicator for environmental stress. Similar environmental sensitivity has been reported for
two prevalent Endozoicomonas species following exposure to elevated dissolved organic
carbon (Pogoreutz et al., 2018). Although these Endozoicomonas affiliated ASVs
show high sequence identity, small variations in the rRNA gene sequence can impact the
biology and pathogenicity of bacteria (Cilia, Lafay & Christen, 1996; Fukushima,
Kakinuma & Kawaguchi, 2002), hence single nucleotide variations (ASV level) may
affect the functional role of microbes with flow on consequences for the coral holobiont.
Shuffling and switching of Endozoicomonas strains may therefore provide the coral
holobiont with an enhanced capacity to cope with shifting environmental conditions
(Neave et al., 2017), although characterization of the symbiotic contribution made by
Endozoicomonas to the coral host is required to better understand the ecological
significance of these findings.

Recent studies have highlighted the potential for coral microbiomes to act as
sensitive markers for environmental disturbance (Glasl, Webster & Bourne, 2017;
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Roitman, Joseph Pollock & Medina, 2018). Here, we showed that a small number of ASVs,
including taxa commonly reported to increase under host stress (i.e., Vibrionaceae,
Rhodobacteraceae (Ben-Haim et al., 2003; Bourne, Morrow & Webster, 2016; Sunagawa,
Woodley & Medina, 2010)), were significantly associated with the tissue of A. tenuis
exposed to single and cumulative stress treatments. However, despite the potential
diagnostic value of these ASVs, host genotype overwhelmed any overarching effect of
environment on the coral microbiome. This high divergence in the microbiome between
conspecific corals is likely to hinder our ability to detect fine-scale variation of sensitive
microbial indicator taxa. Therefore, unless host-genotype independent microbial
indicators can be identified and validated, the efficacy of integrating microbial community
data into coral health monitoring initiatives appears unfeasible due to high compositional
variability between microbiomes of conspecific corals.

CONCLUSIONS
This study shows that the A. tenuis microbiome varies significantly between host
individuals (genotypes) and that these genotype-specific communities persist
during exposure to non-lethal environmental disturbances. Consideration of
microbiome-by-host genotype-by-environment effects is therefore needed to elucidate
how intraspecific variations of the microbiome affect the susceptibility of corals to
environmental stress and disease. Furthermore, microbial variability between individual
coral genotypes may cloud our ability to identify universal microbial changes during
periods of adverse environmental conditions. This is particularly relevant if establishing
sensitive microbial indicators for sub-lethal environmental disturbances (tested in
this study), since the observed stability of the coral microbiome combined with the host
genotype specificity likely precludes the robust assignment of microbial indicators
across broad scales.
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